JP2021172618A - Diamine compound and method for producing the same - Google Patents

Diamine compound and method for producing the same Download PDF

Info

Publication number
JP2021172618A
JP2021172618A JP2020077677A JP2020077677A JP2021172618A JP 2021172618 A JP2021172618 A JP 2021172618A JP 2020077677 A JP2020077677 A JP 2020077677A JP 2020077677 A JP2020077677 A JP 2020077677A JP 2021172618 A JP2021172618 A JP 2021172618A
Authority
JP
Japan
Prior art keywords
amino
compound
fluoro
water
ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020077677A
Other languages
Japanese (ja)
Inventor
聡 加藤
Satoshi Kato
雄太 佐藤
Yuta Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2020077677A priority Critical patent/JP2021172618A/en
Publication of JP2021172618A publication Critical patent/JP2021172618A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a diamine compound that allows synthesis of a polyimide resin having high heat resistance and high transparency and a method for producing the same.SOLUTION: The present invention relates to a diamine compound represented by the formula (1) and a method for producing the same, and a polyimide precursor and a polyimide including the diamine compound as a constitutional unit.SELECTED DRAWING: None

Description

本発明は、工業的に有用なエステル基を含むジアミン化合物及びその製造方法に関するものである。 The present invention relates to an industrially useful diamine compound containing an ester group and a method for producing the same.

ジアミン化合物は、有機化学分野及び高分子化学分野で広く用いられている化合物であり、ファインケミカル、医農薬原料及び樹脂原料、さらには電子情報材料や光学材料など、工業用途として多岐にわたる分野で有用な化合物である。例えば、ジアミン化合物から得られたポリイミド樹脂は、無色透明フレキシブル基板としての適用が期待されている。特に最近では、TFTデバイスタイプがLTPS(低温ポリシリコンTFT)になるに伴い、従来以上の熱履歴においても、透明性の維持が望まれている。 Diamine compounds are compounds widely used in the fields of organic chemistry and polymer chemistry, and are useful in a wide range of fields for industrial applications such as fine chemicals, agrochemical raw materials and resin raw materials, as well as electronic information materials and optical materials. It is a compound. For example, a polyimide resin obtained from a diamine compound is expected to be applied as a colorless transparent flexible substrate. In particular, recently, as the TFT device type has become LTPS (low temperature polysilicon TFT), it is desired to maintain transparency even in the thermal history more than before.

従来のジアミン化合物を用いて得られるポリイミドの物性特性は、耐熱性無色透明基板として用いるのには十分ではない。本発明者らが確認したところ、特許文献1及び2に記載されたポリイミド樹脂組成物は耐熱性に乏しく、LTPS工程の400℃以上の熱履歴では黄色度が著しく悪化することが分かった。また、特許文献3には、分子鎖中にエステル構造を有するポリイミドが、適度な直線性及び剛直性を有するため、低い線膨張係数と高い耐熱性を示すことが報告されているが、本発明者らが確認したところ、特許文献3に記載されるポリイミドの透明性には未だ改善の余地があった。 The physical characteristics of polyimide obtained by using a conventional diamine compound are not sufficient for use as a heat-resistant colorless transparent substrate. As a result of confirmation by the present inventors, it was found that the polyimide resin compositions described in Patent Documents 1 and 2 have poor heat resistance, and the yellowness is remarkably deteriorated in the heat history of the LTPS step at 400 ° C. or higher. Further, Patent Document 3 reports that polyimide having an ester structure in a molecular chain exhibits a low coefficient of linear expansion and high heat resistance because it has appropriate linearity and rigidity. As a result of confirmation by the authors, there was still room for improvement in the transparency of the polyimide described in Patent Document 3.

特表2016−531997号公報Special Table 2016-53 1997 特開2012−052111号公報Japanese Unexamined Patent Publication No. 2012-052111 特開2019−70811号公報JP-A-2019-70811

本発明は、上記の課題を解決し、高耐熱性で透明性の高いポリイミド樹脂を合成可能なジアミン化合物及びその製造方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems and to provide a diamine compound capable of synthesizing a polyimide resin having high heat resistance and high transparency, and a method for producing the same.

本発明者らは、上記従来技術の現状に鑑み、鋭意検討した結果、芳香族エステルジアミンの側鎖にフッ素を導入した新規ジアミン化合物及びその製造方法が、上記課題を解決し得ることを見出した。 As a result of diligent studies in view of the current state of the prior art, the present inventors have found that a novel diamine compound in which fluorine is introduced into the side chain of an aromatic ester diamine and a method for producing the same can solve the above problems. ..

すなわち、本発明は、以下の態様を包含する。
[1] 下記式(1):

Figure 2021172618

で示されるジアミン化合物。
[2] 下記式(1):
Figure 2021172618

で示される4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルの製造方法であって、
下記式(2):
Figure 2021172618

で示される4−ニトロベンゾイルクロライドと、
下記式(3):
Figure 2021172618

で示される4−ニトロ−3−フルオロフェノールとを塩基性下でエステル化反応させて、
下記式(4):
Figure 2021172618

で示される4−ニトロベンゼン−3−フルオロ−4’−ニトロフェニルエステルを得る工程と、
前記式(4)で示される4−ニトロベンゼン−3−フルオロ−4’−ニトロフェニルエステルを還元することによって、前記(1)で示される4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルを得る工程とを含む、方法。
[3] 前記還元を、反応圧0.1〜10MPaにて接触水素化により行う、上記態様2に記載の方法。
[4] 前記エステル化反応を、塩基の存在下、非プロトン性極性溶媒中で行う、上記態様2又は3に記載の方法。
[5] 前記還元に先立って、前記4−ニトロベンゼン−3−フルオロ−4’−ニトロフェニルエステルを、水、又は水及びアルコール化合物の混合物を用いて結晶として析出させる工程を含む、上記態様2〜4のいずれかに記載の方法。
[6] 前記還元により生成した4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルを、晶析溶媒を用いて結晶として析出させる工程を含み、前記晶析溶媒が、水、非極性化合物、水及び非極性化合物の混合物、水及びアルコール化合物の混合物、並びに非極性化合物及びアルコール化合物の混合物からなる群から選ばれる少なくとも1つである、上記態様2〜5のいずれかに記載の方法。
[7] 前記アルコール化合物が、メタノール、エタノール、及び2−プロパノールからなる群から選ばれる少なくとも1つである、上記態様5又は6に記載の方法。
[8] 4−アミノ−3−フルオロ−4’−アミノフェニルエステルを構造単位として含む、ポリイミド前駆体。
[9] 4−アミノ−3−フルオロ−4’−アミノフェニルエステルを構造単位として含む、ポリイミド。 That is, the present invention includes the following aspects.
[1] The following equation (1):
Figure 2021172618

The diamine compound indicated by.
[2] The following equation (1):
Figure 2021172618

A method for producing 4-amino-3-fluorophenyl-4'-aminophenyl ester represented by.
The following formula (2):
Figure 2021172618

4-Nitrobenzoyl chloride indicated by
The following formula (3):
Figure 2021172618

Esterification reaction with 4-nitro-3-fluorophenol represented by (1) under basic conditions,
The following formula (4):
Figure 2021172618

The step of obtaining 4-nitrobenzene-3-fluoro-4'-nitrophenyl ester represented by
By reducing the 4-nitrobenzene-3-fluoro-4'-nitrophenyl ester represented by the above formula (4), the 4-amino-3-fluorophenyl-4'-aminophenyl ester represented by the above (1) A method, including the steps of obtaining.
[3] The method according to the second aspect, wherein the reduction is carried out by catalytic hydrogenation at a reaction pressure of 0.1 to 10 MPa.
[4] The method according to the above aspect 2 or 3, wherein the esterification reaction is carried out in the presence of a base in an aprotic polar solvent.
[5] Aspects 2 to 2 above, which comprises a step of precipitating the 4-nitrobenzene-3-fluoro-4'-nitrophenyl ester as crystals using water or a mixture of water and an alcohol compound prior to the reduction. The method according to any one of 4.
[6] A step of precipitating the 4-amino-3-fluorophenyl-4'-aminophenyl ester produced by the reduction as crystals using a crystallization solvent is included, and the crystallization solvent is water, a non-polar compound. The method according to any one of aspects 2 to 5, wherein the method is at least one selected from the group consisting of a mixture of water and a non-polar compound, a mixture of water and an alcohol compound, and a mixture of a non-polar compound and an alcohol compound.
[7] The method according to aspect 5 or 6, wherein the alcohol compound is at least one selected from the group consisting of methanol, ethanol, and 2-propanol.
[8] A polyimide precursor containing 4-amino-3-fluoro-4'-aminophenyl ester as a structural unit.
[9] A polyimide containing 4-amino-3-fluoro-4'-aminophenyl ester as a structural unit.

本発明の一態様によれば、高耐熱性で透明性の高いポリイミド樹脂を合成可能なジアミン化合物及びその製造方法が提供され得る。 According to one aspect of the present invention, a diamine compound capable of synthesizing a polyimide resin having high heat resistance and high transparency and a method for producing the same can be provided.

図1は、実施例1で得られた4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルの水素核磁気共鳴(以下、1H−NMRとも記す)スペクトルを表す図である。 FIG. 1 is a diagram showing a hydrogen nuclear magnetic resonance (hereinafter, also referred to as 1 H-NMR) spectrum of 4-amino-3-fluorophenyl-4'-aminophenyl ester obtained in Example 1.

以下、本発明の例示の実施の形態(以下、「本実施形態」と略記する。)について、詳細に説明する。なお、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。また、本開示で記載する特性値は、特記がない限り、[実施例]の項において記載する方法又はこれと同等であることが当業者に理解される方法で測定される値であることを意図する。 Hereinafter, an exemplary embodiment of the present invention (hereinafter, abbreviated as “the present embodiment”) will be described in detail. The present invention is not limited to the following embodiments, and can be variously modified and implemented within the scope of the gist thereof. In addition, unless otherwise specified, the characteristic values described in the present disclosure are values measured by the method described in the section of [Example] or a method understood by those skilled in the art to be equivalent thereto. Intended.

≪ジアミン化合物及びその製造方法≫
本発明の一態様は、新規なジアミン化合物、具体的には、下記式(1):

Figure 2021172618

で示される4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルを提供する。 << Diamine compound and its manufacturing method >>
One aspect of the present invention is a novel diamine compound, specifically, the following formula (1):
Figure 2021172618

The 4-amino-3-fluorophenyl-4'-aminophenyl ester represented by is provided.

上記(1)で示されるジアミン化合物は、芳香族エステルジアミンの側鎖にフッ素が導入されていることにより、透明、かつヘイズの小さい樹脂組成物を与えることができるため、透明性が求められるポリイミド、ポリアミドなどの原料として有望である。また、当該ジアミン化合物は、エステル基を含有していることから、溶媒への高い溶解度、高耐熱性、高機械的強度、低線膨張性、低熱膨張性、低吸湿膨張性等の優れた機能性を有するポリイミドの原料としても有望である。より具体的には、当該ジアミン化合物は、上記式のように特定位置に置換基を有することにより、上記ジアミン化合物と酸二無水物とから得られるポリイミドにおいて、ジアミンと酸二無水物との分子内捻じれを引き起こし、ポリイミド分子内のCT遷移を抑制することが出来、結果として、ポリイミドフィルムの着色を抑えることが出来る。また当該ジアミン化合物は、上記した位置に電子吸引性の置換基を有することにより、イミド窒素を含む芳香環部分に局在化したπ軌道に由来する最高被占軌道(HOMO)を安定化することが出来、結果として、ポリイミドの着色を抑えることが出来る。また、上記した位置に置換基を有するジアミンを用いることで、ポリイミドフィルムの分子間配向を抑制することが出来、結果として、フィルムの曇り度(Haze)を抑えることが出来る。 The diamine compound shown in (1) above is a polyimide that is required to be transparent because a resin composition that is transparent and has a small haze can be provided by introducing fluorine into the side chain of the aromatic ester diamine. , Polyamide and the like are promising as raw materials. Further, since the diamine compound contains an ester group, it has excellent functions such as high solubility in a solvent, high heat resistance, high mechanical strength, low linear expansion, low thermal expansion, and low moisture absorption expansion. It is also promising as a raw material for polyimide having properties. More specifically, the diamine compound has a substituent at a specific position as shown in the above formula, so that the molecule of the diamine and the acid dianhydride in the polyimide obtained from the diamine compound and the acid dianhydride. It can cause internal twisting and suppress the CT transition in the polyimide molecule, and as a result, the coloring of the polyimide film can be suppressed. Further, the diamine compound has an electron-withdrawing substituent at the above-mentioned position to stabilize the highest occupied molecular orbital (HOMO) derived from the π orbital localized in the aromatic ring portion containing imide nitrogen. As a result, the coloring of the polyimide can be suppressed. Further, by using a diamine having a substituent at the above-mentioned position, the intermolecular orientation of the polyimide film can be suppressed, and as a result, the haze of the film can be suppressed.

一態様において、上記式(1)で示される4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルは、黄白色の化合物である。 In one embodiment, the 4-amino-3-fluorophenyl-4'-aminophenyl ester represented by the above formula (1) is a yellowish white compound.

上記式(1)で示される化合物は、一態様において、以下の方法で製造できる。まず下記式(2):

Figure 2021172618

で示される4−ニトロベンゾイルクロライドと、下記式(3):
Figure 2021172618

で示される4−ニトロ−3−フルオロフェノールとを塩基性下(すなわち、pH7.0超の条件下)で反応(すなわちエステル化反応)させることにより、中間体である下記式(4):
Figure 2021172618

で示される4−ニトロベンゼン−3−フルオロ−4’−ニトロフェニルエステルを製造することができる。 In one embodiment, the compound represented by the above formula (1) can be produced by the following method. First, the following formula (2):
Figure 2021172618

4-Nitrobenzoyl chloride represented by and the following formula (3):
Figure 2021172618

The following formula (4):
Figure 2021172618

4-Nitrobenzene-3-fluoro-4'-nitrophenyl ester represented by (1) can be produced.

一態様において、式(2)で示される化合物と式(3)で示される化合物との上記のエステル化反応は、塩基の存在下、好ましくは非プロトン性極性溶媒中で行う。 In one embodiment, the above esterification reaction of the compound represented by the formula (2) and the compound represented by the formula (3) is carried out in the presence of a base, preferably in an aprotic polar solvent.

本エステル化反応で好ましく用いる非プロトン性極性溶媒としては、例えばスルホキシド化合物、スルホラン化合物、アミド化合物、ニトリル化合物、エーテル化合物等を例示できる。 Examples of the aprotonic polar solvent preferably used in this esterification reaction include sulfoxide compounds, sulfolane compounds, amide compounds, nitrile compounds, ether compounds and the like.

スルホキシド化合物としては、ジメチルスルホキシド(DMSO)、ジエチルスルホキシド等が挙げられる。 Examples of the sulfoxide compound include dimethyl sulfoxide (DMSO) and diethyl sulfoxide.

スルホラン化合物としては、スルホラン、メチルスルホラン等が挙げられる。 Examples of the sulfolane compound include sulfolane and methyl sulfolane.

アミド化合物としては、N,N−ジメチルアセトアミド、N,N−ジメチルアセトアセトアミド、N,N−ジエチルアセトアミド、N,N−ジメチルホルムアミド(DMF)、2−ピロリドン、N−メチル−2−ピロリドン(NMP)、ヘキサメチルホスホリックトリアミド、1,3−ジメチル− 2−イミダゾリノジン等が挙げられる。 Examples of the amide compound include N, N-dimethylacetamide, N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dimethylformamide (DMF), 2-pyrrolidone, and N-methyl-2-pyrrolidone (NMP). ), Hexamethylphosphoric triamide, 1,3-dimethyl-2-imidazolinodine and the like.

ニトリル化合物としては、アセトニトリル、プロピオニトリル、ブチロニトリル、イソブチロニトリル、ベンゾニトリル等が挙げられる。 Examples of the nitrile compound include acetonitrile, propionitrile, butyronitrile, isobutyronitrile, benzonitrile and the like.

エーテル化合物としては、モノグライム、ジグライム、トリグライム、テトラグライム、ジエチルエーテル、ジイソプロピルエーテル、ジ−n−ブチルエーテル、t−ブチルメチルエーテル、シクロペンチルメチルエーテル、テトラヒドロフラン(THF)、テトラヒドロピラン、1,4−ジオキサン、1,3−ジオキソラン、アニソール、モルホリン等が挙げられる。 Examples of the ether compound include monoglime, diglime, triglime, tetraglime, diethyl ether, diisopropyl ether, di-n-butyl ether, t-butyl methyl ether, cyclopentyl methyl ether, tetrahydrofuran (THF), tetrahydropyran, 1,4-dioxane, and the like. Examples thereof include 1,3-dioxolane, anisole and morpholine.

これらの中でもテトラヒドロフラン、N,N−ジメチルホルムアミド(DMF)が、沸点が低いため除去が容易であることから好ましい。 Among these, tetrahydrofuran and N, N-dimethylformamide (DMF) are preferable because they have a low boiling point and are easy to remove.

非プロトン性極性溶媒は、単独で用いても良いし、2種類以上を混合して用いても良い。 The aprotic polar solvent may be used alone or in combination of two or more.

非プロトン性極性溶媒の使用量は、通常、式(2)で示される化合物に対して0.1〜20質量倍の範囲である。 The amount of the aprotic polar solvent used is usually in the range of 0.1 to 20 times by mass with respect to the compound represented by the formula (2).

本エステル化反応に好ましく使用される塩基としては、例えば、アルカリ金属水素化物、アルカリ土類金属水素化物、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、アルカリ金属アルコキシド、アルカリ土類金属アルコキシド、アルカリ金属フッ化物、アミン等が挙げられる。 Examples of the base preferably used in this esterification reaction include alkali metal hydride, alkaline earth metal hydride, alkali metal hydroxide, alkaline earth metal hydroxide, alkali metal carbonate, and alkaline earth metal. Examples thereof include carbonates, alkali metal hydrogen carbonates, alkali metal alkoxides, alkaline earth metal alkoxides, alkali metal fluorides and amines.

アルカリ金属水素化物としては、水素化リチウム、水素化ナトリウム、水素化カリウム等が挙げられる。
アルカリ土類金属水素化物としては、水素化ベリリウム、水素化マグネシウム、水素化カルシウム等が挙げられる。
アルカリ金属水酸化物としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム等が挙げられる。
アルカリ土類金属水酸化物としては、水酸化ベリリウム、水酸化マグネシウム、水酸化カルシウム等が挙げられる。
Examples of the alkali metal hydride include lithium hydride, sodium hydride, potassium hydride and the like.
Examples of the alkaline earth metal hydride include beryllium hydride, magnesium hydride, calcium hydride and the like.
Examples of the alkali metal hydroxide include lithium hydroxide, sodium hydroxide, potassium hydroxide and the like.
Examples of the alkaline earth metal hydroxide include beryllium hydroxide, magnesium hydroxide, calcium hydroxide and the like.

アルカリ金属炭酸塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム等が挙げられる。
アルカリ土類金属炭酸塩としては、炭酸ベリリウム、炭酸マグネシウム、炭酸カルシウム等が挙げられる。
アルカリ金属炭酸水素塩としては、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素リチウム等が挙げられる。
Examples of the alkali metal carbonate include lithium carbonate, sodium carbonate, potassium carbonate and the like.
Examples of the alkaline earth metal carbonate include beryllium carbonate, magnesium carbonate, calcium carbonate and the like.
Examples of the alkali metal bicarbonate include sodium hydrogen carbonate, potassium hydrogen carbonate, lithium hydrogen carbonate and the like.

アルカリ金属アルコキシドとしては、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムt−ブトキシド、カリウムメトキシド、カリウムエトキシド、カリウムt−ブトキシド等が挙げられる。
アルカリ土類金属アルコキシドとしては、マグネシウムジエトキシド、マグネシウムジメトキシド等が挙げられる。
Examples of the alkali metal alkoxide include sodium methoxide, sodium ethoxide, sodium t-butoxide, potassium methoxide, potassium ethoxide, potassium t-butoxide and the like.
Examples of the alkaline earth metal alkoxide include magnesium diethoxydo and magnesium dimethoxyde.

アルカリ金属フッ化物としては、フッ化ナトリウム、フッ化カリウム、フッ化セシウムなどが挙げられる。 Examples of the alkali metal fluoride include sodium fluoride, potassium fluoride, cesium fluoride and the like.

アミンとしては、トリメチルアミン、トリエチルアミン、トリブチルアミン、N、N−ジメチルアニリン、ジメチルベンジルアミン、N,N,N’,N’−テトラメチル−1,8−ナフタレンジアミン等の三級アミン、ピリジン、ピロール、ウラシル、コリジン、ルチジン等の複素芳香族アミン、1,8−ジアザ−ビシクロ[5.4.0]−7−ウンデセン、1,5−ジアザ−ビシクロ[4.3.0]−5−ノネン等の環状アミジン等が挙げられる。 Examples of amines include tertiary amines such as trimethylamine, triethylamine, tributylamine, N, N-dimethylaniline, dimethylbenzylamine, N, N, N', N'-tetramethyl-1,8-naphthalenediamine, pyridine, and pyrrol. , Urasyl, Collidine, Rutidine and other heteroaromatic amines, 1,8-diaza-bicyclo [5.4.0] -7-undecene, 1,5-diaza-bicyclo [4.3.0] -5-nonen And the like, cyclic amidine and the like.

これらの塩基は単独で用いても良いし、2種類以上を混合して用いても良い。これらの塩基のうち、トリエチルアミン及びピリジンが、液体で取り扱いが容易であり、沸点が低いため除去が容易であることから特に好ましい。 These bases may be used alone or in combination of two or more. Of these bases, triethylamine and pyridine are particularly preferable because they are liquid and easy to handle, and because they have a low boiling point, they are easy to remove.

塩基の使用量は、式(2)で示される化合物に対して、1.0〜3.0モル倍量が好ましく、より好ましくは1.0〜1.5モル倍量にすると良い。塩基を1.0モル倍量以上とすることで、反応未達による収率低下を防止でき、3.0モル倍量以下とすることで、塩基除去に必要なエネルギーが少なくなり、廃棄物も少なくなるので好ましい。 The amount of the base used is preferably 1.0 to 3.0 mol times, more preferably 1.0 to 1.5 mol times, the amount of the compound represented by the formula (2). By increasing the amount of base to 1.0 mol times or more, it is possible to prevent a decrease in yield due to unachieved reaction, and by setting the amount to 3.0 mol times or less, the energy required for base removal is reduced and waste is also generated. It is preferable because it reduces the amount.

本エステル化反応は、窒素雰囲気下で実施することが好ましい。窒素雰囲気下で実施することにより、系内に酸素が混入することを防ぐことで、純度低下を抑制することが出来る。 This esterification reaction is preferably carried out in a nitrogen atmosphere. By carrying out in a nitrogen atmosphere, it is possible to suppress a decrease in purity by preventing oxygen from being mixed into the system.

本エステル化反応の反応温度は、通常、0〜100℃が好ましく、より好ましくは、0〜50℃である。0℃以上とすることで反応が速やかに進行し、100℃以下にすることで副反応を抑制し、収率低下を防ぐことができる。 The reaction temperature of this esterification reaction is usually preferably 0 to 100 ° C, more preferably 0 to 50 ° C. When the temperature is 0 ° C. or higher, the reaction proceeds rapidly, and when the temperature is 100 ° C. or lower, side reactions can be suppressed and a decrease in yield can be prevented.

本エステル化反応の反応時間は、通常、0.5〜20時間の範囲である。 The reaction time of this esterification reaction is usually in the range of 0.5 to 20 hours.

本エステル化反応終了後は、反応混合物に晶析溶媒を添加することで結晶が析出し、これを単離することで中間体である4−ニトロベンゼン−3−フルオロ−4’−ニトロフェニルエステルが得られる。得られた中間体は、例えば上記析出に用いたのと同種の晶析溶媒で、再結晶を行っても良い。 After completion of this esterification reaction, crystals are precipitated by adding a crystallization solvent to the reaction mixture, and by isolating this, the intermediate 4-nitrobenzene-3-fluoro-4'-nitrophenyl ester is obtained. can get. The obtained intermediate may be recrystallized from, for example, the same type of crystallization solvent as that used for the above-mentioned precipitation.

本エステル化反応に好ましく使用される晶析溶媒としては、例えば、水、アルコール化合物等を例示できる。好ましい態様において、晶析溶媒は、水、又は水及びアルコール化合物の混合物である。アルコール化合物としては、メタノール、エタノール、2−プロパノール等が挙げられる。これらの晶析溶媒は単独で用いても良いし、2種類以上を混合して用いても良い。これらの晶析溶媒のうち、水、及びメタノールが安価に入手できることから特に好ましい。 Examples of the crystallization solvent preferably used in this esterification reaction include water and alcohol compounds. In a preferred embodiment, the crystallization solvent is water or a mixture of water and an alcohol compound. Examples of the alcohol compound include methanol, ethanol, 2-propanol and the like. These crystallization solvents may be used alone or in combination of two or more. Of these crystallization solvents, water and methanol are particularly preferable because they can be obtained at low cost.

次に、上記で得られた式(4)の4−ニトロベンゼン−3−フルオロ−4’−ニトロフェニルエステルを還元することにより、下記式(1):

Figure 2021172618

で示される4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルを製造することが出来る。 Next, by reducing the 4-nitrobenzene-3-fluoro-4'-nitrophenyl ester of the formula (4) obtained above, the following formula (1):
Figure 2021172618

4-Amino-3-fluorophenyl-4'-aminophenyl ester represented by can be produced.

還元方法としては、亜鉛末、鉄粉、錫、塩化第一錫などを用いる金属還元法や水素化触媒を用いる接触水素化といった方法があるが、目的物の単離方法が簡易であること、処理を必要とする廃棄物が少ないこと、経済性がよいことなどの観点から、接触水素化が最も好ましい。 As a reduction method, there are a metal reduction method using zinc powder, iron powder, tin, stannous chloride, etc. and a catalytic hydrogenation method using a hydrogenation catalyst, but the method for isolating the target product is simple. Contact hydrogenation is most preferable from the viewpoints of less waste requiring treatment and good economic efficiency.

本接触水素化の反応に用いる好適な水素化触媒としては、例えば貴金属触媒或いはラネーニッケル触媒などを挙げることができる。
貴金属触媒としては、パラジウム、白金、ロジウム、ルテニウム、及びイリジウムからなる群から選ばれる少なくとも1種の貴金属を含むものが挙げられる。
触媒の形態としては、例えば活性炭、グラフェン、フィブロイン、ゼオライト、珪藻土、アルミナなどに担持した形態が挙げられる。
これらの中でも、経済性及び操作性の観点から白金カーボン、パラジウムカーボン触媒が特に好ましい。
Examples of suitable hydrogenation catalysts used in this catalytic hydrogenation reaction include noble metal catalysts and Raney nickel catalysts.
Examples of the noble metal catalyst include those containing at least one noble metal selected from the group consisting of palladium, platinum, rhodium, ruthenium, and iridium.
Examples of the form of the catalyst include a form supported on activated carbon, graphene, fibroin, zeolite, diatomaceous earth, alumina and the like.
Among these, platinum carbon and palladium carbon catalysts are particularly preferable from the viewpoint of economy and operability.

貴金属触媒の量は、通常、式(4)で示される化合物に対して貴金属分として0.001〜0.5質量倍に相当する量であることが好ましく、より好ましくは貴金属分として0.01〜0.2質量倍である。触媒の貴金属分を0.001質量倍以上とすることで水添反応が速やかに進行し、0.5質量倍以下とすることで製品のコストに占める触媒コストの割合を小さくでき、また触媒の濾別作業の負担が小さくなる。 The amount of the noble metal catalyst is usually preferably an amount corresponding to 0.001 to 0.5 mass times as much as the noble metal content with respect to the compound represented by the formula (4), and more preferably 0.01 as the noble metal content. It is ~ 0.2 mass times. By setting the noble metal content of the catalyst to 0.001 times by mass or more, the hydrogenation reaction proceeds rapidly, and by setting it to 0.5 by mass or less, the ratio of the catalyst cost to the product cost can be reduced, and the catalyst cost can be reduced. The burden of filtering work is reduced.

本接触水素化に好ましく使用される溶媒としては、例えば、アルコール化合物、エステル化合物、エーテル化合物、アミド化合物等を例示できる。 Examples of the solvent preferably used for this catalytic hydrogenation include alcohol compounds, ester compounds, ether compounds, and amide compounds.

アルコール化合物としては、メタノ−ル、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、2−ブタノール、イソブチルアルコール、メトキシエタノール、エトキシエタノール、1−メトキシ−2−プロパノール等が挙げられる。 Examples of the alcohol compound include methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, isobutyl alcohol, methoxyethanol, ethoxyethanol, 1-methoxy-2-propanol and the like.

エステル化合物としては、酢酸エチル、酢酸プロピル、酢酸ブチル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート等が挙げられる。 Examples of the ester compound include ethyl acetate, propyl acetate, butyl acetate, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate and the like.

エーテル化合物としては、グライム、ジグライム、テトラヒドロフラン、ジオキサン等が挙げられる。 Examples of the ether compound include grime, diglyme, tetrahydrofuran, dioxane and the like.

アミド化合物としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルピロリドン、1,3−ジメチル−2−イミダゾリジノン等が挙げられる。 Examples of the amide compound include N, N-dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone, 1,3-dimethyl-2-imidazolidinone and the like.

これらの中でもテトラヒドロフラン、及びN,N−ジメチルホルムアミド(DMF)が、沸点が低いため除去が容易であることから好ましい。 Among these, tetrahydrofuran and N, N-dimethylformamide (DMF) are preferable because they have a low boiling point and are easy to remove.

溶媒は、単独で用いても良いし、2種類以上を混合して用いても良い。接触水素化反応の溶媒の使用量は、通常、式(4)で示される化合物に対して0.1〜20質量倍の範囲である。 The solvent may be used alone or in combination of two or more. The amount of the solvent used in the catalytic hydrogenation reaction is usually in the range of 0.1 to 20 times by mass with respect to the compound represented by the formula (4).

本接触水素化の反応温度は、通常、0〜150℃が好ましく、より好ましくは、50〜120℃である。0℃以上とすることで反応が速やかに進行し、150℃以下にすることで副反応を抑制し、収率低下を防ぐことができる。 The reaction temperature of this catalytic hydrogenation is usually preferably 0 to 150 ° C, more preferably 50 to 120 ° C. By setting the temperature to 0 ° C. or higher, the reaction proceeds rapidly, and by setting the temperature to 150 ° C. or lower, side reactions can be suppressed and a decrease in yield can be prevented.

本接触水素化反応における反応圧(すなわち水素圧)は0.1〜10MPaが好ましく、より好ましくは0.1〜5MPaである。0.1MPa以上とすることで接触水素化反応が良好に進行し、10MPa以下とすることで副反応を抑制し、収率低下を防ぐことが出来る。 The reaction pressure (that is, hydrogen pressure) in this catalytic hydrogenation reaction is preferably 0.1 to 10 MPa, more preferably 0.1 to 5 MPa. When it is 0.1 MPa or more, the catalytic hydrogenation reaction proceeds satisfactorily, and when it is 10 MPa or less, side reactions can be suppressed and a decrease in yield can be prevented.

接触水素化反応終了後、常法にて触媒を濾別し、濾液に晶析溶媒を添加することで結晶が析出し、これを単離することで、式(1)で示される4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルが得られる。得られた化合物は、例えば上記析出に用いたのと同種の晶析溶媒で、再結晶を行っても良い。 After completion of the catalytic hydrogenation reaction, the catalyst is filtered off by a conventional method, and crystals are precipitated by adding a crystallization solvent to the filtrate. By isolating this, 4-amino represented by the formula (1) is used. -3-Fluorophenyl-4'-aminophenyl ester is obtained. The obtained compound may be recrystallized, for example, with the same type of crystallization solvent as that used for the above-mentioned precipitation.

本接触水素化反応に好ましく使用される晶析溶媒としては、例えば、水、アルコール化合物、非極性化合物等を好適に用いることができ、より具体的には、水、非極性化合物、水及び非極性化合物の混合物、水及びアルコール化合物の混合物、並びに非極性化合物及びアルコール化合物の混合物からなる群から選ばれる少なくとも1つが好ましい。 As the crystallization solvent preferably used in this catalytic hydrogenation reaction, for example, water, an alcohol compound, a non-polar compound and the like can be preferably used, and more specifically, water, a non-polar compound, water and a non-polar compound can be used. At least one selected from the group consisting of a mixture of polar compounds, a mixture of water and alcohol compounds, and a mixture of non-polar compounds and alcohol compounds is preferred.

アルコール化合物としては、例えばメタノール、エタノール、2−プロパノール等が挙げられる。 Examples of the alcohol compound include methanol, ethanol, 2-propanol and the like.

非極性化合物としては、例えばn−ヘキサン、n−ヘプタン、シクロヘキサン、トルエン、キシレン等が挙げられる。 Examples of the non-polar compound include n-hexane, n-heptane, cyclohexane, toluene, xylene and the like.

これらの晶析溶媒は単独で用いても良いし、2種類以上を混合して用いても良い。これらの晶析溶媒のうち、水及びエタノールが、高純度の4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルを得る点で特に好ましい。 These crystallization solvents may be used alone or in combination of two or more. Of these crystallization solvents, water and ethanol are particularly preferable because they give high-purity 4-amino-3-fluorophenyl-4'-aminophenyl ester.

再結晶後、さらに純度を高めるために昇華による精製を行ってもよい。これにより、灰白色の粉末から黄白色の結晶が得られる。昇華精製時の温度としては、150〜250℃が好ましく、より好ましくは、150〜200℃である。150℃以上とすることで目的物を昇華させることができ、250℃以下とすることで副反応を抑制し、収率低下を防ぐことが出来る。 After recrystallization, purification by sublimation may be performed to further increase the purity. As a result, yellowish white crystals are obtained from the grayish white powder. The temperature during sublimation purification is preferably 150 to 250 ° C, more preferably 150 to 200 ° C. By setting the temperature to 150 ° C. or higher, the target product can be sublimated, and by setting the temperature to 250 ° C. or lower, side reactions can be suppressed and a decrease in yield can be prevented.

上記により得られた、式(1)で示されるジアミン化合物は、化合物内にフッ素を導入したことにより、高い透明性を示し得る。 The diamine compound represented by the formula (1) obtained above can exhibit high transparency by introducing fluorine into the compound.

このジアミン化合物は、透明性が求められるポリイミド、ポリアミド樹脂などの原料として有望である。また、本化合物は、エステル基を含有していることから、溶媒への高い溶解度、高耐熱性、高機械的強度、低線膨張性、低熱膨張性、低吸湿膨張性等の優れた機能性を有するポリイミドの原料としても有望である。 This diamine compound is promising as a raw material for polyimides, polyamide resins, etc., which are required to have transparency. In addition, since this compound contains an ester group, it has excellent functionality such as high solubility in a solvent, high heat resistance, high mechanical strength, low linear expansion, low thermal expansion, and low moisture absorption expansion. It is also promising as a raw material for polyimide having the above.

本発明の一態様はまた、式(1)で示されるジアミン化合物を用いて得られるポリイミド前駆体を提供する。一態様において、ポリイミド前駆体は、式(1)で示されるジアミン化合物に由来する構造単位と、テトラカルボン酸二無水物に由来する構造単位とを有する。テトラカルボン酸二無水物としては、芳香族テトラカルボン酸二無水物、脂肪族テトラカルボン酸二無水物及び脂環式テトラカルボン酸二無水物を例示でき、高温領域での黄色度の観点から、炭素数が8〜36の芳香族テトラカルボン酸二無水物が好ましい。ここでいう炭素数には、カルボキシル基に含まれる炭素の数も含む。ポリイミド前駆体は、式(1)で示されるジアミン化合物以外のジアミンに由来する構造単位を有してもよいが、典型的な態様においては、ジアミン由来構造単位が、式(1)で示されるジアミン化合物に由来する構造単位からなる。ポリイミド前駆体(より具体的にはポリアミド酸)は、ジアミンとテトラカルボン酸二無水物とを重縮合反応させることにより合成できる。重縮合反応は溶媒中で行ってよい。ポリイミド前駆体は、その一部がイミド化されていてもよい。 One aspect of the present invention also provides a polyimide precursor obtained by using the diamine compound represented by the formula (1). In one aspect, the polyimide precursor has a structural unit derived from the diamine compound represented by the formula (1) and a structural unit derived from the tetracarboxylic dianhydride. Examples of the tetracarboxylic acid dianhydride include aromatic tetracarboxylic acid dianhydride, aliphatic tetracarboxylic acid dianhydride and alicyclic tetracarboxylic acid dianhydride, and from the viewpoint of yellowness in a high temperature region, Aromatic tetracarboxylic acid dianhydride having 8 to 36 carbon atoms is preferable. The number of carbons referred to here also includes the number of carbons contained in the carboxyl group. The polyimide precursor may have a structural unit derived from a diamine other than the diamine compound represented by the formula (1), but in a typical embodiment, the diamine-derived structural unit is represented by the formula (1). It consists of structural units derived from diamine compounds. The polyimide precursor (more specifically, polyamic acid) can be synthesized by subjecting a diamine to a tetracarboxylic acid dianhydride by a polycondensation reaction. The polycondensation reaction may be carried out in a solvent. A part of the polyimide precursor may be imidized.

ポリイミド前駆体の重量平均分子量(Mw)は、好ましくは、10,000〜300,000、又は30,000〜200,000であってよい。重量平均分子量が10,000以上であると、伸度、破断強度等の機械的特性に優れ、残留応力が低く、YIが低くなる。重量平均分子量が300,000以下であると、ポリアミド酸の合成時に重量平均分子量をコントロールし易くなり、適度な粘度のポリイミド前駆体を得ることができ、塗布性等の点で好ましい。本開示において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(以下、GPCともいう)を用いて、標準ポリスチレン換算値として求められる値である。 The weight average molecular weight (Mw) of the polyimide precursor may be preferably 10,000 to 300,000, or 30,000 to 200,000. When the weight average molecular weight is 10,000 or more, the mechanical properties such as elongation and breaking strength are excellent, the residual stress is low, and the YI is low. When the weight average molecular weight is 300,000 or less, the weight average molecular weight can be easily controlled during the synthesis of the polyamic acid, and a polyimide precursor having an appropriate viscosity can be obtained, which is preferable in terms of coatability and the like. In the present disclosure, the weight average molecular weight is a value obtained as a standard polystyrene-equivalent value using gel permeation chromatography (hereinafter, also referred to as GPC).

本発明の一態様はまた、式(1)で示されるジアミン化合物を用いて得られるポリアミドを提供する。当該ポリアミドは、上記のポリイミド前駆体のイミド化(例えば、窒素雰囲気下での熱イミド化)により製造できる。 One aspect of the present invention also provides a polyamide obtained using the diamine compound represented by the formula (1). The polyamide can be produced by imidization of the above-mentioned polyimide precursor (for example, thermal imidization in a nitrogen atmosphere).

以下、本発明の例示の態様について、実施例を挙げてより具体的に説明するが、本発明はこれら実施例に限定されるものではない。
実施例における各種評価は次の通りに行った。
Hereinafter, embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
Various evaluations in the examples were performed as follows.

<水素核磁気共鳴(1H−NMR)スペクトルの測定>
実施例1において、4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルの1H−NMRスペクトルは、以下の分析条件で分析したものである。また、4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルの化学純度は、以下の測定から得られた化合物スペクトルのピーク面積比から求めた。
測定装置:日本電子社製ECS400
共鳴周波数:400MHz
測定溶媒:DMSO−d6
化学シフト基準:DMSO−d6(2.50ppm)
測定温度:室温
積算回数:16回
<Measurement of hydrogen nuclear magnetic resonance ( 1 H-NMR) spectrum>
In Example 1, the 1 H-NMR spectrum of 4-amino-3-fluorophenyl-4'-aminophenyl ester was analyzed under the following analytical conditions. The chemical purity of 4-amino-3-fluorophenyl-4'-aminophenyl ester was determined from the peak area ratio of the compound spectrum obtained from the following measurements.
Measuring device: ECS400 manufactured by JEOL Ltd.
Resonance frequency: 400MHz
Measuring solvent: DMSO-d 6
Chemical shift criteria: DMSO-d 6 (2.50 ppm)
Measurement temperature: Room temperature integration frequency: 16 times

<重量平均分子量及び数平均分子量の測定>
重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)にて、下記の条件により測定した。
溶媒として、N,N−ジメチルホルムアミド(富士フイルム和光純薬社製、高速液体クロマトグラフ用、測定直前に24.8mmol/Lの臭化リチウム一水和物(富士フイルム和光純薬社製、純度99.5%)及び63.2mmol/Lのリン酸(富士フイルム和光純薬社製、高速液体クロマトグラフ用)を加えて溶解したもの)を使用した。重量平均分子量を算出するための検量線は、スタンダードポリスチレン(Easical Type PS−1、アジレント・テクノロジー株式会社)を用いて作成した。
<Measurement of weight average molecular weight and number average molecular weight>
The weight average molecular weight (Mw) and the number average molecular weight (Mn) were measured by gel permeation chromatography (GPC) under the following conditions.
As a solvent, N, N-dimethylformamide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography, 24.8 mmol / L lithium bromide monohydrate immediately before measurement (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., purity) 99.5%) and 63.2 mmol / L phosphoric acid (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd., for high performance liquid chromatography) were added and dissolved). The calibration curve for calculating the weight average molecular weight was prepared using standard polystyrene (Easic Type PS-1, Agilent Technologies, Inc.).

装置:HLC−8220GPC(東ソー社製)
カラム:Tsk gel Super HM−H(東ソー社製)
流速:0.5mL/分
カラム温度:40℃
検出器:UV−8220(UV−Vis:紫外可視吸光計、東ソー社製)
Equipment: HLC-8220GPC (manufactured by Tosoh)
Column: Tsk gel Super HM-H (manufactured by Tosoh)
Flow rate: 0.5 mL / min Column temperature: 40 ° C
Detector: UV-8220 (UV-Vis: UV-Visible Absorber, manufactured by Tosoh Corporation)

<実施例1>
[含フッ素芳香族エステルジアミンの合成]
1.0Lの四つ口フラスコに攪拌翼、還流管、滴下漏斗、アルゴン導入ライン、温度計を取り付け、3−フルオロ−4−ニトロフェノール20.0g(0.13mol)、トリエチルアミン19.9mL(0.14mol)、テトラヒドロフラン255mLを加えて溶解させ、系内をアルゴンガスで置換した。これに4−ニトロベンゾイルクロライド23.62g(0.13mol)をテトラヒドロフラン51mLに溶解させた溶液を0℃付近で滴下した。この混合液を室温で2時間反応させた。反応終了後、イオン交換水3.0Lを投入し、結晶を析出させ、ろ過により回収した。回収した固体をイオン交換水1.0Lで懸濁洗浄し、ろ過により固体を回収した。得られた固体をメタノールで洗浄した後、40℃で14時間減圧乾燥し、中間体であるジニトロ化合物37.56g(淡黄色固体、0.12mоl)を得た。
<Example 1>
[Synthesis of Fluorine-Containing Aromatic Ester Diamine]
A stirring blade, a reflux tube, a dropping funnel, an argon introduction line, and a thermometer were attached to a 1.0 L four-necked flask, and 20.0 g (0.13 mol) of 3-fluoro-4-nitrophenol and 19.9 mL (0) of triethylamine were attached. .14 mol) and 255 mL of tetrahydrofuran were added and dissolved, and the inside of the system was replaced with argon gas. A solution prepared by dissolving 23.62 g (0.13 mol) of 4-nitrobenzoyl chloride in 51 mL of tetrahydrofuran was added dropwise thereto at around 0 ° C. The mixture was reacted at room temperature for 2 hours. After completion of the reaction, 3.0 L of ion-exchanged water was added to precipitate crystals, which were recovered by filtration. The recovered solid was suspended and washed with 1.0 L of ion-exchanged water, and the solid was recovered by filtration. The obtained solid was washed with methanol and then dried under reduced pressure at 40 ° C. for 14 hours to obtain 37.56 g (pale yellow solid, 0.12 mL) of the intermediate dinitro compound.

50mLのオートクレーブ容器に前記ジニトロ化合物8.00g(0.026mol)、5%Pd/C0.80g(STDタイプ、エヌ・イーケムキャット社製造)、N,N−ジメチルホルムアミド40.0mLを投入した。水素でオートクレーブ内を3回置換した後、水素圧4MPaとなるように水素を充填し、100℃のオイルバスに浸漬した。2時間反応させた後、室温まで冷却し、ろ過によりPd/Cを除去した。ろ液をイオン交換水に投入し、析出した固体を回収した。回収した固体を80℃で2日間減圧乾燥し、目的物の灰白色固体として、4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステル5.68g(0.023mоl)を得た。1H−NMR測定より得られる純度は98%であった。 8.00 g (0.026 mol) of the dinitro compound, 0.80 g of 5% Pd / C (STD type, manufactured by N.E. Chemcat), and 40.0 mL of N, N-dimethylformamide were put into a 50 mL autoclave container. After replacing the inside of the autoclave with hydrogen three times, hydrogen was filled so as to have a hydrogen pressure of 4 MPa, and the mixture was immersed in an oil bath at 100 ° C. After reacting for 2 hours, the mixture was cooled to room temperature and Pd / C was removed by filtration. The filtrate was poured into ion-exchanged water, and the precipitated solid was recovered. The recovered solid was dried under reduced pressure at 80 ° C. for 2 days to obtain 5.68 g (0.023 mL) of 4-amino-3-fluorophenyl-4'-aminophenyl ester as the target grayish white solid. The purity obtained by 1 1 H-NMR measurement was 98%.

得られた灰白色の4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステル1.00gを昇華精製装置に入れて、1.6×10-4Paまで減圧し、原料部を180℃まで加熱して昇華させ、黄白色結晶0.80gを得た。1H−NMR測定より得られる純度は99.9%以上であった。 1.00 g of the obtained grayish white 4-amino-3-fluorophenyl-4'-aminophenyl ester was placed in a sublimation purification apparatus, the pressure was reduced to 1.6 × 10 -4 Pa, and the raw material portion was heated to 180 ° C. Then, it was sublimated to obtain 0.80 g of yellowish white crystals. The purity obtained by 1 1 H-NMR measurement was 99.9% or more.

図1に、実施例1で得られたジアミン化合物の水素核磁気共鳴(1H−NMR)スペクトルチャートを示す。前記1H−NMRの測定結果から、得られたジアミン化合物が、4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルであると同定した。 FIG. 1 shows a hydrogen nuclear magnetic resonance ( 1 H-NMR) spectrum chart of the diamine compound obtained in Example 1. From the measurement result of 1 H-NMR, the obtained diamine compound was identified as 4-amino-3-fluorophenyl-4'-aminophenyl ester.

<実施例2>
[含フッ素芳香族ポリイミド前駆体の合成]
窒素置換した50ml三口フラスコに、N−メチル−2−ピロリドン(NMP)を4.00g入れ、4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルを1.95g(7.92mmol)入れ、撹拌して4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルを溶解させた。その後、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物を2.35g(8.00mmol)、N−メチル−2−ピロリドン(NMP)を3.99g加え、ポリアミック酸の濃度が35質量%となるように調整し、窒素フロー下で60℃において3時間撹拌下に重合反応を行った。その後、N−メチル−2−ピロリドン(NMP)を8.10g加え、室温まで冷却し、ポリアミド酸のNMP溶液(以下、ワニスともいう)を得た。得られたポリアミド酸の重量平均分子量(Mw)はおよそ67,000、Mw/Mnは2.1であった。
<Example 2>
[Synthesis of Fluorine-Containing Aromatic Polyimide Precursor]
In a nitrogen-substituted 50 ml three-necked flask, 4.00 g of N-methyl-2-pyrrolidone (NMP) and 1.95 g (7.92 mmol) of 4-amino-3-fluorophenyl-4'-aminophenyl ester were placed. The mixture was stirred to dissolve 4-amino-3-fluorophenyl-4'-aminophenyl ester. Then, 2.35 g (8.00 mmol) of 3,3', 4,4'-biphenyltetracarboxylic dianhydride and 3.99 g of N-methyl-2-pyrrolidone (NMP) were added to adjust the concentration of polyamic acid. The polymerization reaction was adjusted to 35% by mass, and the polymerization reaction was carried out under stirring at 60 ° C. for 3 hours under a nitrogen flow. Then, 8.10 g of N-methyl-2-pyrrolidone (NMP) was added and cooled to room temperature to obtain an NMP solution of polyamic acid (hereinafter, also referred to as varnish). The weight average molecular weight (Mw) of the obtained polyamic acid was about 67,000, and Mw / Mn was 2.1.

<実施例3>
[含フッ素芳香族ポリイミドフィルムの作製]
実施例2で調製したポリイミド前駆体を、ガラス基板(厚さ0.7mm)に、硬化後膜厚が10μmになるようにコートし、80℃にて30分間、粗乾燥した。その後、乾燥オーブンを用いて、窒素雰囲気下、庫内の酸素濃度が200質量ppm以下になるように調整して、400℃で1時間の加熱硬化処理を施したところ、透明なポリイミドフィルムが得られた。
<Example 3>
[Preparation of Fluorine-Containing Aromatic Polyimide Film]
The polyimide precursor prepared in Example 2 was coated on a glass substrate (thickness 0.7 mm) so as to have a film thickness of 10 μm after curing, and was roughly dried at 80 ° C. for 30 minutes. Then, using a drying oven, the oxygen concentration in the refrigerator was adjusted to 200 mass ppm or less under a nitrogen atmosphere, and heat-cured at 400 ° C. for 1 hour to obtain a transparent polyimide film. Was done.

<参考例1>
実施例1において、還元反応時に水素圧を常圧に変更し、80℃で24時間反応させた以外は、実施例1と同様に実施したところ、反応率1%以下となり目的物はほとんど得られなかった。
<Reference example 1>
In Example 1, the hydrogen pressure was changed to normal pressure during the reduction reaction, and the reaction was carried out at 80 ° C. for 24 hours. There wasn't.

Claims (9)

下記式(1):
Figure 2021172618

で示されるジアミン化合物。
The following formula (1):
Figure 2021172618

The diamine compound indicated by.
下記式(1):
Figure 2021172618

で示される4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルの製造方法であって、
下記式(2):
Figure 2021172618

で示される4−ニトロベンゾイルクロライドと、
下記式(3):
Figure 2021172618

で示される4−ニトロ−3−フルオロフェノールとを塩基性下でエステル化反応させて、
下記式(4):
Figure 2021172618

で示される4−ニトロベンゼン−3−フルオロ−4’−ニトロフェニルエステルを得る工程と、
前記式(4)で示される4−ニトロベンゼン−3−フルオロ−4’−ニトロフェニルエステルを還元することによって、前記(1)で示される4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルを得る工程とを含む、方法。
The following formula (1):
Figure 2021172618

A method for producing 4-amino-3-fluorophenyl-4'-aminophenyl ester represented by.
The following formula (2):
Figure 2021172618

4-Nitrobenzoyl chloride indicated by
The following formula (3):
Figure 2021172618

Esterification reaction with 4-nitro-3-fluorophenol represented by (1) under basic conditions,
The following formula (4):
Figure 2021172618

The step of obtaining 4-nitrobenzene-3-fluoro-4'-nitrophenyl ester represented by
By reducing the 4-nitrobenzene-3-fluoro-4'-nitrophenyl ester represented by the above formula (4), the 4-amino-3-fluorophenyl-4'-aminophenyl ester represented by the above (1) A method, including the steps of obtaining.
前記還元を、反応圧0.1〜10MPaにて接触水素化により行う、請求項2に記載の方法。 The method according to claim 2, wherein the reduction is carried out by catalytic hydrogenation at a reaction pressure of 0.1 to 10 MPa. 前記エステル化反応を、塩基の存在下、非プロトン性極性溶媒中で行う、請求項2又は3に記載の方法。 The method according to claim 2 or 3, wherein the esterification reaction is carried out in the presence of a base in an aprotic polar solvent. 前記還元に先立って、前記4−ニトロベンゼン−3−フルオロ−4’−ニトロフェニルエステルを、水、又は水及びアルコール化合物の混合物を用いて結晶として析出させる工程を含む、請求項2〜4のいずれか一項に記載の方法。 Any of claims 2-4, comprising the step of precipitating the 4-nitrobenzene-3-fluoro-4'-nitrophenyl ester as crystals using water or a mixture of water and an alcohol compound prior to the reduction. The method described in item 1. 前記還元により生成した4−アミノ−3−フルオロフェニル−4’−アミノフェニルエステルを、晶析溶媒を用いて結晶として析出させる工程を含み、前記晶析溶媒が、水、非極性化合物、水及び非極性化合物の混合物、水及びアルコール化合物の混合物、並びに非極性化合物及びアルコール化合物の混合物からなる群から選ばれる少なくとも1つである、請求項2〜5のいずれか一項に記載の方法。 The step of precipitating the 4-amino-3-fluorophenyl-4'-aminophenyl ester produced by the reduction as crystals using a crystallization solvent is included, and the crystallization solvent is water, a non-polar compound, water and the like. The method according to any one of claims 2 to 5, which is at least one selected from the group consisting of a mixture of non-polar compounds, a mixture of water and alcohol compounds, and a mixture of non-polar compounds and alcohol compounds. 前記アルコール化合物が、メタノール、エタノール、及び2−プロパノールからなる群から選ばれる少なくとも1つである、請求項5又は6に記載の方法。 The method of claim 5 or 6, wherein the alcohol compound is at least one selected from the group consisting of methanol, ethanol, and 2-propanol. 4−アミノ−3−フルオロ−4’−アミノフェニルエステルを構造単位として含む、ポリイミド前駆体。 A polyimide precursor containing 4-amino-3-fluoro-4'-aminophenyl ester as a structural unit. 4−アミノ−3−フルオロ−4’−アミノフェニルエステルを構造単位として含む、ポリイミド。 A polyimide containing 4-amino-3-fluoro-4'-aminophenyl ester as a structural unit.
JP2020077677A 2020-04-24 2020-04-24 Diamine compound and method for producing the same Pending JP2021172618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020077677A JP2021172618A (en) 2020-04-24 2020-04-24 Diamine compound and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020077677A JP2021172618A (en) 2020-04-24 2020-04-24 Diamine compound and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021172618A true JP2021172618A (en) 2021-11-01

Family

ID=78278980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020077677A Pending JP2021172618A (en) 2020-04-24 2020-04-24 Diamine compound and method for producing the same

Country Status (1)

Country Link
JP (1) JP2021172618A (en)

Similar Documents

Publication Publication Date Title
KR101545666B1 (en) Diamine, polyimide, and polyimide film and utilization thereof
JP6862652B2 (en) High-strength transparent polyamide-imide and its manufacturing method
KR20160083738A (en) Windows for display device and display device including the same
EP3101049B1 (en) Polyimide and film using same
JP2007091701A (en) Tetracarboxylic acid containing fluorenyl group and ester group, polyester imide precursor containing fluorenyl group, polyester imide containing fluorenyl group and method for producing the same
EP3162837A1 (en) Poly(imide-amide) copolymer, a method for preparing a poly(imide-amide) copolymer, and an article including a poly(imide-amide) copolymer
KR102385237B1 (en) Polyamic acid resin, polyamideimide film and method for preparing the same
JP2020128537A (en) Diamine compound and method for producing the same
JPWO2016153064A1 (en) Diamine and its use
KR20190005851A (en) Polyimide resin
Sheng et al. Synthesis and properties of novel aromatic polyamides with xanthene cardo groups
JP4679357B2 (en) Fluorine-containing diamine and polymer using the same
JP2021172618A (en) Diamine compound and method for producing the same
JP2014181185A (en) Method for manufacturing diamine compound
JP2003096070A (en) Alicyclic tetracarboxylic acid dianhydride and method for producing the same and polyimide
JP2004256418A (en) Paraphenylenediamine, its purification method and its use
WO2022009782A1 (en) Polybenzoxazole, polyamide, polyamide solution, insulation for high-frequency electronic component, high-frequency electronic component, high-frequency equipment, insulation material for producing high-frequency electronic component, method for producing polyamide, method for producing polybenzoxazole, method for producing insulation for high-frequency electronic component, and diamine or salt thereof
JP2016117688A (en) Method for producing diamine compound
WO2008056808A1 (en) Polyimide, diamine compound and method for producing the same
EP3045490A1 (en) Window for display device and display device including the same
JP6266940B2 (en) Arylene dioxy-bis (succinic anhydride) and method for producing the same
WO2022030447A1 (en) Fluorinated diamine or salt thereof, method for producing fluorinated diamine or salt thereof, polyamide, method for producing polyamide, polyamide solution, cyclized polyamide, method for producing cyclized polyamide, insulating material for high-frequency electronic component, method for producing insulating material for high-frequency electronic component, high-frequency electronic component, high-frequency appliance, and insulating material for producing high-frequency electronic component
JP7077939B2 (en) Method for controlling polyimide skeleton structure and method for manufacturing polyimide
JP4698165B2 (en) Polyamic acid and polyimide
JP5851974B2 (en) Diamine compound and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230411