JP2021172017A - Method for manufacturing hollow molding in contact with high-pressure hydrogen - Google Patents
Method for manufacturing hollow molding in contact with high-pressure hydrogen Download PDFInfo
- Publication number
- JP2021172017A JP2021172017A JP2020077930A JP2020077930A JP2021172017A JP 2021172017 A JP2021172017 A JP 2021172017A JP 2020077930 A JP2020077930 A JP 2020077930A JP 2020077930 A JP2020077930 A JP 2020077930A JP 2021172017 A JP2021172017 A JP 2021172017A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- polyamide
- molded product
- resin
- hollow molded
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
本発明は、ポリアミド樹脂組成物からなる高圧水素に触れる中空成形品の製造方法に関するものである。更に詳しくは、ポリアミド6樹脂、耐衝撃材、および金属ハロゲン化物を特定量配合し、特定の溶融張力、破断時引き取り速度に制御してなるポリアミド樹脂組成物を用い、プレスブロー成形法により中空成形品を形成する、中空成形品の製造方法に関するものである。 The present invention relates to a method for producing a hollow molded product made of a polyamide resin composition and in contact with high-pressure hydrogen. More specifically, a polyamide resin composition obtained by blending a specific amount of a polyamide 6 resin, an impact resistant material, and a metal halide and controlling a specific melt tension and a take-up speed at break is used, and hollow molding is performed by a press blow molding method. It relates to a method for manufacturing a hollow molded product that forms a product.
近年、石油燃料の枯渇や、有害ガス排出量の削減の要請に対応するために、水素と空気中の酸素を電気化学的に反応させて発電する燃料電池を自動車に搭載し、燃料電池が発電した電気をモータに供給して駆動力とする燃料電池電気自動車が注目されてきている。燃料電池電気自動車搭載用の高圧水素用タンクとして、樹脂製のライナーの外側を炭素繊維強化樹脂で補強してなる樹脂製タンクが検討されている。しかしながら、水素は分子サイズが小さいため、比較的分子サイズの大きい天然ガスなどに比べ、樹脂中を透過し易いこと、および高圧水素は常圧の水素に比べ、樹脂中に蓄積される量が多くなることなどから、これまでの樹脂製タンクでは、高圧水素の充填および放圧を繰り返すと、タンクの変形や破壊が起こる課題があった。 In recent years, in order to respond to the depletion of petroleum fuels and the demand for reduction of harmful gas emissions, fuel cells that generate electricity by electrochemically reacting hydrogen with oxygen in the air are installed in automobiles, and the fuel cells generate electricity. Fuel cell electric vehicles, which supply the generated electricity to a motor and use it as a driving force, are attracting attention. As a tank for high-pressure hydrogen for mounting a fuel cell electric vehicle, a resin tank in which the outside of a resin liner is reinforced with carbon fiber reinforced resin is being studied. However, since hydrogen has a small molecular size, it is easier to permeate through the resin than natural gas, which has a relatively large molecular size, and high-pressure hydrogen accumulates in the resin in a larger amount than normal-pressure hydrogen. For this reason, conventional resin tanks have a problem that the tank is deformed or destroyed when high-pressure hydrogen is repeatedly filled and released.
ガスバリア性に優れ、低温でも優れた耐衝撃性を有する水素タンクライナー用材料として、例えば、ポリアミド6、共重合ポリアミド、および耐衝撃材を含むポリアミド樹脂組成物からなる水素タンクライナー用材料が検討されている(例えば、特許文献1参照)。 As a material for a hydrogen tank liner having excellent gas barrier properties and excellent impact resistance even at low temperatures, for example, a material for a hydrogen tank liner composed of a polyamide resin composition containing polyamide 6, a copolymerized polyamide, and an impact resistant material has been studied. (See, for example, Patent Document 1).
また、ガスバリア性に優れたガス貯蔵タンク用ライナーとして、例えば、ポリアミド、成核剤および耐衝撃性改良剤を含むポリマー組成物を含有するガス貯蔵タンク用ライナーが検討されている(例えば、特許文献2参照)。 Further, as a liner for a gas storage tank having excellent gas barrier properties, for example, a liner for a gas storage tank containing a polymer composition containing a polyamide, a nucleating agent and an impact resistance improving agent has been studied (for example, Patent Documents). 2).
樹脂組成物からなる高圧水素に触れる成形品の製造方法は、射出成形、押出成形、ブロー成形等が挙げられる。中でも、大型の成形品を成形する際は、ブロー成形で成形することがあるが、ブロー成形時にドローダウンが発生し、成形品を得ることができない場合や、エアー吹き込み時に破れて成形品を得ることができない場合がある。そのため、大型の成形品をブロー成形するためには耐ドローダウン性やエアー吹き込み時に破れない等のブロー成形性に優れている材料が求められる。 Examples of a method for producing a molded product made of a resin composition that comes into contact with high-pressure hydrogen include injection molding, extrusion molding, blow molding and the like. Among them, when molding a large molded product, it may be molded by blow molding, but when drawdown occurs during blow molding and the molded product cannot be obtained, or when air is blown, the molded product is torn and obtained. It may not be possible. Therefore, in order to blow-mold a large-sized molded product, a material having excellent draw-down resistance and blow-moldability such as not being torn when air is blown is required.
また、ブロー成形は、射出成形と比較して、成形時における樹脂組成物の滞留時間が長くなる傾向があり、滞留時に樹脂が分解し、靭性が低下する場合がある。そのため、ブロー成形用の樹脂組成物には、滞留時に分解しにくい材料が求められている。さらには、一般的なブロー成形法であるダイレクトブロー成形法では、例えば高圧水素用タンクを形成する際に、口金との結合部の2次加工が必要となることから工程数が増える課題がある。さらに成形時の厚みの制御が難しく、厚みのばらつきが大きくなってしまう課題がある。得られた中空成形品の厚みのばらつきが大きくなると、高圧水素の充填および放圧を繰り返した際に、厚みの薄い箇所から欠陥点や割れが発生する場合がある。そのため、口金との結合部の2次加工が必要無く、中空成形品の厚みのばらつきを抑制できる製造方法が求められている。 Further, in blow molding, the residence time of the resin composition during molding tends to be longer than that in injection molding, and the resin may be decomposed during retention and the toughness may be lowered. Therefore, a resin composition for blow molding is required to have a material that does not easily decompose when staying. Furthermore, the direct blow molding method, which is a general blow molding method, has a problem that the number of steps increases because, for example, when forming a tank for high-pressure hydrogen, secondary processing of a joint portion with a mouthpiece is required. .. Further, it is difficult to control the thickness at the time of molding, and there is a problem that the variation in thickness becomes large. If the thickness variation of the obtained hollow molded product becomes large, defect points and cracks may occur from a thin portion when the filling and releasing pressure of high-pressure hydrogen are repeated. Therefore, there is a demand for a manufacturing method that does not require secondary processing of the joint portion with the base and can suppress variations in the thickness of the hollow molded product.
しかしながら、特許文献1に記載された水素タンクライナーは、水素ガスの透過や、水素の樹脂中への溶解が生じやすく、高圧水素の充填および放圧を繰り返すと、水素タンクライナーに欠陥点が生じる課題があった。また、ポリアミド樹脂組成物の溶融張力が低く、耐ドローダウン性に劣り、ブロー成形法により中空成形品を得られない課題があった。 However, the hydrogen tank liner described in Patent Document 1 is prone to permeation of hydrogen gas and dissolution of hydrogen in the resin, and repeated filling and releasing of high-pressure hydrogen causes defects in the hydrogen tank liner. There was a challenge. Further, there is a problem that the melt tension of the polyamide resin composition is low, the drawdown resistance is inferior, and a hollow molded product cannot be obtained by the blow molding method.
また、特許文献2に記載されたガス貯蔵タンク用ライナーは、ヘリウムガス耐透過性には優れるものの、水素ガスの透過や、水素の樹脂中への溶解が生じやすく、高圧水素の充填および放圧を繰り返すと、水素タンクライナーに欠陥点が生じる課題があった。また、ポリアミド樹脂組成物の溶融張力が低く、耐ドローダウン性に劣り、ブロー成形法により中空成形品を得られない課題があった。 Further, although the liner for a gas storage tank described in Patent Document 2 is excellent in helium gas permeation resistance, hydrogen gas permeation and hydrogen dissolution in the resin are likely to occur, and high-pressure hydrogen is filled and released. Repeatedly, there was a problem that a defect point was generated in the hydrogen tank liner. Further, there is a problem that the melt tension of the polyamide resin composition is low, the drawdown resistance is inferior, and a hollow molded product cannot be obtained by the blow molding method.
本発明は、上記従来技術の課題に鑑み、ブロー成形性、滞留安定性に優れ、かつ、厚みのばらつきが小さく、高圧水素の充填および放圧を繰り返しても欠陥点や割れの発生が抑制された中空成形品の製造方法を提供することを課題とする。 In view of the above problems of the prior art, the present invention is excellent in blow moldability and retention stability, has small variation in thickness, and suppresses the occurrence of defect points and cracks even when high-pressure hydrogen is repeatedly filled and released. An object of the present invention is to provide a method for manufacturing a hollow molded product.
上記目的を達成するために、本発明は以下の構成を有するものである。 In order to achieve the above object, the present invention has the following configuration.
中空成形品の製造方法であって、ポリアミド樹脂組成物を用いてプレスブロー成形法により中空成形品を形成する工程を含み、前記ポリアミド樹脂組成物がポリアミド6樹脂(A)70〜99重量部および耐衝撃材(B)の1〜30重量部の合計100重量部に対し、金属ハロゲン化物(C)0.005〜1重量部を配合してなるポリアミド樹脂組成物であって、前記ポリアミド樹脂組成物の260℃で測定したときの溶融張力が20mN以上であり、かつ260℃で測定したときの破断時引き取り速度が50m/min以上であることを特徴とする、高圧水素に触れる中空成形品の製造方法。 A method for producing a hollow molded product, which comprises a step of forming a hollow molded product by a press blow molding method using a polyamide resin composition, wherein the polyamide resin composition comprises 70 to 99 parts by weight of the polyamide 6 resin (A). A polyamide resin composition obtained by blending 0.005 to 1 part by weight of a metal halide (C) with a total of 100 parts by weight of 1 to 30 parts by weight of the impact resistant material (B). A hollow molded product that comes into contact with high-pressure hydrogen, characterized in that the melt tension of the product when measured at 260 ° C. is 20 mN or more, and the take-back speed at break when measured at 260 ° C. is 50 m / min or more. Production method.
本発明のポリアミド樹脂組成物からなる高圧水素に触れる中空成形品の製造方法によれば、ブロー成形性、滞留安定性に優れ、かつ、厚みのばらつきが小さく、高圧水素の充填および放圧を繰り返しても欠陥点や割れの発生が抑制された中空成形品を提供することができる。 According to the method for producing a hollow molded product made of the polyamide resin composition of the present invention that comes into contact with high-pressure hydrogen, the blow moldability and retention stability are excellent, the thickness variation is small, and the high-pressure hydrogen is repeatedly filled and released. However, it is possible to provide a hollow molded product in which the occurrence of defect points and cracks is suppressed.
以下、本発明をさらに詳細に説明する。 Hereinafter, the present invention will be described in more detail.
本発明は、中空成形品の製造方法であって、ポリアミド樹脂組成物を用いてプレスブロー成形法により中空成形品を形成する工程を含み、前記ポリアミド樹脂組成物がポリアミド6樹脂(A)70〜99重量部および耐衝撃材(B)1〜30重量部の合計100重量部に対し、金属ハロゲン化物(C)0.005〜1重量部を配合してなるポリアミド樹脂組成物であって、前記ポリアミド樹脂組成物の260℃で測定したときの溶融張力が20mN以上であり、かつ260℃で測定したときの破断時引き取り速度が50m/min以上であることを特徴とする、高圧水素に触れる中空成形品の製造方法である。 The present invention is a method for producing a hollow molded product, which comprises a step of forming a hollow molded product by a press blow molding method using a polyamide resin composition, wherein the polyamide resin composition is a polyamide 6 resin (A) 70 to 70 to A polyamide resin composition obtained by blending 0.005 to 1 part by weight of a metal halide (C) with a total of 100 parts by weight of 99 parts by weight and 1 to 30 parts by weight of the impact resistant material (B). A hollow in contact with high-pressure hydrogen, characterized in that the melt tension of the polyamide resin composition measured at 260 ° C. is 20 mN or more, and the take-back speed at break when measured at 260 ° C. is 50 m / min or more. This is a method for manufacturing a molded product.
本発明のプレスブロー成形法について説明する。プレスブロー成形法は、まず中空成形品の口部を成形するため、押出ヘッドと突き合わせた射出成形金型を用いて中空成形品の口部を射出成形し、成形後の口部を射出成形金型とともに押出ヘッドから離しながら、押出ヘッドから口部に連続するパリソンをチューブ状に押出し、続いてそのパリソンをブロー成形金型で挟み込んでエアブローすることにより、口部に連続するかたちで、中空成形品の胴部を成形し、成形品を得る成形法である。 The press blow molding method of the present invention will be described. In the press blow molding method, in order to first mold the mouth of a hollow molded product, the mouth of the hollow molded product is injection-molded using an injection molding mold that is abutted against the extrusion head, and the mouth after molding is injection-molded. While separating from the extrusion head together with the mold, a parison continuous from the extrusion head to the mouth is extruded into a tube shape, and then the parison is sandwiched between blow molding molds and air blown to form a hollow molding continuous with the mouth. This is a molding method for obtaining a molded product by molding the body of the product.
プレスブロー成形法は、口部を射出成形金型で形成することで、口部の2次加工が必要無く、また、プレスブロー成形法は、一般的にはパリソンを押出ヘッドから上向きに(重力に逆らう方向で)押出すかたちを基本としており、射出成形金型の移動速度、樹脂の押出速度、押出口の開き度合いを調整することで厚みのばらつきを制御することができる。 The press blow molding method does not require secondary processing of the mouth part by forming the mouth part with an injection molding die, and the press blow molding method generally pushes the parison upward from the extrusion head (gravity). It is based on the form of extrusion (in the direction against), and the variation in thickness can be controlled by adjusting the moving speed of the injection molding die, the extrusion speed of the resin, and the degree of opening of the extrusion port.
本発明のポリアミド樹脂組成物は、ポリアミド6樹脂(A)70〜99重量部および耐衝撃材(B)1〜30重量部の合計100重量部に対し、金属ハロゲン化物(C)0.005〜1重量部を配合してなる。ポリアミド6樹脂(A)は、成形性、ガスバリア性、剛性および靱性のバランスに優れる。ポリアミド6樹脂(A)は、速い引き取り速度まで耐えることができるが、溶融張力を高くするために相対粘度を高くし過ぎると、混練不良が発生しやすい。さらに、結晶化度が高く、水素ガスの透過や、水素の樹脂中への溶解を抑制することができるため、高圧水素の充填、放圧を繰り返しても欠陥点が発生しにくい中空成形品を得ることができる。耐衝撃材(B)は、ポリアミド6樹脂(A)との相溶性が良く、ポリアミド6樹脂(A)と混練した際に、耐衝撃材(B)の分散径が小さくなることが望ましいが、鋭意検討の結果、ポリアミド樹脂組成物の高温での溶融張力がフロー成形時における成形性の指標となりうることを見出した。本発明において、ポリアミド(A)と耐衝撃材(B)を含むポリアミド樹脂組成物は、溶融張力が高くなり、その結果、耐ドローダウン性に優れる。また、かかるポリアミド6樹脂(A)に、耐衝撃材(B)を特定量配合することにより、靭性を向上させることができる。高圧水素に触れる用途に用いられる中空成形品は、高圧水素の充填、放圧により、収縮、膨張を繰り返すので、割れが発生しやすい。耐衝撃材(B)を特定量配合することにより、このような高圧水素の充填、放圧による収縮、膨張を繰り返しても割れを抑制することができる。さらに、金属ハロゲン化物(C)を特定量配合することにより、滞留安定性を向上させることができる。高圧水素に触れる用途に用いられる中空成形品は、ブロー成形時に樹脂組成物の滞留時間が長くなり、靭性が低下しやすい。金属ハロゲン化物(C)を特定量配合することにより、このようなブロー成形時に滞留時間が長くなっても靭性の低下を抑制することができる。 In the polyamide resin composition of the present invention, the metal halide (C) 0.005 to 5 parts by weight is 100 parts by weight in total of 70 to 99 parts by weight of the polyamide 6 resin (A) and 1 to 30 parts by weight of the impact resistant material (B). It is made by blending 1 part by weight. The polyamide 6 resin (A) has an excellent balance of moldability, gas barrier property, rigidity and toughness. The polyamide 6 resin (A) can withstand a high take-up speed, but if the relative viscosity is made too high in order to increase the melt tension, kneading defects are likely to occur. Furthermore, since it has a high crystallinity and can suppress the permeation of hydrogen gas and the dissolution of hydrogen in the resin, it is possible to create a hollow molded product in which defects are unlikely to occur even if high-pressure hydrogen is repeatedly filled and released. Obtainable. The impact-resistant material (B) has good compatibility with the polyamide 6 resin (A), and it is desirable that the dispersion diameter of the impact-resistant material (B) becomes smaller when kneaded with the polyamide 6 resin (A). As a result of diligent studies, it was found that the melt tension of the polyamide resin composition at a high temperature can be an index of moldability during flow molding. In the present invention, the polyamide resin composition containing the polyamide (A) and the impact resistant material (B) has a high melt tension, and as a result, is excellent in drawdown resistance. Further, the toughness can be improved by blending a specific amount of the impact resistant material (B) with the polyamide 6 resin (A). Hollow molded products used for applications that come into contact with high-pressure hydrogen repeatedly shrink and expand due to the filling and release of high-pressure hydrogen, so cracks are likely to occur. By blending a specific amount of the impact-resistant material (B), cracking can be suppressed even if such high-pressure hydrogen filling, shrinkage due to release pressure, and expansion are repeated. Further, by blending a specific amount of the metal halide (C), the retention stability can be improved. Hollow molded products used for applications that come into contact with high-pressure hydrogen tend to have a long residence time of the resin composition during blow molding, and the toughness tends to decrease. By blending a specific amount of the metal halide (C), it is possible to suppress a decrease in toughness even if the residence time is long during such blow molding.
本発明に用いられるポリアミド6樹脂(A)とは、6−アミノカプロン酸および/またはε−カプロラクタムを主たる原料とするポリアミド樹脂である。本発明の目的を損なわない範囲で、他の単量体が共重合されたものでもよい。ここで、「主たる原料とする」とは、ポリアミド樹脂を構成する単量体単位の合計100モル%中、6−アミノカプロン酸由来の単位またはε−カプロラクタム由来の単位を合計50モル%以上含むことを意味する。6−アミノカプロン酸由来の単位またはε−カプロラクタム由来の単位を70モル%以上含むことがより好ましく、90モル%以上含むことがさらに好ましい。 The polyamide 6 resin (A) used in the present invention is a polyamide resin mainly composed of 6-aminocaproic acid and / or ε-caprolactam. Other monomers may be copolymerized as long as the object of the present invention is not impaired. Here, "as the main raw material" means that the total of 100 mol% or more of the units derived from 6-aminocaproic acid or the unit derived from ε-caprolactam is contained in the total of 100 mol% of the monomer units constituting the polyamide resin. Means. It is more preferable to contain 70 mol% or more of units derived from 6-aminocaproic acid or ε-caprolactam, and even more preferably 90 mol% or more.
共重合される他の単量体としては、例えば、11−アミノウンデカン酸、12−アミノドデカン酸、パラアミノメチル安息香酸などのアミノ酸、ω−ラウロラクタムなどのラクタム;テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、2−メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン、2,2,4−/2,4,4−トリメチルヘキサメチレンジアミン、5−メチルノナメチレンジアミンなどの脂肪族ジアミン;メタキシレンジアミン、パラキシリレンジアミンなどの芳香族ジアミン;1,3−ビス(アミノメチル)シクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、1−アミノ−3−アミノメチル−3,5,5−トリメチルシクロヘキサン、ビス(4−アミノシクロヘキシル)メタン、ビス(3−メチル−4−アミノシクロヘキシル)メタン、2,2−ビス(4−アミノシクロヘキシル)プロパン、ビス(アミノプロピル)ピペラジン、アミノエチルピペラジンなどの脂環族ジアミン;アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸などの脂肪族ジカルボン酸;テレフタル酸、イソフタル酸、2−クロロテレフタル酸、2−メチルテレフタル酸、5−メチルイソフタル酸、5−ナトリウムスルホイソフタル酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸などの芳香族ジカルボン酸;1,4−シクロヘキサンジカルボン酸、1,3−シクロヘキサンジカルボン酸、1,2−シクロヘキサンジカルボン酸、1,3−シクロペンタンジカルボン酸などの脂環族ジカルボン酸が挙げられる。これらを2種以上共重合してもよい。 Other monomers to be copolymerized include, for example, amino acids such as 11-aminoundecanoic acid, 12-aminododecanoic acid and paraaminomethylbenzoic acid, lactams such as ω-laurolactam; tetramethylenediamine, pentamethylenediamine, etc. An aliphatic diamine such as hexamethylenediamine, 2-methylpentamethylenediamine, undecamethylenediamine, dodecamethylenediamine, 2,2,4- / 2,4,4-trimethylhexamethylenediamine, 5-methylnonamethylenediamine; Aromatic diamines such as metaxylenediamine and paraxylylenediamine; 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, 1-amino-3-aminomethyl-3,5,5 -Trimethylcyclohexane, bis (4-aminocyclohexyl) methane, bis (3-methyl-4-aminocyclohexyl) methane, 2,2-bis (4-aminocyclohexyl) propane, bis (aminopropyl) piperazine, aminoethyl piperazine, etc. Alicyclic diamines; aliphatic dicarboxylic acids such as adipic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid; terephthalic acid, isophthalic acid, 2-chloroterephthalic acid, 2-methylterephthalic acid, 5-methylisophthalic acid Aromatic dicarboxylic acids such as acids, 5-sodium sulfoisophthalic acid, hexahydroterephthalic acid, hexahydroisophthalic acid; 1,4-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1 , 3-Cyclopentanedicarboxylic acid and other alicyclic dicarboxylic acids. Two or more kinds of these may be copolymerized.
ポリアミド6樹脂(A)の重合度には特に制限がないが、樹脂濃度0.01g/mlの98%濃硫酸溶液を、25℃で測定した相対粘度(ηr)が、3.3〜7.0の範囲であることが好ましい。相対粘度が3.3以上であれば、ブロー成形時のポリアミド樹脂組成物の溶融張力が適度に高くなり、ドローダウン性をより向上させることができる。一方、相対粘度が7.0以下であれば、ポリアミド樹脂組成物のブロー成形時の溶融粘度が適度に低くなり、ブロー成形性をより向上させることができる。よりブロー成形性を向上できる観点から、相対粘度が4.0〜7.0の範囲がより好ましく、相対粘度が4.0〜6.5の範囲がさらに好ましい。 The degree of polymerization of the polyamide 6 resin (A) is not particularly limited, but the relative viscosity (ηr) of a 98% concentrated sulfuric acid solution having a resin concentration of 0.01 g / ml measured at 25 ° C. is 3.3 to 7. It is preferably in the range of 0. When the relative viscosity is 3.3 or more, the melt tension of the polyamide resin composition at the time of blow molding becomes moderately high, and the draw-down property can be further improved. On the other hand, when the relative viscosity is 7.0 or less, the melt viscosity of the polyamide resin composition at the time of blow molding becomes appropriately low, and the blow moldability can be further improved. From the viewpoint of further improving blow moldability, the relative viscosity is more preferably in the range of 4.0 to 7.0, and the relative viscosity is further preferably in the range of 4.0 to 6.5.
ポリアミド6樹脂(A)のアミノ末端基量には特に制限がないが、1.0×10−5〜10.0×10−5mol/gの範囲であることが好ましい。アミノ末端基量が1.0×10−5〜10.0×10−5mol/gの範囲であれば、十分な重合度が得られ、中空成形品の機械強度を向上させることができる。ここで、ポリアミド6樹脂(A)のアミノ末端基量は、ポリアミド6樹脂(A)を、フェノール・エタノール混合溶媒(83.5:16.5(体積比))に溶解し、0.02N塩酸水溶液を用いて滴定することにより求めることができる。 The amount of amino-terminal groups of the polyamide 6 resin (A) is not particularly limited, but is preferably in the range of 1.0 × 10-5 to 10.0 × 10-5 mol / g. When the amount of amino-terminal groups is in the range of 1.0 × 10-5 to 10.0 × 10-5 mol / g, a sufficient degree of polymerization can be obtained and the mechanical strength of the hollow molded product can be improved. Here, the amount of amino terminal groups of the polyamide 6 resin (A) is such that the polyamide 6 resin (A) is dissolved in a phenol / ethanol mixed solvent (83.5: 16.5 (volume ratio)) and 0.02N hydrochloric acid is used. It can be obtained by titrating with an aqueous solution.
本発明に用いられる耐衝撃材(B)としては、ガラス転移温度が0℃以下のポリマーを指す。ここでガラス転移温度とは、示差走査熱量計(DSC)にて、測定開始温度を−70℃として、20℃/minの昇温速度で昇温時に生じる変曲点から求めることができる。例えば、オレフィン系樹脂、アクリル系ゴム、シリコーン系ゴム、フッ素系ゴム、スチレン系ゴム、ニトリル系ゴム、ビニル系ゴム、ウレタン系ゴム、ポリアミドエラストマー、ポリエステルエラストマー、アイオノマーなどが挙げられる。これらを2種以上配合してもよい。 The impact resistant material (B) used in the present invention refers to a polymer having a glass transition temperature of 0 ° C. or lower. Here, the glass transition temperature can be determined from the inflection point that occurs when the temperature is raised at a temperature rising rate of 20 ° C./min with the measurement start temperature as −70 ° C. by a differential scanning calorimeter (DSC). For example, olefin resin, acrylic rubber, silicone rubber, fluorine rubber, styrene rubber, nitrile rubber, vinyl rubber, urethane rubber, polyamide elastomer, polyester elastomer, ionomer and the like can be mentioned. Two or more of these may be blended.
これらの中でも、ポリアミド6樹脂(A)との相溶性に優れ、靭性改良効果が高いことから、オレフィン系樹脂が好ましく用いられる。オレフィン系樹脂は、エチレン、プロピレン、ブテン、イソプレン、ペンテンなどのオレフィン単量体を重合して得られる熱可塑性樹脂である。2種以上のオレフィン単量体の共重合体であってもよいし、これらのオレフィン単量体と他の単量体との共重合体であってもよい。オレフィン系樹脂の具体例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ1−ブテン、ポリ1−ペンテン、ポリメチルペンテンなどの重合体またはこれらの共重合体;エチレン/α−オレフィン共重合体、エチレン/α,β−不飽和カルボン酸エステル共重合体、α−オレフィン/α,β−不飽和カルボン酸エステル共重合体、[(エチレンおよび/またはプロピレン)とビニルアルコールエステルとの共重合体]の少なくとも一部を加水分解して得られるポリオレフィン、(エチレンおよび/またはプロピレン)と(不飽和カルボン酸および/または不飽和カルボン酸エステル)との共重合体、[(エチレンおよび/またはプロピレン)と(不飽和カルボン酸および/または不飽和カルボン酸エステル)との共重合体]のカルボキシル基の少なくとも一部を金属塩化して得られるポリオレフィン、共役ジエンとビニル芳香族炭化水素とのブロック共重合体またはその水素化物などが挙げられる。これらの中でも、エチレン/α−オレフィン共重合体、エチレン/α,β−不飽和カルボン酸エステル共重合体がより好ましく、エチレン/α−オレフィン共重合体がさらに好ましい。 Among these, an olefin resin is preferably used because it has excellent compatibility with the polyamide 6 resin (A) and has a high toughness improving effect. The olefin resin is a thermoplastic resin obtained by polymerizing an olefin monomer such as ethylene, propylene, butene, isoprene, and pentene. It may be a copolymer of two or more kinds of olefin monomers, or it may be a copolymer of these olefin monomers and other monomers. Specific examples of the olefin resin include polymers such as polyethylene, polypropylene, polystyrene, poly1-butene, poly1-pentene, and polymethylpentene, or polymers thereof; ethylene / α-olefin copolymer, ethylene / At least of α, β-unsaturated carboxylic acid ester copolymer, α-olefin / α, β-unsaturated carboxylic acid ester copolymer, [polymer of (ethylene and / or propylene) and vinyl alcohol ester] Polypolymers obtained by partially hydrolyzing, (ethylene and / or propylene) and (unsaturated carboxylic acid and / or unsaturated carboxylic acid ester), [(ethylene and / or propylene) and (non-saturated carboxylic acid ester). Polymers with saturated carboxylic acids and / or unsaturated carboxylic acid esters)] Polypolymers obtained by metally chloride at least a part of the carboxyl groups, block copolymers of conjugated diene and vinyl aromatic hydrocarbons or blocks thereof. Examples include hydrides. Among these, ethylene / α-olefin copolymers and ethylene / α, β-unsaturated carboxylic acid ester copolymers are more preferable, and ethylene / α-olefin copolymers are even more preferable.
また、前記オレフィン系樹脂は、不飽和カルボン酸および/またはその誘導体で変性されることが望ましい。前述のとおり、耐衝撃材(B)は、ポリアミド6樹脂(A)との相溶性が良く、ポリアミド6樹脂(A)と混錬した際、耐衝撃材(B)の分散径が小さいことが望ましいが、分散径を小さくするには、ポリアミド6樹脂(A)との混合量と、耐衝撃材(B)のエラストマーの種類がポイントになる。たとえば、不飽和カルボン酸および/またはその誘導体で変性された耐衝撃材は、ポリアミド6樹脂(A)との反応性が良好であり、ポリアミド6樹脂との相溶性が高まる。 Further, it is desirable that the olefin resin is modified with an unsaturated carboxylic acid and / or a derivative thereof. As described above, the impact-resistant material (B) has good compatibility with the polyamide 6 resin (A), and when kneaded with the polyamide 6 resin (A), the dispersion diameter of the impact-resistant material (B) is small. Although desirable, in order to reduce the dispersion diameter, the points of mixing with the polyamide 6 resin (A) and the type of elastomer of the impact resistant material (B) are important points. For example, the impact-resistant material modified with an unsaturated carboxylic acid and / or a derivative thereof has good reactivity with the polyamide 6 resin (A) and enhances compatibility with the polyamide 6 resin.
ここで、不飽和カルボン酸の誘導体とは、不飽和カルボン酸のカルボキシル基のヒドロキシ基部分を他の置換基で置換した化合物であり、不飽和カルボン酸の金属塩、酸ハロゲン化物、エステル、酸無水物、アミドおよびイミドなどである。このような変性オレフィン系樹脂を用いることにより、ポリアミド6樹脂(A)との相溶性が一層向上し、ブロー成形性をより向上させることができる。不飽和カルボン酸およびその誘導体としては、例えば、アクリル酸、メタアクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸、メチルマレイン酸、メチルフマル酸、メサコン酸、シトラコン酸、グルタコン酸およびこれらカルボン酸の金属塩;マレイン酸水素メチル、イタコン酸水素メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ヒドロキシエチル、メタアクリル酸メチル、メタアクリル酸2−エチルヘキシル、メタアクリル酸ヒドロキシエチル、メタアクリル酸アミノエチル、マレイン酸ジメチル、イタコン酸ジメチルなどの不飽和カルボン酸エステル;無水マレイン酸、無水イタコン酸、無水シトラコン酸、エンドビシクロ−(2,2,1)−5−ヘプテン−2,3−ジカルボン酸、エンドビシクロ−(2,2,1)−5−ヘプテン−2,3−ジカルボン酸無水物などの酸無水物;マレイミド、N−エチルマレイミド、N−ブチルマレイミド、N−フェニルマレイミド、アクリル酸グリシジル、メタクリル酸グリシジル、エタクリル酸グリシジル、イタコン酸グリシジル、シトラコン酸グリシジル、5−ノルボルネン−2,3−ジカルボン酸などが挙げられる。これらの中でも、不飽和ジカルボン酸およびその酸無水物が好ましく、マレイン酸または無水マレイン酸が特に好ましい。 Here, the derivative of the unsaturated carboxylic acid is a compound in which the hydroxy group portion of the carboxyl group of the unsaturated carboxylic acid is replaced with another substituent, and is a metal salt, an acid halide, an ester, or an acid of the unsaturated carboxylic acid. Such as anhydrides, amides and imides. By using such a modified olefin resin, the compatibility with the polyamide 6 resin (A) can be further improved, and the blow moldability can be further improved. Examples of unsaturated carboxylic acids and derivatives thereof include acrylic acid, methacrylic acid, maleic acid, fumaric acid, itaconic acid, crotonic acid, methylmaleic acid, methylfumaric acid, mesaconic acid, citraconic acid, glutaconic acid and these carboxylic acids. Metal salts of; methyl hydrogen maleate, methyl hydrogen itaconate, methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, hydroxyethyl acrylate, methyl methacrylate, 2-ethylhexyl methacrylate, meta Unsaturated carboxylic acid esters such as hydroxyethyl acrylate, aminoethyl metaacrylate, dimethyl maleate, dimethyl itacone; maleic anhydride, itaconic anhydride, citraconic anhydride, endobicyclo- (2,2,1) -5 Acid anhydrides such as −hepten-2,3-dicarboxylic acid, endobicyclo- (2,2,1) -5-heptene-2,3-dicarboxylic acid anhydride; maleimide, N-ethylmaleimide, N-butylmaleimide , N-Phenylmaleimide, glycidyl acrylate, glycidyl methacrylate, glycidyl etacrilate, glycidyl itaconate, glycidyl citraconic acid, 5-norbornene-2,3-dicarboxylic acid and the like. Among these, unsaturated dicarboxylic acids and their acid anhydrides are preferable, and maleic acid or maleic anhydride is particularly preferable.
これらの不飽和カルボン酸またはその誘導体をオレフィン系樹脂に導入する方法としては、例えば、オレフィン単量体と、不飽和カルボン酸および/またはその誘導体を共重合する方法、ラジカル開始剤を用いて、未変性オレフィン系樹脂に、不飽和カルボン酸および/またはその誘導体をグラフト導入する方法などを挙げることができる。 As a method for introducing these unsaturated carboxylic acids or derivatives thereof into an olefin resin, for example, a method for copolymerizing an olefin monomer with an unsaturated carboxylic acid and / or a derivative thereof, or a radical initiator is used. Examples thereof include a method of graft-introducing an unsaturated carboxylic acid and / or a derivative thereof into an unmodified olefin resin.
一部の不飽和カルボン酸および/またはその誘導体成分の導入されたオレフィン系樹脂は、耐衝撃性の改善の他に、ポリアミド6樹脂中のオレフィン系樹脂の分散にも寄与しており、その樹脂組成物を成形品としたときの局所的な残留歪みを低減する作用も併せ持つ。 The olefin-based resin into which some unsaturated carboxylic acids and / or derivative components thereof are introduced contributes to the dispersion of the olefin-based resin in the polyamide 6 resin in addition to the improvement of impact resistance, and the resin thereof. It also has the effect of reducing local residual strain when the composition is a molded product.
不飽和カルボン酸および/またはその誘導体成分の導入量は、例えば、オレフィン系樹脂100重量部に対して、好ましくは不飽和カルボン酸および/またはその誘導体を0.1重量部〜2.5重量部である。具体的には、不飽和カルボン酸および/またはその誘導体によって不飽和カルボン酸および/またはその誘導体が導入され、その不飽和カルボン酸および/またはその誘導体で変性された変性エチレン/α−オレフィン共重合体の重量が100重量部であるとき、導入された不飽和カルボン酸および/またはその誘導体変性部の重量が0.1〜2.5重量部であることが好ましい。さらに、より好ましくは、導入された不飽和カルボン酸および/またはその誘導体変性部の重量が0.3重量部〜2.3重量部である。 The amount of the unsaturated carboxylic acid and / or its derivative component introduced is, for example, 0.1 part by weight to 2.5 parts by weight of the unsaturated carboxylic acid and / or its derivative with respect to 100 parts by weight of the olefin resin. Is. Specifically, an unsaturated carboxylic acid and / or a derivative thereof is introduced by an unsaturated carboxylic acid and / or a derivative thereof, and a modified ethylene / α-olefin co-weight modified with the unsaturated carboxylic acid and / or a derivative thereof. When the weight of the coalescence is 100 parts by weight, the weight of the introduced unsaturated carboxylic acid and / or the modified portion thereof is preferably 0.1 to 2.5 parts by weight. Further, more preferably, the weight of the introduced unsaturated carboxylic acid and / or its derivative modified portion is 0.3 parts by weight to 2.3 parts by weight.
上記の不飽和カルボン酸変性部の重量部範囲においては、ポリアミド6樹脂(A)と耐衝撃材(B)を混練したとき、耐衝撃材(B)の粒子分散径が小さくなる。分散径については後述する。 In the weight range of the unsaturated carboxylic acid-modified portion, the particle dispersion diameter of the impact-resistant material (B) becomes smaller when the polyamide 6 resin (A) and the impact-resistant material (B) are kneaded. The dispersion diameter will be described later.
効果としては、0.1重量部以上とすることで、ポリアミド6樹脂(A)との相溶性が向上し、耐衝撃材(B)の分散径が小さく、溶融張力が高くなり、ブロー成形時にドローダウンする問題が起こりにくくなる。さらに、破断時引き取り速度が高くなり、ブロー成形時にエアーを吹き込んだ際に破れが発生する問題が起こりにくくなり、好ましい。2.5重量部以下とすることで、ポリアミド6樹脂(A)との異常な反応が生じてゲル化することを抑制し、溶融流動性が低下することで、ブロー成形時に負荷が大きくなり機械が停止する問題が起こりにくくなる。さらに、破断時引き取り速度が高くなり、ブロー成形時にエアーを吹き込んだ際に破れが発生する問題が起こりにくくなり、好ましい。 As an effect, by setting the amount to 0.1 parts by weight or more, the compatibility with the polyamide 6 resin (A) is improved, the dispersion diameter of the impact resistant material (B) is small, the melt tension is high, and during blow molding. The problem of drawdown is less likely to occur. Further, the take-up speed at the time of breakage becomes high, and the problem of breakage when air is blown during blow molding is less likely to occur, which is preferable. By setting the weight to 2.5 parts by weight or less, it is possible to suppress an abnormal reaction with the polyamide 6 resin (A) and gelation, and the melt fluidity is lowered, so that the load becomes large during blow molding and the machine Is less likely to stop. Further, the take-up speed at the time of breakage becomes high, and the problem of breakage when air is blown during blow molding is less likely to occur, which is preferable.
エチレン/α−オレフィン共重合体としては、エチレンと炭素原子数3〜20のα−オレフィンとの共重合体が好ましい。炭素数3〜20のα−オレフィンとしては、具体的には、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン、1−デセン、1−ウンデセン、1−ドデセン、1−トリデセン、1−テトラデセン、1−ペンタデセン、1−ヘキサデセン、1−ヘプタデセン、1−オクタデセン、1−ノナデセン、1−エイコセン、3−メチル−1−ブテン、3−メチル−1−ペンテン、3−エチル−1−ペンテン、4−メチル−1−ペンテン、4−メチル−1−ヘキセン、4,4−ジメチル−1−ヘキセン、4,4−ジメチル−1−ペンテン、4−エチル−1−ヘキセン、3−エチル−1−ヘキセン、9−メチル−1−デセン、11−メチル−1−ドデセン、12−エチル−1−テトラデセンなどが挙げられる。これらを2種以上用いてもよい。これらα−オレフィンの中でも、炭素数3〜12のα−オレフィンが、機械強度の向上の観点から好ましい。さらに、1,4−ヘキサジエン、ジシクロペンタジエン、2,5−ノルボルナジエン、5−エチリデンノルボルネン、5−エチル−2,5−ノルボルナジエン、5−(1’−プロペニル)−2−ノルボルネンなどの非共役ジエンの少なくとも1種が共重合されていてもよい。不飽和カルボン酸および/またはその誘導体で変性されたエチレンと炭素数3〜12のα−オレフィンとの共重合体が、ポリアミド6樹脂(A)との相溶性を一層向上させ、ブロー成形性や靭性をより向上させることができるので、より好ましい。また、より高圧の水素で充填および放圧を繰り返しても、欠陥点の発生を抑制することができる。エチレン/α−オレフィン共重合体中のα−オレフィン含有量は、好ましくは1〜30モル%、より好ましくは2〜25モル%、さらに好ましくは3〜20モル%である。 As the ethylene / α-olefin copolymer, a copolymer of ethylene and an α-olefin having 3 to 20 carbon atoms is preferable. Specific examples of the α-olefin having 3 to 20 carbon atoms include propylene, 1-butene, 1-pentene, 1-hexene, 1-hexene, 1-octene, 1-nonene, 1-decene, and 1-undecene. , 1-dodecene, 1-tridecene, 1-tetradecene, 1-pentadecene, 1-hexadecene, 1-hexene, 1-octadecene, 1-nonadecene, 1-eicosene, 3-methyl-1-butene, 3-methyl-1 -Pentene, 3-ethyl-1-pentene, 4-methyl-1-pentene, 4-methyl-1-hexene, 4,4-dimethyl-1-hexene, 4,4-dimethyl-1-pentene, 4-ethyl Examples thereof include -1-hexene, 3-ethyl-1-hexene, 9-methyl-1-decene, 11-methyl-1-dodecene, and 12-ethyl-1-tetradecene. Two or more of these may be used. Among these α-olefins, α-olefins having 3 to 12 carbon atoms are preferable from the viewpoint of improving mechanical strength. In addition, non-conjugated diene such as 1,4-hexadiene, dicyclopentadiene, 2,5-norbornadiene, 5-ethylidene norbornene, 5-ethyl-2,5-norbornene, 5- (1'-propenyl) -2-norbornene. At least one of may be copolymerized. A copolymer of ethylene modified with an unsaturated carboxylic acid and / or a derivative thereof and an α-olefin having 3 to 12 carbon atoms further improves the compatibility with the polyamide 6 resin (A), resulting in blow moldability and blow moldability. It is more preferable because the toughness can be further improved. Further, even if filling and releasing pressure are repeated with higher pressure hydrogen, the occurrence of defective points can be suppressed. The α-olefin content in the ethylene / α-olefin copolymer is preferably 1 to 30 mol%, more preferably 2 to 25 mol%, still more preferably 3 to 20 mol%.
耐衝撃材(B)の微粒子の構成および構造は、特に限定されず、例えば、ゴムからなる少なくとも1つの層と、それとは異種の重合体からなる1つ以上の層からなる、いわゆるコアシェル型と呼ばれる多層構造体であってもよい。多層構造体を構成する層の数は、2層以上であればよく、3層以上または4層以上であってもよいが、内部に1層以上のゴム層(コア層)を有することが好ましい。多層構造体のゴム層を構成するゴムの種類は、特に限定されるものではなく、例えば、アクリル成分、シリコーン成分、スチレン成分、ニトリル成分、共役ジエン成分、ウレタン成分、エチレン成分、プロピレン成分、イソブテン成分などを重合させて得られるゴムが挙げられる。多層構造体のゴム層以外の層を構成する異種の重合体の種類は、熱可塑性を有する重合体であれば特に限定されるものではないが、ゴム層よりもガラス転移温度が高い重合体が好ましい。なお、耐衝撃材として用いられる共重合組成や変性量、構造において、ガラス転移温度が0℃以下であるものであればよい。熱可塑性を有する重合体としては、例えば、不飽和カルボン酸アルキルエステル単位、不飽和カルボン酸単位、不飽和グリシジル基含有単位、不飽和ジカルボン酸無水物単位、脂肪族ビニル単位、芳香族ビニル単位、シアン化ビニル単位、マレイミド単位、不飽和ジカルボン酸単位およびその他のビニル単位などを含有する重合体が挙げられる。 The composition and structure of the fine particles of the impact resistant material (B) are not particularly limited, and for example, a so-called core-shell type composed of at least one layer made of rubber and one or more layers made of polymers different from the same. It may be a multi-layer structure called. The number of layers constituting the multilayer structure may be two or more, and may be three or more or four or more, but it is preferable to have one or more rubber layers (core layers) inside. .. The type of rubber constituting the rubber layer of the multilayer structure is not particularly limited, and for example, an acrylic component, a silicone component, a styrene component, a nitrile component, a conjugated diene component, a urethane component, an ethylene component, a propylene component, and isobutylene. Examples thereof include rubber obtained by polymerizing components and the like. The type of the heterogeneous polymer constituting the layer other than the rubber layer of the multilayer structure is not particularly limited as long as it is a polymer having thermoplasticity, but a polymer having a glass transition temperature higher than that of the rubber layer is used. preferable. The copolymer composition, the amount of modification, and the structure used as the impact-resistant material may have a glass transition temperature of 0 ° C. or lower. Examples of the polymer having thermoplasticity include unsaturated carboxylic acid alkyl ester units, unsaturated carboxylic acid units, unsaturated glycidyl group-containing units, unsaturated dicarboxylic acid anhydride units, aliphatic vinyl units, and aromatic vinyl units. Polymers containing vinyl cyanide units, maleimide units, unsaturated dicarboxylic acid units and other vinyl units can be mentioned.
本発明に用いられる金属ハロゲン化物(C)としては、例えば、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、臭化リチウム、臭化ナトリウム、臭化カリウム、塩化リチウム、塩化ナトリウム、塩化カリウムなどのアルカリ金属ハロゲン化物、ヨウ化マグネシウム、ヨウ化カルシウム、臭化マグネシウム、臭化カルシウム、塩化マグネシウム、塩化カルシウムなどのアルカリ土類金属ハロゲン化物;ヨウ化マンガン(II)、臭化マンガン(II)、塩化マンガン(II)などの第7族金属ハロゲン化物;ヨウ化鉄(II)、臭化鉄(II)、塩化鉄(II)などの第8族金属ハロゲン化物;ヨウ化コバルト(II)、臭化コバルト(II)、塩化コバルト(II)などの第9族金属ハロゲン化物;ヨウ化ニッケル(II)、臭化ニッケル(II)、塩化ニッケル(II)などの第10族金属ハロゲン化物;ヨウ化銅(I)、臭化銅(I)、塩化銅(I)などの第11族金属ハロゲン化物;ヨウ化亜鉛、臭化亜鉛、塩化亜鉛などの第12族金属ハロゲン化物;ヨウ化アルミニウム(III)、臭化アルミニウム(III)、塩化アルミニウム(III)などの第13族金属ハロゲン化物;ヨウ化スズ(II)、臭化スズ(II)、塩化スズ(II)などの第14族金属ハロゲン化物;三ヨウ化アンチモン、三臭化アンチモン、三塩化アンチモン、ヨウ化ビスマス(III)、臭化ビスマス(III)、および塩化ビスマス(III)などの第15族金属ハロゲン化物などが挙げられる。これらを2種以上併用することができる。 Examples of the metal halide (C) used in the present invention include lithium iodide, sodium iodide, potassium iodide, lithium bromide, sodium bromide, potassium bromide, lithium chloride, sodium chloride, potassium chloride and the like. Alkali metal halides, magnesium iodide, calcium iodide, magnesium bromide, calcium bromide, magnesium chloride, calcium chloride and other alkaline earth metal halides; manganese iodide (II), manganese bromide (II), chloride Group 7 metal halides such as manganese (II); Group 8 metal halides such as iron (II) iodide, iron (II) bromide, iron (II) chloride; cobalt iodide (II), bromide Group 9 metal halides such as cobalt (II) and cobalt (II) chloride; Group 10 metal halides such as nickel iodide (II), nickel bromide (II) and nickel chloride (II); copper iodide Group 11 metal halides such as (I), copper (I) bromide and copper (I) chloride; Group 12 metal halides such as zinc iodide, zinc bromide and zinc chloride; aluminum iodide (III) Group 13 metal halides such as aluminum (III) bromide and aluminum (III) chloride; Group 14 metal halides such as tin iodide (II), tin bromide (II) and tin (II) chloride; Group 15 metal halides such as antimony triiodide, antimony tribromide, antimony trichloride, bismuth iodide (III), bismuth bromide (III), and bismuth chloride (III) can be mentioned. Two or more of these can be used in combination.
これらの中でも、入手が容易で、ポリアミド6樹脂(A)への分散性に優れ、ラジカルとの反応性がより高く、かつ、滞留安定性をより向上させるという観点から、アルカリ金属ハロゲン化物および/またはヨウ化銅が好ましい。ガス発生量を低減させるという観点から、アルカリ金属ハロゲン化物中でもアルカリ金属ヨウ化物がより好ましく用いられる。 Among these, alkali metal halides and / from the viewpoints of being easily available, having excellent dispersibility in the polyamide 6 resin (A), having higher reactivity with radicals, and further improving retention stability. Alternatively, copper iodide is preferable. From the viewpoint of reducing the amount of gas generated, alkali metal iodide is more preferably used among alkali metal halides.
本発明のポリアミド樹脂組成物は、ポリアミド6樹脂(A)70〜99重量部と耐衝撃材(B)1〜30重量部の合計100重量部に対し、金属ハロゲン化物(C)0.005〜1重量部を配合してなる。 The polyamide resin composition of the present invention has a total of 100 parts by weight of 70 to 99 parts by weight of the polyamide 6 resin (A) and 1 to 30 parts by weight of the impact resistant material (B), and 0.005 to 5 parts by weight of the metal halide (C). It is made by blending 1 part by weight.
ポリアミド6樹脂(A)の配合量が70重量部より少ないと、得られるポリアミド樹脂組成物からなる中空成形品のガスバリア性が低下し、高圧の水素で充填および放圧を繰り返すと欠陥点が発生する。ポリアミド6樹脂(A)の配合量は75重量部以上が好ましく、80重量部以上がより好ましい。一方、ポリアミド6樹脂(A)の配合量が99重量部より多いと、得られるポリアミド樹脂組成物からなる中空成形品の靭性が低下し、高圧の水素で充填および放圧を繰り返すと割れが発生する。ポリアミド6樹脂(A)の配合量は97重量部以下が好ましく、95重量部以下がより好ましい。 When the blending amount of the polyamide 6 resin (A) is less than 70 parts by weight, the gas barrier property of the hollow molded product made of the obtained polyamide resin composition is lowered, and defects occur when filling and releasing pressure are repeated with high-pressure hydrogen. do. The blending amount of the polyamide 6 resin (A) is preferably 75 parts by weight or more, more preferably 80 parts by weight or more. On the other hand, when the blending amount of the polyamide 6 resin (A) is more than 99 parts by weight, the toughness of the hollow molded product made of the obtained polyamide resin composition decreases, and cracks occur when the hollow molded product is repeatedly filled and released with high-pressure hydrogen. do. The blending amount of the polyamide 6 resin (A) is preferably 97 parts by weight or less, more preferably 95 parts by weight or less.
耐衝撃材(B)の配合量は1〜30重量部であり、3重量部以上が好ましく、5重量部以上がより好ましい。また、25重量部以下が好ましく、20重量部以下がより好ましい。耐衝撃材(B)の配合量が1重量部より少ないと、得られるポリアミド樹脂組成物からなる中空成形品の靭性が低下し、高圧の水素で充填および放圧を繰り返すと割れが発生する。一方、耐衝撃材(B)の配合量が30重量部より多いと、得られるポリアミド樹脂組成物からなる中空成形品のガスバリア性が低下し、高圧の水素で充填および放圧を繰り返すと欠陥点が発生する。 The blending amount of the impact resistant material (B) is 1 to 30 parts by weight, preferably 3 parts by weight or more, and more preferably 5 parts by weight or more. Further, 25 parts by weight or less is preferable, and 20 parts by weight or less is more preferable. If the blending amount of the impact resistant material (B) is less than 1 part by weight, the toughness of the hollow molded product made of the obtained polyamide resin composition is lowered, and cracks occur when filling and releasing pressure with high-pressure hydrogen are repeated. On the other hand, if the blending amount of the impact resistant material (B) is more than 30 parts by weight, the gas barrier property of the hollow molded product made of the obtained polyamide resin composition is lowered, and if the hollow molded product is repeatedly filled and released with high-pressure hydrogen, a defect point is obtained. Occurs.
ポリアミド6樹脂(A)と耐衝撃材(B)の合計100重量部に対し、金属ハロゲン化物(C)の配合量は0.005〜1重量部であり、金属ハロゲン化物(C)の配合量が0.005重量部より少ないと、得られるポリアミド樹脂組成物のブロー成形時の滞留安定性が低下し、中空成形品の靭性が低下する。金属ハロゲン化物(C)の配合量は、滞留安定性をより向上させるという観点からは、0.02重量部以上が好ましく、0.04重量部以上がより好ましい。一方、金属ハロゲン化物(C)の配合量が1重量部より多いと、金属ハロゲン化物(C)の自己凝集が進行することにより分散径が粗大となり、得られるポリアミド樹脂組成物からなる中空成形品の機械物性が低下する。また、粗大分散となることにより表面積が低下し、金属ハロゲン化物(C)とラジカルの反応が低下するため、得られるポリアミド樹脂組成物のブロー成形時の滞留安定性が低下し、中空成形品の靭性が低下する。金属ハロゲン化物(C)の配合量は、0.5重量部以下が好ましく、0.3重量部以下がより好ましい。 The blending amount of the metal halide (C) is 0.005 to 1 part by weight with respect to 100 parts by weight of the total of the polyamide 6 resin (A) and the impact resistant material (B), and the blending amount of the metal halide (C). When is less than 0.005 parts by weight, the retention stability of the obtained polyamide resin composition during blow molding is lowered, and the toughness of the hollow molded product is lowered. The blending amount of the metal halide (C) is preferably 0.02 parts by weight or more, more preferably 0.04 parts by weight or more, from the viewpoint of further improving the retention stability. On the other hand, when the blending amount of the metal halide (C) is more than 1 part by weight, the dispersion diameter becomes coarse due to the progress of self-aggregation of the metal halide (C), and the hollow molded product made of the obtained polyamide resin composition. The mechanical properties of the Further, since the surface area is lowered due to the coarse dispersion and the reaction between the metal halide (C) and the radical is lowered, the retention stability of the obtained polyamide resin composition during blow molding is lowered, and the hollow molded product is manufactured. Toughness decreases. The blending amount of the metal halide (C) is preferably 0.5 parts by weight or less, more preferably 0.3 parts by weight or less.
さらに、高い溶融張力と高い破断時引き取り速度を有したポリアミド樹脂組成物を得る方法としては、耐衝撃材(B)の分散径が小さいことが望ましい。耐衝撃材(B)の分散径を小さくする方法としては、例えば、樹脂温度としては、比較的高温の235℃〜330℃の範囲に温度制御し混練することが好ましい。なお、ここで言う樹脂温度とは、ダイス穴に接触型の樹脂温度計を直接挿入して測定を行った値である。ポリアミド樹脂組成物中に分散した耐衝撃材(B)の分散径を微細に制御でき、ポリアミド6樹脂(A)と耐衝撃材(B)の界面が増え、溶融張力が高くなり、且つ均一に引き延ばされやすくなるため、速い破断時引き取り速度まで耐えることができ、好ましい。ここで、ポリアミド樹脂組成物中に分散した耐衝撃材(B)の平均分散径は0.01μm以上0.5μm以下が好ましく、0.02μm以上0.3μm以下がより好ましく、0.05μm以上0.2μm以下がさらに好ましい。 Further, as a method for obtaining a polyamide resin composition having a high melt tension and a high take-up rate at break, it is desirable that the dispersion diameter of the impact resistant material (B) is small. As a method for reducing the dispersion diameter of the impact resistant material (B), for example, it is preferable that the resin temperature is controlled to a relatively high temperature in the range of 235 ° C. to 330 ° C. for kneading. The resin temperature referred to here is a value measured by directly inserting a contact-type resin thermometer into the die hole. The dispersion diameter of the impact-resistant material (B) dispersed in the polyamide resin composition can be finely controlled, the interface between the polyamide 6 resin (A) and the impact-resistant material (B) increases, the melt tension increases, and the melt tension becomes uniform. Since it is easily stretched, it can withstand a high take-up speed at break, which is preferable. Here, the average dispersion diameter of the impact-resistant material (B) dispersed in the polyamide resin composition is preferably 0.01 μm or more and 0.5 μm or less, more preferably 0.02 μm or more and 0.3 μm or less, and 0.05 μm or more and 0. .2 μm or less is more preferable.
耐衝撃材(B)の平均分散径は、例えば、ポリアミド樹脂組成物ペレットから、超薄の切片を切り出し、その切片断面について、耐衝撃材(B)の染色を行い、透過型電子顕微鏡を用いて、観察し、画像解析にて分散した粒子径を算出することができる。なお、粒子が真円でない場合は長径および短径の平均値を算出し、長径と短径の平均値として平均分散径を算出する。 For the average dispersion diameter of the impact resistant material (B), for example, an ultrathin section is cut out from a polyamide resin composition pellet, the section cross section is dyed with the impact resistant material (B), and a transmission electron microscope is used. It is possible to observe and calculate the dispersed particle size by image analysis. If the particles are not a perfect circle, the average value of the major axis and the minor axis is calculated, and the average dispersion diameter is calculated as the average value of the major axis and the minor axis.
本発明のポリアミド樹脂組成物には、その特性を損なわない範囲で、必要に応じて、前記成分(A)、(B)および(C)以外のその他の成分を配合しても構わない。その他の成分としては、例えば、充填材、前記(A)以外の熱可塑性樹脂、各種添加剤を挙げることができる。 The polyamide resin composition of the present invention may contain other components other than the above components (A), (B) and (C), if necessary, as long as the characteristics are not impaired. Examples of other components include fillers, thermoplastic resins other than the above (A), and various additives.
例えば、充填材を配合することにより、成形品の強度および寸法安定性等を向上させることができる。充填材の形状は、繊維状であっても非繊維状であってもよく、繊維状充填材と非繊維状充填材を組み合わせて用いてもよい。繊維状充填材としては、例えば、ガラス繊維、ガラスミルドファイバー、炭素繊維、チタン酸カリウムウィスカ、酸化亜鉛ウィスカ、硼酸アルミニウムウィスカ、アラミド繊維、アルミナ繊維、炭化珪素繊維、セラミック繊維、アスベスト繊維、石コウ繊維、金属繊維などが挙げられる。非繊維状充填材としては、例えば、ワラステナイト、ゼオライト、セリサイト、カオリン、マイカ、クレー、パイロフィライト、ベントナイト、アスベスト、タルク、アルミナシリケートなどの珪酸塩、アルミナ、酸化珪素、酸化マグネシウム、酸化ジルコニウム、酸化チタン、酸化鉄などの金属酸化物、炭酸カルシウム、炭酸マグネシウム、ドロマイトなどの金属炭酸塩、硫酸カルシウム、硫酸バリウムなどの金属硫酸塩、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウムなどの金属水酸化物、ガラスビーズ、セラミックビーズ、窒化ホウ素および炭化珪素などが挙げられ、これらは中空であってもよい。また、これら繊維状および/または非繊維状充填材を、カップリング剤で予備処理して使用することは、より優れた機械特性を得る意味において好ましい。カップリング剤としては、例えば、イソシアネート系化合物、有機シラン系化合物、有機チタネート系化合物、有機ボラン系化合物、エポキシ化合物などが挙げられる。 For example, by blending a filler, the strength and dimensional stability of the molded product can be improved. The shape of the filler may be fibrous or non-fibrous, and the fibrous filler and the non-fibrous filler may be used in combination. Examples of the fibrous filler include glass fiber, glass milled fiber, carbon fiber, potassium titanate whisker, zinc oxide whisker, aluminum borate whisker, aramid fiber, alumina fiber, silicon carbide fiber, ceramic fiber, asbestos fiber, and stone wool. Examples include fibers and metal fibers. Examples of the non-fibrous filler include silicates such as wallastenite, zeolite, sericite, kaolin, mica, clay, pyrophyllite, bentonite, asbestos, talc, and alumina silicate, alumina, silicon oxide, magnesium oxide, and oxidation. Metal oxides such as zirconium, titanium oxide and iron oxide, metal carbonates such as calcium carbonate, magnesium carbonate and dolomite, metal sulfates such as calcium sulfate and barium sulfate, magnesium hydroxide, calcium hydroxide, aluminum hydroxide, etc. Examples include metal hydroxides, glass beads, ceramic beads, boron nitride and silicon carbide, which may be hollow. Further, it is preferable to use these fibrous and / or non-fibrous fillers after pretreatment with a coupling agent in the sense of obtaining better mechanical properties. Examples of the coupling agent include isocyanate compounds, organic silane compounds, organic titanate compounds, organic borane compounds, epoxy compounds and the like.
熱可塑性樹脂としては、例えば、前記ポリアミド6樹脂(A)以外のポリアミド樹脂、ポリエステル樹脂、ポリフェニレンスルフィド樹脂、ポリフェニレンオキシド樹脂、ポリカーボネート樹脂、ポリ乳酸樹脂、ポリアセタール樹脂、ポリスルホン樹脂、四フッ化ポリエチレン樹脂、ポリエーテルイミド樹脂、ポリアミドイミド樹脂、ポリイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、ポリチオエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリスチレン樹脂やABS樹脂等のスチレン系樹脂、ポリアルキレンオキサイド樹脂等が挙げられる。かかる熱可塑性樹脂を2種以上配合することも可能である。なお、前記ポリアミド6樹脂(A)以外のポリアミド樹脂を配合する場合、ポリアミド6樹脂(A)100重量部に対し、4重量部以下が好ましい。 Examples of the thermoplastic resin include polyamide resins other than the polyamide 6 resin (A), polyester resins, polyphenylene sulfide resins, polyphenylene oxide resins, polycarbonate resins, polylactic acid resins, polyacetal resins, polysulfone resins, and tetrafluoride polyethylene resins. Polyetherimide resin, polyamideimide resin, polyimide resin, polyethersulfone resin, polyetherketone resin, polythioetherketone resin, polyetheretherketone resin, styrene resin such as polystyrene resin and ABS resin, polyalkylene oxide resin, etc. Can be mentioned. It is also possible to blend two or more kinds of such thermoplastic resins. When a polyamide resin other than the polyamide 6 resin (A) is blended, it is preferably 4 parts by weight or less with respect to 100 parts by weight of the polyamide 6 resin (A).
各種添加剤としては、例えば、着色防止剤、ヒンダードフェノール、ヒンダードアミンなどの酸化防止剤、エチレンビスステアリルアミドや高級脂肪酸エステルなどの離型剤、可塑剤、熱安定剤、滑剤、紫外線防止剤、着色剤、難燃剤、発泡剤などが挙げられる。 Examples of various additives include color inhibitors, antioxidants such as hindered phenol and hindered amine, mold release agents such as ethylene bisstearylamide and higher fatty acid esters, plasticizers, heat stabilizers, lubricants, and UV inhibitors. Examples include colorants, flame retardants, and foaming agents.
本発明のポリアミド樹脂組成物は、260℃で測定したときの溶融張力が、20mN以上であり、かつ260℃で測定したときの破断時引き取り速度が50m/min以上である。ポリアミド樹脂組成物の260℃で測定したときの溶融張力が20mN以上であり、かつ260℃で測定したときの破断時引き取り速度が50m/min以上であれば、ブロー成形時に均一に引き延ばされやすく、高圧水素の充填および放圧を繰り返した際に欠陥点や割れの発生を抑制することができる。 The polyamide resin composition of the present invention has a melt tension of 20 mN or more when measured at 260 ° C., and a take-back speed at break when measured at 260 ° C. is 50 m / min or more. If the melt tension of the polyamide resin composition measured at 260 ° C. is 20 mN or more and the take-up speed at break when measured at 260 ° C. is 50 m / min or more, the polyamide resin composition is uniformly stretched during blow molding. It is easy to suppress the occurrence of defect points and cracks when the high-pressure hydrogen is repeatedly filled and released.
本発明のポリアミド樹脂組成物は、好ましくは、溶融張力が20〜500mNであり、より好ましくは、25〜500mNであり、さらに好ましくは、30〜300mNである。ポリアミド樹脂組成物の260℃で測定したときの溶融張力が20mN以上であれば、ブロー成形時のドローダウンを抑制でき、中空成形品を得ることができ、高圧水素の充填および放圧を繰り返した際に欠陥点や割れの発生を抑制することができる。また、ポリアミド樹脂組成物の260℃で測定したときの溶融張力が500mN以下であれば、延伸性の低下を抑制することができる。 The polyamide resin composition of the present invention preferably has a melt tension of 20 to 500 mN, more preferably 25 to 500 mN, and even more preferably 30 to 300 mN. When the melt tension of the polyamide resin composition measured at 260 ° C. is 20 mN or more, drawdown during blow molding can be suppressed, a hollow molded product can be obtained, and high-pressure hydrogen filling and release pressure are repeated. At that time, it is possible to suppress the occurrence of defective points and cracks. Further, if the melt tension of the polyamide resin composition measured at 260 ° C. is 500 mN or less, the decrease in stretchability can be suppressed.
本発明のポリアミド樹脂組成物は、好ましくは、破断時引き取り速度が50m/min以上であり、より好ましくは、60m/min以上であり、さらに好ましくは、80m/min以上である。ポリアミド樹脂組成物の260℃で測定したときの破断時引き取り速度が50m/min以上であれば、ブロー成形時のエアー吹き込み時に破れず、中空成形品を得ることができることから、どれだけ高い値でもよい。 The polyamide resin composition of the present invention preferably has a take-up speed at break of 50 m / min or more, more preferably 60 m / min or more, and further preferably 80 m / min or more. If the take-up speed at break when the polyamide resin composition is measured at 260 ° C. is 50 m / min or more, it will not be broken when air is blown during blow molding, and a hollow molded product can be obtained. Therefore, no matter how high the value is. good.
なお、本発明において、ポリアミド樹脂組成物の溶融張力は、以下のようにして測定するものである。東洋精機製作所製キャピログラフ1C(シリンダー内径9.55mm、オリフィスの長さ10.0mm、内径1.0mm)を用い、試験温度を260℃に設定する。シリンダー中にポリアミド樹脂組成物を充填し、圧密して20分間保持することによって溶融させてから、ピストン速度を10mm/minとして260℃の溶融樹脂をオリフィスからストランド状に押出する。このストランドを、下方の張力検出用プーリーの円形ガイドを通過させて10m/minの引き取り速度で巻き取り、検出される張力をポリアミド樹脂組成物の溶融張力とする。 In the present invention, the melt tension of the polyamide resin composition is measured as follows. Using a Capillograph 1C manufactured by Toyo Seiki Seisakusho (cylinder inner diameter 9.55 mm, orifice length 10.0 mm, inner diameter 1.0 mm), the test temperature is set to 260 ° C. A polyamide resin composition is filled in a cylinder and melted by compacting and holding for 20 minutes, and then a molten resin at 260 ° C. is extruded from an orifice in a strand shape at a piston speed of 10 mm / min. This strand is wound by passing through the circular guide of the lower tension detection pulley at a take-up speed of 10 m / min, and the detected tension is defined as the melt tension of the polyamide resin composition.
ポリアミド樹脂組成物の溶融張力を上記範囲にする手段としては、そのようなポリアミド樹脂組成物が得られる限りにおいて特に制限はないが、樹脂濃度0.01g/mlの98%濃硫酸溶液中、25℃で測定した相対粘度が、3.3〜7.0の範囲のポリアミド6樹脂(A)を用いる方法や、耐衝撃材(B)として、不飽和カルボン酸および/またはその誘導体変性エチレン/α−オレフィン共重合体を用いる方法が好ましく用いられる。そして、エチレン/α−オレフィン共重合体100重量部に対して、不飽和カルボン酸および/またはその誘導体0.1〜2.5重量部で変性された、変性エチレン/α−オレフィン共重合を用いる方法が好ましく用いられる。具体的には、不飽和カルボン酸および/またはその誘導体変性エチレン/α−オレフィン共重合体100重量部に対して、変性に由来して導入された不飽和カルボン酸および/またはその誘導体部分が0.1〜2.5重量部である、耐衝撃材(B)が好ましく用いられる。 The means for setting the melt tension of the polyamide resin composition within the above range is not particularly limited as long as such a polyamide resin composition can be obtained, but 25 in a 98% concentrated sulfuric acid solution having a resin concentration of 0.01 g / ml. A method using a polyamide 6 resin (A) having a relative viscosity in the range of 3.3 to 7.0 measured at ° C., or as an impact resistant material (B), unsaturated carboxylic acid and / or a derivative thereof modified ethylene / α. -A method using an olefin copolymer is preferably used. Then, a modified ethylene / α-olefin copolymer modified with 0.1 to 2.5 parts by weight of an unsaturated carboxylic acid and / or a derivative thereof is used with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The method is preferably used. Specifically, the unsaturated carboxylic acid and / or its derivative portion introduced from the modification is 0 with respect to 100 parts by weight of the unsaturated carboxylic acid and / or its derivative modified ethylene / α-olefin copolymer. The impact resistant material (B), which is 1 to 2.5 parts by weight, is preferably used.
本発明において、ポリアミド樹脂組成物の破断時引き取り速度は、以下のようにして測定するものである。東洋精機製作所製キャピログラフ1C(シリンダー内径9.55mm、オリフィスの長さ10.0mm、内径1.0mm)を用い、試験温度を260℃に設定する。シリンダー中にポリアミド樹脂組成物を充填し、圧密して20分間保持することによって溶融させてから、ピストン速度を10mm/minとして260℃の溶融樹脂をオリフィスからストランド状に押出する。このストランドを、下方の張力検出用プーリーの円形ガイドを通過させて10m/minの引き取り速度で巻き取り、検出される張力を安定させる。安定した後に、400m/min2の加速度で引き取り速度を加速させながら巻き取り、ストランドが破断した時点での引き取り速度をポリアミド樹脂組成物の破断時引き取り速度とする。なお、上記の測定方法におけるポリアミド樹脂組成物の破断時引き取り速度の測定の限界値は200m/minであるが、他の装置仕様を用いれば200m/min以上となる場合がある。本発明においては、50m/min以上であれば、ブロー成形時のエアー吹き込み時に破れず、中空成形品を得ることができる。 In the present invention, the take-back speed of the polyamide resin composition at break is measured as follows. Using a Capillograph 1C manufactured by Toyo Seiki Seisakusho (cylinder inner diameter 9.55 mm, orifice length 10.0 mm, inner diameter 1.0 mm), the test temperature is set to 260 ° C. A polyamide resin composition is filled in a cylinder and melted by compacting and holding for 20 minutes, and then a molten resin at 260 ° C. is extruded from an orifice in a strand shape at a piston speed of 10 mm / min. This strand is wound through a circular guide of the lower tension detection pulley at a take-up speed of 10 m / min to stabilize the detected tension. After stabilization, winding is performed while accelerating the take-up speed at an acceleration of 400 m / min 2 , and the take-up speed at the time when the strand is broken is defined as the take-up speed at break of the polyamide resin composition. The limit value for measuring the take-back speed of the polyamide resin composition at break in the above measuring method is 200 m / min, but it may be 200 m / min or more if other device specifications are used. In the present invention, if it is 50 m / min or more, a hollow molded product can be obtained without tearing when air is blown during blow molding.
ポリアミド樹脂組成物の破断時引き取り速度を上記範囲にする手段としては、そのようなポリアミド樹脂組成物が得られる限りにおいて特に制限はないが、耐衝撃材(B)として、不飽和カルボン酸および/またはその誘導体で変性された変性エチレン/α−オレフィン共重合体を用いる方法が好ましく用いられる。そして、エチレン/α−オレフィン共重合体100重量部に対して、不飽和カルボン酸および/またはその誘導体0.1〜2.5重量部で変性された、変性エチレン/α−オレフィン共重合を用いる方法が好ましく用いられる。具体的には、不飽和カルボン酸および/またはその誘導体変性エチレン/α−オレフィン共重合体100重量部に対して、変性に由来して導入された不飽和カルボン酸および/またはその誘導体0.1〜2.5重量部である、耐衝撃材(B)を用いる方法が好ましい。 The means for setting the take-back rate of the polyamide resin composition at break to the above range is not particularly limited as long as such a polyamide resin composition can be obtained, but as the impact resistant material (B), an unsaturated carboxylic acid and / Alternatively, a method using a modified ethylene / α-olefin copolymer modified with the derivative thereof is preferably used. Then, a modified ethylene / α-olefin copolymer modified with 0.1 to 2.5 parts by weight of an unsaturated carboxylic acid and / or a derivative thereof is used with respect to 100 parts by weight of the ethylene / α-olefin copolymer. The method is preferably used. Specifically, the unsaturated carboxylic acid and / or its derivative 0.1 introduced from the modification with respect to 100 parts by weight of the modified ethylene / α-olefin copolymer. A method using an impact resistant material (B) having an amount of ~ 2.5 parts by weight is preferable.
本発明のポリアミド樹脂組成物の製造方法としては、溶融状態での製造や溶液状態での製造等が挙げられる。生産性の観点から、溶融状態での製造が好ましく使用できる。溶融状態での製造については、押出機、バンバリーミキサー、ニーダー、ミキシングロールによる溶融混練等が使用でき、生産性の点から、連続的に製造可能な押出機による溶融混練が好ましく使用できる。押出機としては、単軸押出機、二軸押出機、四軸押出機等の多軸押出機、二軸単軸複合押出機等が挙げられる。これらの押出機を複数組み合わせてもよい。混練性、反応性、生産性の向上の点から、二軸押出機、四軸押出機等の多軸押出機が好ましく、二軸押出機がより好ましい。 Examples of the method for producing the polyamide resin composition of the present invention include production in a molten state and production in a solution state. From the viewpoint of productivity, production in a molten state can be preferably used. For production in the molten state, melt-kneading with an extruder, a Banbury mixer, a kneader, a mixing roll or the like can be used, and from the viewpoint of productivity, melt-kneading with an extruder capable of continuously producing can be preferably used. Examples of the extruder include a single-screw extruder, a twin-screw extruder, a multi-screw extruder such as a four-screw extruder, and a twin-screw single-screw compound extruder. A plurality of these extruders may be combined. From the viewpoint of improving kneadability, reactivity and productivity, a multi-screw extruder such as a twin-screw extruder or a four-screw extruder is preferable, and a twin-screw extruder is more preferable.
二軸押出機を用いた溶融混練方法としては、例えば、ポリアミド6樹脂(A)、耐衝撃材(B)、金属ハロゲン化物(C)および必要に応じて(A)(B)(C)以外の成分を予備混合して、シリンダー温度がポリアミド6樹脂(A)の融点以上に設定された二軸押出機に供給して溶融混練する手法が挙げられる。原料の混合順序に特に制限はなく、全ての原料を上記の方法により溶融混練する方法、一部の原料を上記の方法により溶融混練し、さらに残りの原料を配合して溶融混練する方法、あるいは一部の原料を溶融混練中にサイドフィーダーを用いて残りの原料を混合する方法など、いずれの方法を用いてもよい。また押出機途中で真空状態に曝して発生するガスを除去する方法も好ましく使用される。 Examples of the melt-kneading method using a twin-screw extruder include polyamide 6 resin (A), impact-resistant material (B), metal halide (C), and if necessary, other than (A), (B), and (C). Examples thereof include a method in which the components of the above are premixed and supplied to a twin-screw extruder whose cylinder temperature is set to be equal to or higher than the melting point of the polyamide 6 resin (A) to be melt-kneaded. The mixing order of the raw materials is not particularly limited, and all the raw materials are melt-kneaded by the above method, some raw materials are melt-kneaded by the above method, and the remaining raw materials are further mixed and melt-kneaded. Any method may be used, such as a method of mixing the remaining raw materials using a side feeder during melt-kneading of some raw materials. Further, a method of removing the gas generated by exposing the extruder to a vacuum state in the middle of the extruder is also preferably used.
二軸押出機を用いた溶融混練時の樹脂温度としては、235℃〜330℃の範囲に制御することが好ましい。溶融混練時の樹脂温度を235℃以上に制御することで、ポリアミド樹脂組成物中に分散した耐衝撃材(B)の分散径を微細に制御でき、ポリアミド6樹脂(A)と耐衝撃材(B)の界面が増え、溶融張力が高くなり、且つ均一に引き延ばされやすくなるため、速い破断時引き取り速度まで耐えることができ、好ましい。また、溶融混練時の樹脂温度を330℃以下に制御することで、ポリアミド6樹脂(A)および耐衝撃材(B)の分解を抑制し、より溶融張力が高くなり、且つ均一に引き延ばされやすくなるため、速い破断時引き取り速度まで耐えることができ好ましい。なお、ここで言う樹脂温度とは、ダイス穴に接触型の樹脂温度計を直接挿入して測定を行った値である。 The resin temperature during melt-kneading using a twin-screw extruder is preferably controlled in the range of 235 ° C to 330 ° C. By controlling the resin temperature during melt-kneading to 235 ° C. or higher, the dispersion diameter of the impact-resistant material (B) dispersed in the polyamide resin composition can be finely controlled, and the polyamide 6 resin (A) and the impact-resistant material (A) Since the number of interfaces of B) increases, the melt tension becomes high, and the resin is easily stretched uniformly, it can withstand a high take-up speed at break, which is preferable. Further, by controlling the resin temperature during melt-kneading to 330 ° C. or lower, the decomposition of the polyamide 6 resin (A) and the impact-resistant material (B) is suppressed, the melt tension becomes higher, and the resin is uniformly stretched. It is preferable because it can withstand a high take-up speed at break. The resin temperature referred to here is a value measured by directly inserting a contact-type resin thermometer into the die hole.
本発明において得られる中空成形品は、高圧水素の充填および放圧を繰り返しても欠陥点の発生が抑制される優れた特徴を活かして、高圧水素に触れる中空成形品に用いられる。ここでいう高圧水素に触れる中空成形品とは、常圧以上の圧力の水素に触れる中空成形品である。高圧水素の充填および放圧を繰り返したときの欠陥点の発生を抑制する効果を奏することから、圧力20MPa以上の水素に触れる中空成形品用途に好ましく用いられ、30MPa以上の水素に触れる中空成形品用途により好ましく用いられる。一方、圧力200MPa以下の水素に触れる中空成形品用途に好ましく用いられ、150MPa以下の水素に触れる中空成形品用途により好ましく用いられ、100MPa以下の水素に触れる中空成形品用途にさらに好ましく用いられる。高圧水素に触れる中空成形品としては、例えば、高圧水素用タンク、高圧水素用タンクライナー、高圧水素用パイプ、高圧水素用ポンプ、高圧水素用チューブ等が挙げられる。中でも、高圧水素用タンク、高圧水素用タンクライナー等の高圧水素容器に好ましく使用することができる。 The hollow molded product obtained in the present invention is used for a hollow molded product that comes into contact with high-pressure hydrogen by taking advantage of its excellent feature that the generation of defective points is suppressed even if the filling and releasing pressure of high-pressure hydrogen is repeated. The hollow molded product that comes into contact with high-pressure hydrogen here is a hollow molded product that comes into contact with hydrogen at a pressure higher than normal pressure. Since it has the effect of suppressing the occurrence of defective points when high-pressure hydrogen is repeatedly filled and released, it is preferably used for hollow molded products that come into contact with hydrogen at a pressure of 20 MPa or more, and is a hollow molded product that comes into contact with hydrogen of 30 MPa or more. It is preferably used depending on the application. On the other hand, it is preferably used for hollow molded products that come into contact with hydrogen at a pressure of 200 MPa or less, preferably used for hollow molded products that come into contact with hydrogen of 150 MPa or less, and more preferably used for hollow molded products that come into contact with hydrogen of 100 MPa or less. Examples of the hollow molded product that comes into contact with high-pressure hydrogen include a tank for high-pressure hydrogen, a tank liner for high-pressure hydrogen, a pipe for high-pressure hydrogen, a pump for high-pressure hydrogen, and a tube for high-pressure hydrogen. Above all, it can be preferably used for high-pressure hydrogen containers such as high-pressure hydrogen tanks and high-pressure hydrogen tank liners.
前記高圧水素用タンクライナーは、胴部を長手方向に6カ所、等間隔に測定した厚みの標準偏差σが0.3以下であることが好ましい、高圧水素用タンクライナーの胴部を長手方向に6カ所、等間隔に測定した厚みの標準偏差σが0.3より大きいと、高圧水素用タンクライナーの肉厚が不均一なため、高圧水素の充填および放圧を繰り返した際の応力集中が大きくなることから、欠陥点や割れが発生しやすい。 The high-pressure hydrogen tank liner preferably has a body of a high-pressure hydrogen tank liner at six locations in the longitudinal direction and a standard deviation σ of the thickness measured at equal intervals of 0.3 or less. If the standard deviation σ of the thickness measured at 6 locations at regular intervals is greater than 0.3, the wall thickness of the tank liner for high-pressure hydrogen is non-uniform, and stress concentration occurs when high-pressure hydrogen is repeatedly filled and released. Since it becomes large, defects and cracks are likely to occur.
ここで、高圧水素タンクライナーの胴部の厚みは、それぞれの弧の中心を、ポイントマイクロメーターを用いて測定する。厚みの標準偏差σは、得られた厚みxkを用いて、下記式により算出することができる。
式1)x =(1/6)Σxk (k=1〜6)
式2)V =(1/6)Σ(xk−x)2 (k=1〜6)
式3)σ =√V
x:6箇所の厚みの平均
xk:各箇所での厚み(mm)
V:厚みの分散
σ:厚みの標準偏差。
Here, the thickness of the body of the high-pressure hydrogen tank liner is measured at the center of each arc using a point micrometer. The standard deviation σ of the thickness can be calculated by the following formula using the obtained thickness x k.
Equation 1) x = (1/6) Σx k (k = 1-6)
Equation 2) V = (1/6) Σ (x k −x) 2 (k = 1-6)
Equation 3) σ = √V
x: Average thickness at 6 locations x k : Thickness at each location (mm)
V: Thickness dispersion σ: Standard deviation of thickness.
高圧水素タンクライナーの胴部を長手方向に6カ所、等間隔に測定した厚みの標準偏差σが0.3以下である中空成形品の厚みは特に制限はないが、0.5mm〜5mmの範囲が好ましい。 The thickness of the hollow molded product in which the standard deviation σ of the thickness measured at six locations in the longitudinal direction of the high-pressure hydrogen tank liner at equal intervals is 0.3 or less is not particularly limited, but is in the range of 0.5 mm to 5 mm. Is preferable.
かかる高圧水素タンクライナーの胴部を長手方向に6カ所、等間隔に測定した厚みの標準偏差σを0.3以下とするには、例えば、前述のプレスブロー成形法で成形する方法が挙げられる。 In order to set the standard deviation σ of the thickness of the body of the high-pressure hydrogen tank liner at six locations in the longitudinal direction at equal intervals to 0.3 or less, for example, the method of molding by the above-mentioned press blow molding method can be mentioned. ..
以下、実施例を挙げて本発明の効果をさらに具体的に説明する。なお、本発明は、下記実施例に限定されるものではない。各実施例および比較例における評価は、次の方法で行った。 Hereinafter, the effects of the present invention will be described in more detail with reference to examples. The present invention is not limited to the following examples. The evaluation in each Example and Comparative Example was performed by the following method.
(1)高圧水素の充填および放圧繰り返し特性(欠陥点)
実施例1〜6および比較例5〜8により得られた中空成形品について、X線CT解析を行い、欠陥点の有無を観察した。欠陥点のない中空成形品をオートクレーブに入れた後、オートクレーブ中に水素ガスを20MPaまで5分間かけて注入し、1時間保持した後、5分間かけて常圧になるまで減圧した。これを1サイクルとして100サイクル繰り返した。100サイクル繰り返した後の試験片について、ヤマト科学(株)製TDM1000−ISを用いてX線CT解析を行い、10μm以上の欠陥点の有無を観察し、欠陥点が存在しないものを「無」、欠陥点が存在するものを「有」とした。
(1) Repeated filling and discharging characteristics of high-pressure hydrogen (defect points)
The hollow molded products obtained in Examples 1 to 6 and Comparative Examples 5 to 8 were subjected to X-ray CT analysis, and the presence or absence of defective points was observed. After putting the hollow molded product having no defects into the autoclave, hydrogen gas was injected into the autoclave up to 20 MPa over 5 minutes, held for 1 hour, and then depressurized over 5 minutes until the pressure became normal. This was set as one cycle and repeated for 100 cycles. After repeating 100 cycles, X-ray CT analysis was performed on the test piece using TDM1000-IS manufactured by Yamato Scientific Co., Ltd., and the presence or absence of defect points of 10 μm or more was observed. , Those with defective points were regarded as "Yes".
(2)引張伸度(靭性)
実施例1〜6および比較例5〜8により得られた中空成形品(厚み約2mm)の胴部から、高さ100mm、幅3mmで、長手方向がタンクの長さ方向になるよう切り出した試験片5本について、温度23℃、湿度50%の条件で30分間調湿後、チャック間距離50mm、10mm/分の速度で引張試験を実施し、引張伸度を評価した。5本測定した平均の値を引張伸度とした。なお、中空成形品の引張伸度が50%以上であることは、ブロー成形時にかかる熱を受けた後でも靱性が維持され、熱安定性が高いことを示す。
(2) Tensile elongation (toughness)
A test cut out from the body of the hollow molded product (thickness of about 2 mm) obtained in Examples 1 to 6 and Comparative Examples 5 to 8 with a height of 100 mm and a width of 3 mm so that the longitudinal direction is the length direction of the tank. After adjusting the humidity of the five pieces for 30 minutes under the conditions of a temperature of 23 ° C. and a humidity of 50%, a tensile test was carried out at a speed between chucks of 50 mm and 10 mm / min to evaluate the tensile elongation. The average value of 5 measurements was taken as the tensile elongation. The tensile elongation of the hollow molded product being 50% or more indicates that the toughness is maintained and the thermal stability is high even after receiving the heat applied during blow molding.
(3)溶融張力
各実施例および比較例により得られたペレットを、東洋精機製作所製キャピログラフ1C(シリンダー内径9.55mm、オリフィスの長さ10.0mm、内径1.0mm)を用い、試験温度を260℃に設定したシリンダー中にポリアミド樹脂組成物を充填し、圧密して20分間保持することによって溶融させてから、ピストン速度を10mm/minとして260℃の溶融樹脂をオリフィスからストランド状に押出する。このストランドを、下方の張力検出用プーリーの円形ガイドを通過させて10m/minの引き取り速度で巻き取り、検出される張力を溶融張力とした。
(3) Melt tension The pellets obtained in each Example and Comparative Example were subjected to a test temperature using Capillograph 1C (cylinder inner diameter 9.55 mm, orifice length 10.0 mm, inner diameter 1.0 mm) manufactured by Toyo Seiki Seisakusho. The polyamide resin composition is filled in a cylinder set at 260 ° C. and melted by compacting and holding for 20 minutes, and then the molten resin at 260 ° C. is extruded from an orifice in a strand shape at a piston speed of 10 mm / min. .. This strand was taken up at a take-up speed of 10 m / min by passing through the circular guide of the lower tension detection pulley, and the detected tension was defined as the melt tension.
(4)破断時引き取り速度
各実施例および比較例により得られたペレットを、東洋精機製作所製キャピログラフ1C(シリンダー内径9.55mm、オリフィスの長さ10.0mm、内径1.0mm)を用い、試験温度を260℃に設定したシリンダー中にポリアミド樹脂組成物を充填し、圧密して20分間保持することによって溶融させてから、ピストン速度を10mm/minとして260℃の溶融樹脂をオリフィスからストランド状に押出する。このストランドを、下方の張力検出用プーリーの円形ガイドを通過させて10m/minの引き取り速度で巻き取り、検出される張力を安定させた。安定した後に、400m/min2の加速度で引き取り速度を加速させながら巻き取り、ストランドが破断した時点での引き取り速度を破断時引き取り速度した。
(4) Pick-up speed at break The pellets obtained in each Example and Comparative Example were tested using Capillograph 1C (cylinder inner diameter 9.55 mm, orifice length 10.0 mm, inner diameter 1.0 mm) manufactured by Toyo Seiki Seisakusho. The polyamide resin composition is filled in a cylinder whose temperature is set to 260 ° C. and melted by compacting and holding for 20 minutes, and then the molten resin at 260 ° C. is stranded from the orifice at a piston speed of 10 mm / min. Extrude. The strand was wound at a take-up speed of 10 m / min through the circular guide of the lower tension detection pulley to stabilize the detected tension. After it became stable, it was wound while accelerating the take-up speed at an acceleration of 400 m / min 2 , and the take-up speed at the time when the strand broke was set to the take-up speed at the time of breakage.
(5)中空成形品の胴部を長手方向に6箇所、等間隔に測定した厚みの標準偏差(厚みの標準偏差)
実施例1〜6および比較例5〜8により得られた中空成形品について、胴部を長手方向に6カ所、等間隔に弧の中心を、ポイントマイクロメーターを用いて測定し、得られる厚みxkから、式1により平均厚みを算出した。また、下記式3により厚みの標準偏差σを算出した。
式1)x =(1/6)Σxk (k=1〜6)
式2)V =(1/6)Σ(xk−x)2 (k=1〜6)
式3)σ =√V
x:6箇所の厚みの平均
xk:各箇所での厚み(mm)
V:厚みの分散
σ:厚みの標準偏差。
(5) Standard deviation of thickness measured at equal intervals at 6 points in the longitudinal direction of the body of the hollow molded product (standard deviation of thickness)
With respect to the hollow molded products obtained in Examples 1 to 6 and Comparative Examples 5 to 8, the center of the arc was measured at 6 locations in the longitudinal direction at equal intervals using a point micrometer, and the obtained thickness x From k , the average thickness was calculated by Equation 1. Further, the standard deviation σ of the thickness was calculated by the following formula 3.
Equation 1) x = (1/6) Σx k (k = 1-6)
Equation 2) V = (1/6) Σ (x k −x) 2 (k = 1-6)
Equation 3) σ = √V
x: Average thickness at 6 locations x k : Thickness at each location (mm)
V: Thickness dispersion σ: Standard deviation of thickness.
各実施例および比較例に用いた原料と略号を以下に示す。 The raw materials and abbreviations used in each Example and Comparative Example are shown below.
(ポリアミド6樹脂(A)の原料と略号)
PA6(ηr2.7):ポリアミド6樹脂(樹脂濃度0.01g/mlの98%濃硫酸溶液中25℃における相対粘度2.70)
PA6(ηr3.0):ポリアミド6樹脂(樹脂濃度0.01g/mlの98%濃硫酸溶液中25℃における相対粘度3.00)
PA6(ηr3.4):ポリアミド6樹脂(樹脂濃度0.01g/mlの98%濃硫酸溶液中25℃における相対粘度3.40)
PA6(ηr4.4):ポリアミド6樹脂(樹脂濃度0.01g/mlの98%濃硫酸溶液中25℃における相対粘度4.40)
PA6(ηr6.3):ポリアミド6樹脂(樹脂濃度0.01g/mlの98%濃硫酸溶液中25℃における相対粘度6.30)
PA6/PA66共重合体:ポリアミド6/ポリアミド66共重合体(融点190℃、樹脂濃度0.01g/mlの98%濃硫酸溶液中25℃における相対粘度4.20)。
(Raw material and abbreviation for polyamide 6 resin (A))
PA6 (ηr2.7): Polyamide 6 resin (relative viscosity 2.70 at 25 ° C. in a 98% concentrated sulfuric acid solution with a resin concentration of 0.01 g / ml)
PA6 (ηr3.0): Polyamide 6 resin (relative viscosity 3.00 at 25 ° C. in a 98% concentrated sulfuric acid solution having a resin concentration of 0.01 g / ml)
PA6 (ηr3.4): Polyamide 6 resin (relative viscosity 3.40 at 25 ° C. in a 98% concentrated sulfuric acid solution with a resin concentration of 0.01 g / ml)
PA6 (ηr4.4): Polyamide 6 resin (relative viscosity 4.40 at 25 ° C. in a 98% concentrated sulfuric acid solution with a resin concentration of 0.01 g / ml)
PA6 (ηr6.3): Polyamide 6 resin (relative viscosity 6.30 at 25 ° C. in a 98% concentrated sulfuric acid solution with a resin concentration of 0.01 g / ml)
PA6 / PA66 copolymer: Polyamide 6 / polyamide 66 copolymer (relative viscosity 4.20 at 25 ° C. in a 98% concentrated sulfuric acid solution having a melting point of 190 ° C. and a resin concentration of 0.01 g / ml).
(耐衝撃材(B)の原料と略号)
耐衝撃材1:エチレン/1−ブテン共重合体(MFR(190℃、2160g荷重)0.5g/10分、密度0.862g/cm3)。
(Raw material and abbreviation for impact resistant material (B))
Impact-resistant material 1: Ethylene / 1-butene copolymer (MFR (190 ° C., 2160 g load) 0.5 g / 10 minutes, density 0.862 g / cm 3 ).
耐衝撃材2:MFR(190℃、2160g荷重)0.5g/10分、密度0.862g/cm3、であるエチレン/1−ブテン共重合体100重量部に対し、無水マレイン酸1.05重量部、過酸化物(日油(株)製、商品名パーヘキシン25B)0.04重量部を混合し、二軸押出機を用いてシリンダー温度230℃で溶融押出して耐衝撃材2を得た。得られた耐衝撃材2は、無水マレイン酸で変性されたエチレン/1−ブテン共重合体であり、エチレン/1−ブテン共重合体100重量部に対する変性量は1.0重量部である。具体的には、側鎖の一部分が無水マレイン酸に変性され、不飽和カルボン酸が導入されたエチレン/1−ブテン共重合体の重量が100重量部であるとき、導入された不飽和カルボン酸変性部の重量が1.0重量部である。 Impact resistant material 2: MFR (190 ° C., 2160 g load) 0.5 g / 10 minutes, density 0.862 g / cm 3 , 100 parts by weight of ethylene / 1-butene copolymer, 1.05 maleic anhydride 0.04 parts by weight and 0.04 part by weight of peroxide (manufactured by Nichiyu Co., Ltd., trade name Perhexin 25B) were mixed and melt-extruded at a cylinder temperature of 230 ° C. using a twin-screw extruder to obtain an impact resistant material 2. .. The obtained impact resistant material 2 is an ethylene / 1-butene copolymer modified with maleic anhydride, and the amount of modification with respect to 100 parts by weight of the ethylene / 1-butene copolymer is 1.0 part by weight. Specifically, when a part of the side chain is modified with maleic anhydride and the weight of the ethylene / 1-butene copolymer into which the unsaturated carboxylic acid is introduced is 100 parts by weight, the introduced unsaturated carboxylic acid The weight of the modified portion is 1.0 part by weight.
各重量部の測定については、エチレン/1−ブテン共重合体100重量部と無水マレイン酸1.05重量部を溶融混錬し、得られた不飽和カルボン酸が導入されたエチレン/1−ブテン共重合体のペレットの重量を測定する。不飽和カルボン酸変性部の重量は、不飽和カルボン酸をキシレンにより130℃で溶解し、滴定液には水酸化カリウムの0.02mol/Lエタノール溶液(アルドリッチ社製)滴定液を、指示薬にはフェノールフタレイン1%エタノール溶液を調整し、滴定で得られた不飽和カルボン酸のモル濃度を質量に換算する。そして、不飽和カルボン酸変性エチレン/1−ブテン共重合体の重量を100重量部あたりに換算し、「導入された不飽和カルボン酸変性部の重量」とした。 For the measurement of each part by weight, 100 parts by weight of the ethylene / 1-butene copolymer and 1.05 parts by weight of maleic anhydride were melt-kneaded, and the obtained unsaturated carboxylic acid was introduced into the ethylene / 1-butene. Weigh the pellets of the copolymer. The weight of the unsaturated carboxylic acid-modified portion is as follows: unsaturated carboxylic acid is dissolved in xylene at 130 ° C., a 0.02 mol / L ethanol solution of potassium hydroxide (manufactured by Aldrich) is used as the titrator, and the indicator is A 1% phenolphthalein ethanol solution is prepared and the molar concentration of unsaturated carboxylic acid obtained by titration is converted to mass. Then, the weight of the unsaturated carboxylic acid-modified ethylene / 1-butene copolymer was converted per 100 parts by weight and used as "the weight of the introduced unsaturated carboxylic acid-modified part".
耐衝撃材3:MFR(190℃、2160g荷重)0.5g/10分、密度0.862g/cm3、であるエチレン/1−ブテン共重合体100重量部に対し、無水マレイン酸2.1重量部、過酸化物(日油(株)製、商品名パーヘキシン25B)0.1重量部を混合し、二軸押出機を用いてシリンダー温度230℃で溶融押出して耐衝撃材3を得た。得られた耐衝撃材3は、無水マレイン酸で変性されたエチレン/1−ブテン共重合体であり、エチレン/1−ブテン共重合体100重量部に対する変性量は2.0重量部である。具体的には、側鎖の一部分が無水マレイン酸で変性され、不飽和カルボン酸が導入されたエチレン/1−ブテン共重合体の重量が100重量部であるとき、導入された不飽和カルボン酸変性部の重量が2.0重量部である。 Impact resistant material 3: Maleic anhydride 2.1 based on 100 parts by weight of an ethylene / 1-butene copolymer having an MFR (190 ° C., 2160 g load) of 0.5 g / 10 minutes and a density of 0.862 g / cm 3. 0.1 parts by weight and 0.1 part by weight of peroxide (manufactured by Nichiyu Co., Ltd., trade name Perhexin 25B) were mixed and melt-extruded at a cylinder temperature of 230 ° C. using a twin-screw extruder to obtain an impact resistant material 3. .. The obtained impact resistant material 3 is an ethylene / 1-butene copolymer modified with maleic anhydride, and the amount of modification with respect to 100 parts by weight of the ethylene / 1-butene copolymer is 2.0 parts by weight. Specifically, when a part of the side chain is modified with maleic anhydride and the weight of the ethylene / 1-butene copolymer into which the unsaturated carboxylic acid has been introduced is 100 parts by weight, the introduced unsaturated carboxylic acid The weight of the modified portion is 2.0 parts by weight.
耐衝撃材4:MFR(190℃、2160g荷重)0.5g/10分、密度0.862g/cm3、であるエチレン/1−ブテン共重合体100重量部に対し、無水マレイン酸3.32重量部、過酸化物(日油(株)製、商品名パーヘキシン25B)0.25重量部を混合し、二軸押出機を用いてシリンダー温度230℃で溶融押出して耐衝撃材4を得た。得られた耐衝撃材4は、無水マレイン酸変性エチレン/1−ブテン共重合体であり、エチレン/1−ブテン共重合体100重量部に対する変性量は3.2重量部である。具体的には、側鎖の一部分が無水マレイン酸で変性され、不飽和カルボン酸が導入されたエチレン/1−ブテン共重合体の重量が100重量部であるとき、導入された不飽和カルボン酸変性部の重量が3.2重量部である。 Impact resistant material 4: MFR (190 ° C., 2160 g load) 0.5 g / 10 minutes, density 0.862 g / cm 3 , 100 parts by weight of ethylene / 1-butene copolymer, 3.32 maleic anhydride 0.25 parts by weight and 0.25 parts by weight of peroxide (manufactured by Nichiyu Co., Ltd., trade name Perhexin 25B) were mixed and melt-extruded at a cylinder temperature of 230 ° C. using a twin-screw extruder to obtain an impact resistant material 4. .. The obtained impact-resistant material 4 is a maleic anhydride-modified ethylene / 1-butene copolymer, and the amount of modification with respect to 100 parts by weight of the ethylene / 1-butene copolymer is 3.2 parts by weight. Specifically, when a part of the side chain is modified with maleic anhydride and the weight of the ethylene / 1-butene copolymer into which the unsaturated carboxylic acid has been introduced is 100 parts by weight, the introduced unsaturated carboxylic acid The weight of the modified portion is 3.2 parts by weight.
(金属ハロゲン化物(C)の原料と略号)
金属ハロゲン化物1:ヨウ化銅(I)(和光純薬工業(株)製)
金属ハロゲン化物2:ヨウ化カリウム(和光純薬工業(株)製)。
(Raw material and abbreviation for metal halide (C))
Metal halide 1: Copper iodide (I) (manufactured by Wako Pure Chemical Industries, Ltd.)
Metal halide 2: Potassium iodide (manufactured by Wako Pure Chemical Industries, Ltd.).
[実施例1〜6、比較例5、6]
表1、2記載の各原料を、シリンダー温度を240℃に設定し、ニーディングゾーンを1つ設けたスクリューアレンジとし、スクリュー回転数を150rpmとした2軸スクリュー押出機(JSW社製TEX30α−35BW−7V)(L/D=45(なお、ここでのLは原料供給口から吐出口までの長さであり、Dはスクリューの直径である。))に供給して溶融混練した。20kg/hの速度でダイから吐出されたガットを、10℃に温調した水を満たした冷却バス中を10秒間かけて通過させることにより急冷した後、ストランドカッターでペレタイズし、ペレットを得た。得られたペレットを、真空乾燥機で、温度80℃、12時間真空乾燥し、乾燥後ペレットを得た。得られたペレットから、プレスブロー成形機(OSSBERGER社製)を用いて、シリンダー温度260℃、金型温度80℃の成形条件で、長さ200mm、直径φ100mmの中空成形品を得た。中空成形品を用いて、前述の方法により評価した結果を表1、2に記載した。
[Examples 1 to 6, Comparative Examples 5 and 6]
Each of the raw materials shown in Tables 1 and 2 has a screw arrangement in which the cylinder temperature is set to 240 ° C. and one kneading zone is provided, and the screw rotation speed is 150 rpm. -7V) (L / D = 45 (where L is the length from the raw material supply port to the discharge port and D is the diameter of the screw)) and melt-kneaded. The gut discharged from the die at a speed of 20 kg / h was rapidly cooled by passing it through a cooling bath filled with water whose temperature was adjusted to 10 ° C. for 10 seconds, and then pelletized with a strand cutter to obtain pellets. .. The obtained pellets were vacuum dried at a temperature of 80 ° C. for 12 hours in a vacuum dryer to obtain pellets after drying. From the obtained pellets, a hollow molded product having a length of 200 mm and a diameter of φ100 mm was obtained under molding conditions of a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. using a press blow molding machine (manufactured by OSSBERGER). The results of evaluation by the above-mentioned method using the hollow molded product are shown in Tables 1 and 2.
実施例1は、ポリアミド6樹脂(A)として、PA6(ηr=3.4)を85重量部と、耐衝撃材2を15重量部と金属ハロゲン化物1を0.1重量部の組成で混練した。溶融混練時の樹脂温度は260℃であった。得られたペレットの溶融張力は40mN、破断時引き取り速度は>200m/minと良好であった。中空成形品は、欠陥点もなく、厚みの標準偏差は0.206と問題のない範囲であった。 In Example 1, as the polyamide 6 resin (A), PA6 (ηr = 3.4) is kneaded with 85 parts by weight, the impact resistant material 2 is kneaded with 15 parts by weight, and the metal halide 1 is kneaded with 0.1 parts by weight. bottom. The resin temperature during melt-kneading was 260 ° C. The melt tension of the obtained pellets was 40 mN, and the take-up speed at break was> 200 m / min, which was good. The hollow molded product had no defects, and the standard deviation of the thickness was 0.206, which was within a problem-free range.
実施例2は、実施例1のポリアミド6樹脂(A)を、PA6(ηr=4.4)に変更した以外は実施例1と同様とした。溶融混練時の樹脂温度は265℃であった。得られたペレットの耐衝撃材2の平均分散径は0.13μmと微細に分散していた。また、得られたペレットの溶融張力は70mN、破断時引き取り速度は150m/minと良好であった。中空成形品は、欠陥点もなく、厚みの標準偏差は0.082と良好であった。 Example 2 was the same as that of Example 1 except that the polyamide 6 resin (A) of Example 1 was changed to PA6 (ηr = 4.4). The resin temperature during melt-kneading was 265 ° C. The average dispersion diameter of the impact-resistant material 2 of the obtained pellets was 0.13 μm, which was finely dispersed. The melt tension of the obtained pellets was 70 mN, and the take-up speed at break was 150 m / min, which were good. The hollow molded product had no defects and had a good standard deviation of thickness of 0.082.
実施例3は、実施例1のポリアミド6樹脂(A)を、PA6(ηr=6.3)に変更した以外は実施例1と同様とした。溶融混練時の樹脂温度は287℃であった。得られたペレットの溶融張力は115mN、破断時引き取り速度は130m/minと良好であった。中空成形品は、欠陥点もなく、厚みの標準偏差は0.111と良好であった。 Example 3 was the same as that of Example 1 except that the polyamide 6 resin (A) of Example 1 was changed to PA6 (ηr = 6.3). The resin temperature during melt-kneading was 287 ° C. The melt tension of the obtained pellets was 115 mN, and the take-up speed at break was 130 m / min, which was good. The hollow molded product had no defects and had a good standard deviation of 0.111 in thickness.
実施例4は、実施例2の耐衝撃材2を、耐衝撃材3に変更した以外は実施例2と同様とした。溶融混練時の樹脂温度は272℃であった。得られたペレットの溶融張力は85mN、破断時引き取り速度は107m/minと良好であった。中空成形品は、欠陥点もなく、厚みの標準偏差は0.073と良好であった。 Example 4 was the same as that of Example 2 except that the impact resistant material 2 of Example 2 was changed to the impact resistant material 3. The resin temperature during melt-kneading was 272 ° C. The melt tension of the obtained pellets was 85 mN, and the take-up speed at break was 107 m / min, which were good. The hollow molded product had no defects and had a good standard deviation of thickness of 0.073.
実施例5は、金属ハロゲン化物を変更した以外は実施例2と同様とした。溶融混練時の樹脂温度は267℃であった。得られたペレットの溶融張力は73mN、破断時引き取り速度は165m/minと良好であった。中空成形品は、欠陥点もなく、厚みの標準偏差は0.065と良好であった。 Example 5 was the same as in Example 2 except that the metal halide was changed. The resin temperature during melt-kneading was 267 ° C. The melt tension of the obtained pellets was 73 mN, and the take-up speed at break was 165 m / min, which was good. The hollow molded product had no defects and had a good standard deviation of thickness of 0.065.
実施例6は、PA6と耐衝撃材2の比率を変更した以外は、実施例2と同様とした。溶融混練時の樹脂温度は258℃であった。得られたペレットの溶融張力は31mN、破断時引き取り速度は200m/minを超え、良好であった。中空成形品は、欠陥点もなく、厚みの標準偏差は0.177と問題のない範囲であった。 Example 6 was the same as that of Example 2 except that the ratio of PA6 and the impact resistant material 2 was changed. The resin temperature during melt-kneading was 258 ° C. The melt tension of the obtained pellets was 31 mN, and the take-up speed at break exceeded 200 m / min, which was good. The hollow molded product had no defects, and the standard deviation of the thickness was 0.177, which was within a problem-free range.
一方、比較例5は、金属ハロゲン化物(C)がなく、中空成形品には欠陥点はないものの、焼けが発生した。比較例6は、PA6(ηr=3.0)とPA6/PA66共重合体(ηr=4.2)、耐衝撃材2を用い、それぞれの比率を変更した。得られたペレットの溶融張力は18mNと小さく、破断時引き取り速度は180m/minであった。中空成形品には欠陥点が発生し、厚みの標準偏差は0.380であった。 On the other hand, in Comparative Example 5, although there was no metal halide (C) and there were no defects in the hollow molded product, burning occurred. In Comparative Example 6, PA6 (ηr = 3.0), PA6 / PA66 copolymer (ηr = 4.2), and impact-resistant material 2 were used, and their respective ratios were changed. The melt tension of the obtained pellets was as small as 18 mN, and the take-up speed at break was 180 m / min. Defects occurred in the hollow molded product, and the standard deviation of the thickness was 0.380.
[比較例1〜3]
表2記載の各原料を、シリンダー温度を240℃に設定し、ニーディングゾーンを1つ設けたスクリューアレンジとし、スクリュー回転数を150rpmとした2軸スクリュー押出機(JSW社製TEX30α−35BW−7V)(L/D=45(なお、ここでのLは原料供給口から吐出口までの長さであり、Dはスクリューの直径である。))に供給して溶融混練した。20kg/hの速度でダイから吐出されたガットを、10℃に温調した水を満たした冷却バス中を10秒間かけて通過させることにより急冷した後、ストランドカッターでペレタイズし、ペレットを得た。得られたペレットを、真空乾燥機で、温度80℃、12時間真空乾燥し、乾燥後ペレットを得た。得られたペレットから、プレスブロー成形機(OSSBERGER社製)を用いて、シリンダー温度260℃、金型温度80℃の成形条件でプレスブロー成形を行ったが、ドローダウンが起こり、中空成形品を得ることが出来なかった。
[Comparative Examples 1 to 3]
Each raw material shown in Table 2 has a screw arrangement in which the cylinder temperature is set to 240 ° C. and one kneading zone is provided, and the screw rotation speed is 150 rpm. ) (L / D = 45 (where L is the length from the raw material supply port to the discharge port and D is the diameter of the screw)) and melt-kneaded. The gut discharged from the die at a speed of 20 kg / h was rapidly cooled by passing it through a cooling bath filled with water whose temperature was adjusted to 10 ° C. for 10 seconds, and then pelletized with a strand cutter to obtain pellets. .. The obtained pellets were vacuum dried at a temperature of 80 ° C. for 12 hours in a vacuum dryer to obtain pellets after drying. From the obtained pellets, press blow molding was performed using a press blow molding machine (manufactured by OSSBERGER) under molding conditions of a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. I couldn't get it.
なお、比較例1と2において、PA6(ηr=2.7)を用いた。得られたペレットの溶融張力は、比較例1では9mN、比較例2では14mNと小さく、破断時引き取り速度は200m/minを超えた。比較例3は、耐衝撃材1(不飽和カルボン酸変性なし)を用いた。得られたペレットの溶融張力は18mNと小さく、破断時引き取り速度も25m/minと低かった。 In Comparative Examples 1 and 2, PA6 (ηr = 2.7) was used. The melt tension of the obtained pellets was as small as 9 mN in Comparative Example 1 and 14 mN in Comparative Example 2, and the take-up speed at break exceeded 200 m / min. In Comparative Example 3, an impact resistant material 1 (without unsaturated carboxylic acid modification) was used. The melt tension of the obtained pellets was as small as 18 mN, and the take-up speed at break was as low as 25 m / min.
[比較例4]
表2記載の各原料を、シリンダー温度を240℃に設定し、ニーディングゾーンを1つ設けたスクリューアレンジとし、スクリュー回転数を150rpmとした2軸スクリュー押出機(JSW社製TEX30α−35BW−7V)(L/D=45(なお、ここでのLは原料供給口から吐出口までの長さであり、Dはスクリューの直径である。))に供給して溶融混練した。20kg/hの速度でダイから吐出されたガットを、10℃に温調した水を満たした冷却バス中を10秒間かけて通過させることにより急冷した後、ストランドカッターでペレタイズし、ペレットを得た。得られたペレットを、真空乾燥機で、温度80℃、12時間真空乾燥し、乾燥後ペレットを得た。得られたペレットから、プレスブロー成形機(OSSBERGER社製)を用いて、シリンダー温度260℃、金型温度80℃の成形条件でプレスブロー成形を行ったが、エアーを吹き込んだ際に、パリソンが破れ、中空成形品を得ることが出来なかった。
[Comparative Example 4]
For each raw material shown in Table 2, a twin-screw extruder (TEX30α-35BW-7V manufactured by JSW) having a cylinder temperature of 240 ° C., a screw arrangement with one kneading zone, and a screw rotation speed of 150 rpm. ) (L / D = 45 (where L is the length from the raw material supply port to the discharge port and D is the diameter of the screw)) and melt-kneaded. The gut discharged from the die at a speed of 20 kg / h was rapidly cooled by passing it through a cooling bath filled with water whose temperature was adjusted to 10 ° C. for 10 seconds, and then pelletized with a strand cutter to obtain pellets. .. The obtained pellets were vacuum dried at a temperature of 80 ° C. for 12 hours in a vacuum dryer to obtain pellets after drying. From the obtained pellets, press blow molding was performed using a press blow molding machine (manufactured by OSSBERGER) under molding conditions of a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. It was torn and a hollow molded product could not be obtained.
なお、比較例4は、耐衝撃材4(不飽和カルボン酸変性量が3.2重量部)を用いた。得られたペレットの溶融張力は92mNであったが、破断時引き取り速度が38m/minと低かった。 In Comparative Example 4, an impact resistant material 4 (unsaturated carboxylic acid modification amount of 3.2 parts by weight) was used. The melt tension of the obtained pellets was 92 mN, but the take-up speed at break was as low as 38 m / min.
[比較例7]
表2記載の各原料を、シリンダー温度を225℃に設定し、ニーディングゾーンを1つ設けたスクリューアレンジとし、スクリュー回転数を100rpmとした2軸スクリュー押出機(JSW社製TEX30α−35BW−7V)(L/D=45(なお、ここでのLは原料供給口から吐出口までの長さであり、Dはスクリューの直径である。))に供給して溶融混練した。20kg/hの速度でダイから吐出されたガットを、10℃に温調した水を満たした冷却バス中を10秒間かけて通過させることにより急冷した後、ストランドカッターでペレタイズし、ペレットを得た。得られたペレットを、真空乾燥機で、温度80℃、12時間真空乾燥し、乾燥後ペレットを得た。得られたペレットから、プレスブロー成形機(OSSBERGER社製)を用いて、シリンダー温度260℃、金型温度80℃の成形条件で、長さ200mm、直径φ100mmの中空成形品を得た。中空成形品を用いて、前述の方法により評価した結果を表2に記載した。
[Comparative Example 7]
For each raw material shown in Table 2, a twin-screw extruder (TEX30α-35BW-7V manufactured by JSW) having a cylinder temperature of 225 ° C., a screw arrangement with one kneading zone, and a screw rotation speed of 100 rpm. ) (L / D = 45 (where L is the length from the raw material supply port to the discharge port and D is the diameter of the screw)) and melt-kneaded. The gut discharged from the die at a speed of 20 kg / h was rapidly cooled by passing it through a cooling bath filled with water whose temperature was adjusted to 10 ° C. for 10 seconds, and then pelletized with a strand cutter to obtain pellets. .. The obtained pellets were vacuum dried at a temperature of 80 ° C. for 12 hours in a vacuum dryer to obtain pellets after drying. From the obtained pellets, a hollow molded product having a length of 200 mm and a diameter of φ100 mm was obtained under molding conditions of a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. using a press blow molding machine (manufactured by OSSBERGER). Table 2 shows the results of evaluation by the above-mentioned method using a hollow molded product.
比較例7は、樹脂組成は実施例2と同様であったが、溶融時の樹脂温度は232℃と低かった。得られたペレットの耐衝撃材2の平均分散径は0.62μmと粗大に分散しており、得られたペレットの溶融張力は19mNと低く、破断時引き取り速度は65m/minであった。中空成形品には、欠陥点が発生し、厚みの標準偏差は0.320とばらつきが大きかった。 In Comparative Example 7, the resin composition was the same as that of Example 2, but the resin temperature at the time of melting was as low as 232 ° C. The average dispersion diameter of the impact-resistant material 2 of the obtained pellets was coarsely dispersed as 0.62 μm, the melt tension of the obtained pellets was as low as 19 mN, and the take-up speed at break was 65 m / min. Defect points were generated in the hollow molded product, and the standard deviation of the thickness was 0.320, which was a large variation.
[比較例8]
表2記載の各原料を、シリンダー温度を300℃に設定し、ニーディングゾーンを3つ設けたスクリューアレンジとし、スクリュー回転数を300rpmとした2軸スクリュー押出機(JSW社製TEX30α−35BW−7V)(L/D=45(なお、ここでのLは原料供給口から吐出口までの長さであり、Dはスクリューの直径である。))に供給して溶融混練した。20kg/hの速度でダイから吐出されたガットを、10℃に温調した水を満たした冷却バス中を10秒間かけて通過させることにより急冷した後、ストランドカッターでペレタイズし、ペレットを得た。得られたペレットを、真空乾燥機で、温度80℃、12時間真空乾燥し、乾燥後ペレットを得た。得られたペレットから、プレスブロー成形機(OSSBERGER社製)を用いて、シリンダー温度260℃、金型温度80℃の成形条件で、長さ200mm、直径φ100mmの中空成形品を得た。中空成形品を用いて、前述の方法により評価した結果を表2に記載した。
[Comparative Example 8]
Each raw material shown in Table 2 is a twin-screw extruder (TEX30α-35BW-7V manufactured by JSW) in which the cylinder temperature is set to 300 ° C., the screw arrangement is provided with three kneading zones, and the screw rotation speed is 300 rpm. ) (L / D = 45 (where L is the length from the raw material supply port to the discharge port and D is the diameter of the screw)) and melt-kneaded. The gut discharged from the die at a speed of 20 kg / h was rapidly cooled by passing it through a cooling bath filled with water whose temperature was adjusted to 10 ° C. for 10 seconds, and then pelletized with a strand cutter to obtain pellets. .. The obtained pellets were vacuum dried at a temperature of 80 ° C. for 12 hours in a vacuum dryer to obtain pellets after drying. From the obtained pellets, a hollow molded product having a length of 200 mm and a diameter of φ100 mm was obtained under molding conditions of a cylinder temperature of 260 ° C. and a mold temperature of 80 ° C. using a press blow molding machine (manufactured by OSSBERGER). Table 2 shows the results of evaluation by the above-mentioned method using a hollow molded product.
比較例8は、樹脂組成は実施例2と同様であったが、溶融時の樹脂温度は340℃と高かった。得られたペレットの溶融張力は19mNと低く、破断時引き取り速度は72m/minであった。中空成形品には、欠陥点が発生し、厚みの標準偏差は0.310とばらつきが大きかった。 In Comparative Example 8, the resin composition was the same as that of Example 2, but the resin temperature at the time of melting was as high as 340 ° C. The melt tension of the obtained pellets was as low as 19 mN, and the take-up speed at break was 72 m / min. Defect points were generated in the hollow molded product, and the standard deviation of the thickness was 0.310, which was a large variation.
以上の結果から、ポリアミド6樹脂(A)、耐衝撃材(B)と金属ハロゲン化物(C)を配合してなるポリアミド樹脂組成物であって、ポリアミド樹脂組成物の260℃で測定したときの溶融張力が20mNであり、かつ260℃で測定したときの破断時引き取り速度が50m/minであるポリアミド樹脂組成物を用いてプレスブロー成形法により中空成形品を形成することで、高圧水素の充填および放圧を繰り返しても欠陥点や割れの発生が抑制されており、かつ滞留安定性にも優れる中空成形品を初めて得ることができることがわかった。 From the above results, it is a polyamide resin composition comprising a polyamide 6 resin (A), an impact resistant material (B) and a metal halide (C), and is measured at 260 ° C. of the polyamide resin composition. Filling with high-pressure hydrogen by forming a hollow molded product by a press blow molding method using a polyamide resin composition having a melt tension of 20 mN and a take-back speed at break of 50 m / min when measured at 260 ° C. It was also found that a hollow molded product in which the occurrence of defect points and cracks is suppressed and the retention stability is excellent can be obtained for the first time even if the pressure is released repeatedly.
本発明の製造方法は、高圧水素の充填および放圧を繰り返しても欠陥点や割れの発生を抑制できる、高圧水素に触れる中空成形品を得られることから極めて有用である。 The production method of the present invention is extremely useful because a hollow molded product that comes into contact with high-pressure hydrogen can be obtained, which can suppress the occurrence of defect points and cracks even when the high-pressure hydrogen is repeatedly filled and released.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020077930A JP2021172017A (en) | 2020-04-27 | 2020-04-27 | Method for manufacturing hollow molding in contact with high-pressure hydrogen |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020077930A JP2021172017A (en) | 2020-04-27 | 2020-04-27 | Method for manufacturing hollow molding in contact with high-pressure hydrogen |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021172017A true JP2021172017A (en) | 2021-11-01 |
Family
ID=78281281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020077930A Pending JP2021172017A (en) | 2020-04-27 | 2020-04-27 | Method for manufacturing hollow molding in contact with high-pressure hydrogen |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2021172017A (en) |
-
2020
- 2020-04-27 JP JP2020077930A patent/JP2021172017A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6780789B2 (en) | Polyamide resin composition for blow molded products that come into contact with high-pressure hydrogen and blow molded products using it | |
WO2016136025A1 (en) | Polyamide resin composition for molded article to be in contact with high-pressure hydrogen, and molded article obtained therefrom | |
JP5928668B1 (en) | Polyamide resin composition for molded articles that come into contact with high-pressure hydrogen and molded articles using the same | |
JP2017088661A (en) | Polyamide resin composition and blow molded article made therefrom | |
JP2020117637A (en) | Polyamide resin composition for molded product that comes into contact with high pressure hydrogen and molded product therewith | |
JP6838428B2 (en) | Polyamide resin composition for molded products that come into contact with high-pressure hydrogen and molded products using it | |
JP2010235804A (en) | Thermoplastic resin material for automotive fuel parts | |
JP5935956B1 (en) | Polyamide resin composition for molded articles that come into contact with high-pressure hydrogen and molded articles using the same | |
JP2021172017A (en) | Method for manufacturing hollow molding in contact with high-pressure hydrogen | |
JP2021172018A (en) | Method for manufacturing hollow molding in contact with high-pressure hydrogen | |
KR102695273B1 (en) | Polyamide resin composition for extrusion molding exposed to high pressure hydrogen and extrusion molding using the same | |
JP7517031B2 (en) | Blow molded product exposed to high-pressure hydrogen and manufacturing method of blow molded product exposed to high-pressure hydrogen | |
JP2022091118A (en) | Hollow molding, and method for manufacturing hollow molding | |
JP7409876B2 (en) | Polyamide resin composition for blow molding of seamless long liner for hydrogen tank and seamless long liner for hydrogen tank | |
JP7409875B2 (en) | Polyamide resin composition for blow molding of seamless long liner for hydrogen tank and seamless long liner for hydrogen tank | |
JP2019108526A (en) | Polyamide resin composition for deposition, and molded article using the same | |
JP4359065B2 (en) | Polyamide resin composition containing laminated film waste, production method and molded product | |
JP2019189678A (en) | Double layer pellet, and manufacturing method of container | |
JP2023012422A (en) | Polyamide resin composition for injection molding in contact with high-pressure hydrogen, injection molding and tank liner for high-pressure hydrogen using the same, and tank for high-pressure hydrogen |