JP2863994B2 - Bag-type closed pressure regulating water tank - Google Patents

Bag-type closed pressure regulating water tank

Info

Publication number
JP2863994B2
JP2863994B2 JP7184572A JP18457295A JP2863994B2 JP 2863994 B2 JP2863994 B2 JP 2863994B2 JP 7184572 A JP7184572 A JP 7184572A JP 18457295 A JP18457295 A JP 18457295A JP 2863994 B2 JP2863994 B2 JP 2863994B2
Authority
JP
Japan
Prior art keywords
water
pressure
valve
bag
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7184572A
Other languages
Japanese (ja)
Other versions
JPH093865A (en
Inventor
一博 馬田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SOMA ENJINIARINGU JUGEN
Original Assignee
SOMA ENJINIARINGU JUGEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SOMA ENJINIARINGU JUGEN filed Critical SOMA ENJINIARINGU JUGEN
Priority to JP7184572A priority Critical patent/JP2863994B2/en
Publication of JPH093865A publication Critical patent/JPH093865A/en
Application granted granted Critical
Publication of JP2863994B2 publication Critical patent/JP2863994B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、水力発電・農業用パイ
プライン等での水撃圧力の吸収,発散。また、水車・ポ
ンプ等の負荷変化によって生ずる、流量調整ベーン開閉
時間の変更を可能とする調圧水槽に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to absorption and divergence of water hammer pressure in pipelines for hydroelectric power generation and agriculture. Also, the present invention relates to a pressure regulating water tank that enables a change in the flow control vane opening / closing time caused by a load change of a water turbine, a pump, or the like.

【0002】[0002]

【従来の技術】従来の水力発電に用いられる調圧水槽
は、(図11,図12,図13)に示すように、一般型
調圧水槽(図11)、開放型空気制動(図12)、密閉
型圧縮空気(図13)の3種類に大別できる。以下個々
の特徴について述べるとともに、従来の水路布設方法に
ついても説明する。 (イ) 一般型調圧水槽(図11)は、単動サージタン
ク,制水口サージタンク,差動サージタンク,水室サー
ジタンク等の種類があるが、どれもサージタンク天端は
開放されている。また、調圧水槽は導水路の下流末端
に設置することが多い。したがって、導水路の延長が
長い場合、および貯水池利用水深が大きい場合には、
全負荷遮断時、負荷急増時の最高上昇水位、最低水位が
大きくなって調圧水槽高さ、断面積が増加する。さら
に、調圧水槽の天端が開放されているために導水路縦断
方向の設置位置の自由度が小さい。そのうえに、急斜面
の地形に設けることとなって水槽の地震時安定確保対
策、施工の困難等によって工事費が増大する。 (ロ) 開放型空気制動(図12)は、サージタンクの
天端を鉄筋コンクリートで被い、この天井の一部に小孔
を開け、この小孔をサージタンク内の空気が流出、流入
する時の抵抗によってサージタンク高さを抑制する。し
たがって、前記の一般型に比較して調圧水槽高さを減少
できるが、設置位置の自由度は一般型と同様である。 (ハ) 密閉型圧縮空気(図13)は、日本では採用さ
れていないが、ノルウェー,アメリカで用いられてい
る。設置位置の自由度は大きく導水路のルートには関
係しない。(図14)を参照して密閉型圧縮空気サージ
タンクの概要を述べる。定常負荷時から全負荷遮断をす
ると導水圧力管路内の流水は、圧力容器内に流入し容器
内の水位は上昇する。よって、空気室内の空気は圧縮さ
れる。また、水車から発生する水撃圧力は水圧鉄管から
制水口を通って、空気室で発散、反射する。定常負荷時
より負荷を急増すると最初に圧力容器内に存在する水で
水車の流量補給をして発電出力を増加する。そのとき、
圧力容器内の空気室圧力は定常負荷時の圧力より下が
る。したがって、貯水池から圧力容器の間に圧力差(落
差)が生じ、導水圧力管路の流速(流量)は増大する。
この現象は、水理学の非定常流れであって導水圧力管路
の流量と水車が要求する流量とが一致したときに、圧力
容器内の水位降下が停止する(最低下降水位)。ゆえ
に、導水圧力管路長が長いほど、及び圧力容器内の圧力
低下が小さい場合ほど下降水位が大きくなる。よって、
調圧水槽の高さが増大する。制水口は、開放されている
ために下降水位の制御は制水口断面積の縮小による、制
水口通過流量減少によってなされているが、制水口断面
積を過度に縮小すると水撃圧力の吸収,発散が確実とな
らない場合が生ずる。圧力容器内の万一の空気漏れに備
えて空気量供給のエアコンプレッサーを備える必要があ
るが、この供給空気量のコントロールは、水位計測の結
果からの空気量と圧力の積とが一定(P・V=一定)と
なるように自動制御されている。 (ニ) 従来の水路式中小水力発電(図15参照)で
は、取水堰1から発電所の直上部に設置する上部水槽5
(サージタンク)に至る間に、1/1000程度の勾配
をもって無圧導水路4を開渠、あるいはトンネル等の工
法によって布設する。さらに、上部水槽5の越流水を放
流する余水路7を設け、上部水槽5から直下の水車まで
の間に水圧鉄管6を設けて、流水を導く方法で水路を布
設していた。したがって、上部水槽5の水位と放水面1
2との水位の間で所要の落差を得ていた。この場合、沈
砂池3の水位と上部水槽5との間に、発電に寄与しない
無効落差14を生じて有効落差13を減少させて、発電
出力と発生電力量を減少させてきた。また、農業用水等
のように、季節的に生ずる用水を無圧導水路4より補給
し、使用しない場合には発電流量補給に用いて発電量増
加をするという積極的な計画発想も少なかった。(図1
7参照〜水資源の合理的利用)
2. Description of the Related Art As shown in FIGS. 11, 12, and 13, a conventional pressure regulating water tank used for hydroelectric power generation includes a general-type pressure regulating water tank (FIG. 11) and an open-type air brake (FIG. 12). And closed type compressed air (FIG. 13). The individual features will be described below, and a conventional waterway laying method will also be described. (A) General-type pressure regulating water tanks (Fig. 11) include single-acting surge tanks, water inlet surge tanks, differential surge tanks, and water chamber surge tanks. I have. In addition, the pressure regulating tank is often installed at the downstream end of the headrace channel. Therefore, when the length of the headrace is long and when the reservoir uses deep water,
When full load is cut off, the maximum rising water level and the minimum water level when the load suddenly increases are increased, and the height of the pressure regulating tank and the cross-sectional area are increased. Furthermore, since the top end of the pressure regulating water tank is open, the degree of freedom of the installation position in the longitudinal direction of the headrace channel is small. In addition, installation on steep terrain will increase the cost of construction due to measures to ensure the stability of the tank during earthquakes and difficulties in construction. (B) Open-type air braking (Fig. 12) is to cover the top of the surge tank with reinforced concrete, open a small hole in a part of this ceiling, and use this small hole to allow the air in the surge tank to flow in and out. The surge tank height is suppressed by the resistance of the surge tank. Therefore, the height of the pressure regulating tank can be reduced as compared with the general type, but the degree of freedom of the installation position is the same as that of the general type. (C) Closed compressed air (FIG. 13) is not used in Japan, but is used in Norway and the United States. The degree of freedom of the installation position is large and does not relate to the route of the headrace. The outline of the sealed compressed air surge tank will be described with reference to FIG. When the full load is cut off from the time of the steady load, the flowing water in the head pressure line flows into the pressure vessel, and the water level in the vessel rises. Therefore, the air in the air chamber is compressed. Further, the water hammer pressure generated from the water turbine diverges and reflects in the air chamber from the penstock through the water control opening. When the load is suddenly increased from the time of the steady load, first, the flow rate of the water turbine is replenished with water existing in the pressure vessel to increase the power generation output. then,
The pressure of the air chamber in the pressure vessel is lower than the pressure at the time of steady load. Therefore, a pressure difference (head) occurs between the reservoir and the pressure vessel, and the flow velocity (flow rate) of the headrace pressure pipeline increases.
This phenomenon is an unsteady flow of hydraulics, and when the flow rate in the headrace pressure line matches the flow rate required by the water turbine, the water level drop in the pressure vessel stops (minimum falling water level). Therefore, the descending water level becomes larger as the length of the head pressure line and as the pressure drop in the pressure vessel becomes smaller. Therefore,
The height of the pressure regulating tank increases. Since the water outlet is open, the descending water level is controlled by reducing the cross-sectional area of the water outlet and decreasing the flow rate through the water outlet. However, if the cross-sectional area of the water outlet is excessively reduced, the water hammer pressure is absorbed and diverged. May not be assured. It is necessary to provide an air compressor for supplying an air amount in case of an accidental air leak in the pressure vessel. However, the control of the supplied air amount is such that the product of the air amount and the pressure from the result of the water level measurement is constant (P (V = constant) is automatically controlled. (D) In the conventional canal type small and medium-sized hydroelectric power generation (see FIG. 15), an upper water tank 5 is installed from the intake weir 1 directly above the power plant.
Before reaching the (surge tank), the non-pressure headrace 4 is laid by a method such as opening a tunnel or a tunnel with a gradient of about 1/1000. Further, a spillway 7 for discharging the overflow water in the upper water tank 5 is provided, and a penstock 6 is provided between the upper water tank 5 and the water turbine immediately below, and the waterway is laid by a method of guiding flowing water. Therefore, the water level of the upper tank 5 and the discharge surface 1
The required head was obtained between the two water levels. In this case, an invalid head 14 that does not contribute to power generation is generated between the water level of the sand basin 3 and the upper water tank 5 to reduce the effective head 13, thereby reducing the power generation output and the generated power amount. Also, there have been few aggressive planning ideas to replenish seasonally generated water, such as agricultural water, from the non-pressure headrace channel 4 and to increase the amount of power generation by replenishing the flow of power when not in use. (Figure 1
7-rational use of water resources)

【0003】[0003]

【発明が解決しようとする課題】解決しようとする課題
を(図11,図12,図13,図15)を参照し箇条書
に説明する。 (イ) 一般型(図11)、開放型空気制動調圧水槽
(図12)の場合には、調圧水槽設置位置(▲ロ▼,▲
ハ▼)によって、導水路のルートが限定される。導水
路のルートと調圧水槽位置(▲ロ▼,▲ハ▼)との関
連が、建設工事費に大きく影響する。したがって、両方
の調和を考慮した設計はは高度の技術と労力を要し設計
標準化も難しい。さらに、水圧鉄管は調圧水槽の構造
上によって斜面上に設けることになる。斜面上に水圧鉄
管を施工することは、高度の土木施工技術を必要と
し、かつ、施工仮設備,人力施工等によって工事費が大
きくなる傾向がある。そのうえに、水圧鉄管を延長して
落差を確保することは、発電負荷の追従性、水撃圧力
(水撃圧力の計算には水圧鉄管長の影響が大である)の
問題によって限界がある。そのために、放水路を設け
て落差を増加するが、場合によっては放水路調圧水槽を
必要とするし、発電施設全体の構造が複雑となり、施
工、設計の標準化はさらに難しくなる。 (ロ) 密閉型圧縮空気調圧水槽(図13)の場合に
は、調圧水槽設置位置▲ニ▼と導水路との関連は考慮
する必要はないので、調圧水槽▲ニ▼と導水路の設計
は単独ですることができる。しかし、制水口が常に開放
されているために、最低下降水位の設定には制水口断面
積、流量係数の決定(水理実験を必要とする場合もあ
る)、発電運転状態(回転体の慣性方程式等)を考慮し
た、一次元化された運転方程式を、数値計算、図式計算
によって近似解析するが、この解析結果の判断には高度
の工学的判断が必要であって、設計の標準化は難しいと
考えられる。さらに、制水口断面積を縮小しても最低下
降水位の低減には限度があって、調圧水槽の小型化によ
りコスト低下にも限界がある。 (ハ) 水路の布設方法(図15参照)については、導
水路から農業用水等を補給し、用水が不必要のときは発
電出力増加のために、その用水を用いる。さらに、農業
用水路をパイプライン化できるように導水路を計画し、
かつ、水の合理的使用ができる発電施設計画を可能にす
る(図17参照)。そのうえに、既設発電所の再開発の
自由度(簡易)を拡げ、既設発電所の設備改良、増設に
よって発電出力増加(発生電力量増大)が容易に達成で
き、再開発コストが低減できる方法を開発する。 (ニ) 上記のように、一般型、開放型、密閉型調圧水
槽によるものでは、小型化、設計施工標準化によるコス
ト削減には、不十分な点が多くある。 本発明が解決しようとする課題は、調圧水槽と導水路と
の関連をなくし、調圧水槽は自由に位置の設定ができる
ようにする(図17参照)。また、最低下降水位を自由
に決めることができて、設計に高度の技術、判断を必要
としないようにし、小型化、標準化、維持管理が容易
で、かつ、発電所建屋の一部をかねて、発電施設の総合
的なコスト低減を可能にする調圧水槽を提供することに
ある。
The problem to be solved will be described in the paragraphs with reference to (FIGS. 11, 12, 13, and 15). (A) In the case of the general type (FIG. 11) and the open type air braking pressure regulating water tank (FIG. 12), the pressure regulating water tank installation position (▲ b ▼, ▲)
C)), the route of the headrace is limited. The relationship between the route of the headrace and the location of the pressure control tank (▲ b ▼, ▲ c ▼) has a significant effect on construction costs. Therefore, designing in consideration of both harmony requires a high level of technology and labor, and it is difficult to standardize the design. Further, the penstock is provided on the slope depending on the structure of the pressure regulating tank. Construction of penstock on a slope requires a high level of civil engineering construction technology, and construction costs tend to increase due to temporary construction facilities, manual construction, and the like. In addition, extending the penstock to secure a head is limited by problems with the ability to follow the power generation load and the water hammer pressure (the length of the penstock is significant in calculating the water hammer pressure). For this purpose, a water discharge channel is provided to increase the head, but in some cases, a water discharge channel pressure regulating water tank is required, and the structure of the entire power generation facility becomes complicated, and standardization of construction and design becomes more difficult. (B) In the case of a closed type compressed air pressure regulating water tank (Fig. 13), there is no need to consider the relationship between the pressure regulating water tank installation position (d) and the water conduit, so the pressure regulating water tank (d) and the water conduit are not necessary. The design of can be done alone. However, since the water inlet is always open, the minimum water level is set by determining the cross-sectional area of the water outlet and the discharge coefficient (sometimes hydraulic experiments are required), the power generation operation state (the inertia of the rotating body) Equations), the approximate analysis of the one-dimensionalized driving equation is carried out by numerical and graphical calculations, but the determination of the analysis results requires advanced engineering judgment, and standardization of design is difficult. it is conceivable that. Furthermore, even if the cross-sectional area of the water inlet is reduced, there is a limit to the reduction of the minimum descending water level, and there is a limit to the cost reduction due to the miniaturization of the pressure regulating tank. (C) Regarding the method of laying water channels (see Fig. 15), water for agriculture and the like is supplied from the headrace water, and when water is unnecessary, the water is used to increase the power generation output. In addition, the headrace is planned so that agricultural canals can be pipelined,
In addition, it enables a power generation facility plan that can use water rationally (see FIG. 17). In addition, a method was developed to expand the degree of freedom (simple) of redevelopment of existing power plants, and to easily increase power generation output (increased power generation) by improving and expanding existing power plants and reducing redevelopment costs. I do. (D) As described above, in the case of the general type, the open type, and the closed type pressure regulating water tank, there are many points that are insufficient for reducing the size and reducing the cost by standardizing the design and construction. The problem to be solved by the present invention is to eliminate the relation between the pressure regulating water tank and the water conduit, and to allow the position of the pressure regulating water tank to be freely set (see FIG. 17). In addition, it is possible to freely determine the minimum descending water level, so that advanced technology and judgment are not required for design, miniaturization, standardization, maintenance and management are easy, and part of the power plant building It is an object of the present invention to provide a pressure regulating tank that can reduce the total cost of a power generation facility.

【0004】[0004]

【課題を解決するための手段】本発明に係る調圧水槽
は、以上のような課題を解決したもので、次のようなも
のである。その構成を(図1,図2,図3,図4,図1
0,図15,図16,図17)を例にあげて説明する。 (イ) (図1,図2)の例では、圧力容器5の内部に
袋体バルブ1を設け、袋体バルブ1から圧力容器5の外
部につながる、袋体バルブ1のガス圧入排出装置を袋体
バルブ1から圧力容器5に接続した浮力開閉袋体バルブ
式密閉型調圧水槽。ガス圧入排出装置は、たわみ性ホー
ス17、機械式(図7参照)、又は機械式とたわみ性ホ
ースを組合せて用いる方法もある。たわみ性ホースは、
合成樹脂・ゴム等の弾性体で製作し、できるかぎりしな
やかに曲がるような構造とする(例:自動車のブレーキ
ホース,建設機械の油圧ホース等)。袋体バルブは、ゴ
ム,合成樹脂、または合成樹脂,鋼繊維とゴム等で袋状
に作る(例;熱気球,自動車タイヤのゴムチューブ
等)。その袋状の中に圧縮ガスを圧入すれば、袋体バル
ブ1ができる。 (ロ) 袋体バルブ1は、支柱16に設けた袋体バルブ
案内棒15に取り付ける(図10参照)。その案内棒の
機能は、袋体バルブ1と制水口止水弁座11との接触面
を定位置に保つ役割をする。袋体バルブストッパー2
は、圧力容器内5の水位3が上昇するとき、袋体バルブ
1の離脱防止をする。圧力容器5の製作材料は、鋼材,
FRP,鉄筋コンクリートを単独または組合せて築造す
る。 (ハ) 圧力容器内の水位3の計測は、ガラス板(管)
水面計6−1で測るが、水位の計測方法には、超音波水
位計(図3参照)、差圧式水位計(図5)、機械式水位
計(図7,図9)等とがあるので、それらの方法を用い
てもよい。 (ニ) 空気圧入排出管7、空気室圧力計8、空気コン
プレッサー9は、空気室4の空気圧力を調整、または圧
入,排出するために装着する。空気室圧力計はブルドン
管等を用いて、水位計測装置と組合せて、空気室4の空
気体積(V)と空気圧力(P)との管理(P・V=一
定)をする。 (ホ) 制水口止水弁座11は、圧力容器内の水位3が
設定下降水位14の位置にきたとき、袋体バルブ1と密
着し、制水口12からの漏水を防止するために設置す
る。製作材料は弾性体とし、袋体バルブ1との接触部分
との滑りを考慮する。
SUMMARY OF THE INVENTION A pressure regulating tank according to the present invention has solved the above problems and is as follows. The configuration is shown in FIG. 1, FIG. 2, FIG. 3, FIG.
0, FIG. 15, FIG. 16, FIG. 17) as an example. (A) In the example of FIGS. 1 and 2, the bag valve 1 is provided inside the pressure vessel 5, and the gas press-in / discharge device for the bag valve 1 is connected to the outside of the pressure vessel 5 from the bag valve 1. A buoyancy opening / closing bag valve type closed pressure regulating water tank connected from the bag valve 1 to the pressure vessel 5. As the gas injection / discharge device, there is a method using a flexible hose 17, a mechanical type (see FIG. 7), or a combination of a mechanical type and a flexible hose. The flexible hose is
It is made of an elastic material such as synthetic resin or rubber, and has a structure that bends as gently as possible (eg, brake hoses for automobiles, hydraulic hoses for construction machinery, etc.). The bag valve is made of rubber, synthetic resin, or synthetic resin, steel fiber and rubber, etc., and is made into a bag shape (eg, a hot air balloon, a rubber tube of an automobile tire, etc.). If compressed gas is press-fitted into the bag, the bag valve 1 is completed. (B) The bag valve 1 is attached to the bag valve guide rod 15 provided on the support 16 (see FIG. 10). The function of the guide rod is to keep the contact surface between the bag valve 1 and the water stop valve stop valve seat 11 at a fixed position. Bag valve stopper 2
Prevents the bag valve 1 from coming off when the water level 3 in the pressure vessel 5 rises. The pressure vessel 5 is made of steel,
Build FRP and reinforced concrete alone or in combination. (C) Measurement of the water level 3 in the pressure vessel is performed using a glass plate (tube).
The water level is measured by the water level gauge 6-1. As the measuring method of the water level, there are an ultrasonic water level gauge (see FIG. 3), a differential pressure type water level meter (FIG. 5), a mechanical water level meter (FIG. 7, FIG. 9), and the like. Therefore, those methods may be used. (D) The air pressure inlet / outlet pipe 7, the air chamber pressure gauge 8, and the air compressor 9 are mounted for adjusting the air pressure of the air chamber 4 or for press-in / out. The air chamber pressure gauge manages the air volume (V) and the air pressure (P) of the air chamber 4 (P · V x = constant) by using a Bourdon tube or the like in combination with a water level measuring device. (E) When the water level 3 in the pressure vessel reaches the position of the set descending water level 14, the water stop valve stop valve seat 11 is installed in close contact with the bag body valve 1 to prevent water leakage from the water control port 12. . The material to be made is an elastic body, and the slip with the contact portion with the bag valve 1 is considered.

【0005】(ヘ) (図3,図4)の例で、上記に記
述のないものについて述べる。圧力容器5の内部に袋体
バルブ1を設け、空気室4の圧縮空気を袋体バルブ1に
送気できる、空気連絡通路を袋体バルブ1から空気室4
に接続した浮力開閉袋体バルブ式密閉型調圧水槽。袋体
バルブ1とたわみ性ホース17は、連絡パイプ16に接
続し、空気室4と空気連絡通路を構成する。その機能
は、圧力容器5の水位が上昇すると空気室4の空気圧力
は上昇し、空気連絡通路を通って袋体バルブ1に流入
し、空気室圧力と同じ圧力になる。したがって、袋体バ
ルブ1は膨張,縮小をしない。 (ト) 袋体バルブ1は、圧力容器5の天井から制水口
12側方上面に達する、袋体バルブ案内棒15に取り付
ける。その役割は前記と同様である。また、袋体バルブ
ストッパー2が設けてないのは、たわみ性ホース17と
袋体バルブ1の接続する位置を工夫することによって、
圧力容器天井が袋体バルブストッパーの役目をする。 (チ) 圧力容器5の水位3の計測は、超音波水位計6
で測るが、前記と同様に、差圧式水位計(図5)、機械
式水位計(図7,図9)等とがあるので、それらを用い
ることもできる。超音波水位計6は、圧力容器5内に送
受波器2を設置し、ケーブル6aで変換器に送信し、変
換器からアナログ、又はデジタル出力をするが、空気室
圧力計8、水車流量調整装置(電動サーボ等)と変換器
出力とを電気制御すれば、調圧水槽の水位調整発電運転
が可能となる。 (リ) 圧力容器5内の水位3と空気室4の圧力管理に
ついては、熱力学法則(P・V=一定)を用いる。空
気室圧力は、空気圧入排出管7と空気コンプレッサー9
との間に、空気室圧力計8を取り付けて計測する。そし
て、水位計と組合せて、熱力学法則(断熱変化,等温変
化,P・V=一定)を活用して浮力開閉袋体バルブ式
密閉型調圧水槽の動作管理をする。
(F) An example of (FIGS. 3 and 4) which is not described above will be described. The bag valve 1 is provided inside the pressure vessel 5, and an air communication passage through which the compressed air in the air chamber 4 can be supplied to the bag valve 1 is provided from the bag valve 1 to the air chamber 4.
Buoyancy opening / closing valve valve type closed pressure regulating water tank connected to The bag valve 1 and the flexible hose 17 are connected to the communication pipe 16 to form the air chamber 4 and the air communication passage. Its function is that when the water level in the pressure vessel 5 rises, the air pressure in the air chamber 4 rises, flows into the bag valve 1 through the air communication passage, and becomes the same pressure as the air chamber pressure. Therefore, the bag valve 1 does not expand or contract. (G) The bag valve 1 is attached to a bag valve guide rod 15 that extends from the ceiling of the pressure vessel 5 to the upper surface beside the water control port 12. Its role is the same as above. Further, the reason why the bag valve stopper 2 is not provided is that the position where the flexible hose 17 and the bag valve 1 are connected is devised.
The pressure vessel ceiling acts as a bag valve stopper. (H) The measurement of the water level 3 of the pressure vessel 5 is performed by the ultrasonic water level meter 6.
As described above, there are a differential pressure type water level gauge (FIG. 5), a mechanical water level gauge (FIG. 7, FIG. 9), and the like, and these can also be used. The ultrasonic water level gauge 6 has the transducer 2 installed in the pressure vessel 5, transmits the signal to the converter with the cable 6 a, and performs analog or digital output from the converter. If the device (electric servo etc.) and the output of the converter are electrically controlled, the water level adjustment power generation operation of the pressure regulating water tank becomes possible. (I) The thermodynamic law (P · V x = constant) is used for pressure management of the water level 3 and the air chamber 4 in the pressure vessel 5. The air chamber pressure is controlled by the air pressure inlet / outlet pipe 7 and the air compressor 9
, The air chamber pressure gauge 8 is attached for measurement. Then, in combination with the water level meter, the operation of the buoyancy opening / closing valve type closed pressure regulating water tank is managed by utilizing the laws of thermodynamics (adiabatic change, isothermal change, P · V x = constant).

【0006】(ヌ) 水路の布設方法(図15,図1
6,図17参照)は、中小水力発電施設の取水堰1に設
けた取水口から、この取水口の低位にある前記の請求項
1、又は請求項2に記載の調圧水槽を用いた調圧水槽一
体型発電所10までを、圧力管で直結した導水圧力管路
8による水路の布設方法。(図15参照)して、無圧導
水路4を導水圧力管路8にする。導水圧力管路8の築造
材料は、FRP複合管,ダクタイル鋳鉄管,鉄筋コンク
リート等で作る。上部水槽5(サージタンク)は、袋体
バルブ式密閉型調圧水槽に変更する。その設置位置は導
水圧力管路8の末端に設ける。さらに、余水路7は、水
路布設上より不必要であるから省略する。発電所は、調
圧水槽一体型発電所10(図16)とする。その構成
は、袋体バルブ式密閉型調圧水槽9の側方から、発電所
建屋18を連続して構築する(注:発電建屋内部に袋体
バルブ式調圧水槽を設けるの意味)。発電所建屋断面
は、卵形、又は折線近似曲線とする。その建屋内部に、
調圧水槽水位調整運転装置,水圧鉄管,水車,発電機等
を設置し、水位調整発電運転を実施する。
(N) Method of laying waterway (FIGS. 15 and 1)
6, FIG. 17) is a control using the pressure regulating water tank according to claim 1 or claim 2 which is located at a lower level of the intake from the intake provided in the intake weir 1 of the small and medium-sized hydroelectric power generation facility. A method of laying a water channel by a water supply pressure line 8 directly connected to the pressurized water tank integrated power plant 10 by a pressure pipe. (Refer to FIG. 15). The construction material of the water supply pressure pipeline 8 is made of FRP composite pipe, ductile cast iron pipe, reinforced concrete, or the like. The upper water tank 5 (surge tank) is changed to a bag-valve-type closed pressure regulating water tank. The installation position is provided at the end of the headrace pressure line 8. Further, the spillway 7 is unnecessary because it is unnecessary for the installation of the waterway. The power plant is assumed to be a pressure regulating tank integrated power plant 10 (FIG. 16). The construction is such that the power plant building 18 is constructed continuously from the side of the bag-type valve-type sealed pressure regulating water tank 9 (note: the provision of the bag-type valve-type pressure regulating water tank inside the power generation building). The cross section of the power plant building is an oval shape or a broken line approximation curve. Inside the building,
Install a water level adjustment operation device, a penstock, a water wheel, a generator, etc. for the pressure adjustment water tank, and perform a water level adjustment power generation operation.

【0007】[0007]

【作用】次に本発明の作用を述べる。(図1,図2参
照) (イ) 圧力容器5の内部に浮力を活用した袋体バルブ
1を設け、水位3の上昇時(水車流量減少〜流量調整弁
開塞)には、袋体バルブ1が上に移動し、水撃圧力を空
気室4で吸収、発散する。 (ロ) 水位下降時(水車流量増大〜制水口流量増加)
には、設計で考えた設定下降水位14の位置に、袋体バ
ルブ1が移動すると、制水口止水弁座11と袋体バルブ
1が密着し、調圧水槽から水車への流量補給はなくな
り、水位下降は停止する。
Next, the operation of the present invention will be described. (See FIGS. 1 and 2) (a) A bag valve 1 utilizing buoyancy is provided inside the pressure vessel 5, and when the water level 3 rises (a decrease in the flow rate of the turbine wheel to the opening and closing of the flow control valve), the bag valve 1 is opened. 1 moves upward and absorbs and disperses the water hammer pressure in the air chamber 4. (B) When the water level is falling (increase in water turbine flow to increase in water outlet opening)
When the bag valve 1 moves to the position of the set descending water level 14 considered in the design, the water stop water stop valve seat 11 and the bag valve 1 come into close contact with each other, and there is no flow supply from the pressure regulating water tank to the turbine. , The descent stops.

【0008】(ハ) 発電出力増大時(水車流量増加)
には、設定下降水位14に袋体バルブ1が近づくと、制
水口12との間の断面積が減少し、水車流量は減る。さ
らに、袋体バルブ1が制水口止水弁座11に着座する
と、流量補給は限りなくゼロに近い値となる。袋体バル
ブ1と止水弁座との間には、製作上微小な隙間が存在す
るが、袋体バルブ1が超弾性体であることによって変形
し、止水弁座と密着することで実用上無視できる止水性
能を発揮する。 (ニ) 定常発電出力から出力減少時(水車流量減少)
の間では、定常発電出力時において、袋体バルブ1は浮
力の作用によって、制水口弁座11と十分の距離を保っ
ている。したがって、導水圧力管路13から圧力容器5
内への水流入と水撃圧力伝播は阻害されない。発電出力
減少(水車流量減少)とともに、水撃圧力が水車より発
生する。その水撃圧力は、水圧鉄管10を通過し制水口
12を通り、圧力容器5の空気室4で発散・反射する。
また、導水圧力管路13内の水流のもつ運動エネルギー
は、制水口12より圧力容器5に流入し、圧力容器内の
空気室4の空気体積(V)を変化させ、空気圧縮エネル
ギー(圧力エネルギー)に変換される。よって、空気室
4の圧力は上昇するが、その圧力上昇は、水撃圧力に比
較すれば非常に小さな値となる(注:空気室体積Vに依
存する)。また、密閉型調圧水槽の設置自由度の大きさ
により、水車付近に水槽を設ける場合には、水圧鉄管長
が短くなって水撃圧力は無視できる非常に小さな値とな
る(注:水撃圧力計算の急閉塞時間条件が非常に小さい
ことによる)。ゆえに、水車の設計を容易にすると考え
られる。 (ホ) 発電出力急増中の急遮断の場合には、袋体バル
ブ1は、制水口止水弁座11に着座していることもある
が、この状態は、通常の発電運転では発生しないと考え
られる。なお、袋体バルブ1が着座していても、袋体バ
ルブ1の構造上より水撃圧力は、袋体バルブ1を通り空
気室4で発散するか、袋体で吸収できる。その理由は、
袋体バルブ1には、圧縮ガス(例;空気)が密閉もしく
は充満していることによって、圧力容器内の空気室4と
同じ機能をすることによる。 以上のごとく、下降水位制御と制水口12からの水車流
量補給を、実用上完全に断ち、さらに、袋体バルブ1で
も水撃圧力を吸収・発散できる構造としたことを特徴と
する。
(C) When the power generation output increases (water turbine flow increases)
In the meantime, when the bag body valve 1 approaches the set descending water level 14, the cross-sectional area between the bag valve 1 and the water control port 12 decreases, and the flow rate of the water turbine decreases. Furthermore, when the bag valve 1 is seated on the water stop valve water stop valve seat 11, the flow rate replenishment becomes a value close to zero as much as possible. Although there is a small gap between the bag valve 1 and the water stop valve seat due to manufacturing, the bag valve 1 is deformed due to the super elastic body, and is practically adhered to the water stop valve seat. Demonstrates water-stop performance that can be ignored. (D) When output decreases from steady generation output (water turbine flow decreases)
During the steady power generation output, the bag valve 1 keeps a sufficient distance from the water control valve seat 11 by the action of buoyancy. Therefore, the pressure vessel 5
Water inflow and water hammer pressure propagation are not impeded. As the power output decreases (turbine flow decreases), water hammer pressure is generated from the turbine. The water hammer pressure passes through the penstock 10, passes through the water control port 12, and diverges and reflects in the air chamber 4 of the pressure vessel 5.
In addition, the kinetic energy of the water flow in the water supply pressure pipe 13 flows into the pressure vessel 5 from the water control port 12, changes the air volume (V) of the air chamber 4 in the pressure vessel, and changes the air compression energy (pressure energy). ). Therefore, the pressure in the air chamber 4 increases, but the pressure increase becomes a very small value as compared with the water hammer pressure (note: depends on the air chamber volume V). Also, due to the degree of freedom of installation of the closed type pressure regulating water tank, if a water tank is installed near the water turbine, the length of the penstock will be short and the water hammer pressure will be a very small value that can be ignored (Note: Water hammer) Due to the very small fast closing time condition of the pressure calculation). Therefore, it is considered that the design of the turbine is facilitated. (E) In the case of a sudden shutoff during a rapid increase in the power generation output, the bag valve 1 may be seated on the water stop valve stop valve seat 11, but this state must occur in normal power generation operation. Conceivable. Even when the bag valve 1 is seated, the water hammer pressure can be diverged in the air chamber 4 through the bag valve 1 or absorbed by the bag due to the structure of the bag valve 1. The reason is,
The bag valve 1 has the same function as the air chamber 4 in the pressure vessel by being sealed or filled with a compressed gas (eg, air). As described above, the down water level control and the supply of the water turbine flow from the water control port 12 are practically completely cut off, and the bag valve 1 has a structure capable of absorbing and dispersing the water hammer pressure.

【0009】(ヘ) 水路の布設方法(図15,図1
6,図17)については、余水路7、斜面上の上部水槽
5(ヘッドタンク)を省略し、調圧水槽一体型発電所1
0とする。その結果、密閉型調圧水槽は斜面上密閉型サ
ージタンクより断面積、容量が大きくなるが(Thom
aの安定条件〜安定断面積によって)、袋体バルブ1の
下降水位制御効果で、サージタンクの高さを縮小するこ
とができる。したがって、発電所建屋18と袋体バルブ
密閉型調圧水槽を一体化し、もしくは発電所建屋18内
に設置することができる。導水圧力管路8から農業用水
を補給すれば、袋体バルブ式密閉型調圧水槽9内の空気
室4の圧力が低下する。よって、空気圧力計8、水位
計、水車流量調整弁を連動制御すると、用水補給に応じ
た水位調整発電運転ができる。 (ト) 無圧導水路4(図15)で水路を構成する場合
には、その勾配に相当する無効落差14が流量の大小に
関係なく生ずるが、導水圧力管路8で水路を構成する場
合には生ずることなく有効落差13を得る。また、水路
を圧力管路で構成することにより、一定の管内通水断面
積を有する圧力管路は、発電使用水量の変化に比例し
て、管内の通水量が変化する。その通水量の変化を管内
流速に変換することによって、河川流量の増減に伴う発
電取水量変化に対応できる。したがって、河川流水のポ
テンシャルエネルギーの有効活用ができる。
(F) Method of laying water channel (FIG. 15, FIG. 1)
6, FIG. 17), the spillway 7 and the upper water tank 5 (head tank) on the slope are omitted, and the pressure-regulated water tank integrated power plant 1 is omitted.
Set to 0. As a result, the closed pressure regulating water tank has a larger cross-sectional area and capacity than a closed surge tank on a slope (Thom).
a) The height of the surge tank can be reduced by the lower precipitation level control effect of the bag body valve 1. Therefore, the power plant building 18 and the bag valve closed type pressure regulating water tank can be integrated or installed in the power plant building 18. When agricultural water is replenished from the water supply pressure line 8, the pressure of the air chamber 4 in the bag-type valve-type closed pressure regulating water tank 9 decreases. Therefore, when the air pressure gauge 8, the water level gauge, and the water turbine flow control valve are controlled in conjunction with each other, the water level adjustment power generation operation according to the water supply can be performed. (G) When a water channel is formed by the non-pressure headrace channel 4 (FIG. 15), an invalid head 14 corresponding to the gradient is generated regardless of the magnitude of the flow rate. , An effective head 13 is obtained. In addition, by configuring the water channel with a pressure pipeline, the pressure pipeline having a constant cross-sectional area of water flow in the pipe changes in proportion to the change in the amount of water used for power generation. By converting the change in the flow rate into the flow velocity in the pipe, it is possible to cope with a change in the power generation intake rate due to an increase or decrease in the river flow rate. Therefore, the potential energy of river water can be effectively used.

【0010】[0010]

【実施例】本発明の実施方法と、その構成について
(図)を例にあげて説明する。実施例1 (図1,図2)に基づいて実施例1を説明する。(図
1)は、本発明の浮力開閉袋体バルブ式密閉型調圧水槽
の縦断面図、(図2)は(図1)のA−A線矢視による
横断面図である。 (イ) 袋体バルブ1は、袋体バルブ案内棒15に滑ら
かに滑動できるように取り付ける。そして、袋体バルブ
1に、たわみ性ホース17を接続し圧力容器5の外部に
導く。その先端に弁を取り付け、袋体バルブ1に圧縮ガ
スを密閉できるようにする。そして、空気室4の圧力に
抵抗できるように、任意に袋体バルブ1の圧力を調整す
る。袋体バルブ案内棒15は、支柱16に取りはずしで
きるように設ける。さらに、支柱16の端部に浮体バル
ブストッパー2を取り付ける。その役割は袋体バルブ1
の離脱防止である。 (ロ) 圧力容器5は、空気漏れのないように鉄筋コン
クリート,FRP,鋼材等を用いて単独、又は組み合わ
せて製作する。その圧力容器に、ガラス板(管)水面計
6−1を圧力容器5の外部に設ける。この場合の水位計
測は、目視による場合が多い。圧力容器5内の空気室4
に、空気を入れたり排出したりするのは、空気圧入排出
管7、空気コンプレッサー9と排出弁でする。なお、空
気コンプレッサーは可搬式も可能である。 (ハ) 空気室圧力計8(ブルドン管等)とガラス板
(管)水面計6−1の役割は、袋体バルブ式密閉型調圧
水槽の作動管理に用いる。管理の方法は、熱力学法則
(P・V=一定)を用いて、定常発電出力時での空気
室体積(V)と圧力(P)とを測って、空気室体積
(V)の設定値の確認をする。なお、機械式水位計(図
8)、超音波式水位計(図3)と空気室圧力計8とを用
いて、空気室体積(V)、圧力(P)を電気信号による
自動制御も可能である。 (ニ) 制水口止水弁座11は、制水口12の上部に設
ける。止水を確実にするように、ゴム,FRP,合成樹
脂,金属等の弾性体で製作する。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing an embodiment of the present invention. First Embodiment A first embodiment will be described with reference to FIGS. 1 and 2. (FIG. 1) is a longitudinal sectional view of a buoyancy opening / closing valve type closed type pressure regulating water tank of the present invention, and (FIG. 2) is a transverse sectional view taken along line AA of (FIG. 1). (B) The bag valve 1 is attached to the bag valve guide rod 15 so that it can slide smoothly. Then, a flexible hose 17 is connected to the bag body valve 1 and led to the outside of the pressure vessel 5. A valve is attached to the tip so that the compressed gas can be sealed in the bag valve 1. Then, the pressure of the bag valve 1 is arbitrarily adjusted so as to be able to resist the pressure of the air chamber 4. The bag valve guide rod 15 is provided so as to be detachable from the column 16. Further, the floating valve stopper 2 is attached to the end of the support 16. Its role is a bag valve 1
It is prevention of disengagement. (B) The pressure vessel 5 is manufactured alone or in combination using reinforced concrete, FRP, steel, or the like so as not to leak air. A glass plate (tube) water gauge 6-1 is provided outside the pressure vessel 5 in the pressure vessel. The water level measurement in this case is often performed visually. Air chamber 4 in pressure vessel 5
The air is introduced and discharged by the air injection / discharge pipe 7, the air compressor 9 and the discharge valve. The air compressor can be portable. (C) The role of the air chamber pressure gauge 8 (Bourdon tube, etc.) and the glass plate (tube) water level gauge 6-1 are used for the operation management of the bag-type valve-type closed pressure regulating water tank. The method of management is to set the air chamber volume (V) by measuring the air chamber volume (V) and pressure (P) at the time of steady power generation output using the thermodynamic law ( PVx = constant). Check the value. It is also possible to automatically control the air chamber volume (V) and pressure (P) by electric signals using a mechanical water level gauge (FIG. 8), an ultrasonic water level gauge (FIG. 3) and an air chamber pressure gauge 8. It is. (D) The water stop valve seat 11 is provided above the water stop 12. It is made of an elastic material such as rubber, FRP, synthetic resin, metal or the like so as to ensure the waterproofness.

【0011】実施例2 (図3,図4)に基づいて実施例2を説明する。なお、
実施例1の構成にないものについて述べる。 (イ) 袋体バルブ1は、圧力容器5の天井より制水口
12側面上部に達する、袋体バルブ案内棒15に取り付
ける。そして、袋体バルブ1に、たわみ性ホース17を
接続し、その端は、連絡パイプ16に取り付ける。連絡
パイプ16は圧力容器5に固定し、空気室4と袋体バル
ブ1との内部に空気が自由に出入できるようにする。し
たがって、袋体バルブ1の空気圧入排出は、空気室4の
空気圧入排出と同時にすることができる。 (ロ) 水位の計測は、超音波水位計6でする。空気室
4に送受波器2を設け、圧力容器5を貫通するケーブル
6aを超音波水位計内部の変換器に接続する。
Second Embodiment A second embodiment will be described with reference to FIGS. 3 and 4. In addition,
What is not in the configuration of the first embodiment will be described. (A) The bag valve 1 is attached to a bag valve guide rod 15 that reaches the upper side of the water control port 12 from the ceiling of the pressure vessel 5. Then, a flexible hose 17 is connected to the bag valve 1, and its end is attached to the connecting pipe 16. The communication pipe 16 is fixed to the pressure vessel 5 so that air can freely enter and exit the air chamber 4 and the bag valve 1. Therefore, the air injection and discharge of the bag valve 1 can be performed simultaneously with the air injection and discharge of the air chamber 4. (B) The water level is measured with the ultrasonic water level gauge 6. The transducer 2 is provided in the air chamber 4, and the cable 6a penetrating the pressure vessel 5 is connected to the transducer inside the ultrasonic water level gauge.

【0012】実施例3 (図5,図6)に基づいて実施例3を説明するが、前記
の構成にないものについて説明する。 (イ) 袋体バルブ1は、袋代バルブ案内棒15に取り
付け、袋体バルブ1に、たわみ性ホース17を接続し、
その端は、空気室4の圧力容器5の天井に固定する。そ
のようにすれば、空気室4と袋体バルブ1は連続し、圧
縮空気は自由に出入する。 (ロ) 水位の計測は、差圧式水位計6・2で測る。空
気室4と圧力容器5の底部とをパイプ等で接続し、その
間に、差圧変換器16、ドレン18を設置する。差圧水
位計6・2は、密閉タンク内の液位を、タンク上部の空
間圧力とタンク底部の圧力との差により測定するもので
ある。してがって、熱力学法則(P・V=一定)を用
いると空気室圧力計8を省略することが可能である。
Third Embodiment A third embodiment will be described with reference to FIGS. 5 and 6, but those not having the above-described configuration will be described. (B) The bag valve 1 is attached to the bag allowance valve guide rod 15, and a flexible hose 17 is connected to the bag valve 1.
Its end is fixed to the ceiling of the pressure vessel 5 of the air chamber 4. If it does so, the air chamber 4 and the bag valve 1 will be continuous, and compressed air will flow in and out freely. (B) The water level is measured with a differential pressure type water level meter 6.2. The air chamber 4 and the bottom of the pressure vessel 5 are connected by a pipe or the like, and a differential pressure transducer 16 and a drain 18 are installed therebetween. The differential pressure level gauge 6.2 measures the liquid level in the closed tank by the difference between the space pressure at the top of the tank and the pressure at the bottom of the tank. Therefore, when the thermodynamic law (P · V x = constant) is used, the air chamber pressure gauge 8 can be omitted.

【0013】実施例4 (図7,図8)に基づいて実施例4を説明する。 (イ) 袋体バルブ1は、浮体取付アーム19に取り付
ける。そして、浮体取付アームは中空状(パイプ状)に
作り、袋体バルブ1に空気が自由に出入できるようにす
る。浮体取付アーム19は、止水回転軸18に固定す
る。止水回転軸18は、回転軸の内部に空気通路を設
け、さらに、水位検出アーム6を回転させる、かさ歯車
22を取り付ける。なお、止水回転軸18内部の空気通
路は、連絡パイプ16に回転できるように接続し、空気
圧入排出管7を通って、空気室4につながる。その機能
は空気室4と袋体バルブ1を連続し、圧縮空気を自由に
出入させることである。また、止水回転軸18と浮体取
付アーム19、連絡パイプ16との接続部には、漏れ止
めシール21を設けて、圧力容器5内の漏水を止める。 (ロ) 案内柱20は、浮体取付アーム19の側方移動
を拘束し、浮体バルブ1と制水口止水弁座11との位置
関係を保つために設置する。なお、浮体取付アーム19
は、滑らかに移動できるように案内柱20に取り付け
る。 (ハ) 水位の計測は、止水回転軸18に取り付けた、
かさ歯車22と2軸交差歯車の回転軸17とで水位検出
アーム6を回転させ、水位表示板15で水位を読み取
る。この方法は、機械式水位計測装置と考えることがで
きる。
Fourth Embodiment A fourth embodiment will be described with reference to FIGS. 7 and 8. (A) The bag body valve 1 is mounted on the floating body mounting arm 19. The floating body mounting arm is formed in a hollow shape (pipe shape) so that air can freely enter and leave the bag valve 1. The floating body mounting arm 19 is fixed to the water stop rotation shaft 18. The water stop rotation shaft 18 has an air passage inside the rotation shaft, and further has a bevel gear 22 for rotating the water level detection arm 6 attached thereto. The air passage inside the water stop rotation shaft 18 is rotatably connected to the communication pipe 16, and is connected to the air chamber 4 through the air press-in / discharge pipe 7. Its function is to connect the air chamber 4 and the bag valve 1 to allow compressed air to flow freely. Further, a leak-proof seal 21 is provided at a connection portion between the water stopping rotary shaft 18, the floating body mounting arm 19, and the communication pipe 16 to prevent water leakage in the pressure vessel 5. (B) The guide post 20 is provided to restrain the lateral movement of the floating body mounting arm 19 and maintain the positional relationship between the floating body valve 1 and the water stop water stop valve seat 11. The floating body mounting arm 19
Is attached to the guide post 20 so that it can move smoothly. (C) The water level was measured by attaching to the water stop rotation shaft 18.
The water level detection arm 6 is rotated by the bevel gear 22 and the rotating shaft 17 of the two-axis cross gear, and the water level is read by the water level display plate 15. This method can be considered as a mechanical water level measuring device.

【0014】実施例5 (図15,図16,図17)に基づいて、実施例5によ
って水路の布設方法を述べる。 (イ) (図15)を参照して、導水圧力管路式調圧水
一体型発電所の構成と布設方法を、従来方式のものと比
較しながら説明する。河川上流に設置した取水堰1で、
できる調整池2から流水を沈砂池3(不用の場合もあ
る)に導き、沈砂池3から導水圧力管路8で、途中の必
要な農業用水等を補給し(図17参照)、発電所と一体
化した袋体バルブ式調圧水槽9に導く。流水は、発電所
建屋18内の水圧鉄管を通り、水車を駆動する。さら
に、ドラフトチューブによって元の河川に放流する。こ
の間、点線で示す従来方法による、無圧導水路4,上部
水槽5(ヘッドタンク),余水路7を省略する。なお、
無圧導水路4を圧力トンネルに改造し、上部水槽5(ヘ
ッドタンク)上部の開放部分を鉄筋コンクリート等で密
閉する。そして、水圧鉄管6を延長して、その末端に調
圧水槽一体型発電所10を設ければ、容易に既設発電所
の拡大再開発ができる。 (ロ) 調圧水槽一体型発電所(図16)は、袋体バル
ブ式密閉型調圧水槽9の圧力容器構造部と発電所建屋1
8側壁構造部とを共通構造部材として用いる。さらに、
発電所基礎も共通に使用する。そのようにすれば、個々
に調圧水槽、発電所建屋を建設する場合と比較して、資
材を節約することができる。また、発電所建屋18の断
面は、なるべくだ円、卵形型を採用すると構造設計上有
利(経済的)である。
Fifth Embodiment A method for laying a waterway according to a fifth embodiment will be described based on FIG. 15 (FIGS. 15, 16, and 17). (B) With reference to (FIG. 15), a configuration and a laying method of a headrace pressure line integrated pressure regulating water integrated power plant will be described in comparison with a conventional system. In the intake weir 1 installed upstream of the river,
The flowing water from the regulating pond 2 can be led to the sedimentation basin 3 (which may be unnecessary), and the required water for agricultural use, etc., is supplied from the sedimentation basin 3 via the headrace pressure line 8 (see FIG. 17). It leads to the integrated bag valve type pressure regulating water tank 9. The flowing water passes through a penstock in the power plant building 18 and drives a water turbine. Furthermore, it is released to the original river by a draft tube. During this time, the non-pressure headrace 4, the upper tank 5 (head tank), and the spillway 7 according to the conventional method indicated by the dotted line are omitted. In addition,
The non-pressure headrace 4 is converted into a pressure tunnel, and the upper part of the upper water tank 5 (head tank) is closed with reinforced concrete or the like. If the penstock 6 is extended and the pressure regulating tank integrated power plant 10 is provided at the end thereof, the existing power plant can be easily expanded and redeveloped. (B) The pressure regulating tank integrated type power plant (Fig. 16) is composed of the pressure vessel structure of the closed valve type closed regulating pressure tank 9 and the power plant building 1.
The eight sidewall structures are used as a common structural member. further,
The power plant foundation is also used in common. By doing so, materials can be saved as compared with the case of individually constructing a pressure regulating tank and a power plant building. In addition, it is advantageous (economical) in terms of structural design if the cross section of the power plant building 18 employs an elliptical or oval shape as much as possible.

【0015】[0015]

【発明の効果】本発明に係る調圧水槽を使用する場合の
効果を(図15,図16,図17)を例にとって説明す
る。 (まえがき)日本での水力発電開発において、大規模水
力発電の開発は、ほぼ終了した。エネルギーの安定供
給、火力発電による環境破壊等の理由によって、中小水
力発電の開発が認識されているが、開発コスト高のため
に開発が遅れている。また、コスト低減のために、多く
の技術開発が促進され実証されている。しかし、水力発
電においては、複雑な水利権、水資源の非合理的な使用
状況、河川環境維持流量の増大等により、発電に使用で
きる流量は、制限される傾向にある。したがって、発電
原価の低減が困難となっている。発電原価の低減には、
水の合理的使用、配分による発電流量の増加、落差の増
大、また、発電専用の設備に他の利水施設を組み込むこ
とのできる、総合的計画手法が必要である。
The effect when the pressure regulating water tank according to the present invention is used will be described with reference to FIGS. 15, 16, and 17 as examples. (Foreword) In hydropower development in Japan, the development of large-scale hydropower has almost been completed. The development of small and medium-sized hydroelectric power generation is recognized for reasons such as stable supply of energy and environmental destruction by thermal power generation, but development is delayed due to high development costs. Also, many technology developments have been promoted and demonstrated to reduce costs. However, in the case of hydroelectric power generation, the amount of water that can be used for power generation tends to be limited due to complicated water rights, irrational use of water resources, and an increase in river flow for maintaining the river environment. Therefore, it is difficult to reduce the power generation cost. To reduce power generation costs,
There is a need for a comprehensive planning approach that allows for rational use of water, increased power flow through distribution, increased heads, and the incorporation of other water-use facilities into dedicated power generation facilities.

【0016】本発明の効果を箇条書に述べる。 (イ) 袋体バルブ式密閉型調圧水槽9の設置自由度の
大きさによって、導水圧力管路8のルートは自由に設定
できる。また、(図17)の例に示すように、農業用パ
イプラインを兼用することができる。したがって、水の
合理的使用を可能にする。 (ロ) (図17)の例で、発電用導水圧力管路より、
水田,畑等に用水を給水すると、圧力容器内の空気圧力
は低下する。よって、空気室圧力計、水位計と水車流量
調整弁を連動させると、導水圧力管路末端の流量変化に
追従する発電水調運転が可能である。 (ハ) 袋体バルブ1の作用によって、圧力容器5内の
最大下降水位の設定は自由にできる。したがって、調圧
水槽の小型化、設計標準化は可能である。そのうえに、
最大定常負荷時(水車流量最大〜図14参照)の水位
を、袋体バルブ1が制水口止水弁座に着座している状態
で定めると(設定下降水位〜図1)、密閉型調圧水槽の
高さを、ほぼ半減することが可能である(下降水位は無
視できる)。なお、水撃圧力は袋体バルブ1によって、
吸収・発散できる。
The effects of the present invention will be described in an article. (B) The route of the water supply pressure line 8 can be freely set depending on the degree of freedom of installation of the bag-type valve-type closed pressure regulating water tank 9. Further, as shown in the example of FIG. 17, an agricultural pipeline can also be used. Thus, it allows for rational use of water. (B) In the example of (FIG. 17), from the headrace pressure line for power generation,
When water is supplied to a paddy field, a field, or the like, the air pressure in the pressure vessel decreases. Therefore, when the air chamber pressure gauge, the water level gauge, and the water turbine flow control valve are linked, it is possible to perform the power generation water regulation operation that follows the flow rate change at the end of the head pressure line. (C) The maximum falling water level in the pressure vessel 5 can be freely set by the action of the bag valve 1. Therefore, it is possible to reduce the size of the pressure regulating water tank and standardize the design. In addition,
When the water level at the time of the maximum steady load (maximum turbine flow rate to FIG. 14) is determined in a state where the bag valve 1 is seated on the water stop valve seat (set descending water level to FIG. 1), the closed type pressure regulation is performed. The height of the aquarium can be almost halved (the descending water level can be neglected). The water hammer pressure is controlled by the bag valve 1.
Can absorb and emit.

【0017】(ニ) 流れ込み式水力発電においては、
洪水時、異常渇水時には取水停止する。したがって、通
常の密閉型調圧水槽では、制水口12にバルブがないた
めに、圧力容器内の空気が流出し、維持管理が繁雑であ
る。本発明の調圧水槽では、袋体バルブ1の作用によっ
て空気の流出はない。よって、維持管理は容易となる。 (ホ) 既設の水力発電所を拡大再開発するときは、無
圧導水路(トンネル等)を圧力導水路に変更し、上部水
槽(ヘッドタンク)を本発明の袋体バルブ式密閉型調圧
水槽に改造すれば、無圧導水路の空断面を活用した発電
流量増加(流積断面増加)による、発電力(発電力量)
の増加ができる。よって、流水ポテンシャルエネルギー
の有効活用ができる。 (ヘ) 貯水式(ダム式)発電においては、有効利用水
深を大きくすると、本発明以外の調圧水槽は、大型化
し、工事費が上昇するが、本発明の調圧水槽は、袋体バ
ルブ1の作用によって、発電負荷追従性を考慮した小型
化が可能である。
(D) In run-of-river hydroelectric power generation,
In case of flood or abnormal drought, water intake will be stopped. Therefore, in a normal closed type pressure regulating water tank, since there is no valve in the water control port 12, air in the pressure vessel flows out, and maintenance is complicated. In the pressure regulating water tank of the present invention, there is no outflow of air due to the action of the bag valve 1. Therefore, maintenance is easy. (E) When expanding and redeveloping an existing hydroelectric power plant, change the non-pressure headrace (tunnel, etc.) to a pressure headrace, and replace the upper tank (head tank) with the bag-type valve-type closed pressure regulator of the present invention. If converted to a water tank, power generation (power generation) due to an increase in power generation flow (increase in cross section) utilizing the empty cross section of the non-pressure headrace
Can be increased. Therefore, the potential energy of flowing water can be effectively used. (F) In the storage type (dam type) power generation, if the effective use water depth is increased, the pressure regulating water tank other than the present invention becomes large and the construction cost rises, but the pressure regulating water tank of the present invention is a bag valve. By the operation of 1, the size can be reduced in consideration of the power generation load followability.

【0018】従来の水路の布設方法(図15参照)での
既設水力発電再開発は、無圧導水路4の断面を拡大し、
発電流量を増加し、並びに、水圧鉄管6を延長し、落差
を大きくして発生電力量を増大する方法もある。しか
し、水圧鉄管の延長には限界がある。その理由は、水車
の無拘束速度時の流量特性に依存する。フランシス水車
の場合には、事故停止時に発電機負荷が急遮断される
と、即座に水車の回転数が上昇し始めるが、それに伴う
水車通過流量は、比速度250(Ns≦250)以下で
は、水車自身が水量を減少し水撃圧力を発生する。この
現象は、水車流量調整ベーンを絞らなくても発生し、水
車流量調整ベーン閉塞時間とは無関係である。また、ベ
ルトン,ターゴインパルス等の衝動水車は、デフレクタ
によって、ランナーの回転とは無関係に、水圧鉄管内の
流量減少を任意時間に長くできるので、水撃圧力を軽減
できる(注:水撃圧力は水圧鉄管長の影響が大きい)
が、比速度(Ns)が小さく発電機が大型化し、さら
に、ランナーと放水面間の位置エネルギーが回収できな
い。特許公報(B2)平4−6810に記載の導水圧力
管路による布設方法では、ターゴインパルス、又はNs
=250以上のフランシス水車を用いて、圧力管路を延
長する方法もあるが、ターゴインパルス等では発電機の
大型化、フランシス水車では、キャビテーション、負荷
追従性、発電水調運転の問題があって、圧力管路を長く
することは難しいようである。 (ト) 本発明の調圧水槽一体化発電所では、水圧鉄管
長は短く、水撃圧力は無視できる。さらに、圧力容器内
の空気室4の高さを増して、空気室4の容量を十分に確
保すれば、導水圧力管路内の水流エネルギーを空気圧縮
エネルギー(圧力エネルギー)に変換した場合の空気室
4の最大圧力を下げることができる。このことは、導水
圧力管路長に対して任意の管路内最大圧力を設定するこ
とができることになる。したがって、FRP管等の2次
製品を用いることができて、標準化設計、施工を容易に
する。 (チ) 調圧水槽一体型発電所10(図16)による導
水圧力管路工法では、調圧水槽と発電所建屋18が同じ
発電所基礎17の上にある。さらに、構造部材を共有し
ていることによって、材料の節約ができる。また、調圧
水槽を斜面上に設ける必要はないので、常時,地震時の
安定解析、安定対策(斜面上では斜面のすべり崩壊対策
を必要とする場合が多い)、施工、発電水調運転、維持
管理が容易となり、工事費が低減できる。そのうえ、発
電所を地下に設ける場合には、発電所建屋を円形,卵形
等の断面で築造することによって、構造安定上有利とな
る。 (リ) 導水圧力管路8は、自由にルート設定できるこ
とを前記に述べたのであるが、導水路縦断方向の調圧水
槽設置位置について説明する。通常の密閉型調圧水槽
は、放水面12に接続して設けるほど、Thomaの安
定条件より、調圧水槽安定必要断面積、容量は大きくな
る。しかし、袋体バルブ式密閉型調圧水槽9において
は、前記に説明したように、場合によっては、容量を半
減できる。さらに、空気室圧力を水車のガバナー(調速
機)回路に取り込んでThomaの安定必要断面積を縮
小すれば、一層の小型化と軽量化ができる。その結果、
発電所基礎は荷重の負担が少なくなり、また、調圧水槽
と発電所建屋を一体化したために構造断面の強度は、断
面形状の相乗効果によって非常に有利となる。ゆえに、
建設工事費を下げることが可能となる。 本発明の導水圧力管路式調圧水槽一体型発電所の水路布
設方法は、パイプライン化水力発電とも考えることがで
きる。前記の効果によって、標準化、小型化、低建設
費、高発電出力、大発電力量、低発電原価という経済開
発が可能となり、我国のエネルギーセキュリティーとし
ての石油代替エネルギー開発、未開発発電水力の賦存す
る農山村の地域開発振興に大きく貢献することができ
る。
The redevelopment of the existing hydroelectric power generation by the conventional waterway laying method (see FIG. 15) is performed by enlarging the cross-section of the non-pressure waterway 4.
There is also a method of increasing the amount of generated power by increasing the power generation flow rate and extending the penstock 6 to increase the head. However, extension of penstock is limited. The reason depends on the flow characteristics at the time of unconstrained speed of the turbine. In the case of the Francis turbine, when the generator load is suddenly cut off at the time of the accident stoppage, the rotation speed of the turbine starts to increase immediately, but the accompanying flow rate of the turbine becomes less than the specific speed of 250 (Ns ≦ 250). The water turbine itself reduces the amount of water and generates water hammer pressure. This phenomenon occurs even if the turbine flow control vane is not throttled, and is independent of the turbine flow control vane closing time. In addition, impulse turbines such as Belton and Targo impulse can reduce the water hammer pressure by using a deflector because the flow reduction in the penstock can be extended at any time regardless of the rotation of the runner. Is greatly affected by penstock length)
However, the specific speed (Ns) is small and the generator becomes large, and the potential energy between the runner and the water discharge surface cannot be recovered. In the laying method using a water supply pressure line described in Patent Publication (B2) Hei 4-6810, a targo impulse or Ns
= There is also a method of extending the pressure line using a Francis turbine of 250 or more. However, there is a problem with the enlargement of the generator in the Targo impulse and the like, and in the Francis turbine, there are problems of cavitation, load following, and power generation water regulation operation. Thus, it seems difficult to lengthen the pressure line. (G) In the pressure regulating tank integrated power plant of the present invention, the penstock length is short, and the water hammer pressure can be ignored. Further, if the height of the air chamber 4 in the pressure vessel is increased and the capacity of the air chamber 4 is sufficiently ensured, the air in the case where the water flow energy in the water supply pressure pipe is converted into air compression energy (pressure energy) is obtained. The maximum pressure of the chamber 4 can be reduced. This means that an arbitrary maximum pressure in the pipeline can be set with respect to the length of the head pressure pipeline. Therefore, a secondary product such as an FRP pipe can be used, and standardized design and construction are facilitated. (H) In the headrace pressure pipe construction method using the pressure regulating tank integrated power plant 10 (FIG. 16), the pressure regulating tank and the power plant building 18 are on the same power plant foundation 17. Furthermore, the sharing of structural members can save material. In addition, since it is not necessary to install a pressure regulating tank on the slope, stability analysis at the time of an earthquake, stabilization measures (in many cases, measures to prevent the slide from collapsing on the slope), construction, water-conditioning operation for power generation, Maintenance is easy and construction costs can be reduced. In addition, when the power plant is installed underground, it is advantageous in terms of structural stability by constructing the power plant building with a circular or oval cross section. (I) As described above, the route of the headrace pressure line 8 can be freely set. The position of the pressure regulating water tank in the longitudinal direction of the headrace channel will be described. As the ordinary closed type pressure regulating water tank is connected to the water discharge surface 12, the required cross-sectional area and capacity of the pressure regulating water tank are required to be larger than the stability condition of Thomas. However, in the bag-type valve-type closed pressure regulating water tank 9, as described above, the capacity can be reduced by half in some cases. Further, if the air chamber pressure is taken into the governor (governor) circuit of the water turbine to reduce the required cross-sectional area of Thomas, the size and weight can be further reduced. as a result,
The load on the power plant foundation is reduced, and the strength of the structural cross section is very advantageous due to the synergistic effect of the cross sectional shape because the pressure regulating tank and the power plant building are integrated. therefore,
Construction costs can be reduced. The method for laying a water channel in a power plant integrated with a headrace pressure pipe type pressure regulating water tank according to the present invention can be considered as a pipelined hydroelectric power generation. The effects described above enable economic development of standardization, miniaturization, low construction costs, high power generation output, large power generation, and low power generation costs, and the development of alternative energy to oil as energy security in Japan and the existence of undeveloped hydropower. Can greatly contribute to the promotion of regional development in rural areas.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a first embodiment.

【図2】実施例1(図1)のA−A線矢視による横断面
図であって、袋体バルブ1、たわみ性ホース17等の配
置例を示す図である。
FIG. 2 is a cross-sectional view taken along line AA of Example 1 (FIG. 1), showing an example of arrangement of a bag valve 1, a flexible hose 17, and the like.

【図3】実施例2を示す縦断面図である。FIG. 3 is a longitudinal sectional view showing a second embodiment.

【図4】実施例2(図3)のA−A線矢視による横断面
図である。
FIG. 4 is a cross-sectional view of Example 2 (FIG. 3) taken along line AA.

【図5】実施例3を示す縦断面図である。FIG. 5 is a longitudinal sectional view showing a third embodiment.

【図6】実施例3(図5)のA−A線矢視による横断面
図である。
FIG. 6 is a cross-sectional view of Example 3 (FIG. 5) taken along line AA.

【図7】実施例4を示す縦断面図である。FIG. 7 is a longitudinal sectional view showing a fourth embodiment.

【図8】実施例4(図7)のA−A線矢視による横断面
図である。
FIG. 8 is a cross-sectional view of Example 4 (FIG. 7) taken along line AA.

【図10】浮力可動式袋体バルブの概念図(斜視図)で
ある。
FIG. 10 is a conceptual view (perspective view) of a buoyancy movable type bag valve.

【図11】従来技術における一般型調圧水槽の配置を示
す縦断面図である。
FIG. 11 is a longitudinal sectional view showing an arrangement of a general-type pressure regulating water tank in the related art.

【図12】従来技術における開放型空気制動調圧水槽の
配置の一例を示す縦断面図である。
FIG. 12 is a longitudinal sectional view showing an example of the arrangement of an open-type air braking pressure regulating water tank in the related art.

【図13】ノルウェー,アメリカで採用されている密閉
型圧縮空気調圧水槽の縦断面図である。
FIG. 13 is a longitudinal sectional view of a closed type compressed air pressure regulating water tank employed in Norway and the United States.

【図14】密閉型圧縮空気調圧水槽の作動原理の概念図
である。
FIG. 14 is a conceptual diagram of the operation principle of the closed type compressed air pressure regulating water tank.

【図15】実施例5を示す縦断面図である。流れ込み中
小水力発電施設の概念図であって、実線で示す本発明に
係る設備の構成と、点線で示す従来方式による設備の構
成を対比して示したものである。
FIG. 15 is a longitudinal sectional view showing a fifth embodiment. FIG. 3 is a conceptual diagram of an inflow small-to-medium-sized hydroelectric power generation facility, in which the configuration of the facility according to the present invention shown by a solid line is compared with the configuration of the facility according to the conventional method shown by a dotted line.

【図16】本発明に係る実施例15の調圧水槽一体型発
電所の斜視図(透視図)である。
FIG. 16 is a perspective view (perspective view) of a pressure-regulating water tank integrated power plant according to Embodiment 15 of the present invention.

【図17】本発明に係る調圧水槽を用いた、水資源の合
理的な使用をする発電計画概念図(斜視図)である。
FIG. 17 is a conceptual diagram (perspective view) of a power generation plan that uses a pressure regulating water tank according to the present invention and uses water resources rationally.

【符号の説明】[Explanation of symbols]

(図1,図2)の符号 1 袋体バルブ 2 浮体バルブストッパー 3
水位 4 空気室 5 圧力容器 6
−1 ガラス板水面計 7 空気圧入排出管 8 空気室圧力計 9
空気コンプレッサー 10 水圧鉄管 11 制水口止水弁座 12
制水口 13 導水圧力管路 14 設定下降水位 15
袋体バルブ案内棒 16 支柱 17 たわみ性ホース (図3,図4)の符号で上記に説明のないもの。 2 送受波器 6 超音波水位計 6a
ケーブル (図5,図6)の符号 2 袋体バルブストッパー 6−2 差圧式水位計
16 差圧変換器 18 ドレン (図7,図8)の符号 6 水位検出アーム 16 連絡パイプ 17
2軸交差歯車の回転軸 18 止水回転軸 19 浮体取付アーム 20
案内柱 21 漏れ止めシール 22 かさ歯車 (図15,図16)の符号 1 取水堰 2 調整池 3 沈
砂池 4 無圧導水路 5 上部水槽,サージタンク
6 水圧鉄管 7 余水路 8 導水圧力管路 9 袋体バルブ
式密閉型調圧水槽 10 調圧水槽一体型発電所 11 水車 12
放水面 13 有効落差 14 無効落差 15
河川 16 発電機 17 発電所基礎 18
発電所建屋
Reference numerals (FIGS. 1 and 2) 1 Bag valve 2 Floating valve stopper 3
Water level 4 Air chamber 5 Pressure vessel 6
-1 Glass plate water level gauge 7 Air pressure inlet / outlet pipe 8 Air chamber pressure gauge 9
Air compressor 10 Penstock 11 Water stop valve seat 12
Water control port 13 Conveyance pressure line 14 Set descending water level 15
Bag valve guide rod 16 Support post 17 Flexible hose (FIGS. 3 and 4) that is not described above. 2 Transducer 6 Ultrasonic water level gauge 6a
Symbol of cable (Figs. 5 and 6) 2 Bag valve stopper 6-2 Differential pressure level gauge
16 Differential pressure transducer 18 Drain (FIGS. 7 and 8) code 6 Water level detection arm 16 Communication pipe 17
Rotation axis of biaxial cross gear 18 Water stop rotation axis 19 Floating body mounting arm 20
Guide column 21 Leak prevention seal 22 Bevel gear (FIGS. 15 and 16) Reference numeral 1 Intake weir 2 Regulating pond 3 Sedimentation basin 4 Non-pressure water channel 5 Upper water tank, surge tank
6 Penstock 7 Spillway 8 Conveying pressure line 9 Bag-type valve-type closed pressure regulating water tank 10 Pressure regulating water tank integrated power plant 11 Waterwheel 12
Water discharge surface 13 Effective head 14 Invalid head 15
River 16 Generator 17 Power station foundation 18
Power plant building

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧力容器(5)の内部に袋体バルブ
(1)を設け、袋体バルブ(1)から圧力容器(5)の
外部につながる、袋体バルブ(1)のガス圧入排出装置
を袋体バルブ(1)から圧力容器(5)に接続した浮力
開閉袋体バルブ式密閉型調圧水槽。(図1,図2参照)
1. A gas injection device for a bag valve (1), wherein a bag valve (1) is provided inside a pressure vessel (5) and is connected to the outside of the pressure vessel (5) from the bag valve (1). Is connected to the pressure vessel (5) from the bag valve (1). (See FIGS. 1 and 2)
【請求項2】 圧力容器(5)の内部に袋体バルブ
(1)を設け、空気室(4)の圧縮空気を袋体バルブ
(1)に送気できる、空気連絡通路を袋体バルブ(1)
から空気室(4)に接続した浮力開閉袋体バルブ式密閉
型調圧水槽。(図3,図4参照)
2. A bag valve (1) is provided inside a pressure vessel (5), and an air communication passage through which compressed air in an air chamber (4) can be supplied to the bag valve (1) is provided. 1)
Buoyancy opening / closing valve type closed pressure regulating water tank connected to the air chamber (4). (See FIGS. 3 and 4)
【請求項3】 中小水力発電施設の取水堰(1)に設け
た取水口から、この取水口の低位にある前記の請求項
1、又は請求項2に記載の調圧水槽を用いた調圧水槽一
体型発電所(10)までを、導水圧力管路(8)で直結
した導水圧力管路式調圧水槽一体型発電所。(図15,
図16,図17参照)
3. A pressure control using a pressure control tank according to claim 1 or 2, which is located at a lower position from an intake provided in an intake weir (1) of a small and medium-sized hydroelectric power generation facility. Directly connected to the water tank integrated power plant (10) via the headrace pressure line (8)
A power plant integrated with a pressure control tank with a water pressure line. (FIG. 15,
(See FIGS. 16 and 17)
JP7184572A 1995-06-16 1995-06-16 Bag-type closed pressure regulating water tank Expired - Fee Related JP2863994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7184572A JP2863994B2 (en) 1995-06-16 1995-06-16 Bag-type closed pressure regulating water tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7184572A JP2863994B2 (en) 1995-06-16 1995-06-16 Bag-type closed pressure regulating water tank

Publications (2)

Publication Number Publication Date
JPH093865A JPH093865A (en) 1997-01-07
JP2863994B2 true JP2863994B2 (en) 1999-03-03

Family

ID=16155561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7184572A Expired - Fee Related JP2863994B2 (en) 1995-06-16 1995-06-16 Bag-type closed pressure regulating water tank

Country Status (1)

Country Link
JP (1) JP2863994B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4339199B2 (en) * 2004-07-22 2009-10-07 北陸電力株式会社 Water intake control method and water intake control system for flow-type hydroelectric power plant
JP2006177229A (en) * 2004-12-22 2006-07-06 Furutochi Kensetsu:Kk Water passage type hydraulic power generation facilities using existing road
JP4889308B2 (en) * 2005-02-17 2012-03-07 株式会社クボタ Water turbine, water turbine power generator, and method of operating water turbine power generator
CN100458021C (en) * 2006-06-29 2009-02-04 中国水电顾问集团成都勘测设计研究院 Cover type air cushion type pressure balance chamber
JP6591626B1 (en) 2018-07-06 2019-10-16 立岡 哲治 Power plant using buoyant body and power generation method thereof
CN110528476B (en) * 2019-09-29 2023-10-13 长江勘测规划设计研究有限责任公司 Air cushion type pressure regulating chamber with double-layer air-closing structure and use method thereof

Also Published As

Publication number Publication date
JPH093865A (en) 1997-01-07

Similar Documents

Publication Publication Date Title
Laugier et al. Design and construction of a labyrinth PKW spillway at Saint-Marc dam, France
JP2863994B2 (en) Bag-type closed pressure regulating water tank
JP6512465B2 (en) Hydroelectric generator for pipelines
CN206523791U (en) Dam is using siphon piping draining and automatically controls water flow device
CN208857807U (en) It is a kind of to fill sluicing and water charging system for large scale ship
JPS5873611A (en) Laying method of waterway with penstock
JP2003042049A (en) Annular chain impeller water turbine
JP2863992B2 (en) Buoyancy opening / closing valve type closed type air braking pressure regulating tank
US10876265B2 (en) Modular hydropower unit
CN100387782C (en) Pneumatic floater horizontal gate and its optimized structure dimension
CN218626446U (en) Overflow type surge shaft for ultra-long-distance large-flow gravity flow water delivery system
Lee et al. JHW Lee
Cassidy Fluid mechanics and design of hydraulic structures
Çalamak Investigation of waterhammer problems in the penstocks of small hydropower plants
JP6785490B1 (en) The structure of a water-sealed ventilation pipe in hydroelectric power generation, and a routine maintenance method for a siphon-type water pipe that forcibly discharges air bubbles and air masses in the siphon-type water pipe.
CN211180663U (en) Automatic adjusting device for upstream flow stability of beach protection scouring stability model test
Balzannikov et al. On structures and control methods of joint streams regulation by two water power developments in satisfying water consumers’ demands
JP2004132013A (en) Upstream water level control type float valve device
US20200318601A1 (en) Ocean current power generation system
Leifsson et al. Asymmetric sudden enlargement energy dissipater in Jökulsá Tunnel of the Kárahnjúkar HEP in Iceland
Khokhlov et al. Energy and Water Saving on the Pumping Stations of Karshi Main Canal
Arifjanov et al. Hydraulic research of the operational water supply tunnel of pskom hydrousel
JPH09175594A (en) Pneumatic storage type internal water flood storage tank
Kadirova Automatic water level regulator with flexible working bodies in form of partition structure for trapezoidal channels
RU69089U1 (en) RECYCLING HYDRO POWER PLANT

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081218

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees