JP2021169055A - 遠心式流動場分画システム - Google Patents

遠心式流動場分画システム Download PDF

Info

Publication number
JP2021169055A
JP2021169055A JP2020072200A JP2020072200A JP2021169055A JP 2021169055 A JP2021169055 A JP 2021169055A JP 2020072200 A JP2020072200 A JP 2020072200A JP 2020072200 A JP2020072200 A JP 2020072200A JP 2021169055 A JP2021169055 A JP 2021169055A
Authority
JP
Japan
Prior art keywords
flow path
port
mobile phase
liquid sample
centrifugal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020072200A
Other languages
English (en)
Other versions
JP7380400B2 (ja
Inventor
健吾 青木
Kengo Aoki
竜太郎 小田
Ryutaro Oda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2020072200A priority Critical patent/JP7380400B2/ja
Publication of JP2021169055A publication Critical patent/JP2021169055A/ja
Application granted granted Critical
Publication of JP7380400B2 publication Critical patent/JP7380400B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Centrifugal Separators (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

【課題】流路内に沈降された液体試料中の粒子が流路内から導出されるまでの経路を短縮することができる遠心式流動場分画システムを提供する。【解決手段】導入機構8が、第1通過口162を介して流路内に液体試料を導入させる。回転駆動部がロータを回転させることにより、流路内における液体試料中の粒子を遠心力によって沈降させる。導出機構9が、液体試料の導入時とは逆方向に沿って流路内に移動相を導入させることにより、流路内に沈降された液体試料中の粒子を第1通過口162から導出させる。【選択図】 図4A

Description

本発明は、遠心式流動場分画システムに関する。
液体試料に含まれる粒子をサイズ及び比重に応じて分級する方法として、FFF(Field Flow Fractionation:流動場分画法)が知られている。FFFは、非対称フロー分画法及び遠心式流動場分画法などの各種分析法に細分される。
遠心式流動場分画法を用いて粒子を分級する遠心式流動場分画システムは、一般的に、円環状のロータと、当該ロータの周面に沿って設けられた円弧状の流路部材とを備えている(例えば、下記特許文献1参照)。流路部材内には、周方向に延びる流路が形成されており、当該流路内に液体試料が流入する。このような遠心式流動場分画システムでは、ロータを回転させることにより、当該ロータに取り付けられている流路部材を回転させ、流路内の液体試料に含まれる粒子に対して遠心力を付与することができる。
流路部材には、周方向の一端部に流入口が形成され、他端部に流出口が形成されている。分析時には、まず、流路内に移動相を送液しながらロータを回転させる。移動相は、流入口から流路内に流入し、周方向の一端部から他端部まで流路内を通過した後、流出口から流出する。そして、ロータの回転数を一定に維持した状態で、試料注入装置から移動相に試料が注入される。試料が注入された移動相は、液体試料として流入口から流路内に流入する。
その後、ロータの回転数が一定のまま所定時間が経過すると、移動相の送液が停止される。移動相の送液が停止された後の所定時間は、そのままロータの回転数が一定で維持される。これにより、流路内の液体試料に含まれる粒子が遠心沈降する。その後、移動相の送液が再開されることにより分析が開始され、所定時間経過後にロータの回転数が徐々に低下(減衰)される。これにより、液体試料中のサイズ及び比重が小さい粒子から順に流出口から導出され、検出器へと送られる。
特表2014−518761号公報
液体試料が流入口から流路内に流入する際、ロータは回転しているため、液体試料中の各粒子には流路内に流入した直後から遠心力が作用する。そのため、各粒子の多くは流路内における流入口近傍に沈降する。その後に移動相の送液が再開され、所定時間経過後にロータの回転数が徐々に低下されたときには、流入口近傍に沈降していた多くの粒子が、流路内を通って下流側へと流れ、流出口から導出される。
したがって、各粒子が流路内を流入口近傍から流出口へと流れる過程で拡散しやすく、その結果、分解能が悪化するおそれがある。また、各粒子が流路内を流入口近傍から流出口まで流れて検出器へと導かれるため、分析時間が長くなる。
本発明は、上記実情に鑑みてなされたものであり、流路内に沈降された液体試料中の粒子が流路内から導出されるまでの経路を短縮することができる遠心式流動場分画システムを提供することを目的とする。
本発明の第1の態様は、ロータと、円弧状の流路部材と、導入機構と、回転駆動部と、導出機構とを備える遠心式流動場分画システムである。前記ロータは、回転軸線を中心に回転する。前記流路部材は、前記ロータに取り付けられ、内部に液体試料の流路が形成されるとともに、前記流路に連通する液体試料の通過口が形成されている。前記導入機構は、前記通過口を介して前記流路内に液体試料を導入させる。前記回転駆動部は、前記ロータを回転させることにより、前記流路内における液体試料中の粒子を遠心力によって沈降させる。前記導出機構は、液体試料の導入時とは逆方向に沿って前記流路内に移動相を導入させることにより、前記流路内に沈降された液体試料中の粒子を前記通過口から導出させる。
本発明の第1の態様によれば、通過口を介して流路内に導入され、遠心力によって通過口近傍に沈降された液体試料中の粒子が、液体試料の導入時とは逆方向に沿って流路内に導入される移動相によって、再び通過口から導出される。これにより、通過口近傍に沈降された粒子を通過口から直ぐに導出させることができる。したがって、流路内に沈降された液体試料中の粒子が流路内から導出されるまでの経路を短縮することができる。
第1実施形態に係る遠心式流動場分画装置を備えた遠心式流動場分画システムの構成例を示す概略図である。 遠心式流動場分画装置の構成例を示す概略正面図である。 流路部材の構成例を示す概略斜視図である。 遠心式流動場分画システムの第1実施例を示す概略図であり、試料導入時の状態を示している。 遠心式流動場分画システムの第1実施例を示す概略図であり、遠心沈降時の状態を示している。 遠心式流動場分画システムの第1実施例を示す概略図であり、送液再開時の状態を示している。 遠心式流動場分画システムの第2実施例を示す概略図であり、試料導入時の状態を示している。 遠心式流動場分画システムの第2実施例を示す概略図であり、遠心沈降時の状態を示している。 遠心式流動場分画システムの第2実施例を示す概略図であり、送液再開時の状態を示している。 第2実施形態に係る遠心式流動場分画装置を備えた遠心式流動場分画システムの構成例を示す概略図である。 遠心式流動場分画システムの概略図であり、試料導入時の状態を示している。 遠心式流動場分画システムの概略図であり、遠心沈降時の状態を示している。 遠心式流動場分画システムの概略図であり、送液再開時の状態を示している。
1.遠心式流動場分画システムの第1実施形態
図1は、第1実施形態に係る遠心式流動場分画装置1を備えた遠心式流動場分画システムの構成例を示す概略図である。遠心式流動場分画装置1は、FFF(Field Flow Fractionation:流動場分画法)を用いて液体試料に含まれる粒子をサイズ及び比重に応じて分級する装置である。図1の遠心式流動場分画システムは、遠心式流動場分画装置1の他に、移動相貯留部2、送液ポンプ3、切替機構4、試料注入装置5、検出器6及び移動相回収部7などを備えている。
移動相貯留部2には、例えば水又は有機系溶媒などからなる移動相が貯留されている。移動相は、送液ポンプ3により移動相貯留部2内から送り出され、切替機構4を介して遠心式流動場分画装置1に導入される。試料注入装置5は、送液ポンプ3と切替機構4との間に設けられている。試料注入装置5から試料が注入された移動相は、液体試料として遠心式流動場分画装置1に導入される。
液体試料には、分析対象となる多数の粒子が含まれている。液体試料に含まれる粒子は、遠心式流動場分画装置1において遠心力が付与されることにより分級され、サイズ及び比重に応じて異なるタイミングで遠心式流動場分画装置1から導出される。遠心式流動場分画装置1から順次導出される粒子は、切替機構4を介して移動相とともに検出器6へと送られ、当該検出器6において検出された後、移動相回収部7に回収される。遠心式流動場分画装置1に対する液体試料の導入の開始又は停止は、切替機構4により切り替えることができる。
検出器6としては、例えば屈折率検出器、吸光度検出器又は光散乱検出器などを用いることができる。ただし、検出器6は、上記のような検出器に限られるものではなく、他の任意の種類の検出器を用いることが可能である。
2.遠心式流動場分画装置の具体的構成
図2は、遠心式流動場分画装置1の構成例を示す概略正面図である。遠心式流動場分画装置1は、回転軸11を中心に回転する回転部10と、回転軸11を回転可能に保持する保持台20と、回転する回転部10に作業者が接触するのを防止するための保護壁30とが組み立てられることにより構成されている。
回転部10は、例えば円筒形状に形成されており、その中心部に取り付けられた回転軸11が水平方向に延びるように保持台20により保持されている。保護壁30は、例えば回転部10の外周面に対応する形状に湾曲したU字状の部材である。保護壁30は、回転部10の外周面を覆うように、当該外周面に対して微小な間隔を隔てて対向した状態で保持台20に取り付けられている。
回転軸11は中空状に形成されており、移動相は、例えば回転軸11のいずれか一方の端部から回転軸11内に供給される。回転部10には、第1接続部12及び第2接続部13が設けられている。第1接続部12及び第2接続部13は、それぞれ配管(図示せず)を介して回転軸11内に連通している。回転軸11内に供給された移動相は、配管を介して第1接続部12又は第2接続部13から回転部10に導入される。切替機構4は、第1接続部12から回転部10に移動相を導入する状態と、第2接続部12から回転部10に移動相を導入する状態とを切り替えることができる。すなわち、切替機構4は、送液ポンプ3により送液される移動相の流通方向を切り替えることができる。
回転軸11には、回転駆動部の一例であるモータ40が連結されている。このモータ40の駆動により回転部10を回転させて、回転部10内の液体試料に遠心力を付与することができる。ただし、回転部10は、モータ40以外の回転駆動部を用いて回転させることも可能である。
回転部10は、例えばロータ14、スペーサ15、流路部材16、固定部材17及び楔状部材18などが組み立てられることにより、全体として円筒状の部材として構成されている。
ロータ14は、円環状の部材であり、一方の端面が端面壁141により塞がれている。端面壁141は円板状に形成され、その中央部に回転軸11が挿通される。回転軸11を端面壁141の中央部に挿通させて固定することにより、回転軸11の回転に伴って、当該回転軸11と同軸上の回転軸線Lを中心にロータ14を回転させることができる。
ロータ14の内側(回転軸線L側)の空間には、スペーサ15、流路部材16、固定部材17及び楔状部材18が収容される。スペーサ15、流路部材16及び固定部材17は、それぞれ長尺形状の部材が円弧状に湾曲された形状を有しており、ロータ14の内周面に沿って、この順序で積層された状態で取り付けられる。スペーサ15、流路部材16及び固定部材17の曲率半径は、例えば50〜200mm程度である。
流路部材16は、例えば厚みが1mm以下の薄板状であり、周方向の両端部が間隔を隔てて対向することによりC字状に形成されている。流路部材16の内部には、周方向に延びる流路(図示せず)が形成されている。流路部材16内の流路は、移動相の種類や分析の条件などに応じて異なる高さに設定される。そのため、流路部材16は、流路の高さに応じて異なる厚みに形成され、複数種類の流路部材16の中から最適な流路部材16が選択されることとなる。
流路部材16内の流路の一端部には第1接続部12が連通し、流路の他端部には第2接続部13が連通している。これにより、第1接続部12又は第2接続部13のいずれか一方から流路部材16の流路内に移動相を導入させ、他方から移動相を導出させることができる。
固定部材17は、流路部材16よりも厚みが大きい部材であり、例えば厚みが10mm程度に形成されている。固定部材17は、流路部材16と同様に、周方向の両端部が間隔を隔てて対向することによりC字状に形成されている。固定部材17の周方向の長さは、流路部材16の周方向の長さとほぼ一致している。固定部材17は、流路部材16の内側(回転軸線L側)に、流路部材16の内周面に沿って設けられ、固定部材17とロータ14との間に流路部材16が挟み込まれる。このとき、C字状の固定部材17の両端部間に楔状部材18が取り付けられることにより、当該両端部を拡げる方向に力が加えられる。
これにより、C字状の固定部材17がロータ14の内周面側に強く押し当てられ、流路部材16がロータ14側に押圧されて固定される。液体試料中の粒子を分級させる際には、ロータ14が高速で回転されることにより、流路部材16の流路内が高圧(例えば1MPa程度)となり、流路の内外の圧力差が大きくなる。このような場合であっても、固定部材17とロータ14との間に流路部材16を挟持することにより、流路部材16の外周面及び内周面が上記圧力差で流路側とは反対側(外側)に変形するのを防止することができる。
流路部材16とロータ14との間には、スペーサ15が挟持されている。スペーサ15の材質は、特に限定されるものではないが、例えばPET(Polyethylene Terephthalate)などの樹脂又は金属により形成されている。スペーサ15は、例えば厚みが1mm以下の薄板状であり、流路部材16の厚みに応じて異なる厚みのものが選択される。すなわち、スペーサ15の厚みと流路部材16の厚みとの合計値がほぼ一定となるように、最適な厚みを有するスペーサ15が選択される。また、スペーサ15は、ロータ14の内周面の損傷を防止する機能も有している。ただし、スペーサ15は省略することも可能である。
3.分級時の動作
図3は、流路部材16の構成例を示す概略斜視図である。流路部材16の内部には、その一端部から他端部まで円弧状に延びる流路161が形成されている。流路部材16の一端部には第1通過口162が形成され、他端部には第2通過口163が形成されている。第1通過口162は流路161の一端部に連通し、第2通過口163は流路161の他端部に連通している。液体試料は、第1通過口162を介して流路161内に導入され、液体試料に含まれる粒子Sが流路161内で遠心力により分級される。
液体試料中の粒子を分級させる際には、まず、流路部材16内の流路161に移動相を送液しながら、モータ40の駆動によって回転部10を回転させ、回転部10の回転数を徐々に上昇させる。そして、回転部10の回転数が所定値(初期回転数)に到達すると、その回転数を維持した状態で、試料注入装置5から移動相に試料が注入される。なお、図3に示すように、移動相への試料の注入時において流路161内を移動相が流れる方向は、回転部10の回転方向に対して逆方向である。
その後、回転部10の回転数が初期回転数で維持された状態のまま所定時間(インジェクション時間)が経過すると、流路161内への移動相の送液が停止される。移動相の送液が停止された後、所定時間(リラクゼーション時間)の間は、そのまま回転部10の回転数が初期回転数で維持される。これにより、流路161内で液体試料中の粒子が遠心力によって沈降する。そして、リラクゼーション時間が経過したタイミングで、流路161内への移動相の送液が再開される。このタイミングが分析開始のタイミングとなる。送液再開時には、液体試料の導入時とは逆方向(図3に示す方向とは逆方向)に沿って流路161内に移動相が導入される。
移動相の送液再開後も、所定時間(減衰開始時間)が経過するまでは、回転部10の回転数が初期回転数で維持される。そして、減衰開始時間が経過したタイミングで、回転部10の回転数が徐々に低下(減衰)される。これにより、流路161内に沈降された液体試料中の粒子が、サイズ及び比重が小さい粒子から順に流路161内から導出され、検出器6へと送られる。その後、回転部10の回転数を低下させ始めてから所定時間(減衰時間)が経過したタイミングで、回転部10の回転が停止されて分析が終了する。
4.第1実施例
図4A〜図4Cは、遠心式流動場分画システムの第1実施例を示す概略図である。図4Aは試料導入時、図4Bは遠心沈降時、図4Cは送液再開時の状態をそれぞれ示している。本実施例では、切替機構4が2つのマルチポートバルブ(第1バルブ41及び第2バルブ42)を備えている。
第1バルブ41は、例えば6つのポートP11〜P16を有する六方バルブにより構成されている。第1バルブ41は、複数の溝を有する弁体(図示せず)を含み、各溝が隣接するポートP11〜P16同士を連通させる。この第1バルブ41においては、弁体を回転させることにより、各溝が連通するポートP11〜P16の組み合わせを切り替えることができる。この例では、第1バルブ41の弁体が60°の単位で回転可能となっており、弁体の各溝も60°の角度範囲で周方向に延びている。図4A及び図4Bでは、ポートP11とポートP12が連通し、ポートP13とポートP14が連通し、ポートP15とポートP16が連通している。一方、図4Cでは、ポートP12とポートP13が連通し、ポートP14とポートP15が連通し、ポートP16とポートP11が連通している。
同様に、第2バルブ42は、例えば6つのポートP21〜P26を有する六方バルブにより構成されている。第2バルブ42は、複数の溝を有する弁体(図示せず)を含み、各溝が隣接するポートP21〜P26同士を連通させる。この第2バルブ42においては、弁体を回転させることにより、各溝が連通するポートP21〜P26の組み合わせを切り替えることができる。この例では、第2バルブ42の弁体が60°の単位で回転可能となっており、弁体の各溝も60°の角度範囲で周方向に延びている。図4A及び図4Cでは、ポートP21とポートP22が連通し、ポートP23とポートP24が連通し、ポートP25とポートP26が連通している。一方、図4Bでは、ポートP22とポートP23が連通し、ポートP24とポートP25が連通し、ポートP26とポートP21が連通している。
第1バルブ41のポートP11は、送液ポンプ3に連通している。第1バルブ41のポートP12は、第2バルブ42のポートP21に連通している。第1バルブ41のポートP13は、検出器6に連通している。第1バルブ41のポートP14は、第1バルブ41のポートP16に連通している。第1バルブ41のポートP15は、第2バルブ42のポートP24に連通している。
第2バルブ42のポートP22は、遠心式流動場分画装置1における流路部材16の第1通過口162に連通している。第2バルブ42のポートP23は、遠心式流動場分画装置1における流路部材16の第2通過口163に連通している。第2バルブ42のポートP25は、第2バルブ42のポートP26に連通している。
試料導入時には、まず図4Aのように、第1バルブ41のポートP11とポートP12を連通させ、ポートP13とポートP14を連通させ、ポートP15とポートP16を連通させた状態とする。また、第2バルブ42のポートP21とポートP22を連通させ、ポートP23とポートP24を連通させ、ポートP25とポートP26を連通させた状態とする。
この図4Aの状態において、切替機構4は第1の状態であり、流路部材16の流路161内に第1通過口162から移動相が導入される。すなわち、送液ポンプ3から送液される移動相は、第1バルブ41のポートP11及びポートP12、第2バルブ42のポートP21及びポートP22を介して、第1通過口162から遠心式流動場分画装置1の流路161内に導入される。流路161内を通過した移動相は第2通過口163から導出され、第2バルブ42のポートP23及びポートP24、第1バルブ41のポートP15、ポートP16、ポートP14及びポートP13を介して、検出器6へと導かれる。
この状態で試料注入装置5から移動相に試料が注入されることにより、液体試料が第1通過口162から流路部材16の流路161内に導入される。このように、送液ポンプ3、切替機構4及び試料注入装置5は、第1通過口162を介して流路161内に液体試料を導入させる導入機構8を構成している。このとき、回転部10は、初期回転数が維持された状態で回転している。
遠心沈降時(リラクゼーション時間)には、図4Bのように第2バルブ42が切り替えられることにより、第2バルブ42のポートP22とポートP23が連通し、ポートP24とポートP25が連通し、ポートP26とポートP21が連通した状態となる。このとき、第1バルブ41は図4Aの状態(試料導入時)のままである。
この図4Bの状態では、送液ポンプ3から送液される移動相は、第1バルブ41のポートP11及びポートP12、第2バルブ42のポートP21、ポートP26、ポートP25及びポートP24、第1バルブ41のポートP15、ポートP16、ポートP14及びポートP13を介して、検出器6へと導かれる。すなわち、移動相は遠心式流動場分画装置1の流路161内を通過せず、流路161内への移動相の送液が停止される。
この状態で、回転部10が初期回転数のまま維持されることにより、流路161内で液体試料中の粒子が遠心力によって沈降する。図4Aの状態で液体試料が第1通過口162から流路161内に導入される際、回転部10は回転しているため、液体試料中の各粒子には流路161内に導入された直後から遠心力が作用する。したがって、その後に図4Bの状態となり、液体試料中の各粒子が流路161内で沈降する際には、各粒子の多くは流路161内における第1通過口162近傍に沈降する。
送液再開時(分析開始時)には、図4Cのように第1バルブ41及び第2バルブ42が切り替えられる。この図4Cの状態では、第1バルブ41のポートP12とポートP13が連通し、ポートP14とポートP15が連通し、ポートP16とポートP11が連通した状態となる。また、第2バルブ42のポートP21とポートP22が連通し、ポートP23とポートP24が連通し、ポートP25とポートP26が連通した状態となる。
これにより、切替機構4が図4Aのような第1の状態とは異なる第2の状態に切り替えられ、図4Aの状態(試料導入時)とは逆方向に沿って流路161内に移動相が導入される。すなわち、送液ポンプ3から送液される移動相は、第1バルブ41のポートP11、ポートP16、ポートP14及びポートP15、第2バルブ42のポートP24及びポートP23を介して、第2通過口163から遠心式流動場分画装置1の流路161内に導入される。流路161内を通過した移動相は第1通過口162から導出され、第2バルブ42のポートP22及びポートP21、第1バルブ41のポートP12及びポートP13を介して、検出器6へと導かれる。
この状態で、回転部10の回転数が徐々に低下されることにより、流路161内に沈降された各粒子が、サイズ及び比重が小さい粒子から順に第1通過口162から導出され、検出器6へと導かれる。このように、送液ポンプ3及び切替機構4は、液体試料の導入時とは逆方向に沿って流路161内に移動相を導入させることにより、流路161内に沈降された液体試料中の粒子を第1通過口162から導出させる導出機構9を構成している。
本実施例では、第1の状態(図4A)と第2の状態(図4C)とで、切替機構4における第1バルブ41及び第2バルブ42の切替状態の組み合わせが異なる。ただし、切替機構4は、2つのマルチポートバルブを備えた構成に限らず、3つ以上のマルチポートバルブを備えていてもよいし、マルチポートバルブを1つだけ備えた構成であってもよい。また、切替機構4に含まれるバルブは、六方バルブに限らず、他のマルチポートバルブであってもよいし、複数の二方バルブを組み合わせることによって切替機構4が構成されていてもよい。また、切替機構4は、バルブ以外の切替部材を用いて流路を切り替えるものであってもよい。
5.第2実施例
図5A〜図5Cは、遠心式流動場分画システムの第2実施例を示す概略図である。図5Aは試料導入時、図5Bは遠心沈降時、図5Cは送液再開時の状態をそれぞれ示している。本実施例では、切替機構4が1つのマルチポートバルブ(バルブ43)を備えている。
バルブ43は、例えば6つのポートP31〜P36を有する六方バルブにより構成されている。バルブ43は、複数の溝を有する弁体(図示せず)を含み、各溝が隣接するポートP31〜P36同士を連通させる。このバルブ43においては、弁体を回転させることにより、各溝が連通するポートP31〜P36の組み合わせを切り替えることができる。この例では、バルブ43の弁体が30°の単位で回転可能となっている。弁体の各溝は、30°よりも大きい角度範囲で周方向に延びており、図5A〜図5Cのように、60°の角度範囲で周方向に延びる溝と、90°の角度範囲で周方向に延びる溝が含まれていてもよい。
バルブ43のポートP31は、送液ポンプ3に連通している。バルブ43のポートP32は、遠心式流動場分画装置1における流路部材16の第1通過口162に連通している。バルブ43のポートP33は、検出器6に連通している。バルブ43のポートP34は、バルブ43のポートP36に連通している。バルブ43のポートP35は、遠心式流動場分画装置1における流路部材16の第2通過口163に連通している。
試料導入時には、まず図5Aのように、バルブ43のポートP31とポートP32を連通させ、ポートP33とポートP34を連通させ、ポートP35とポートP36を連通させた状態とする。この図5Aの状態において、切替機構4は第1の状態であり、流路部材16の流路161内に第1通過口162から移動相が導入される。すなわち、送液ポンプ3から送液される移動相は、バルブ43のポートP31及びポートP32を介して、第1通過口162から遠心式流動場分画装置1の流路161内に導入される。流路161内を通過した移動相は第2通過口163から導出され、バルブ43のポートP35、ポートP36、ポートP34及びポートP33を介して、検出器6へと導かれる。
この状態で試料注入装置5から移動相に試料が注入されることにより、液体試料が第1通過口162から流路部材16の流路161内に導入される。このように、送液ポンプ3、切替機構4及び試料注入装置5は、第1通過口162を介して流路161内に液体試料を導入させる導入機構8を構成している。このとき、回転部10は、初期回転数が維持された状態で回転している。
遠心沈降時(リラクゼーション時間)には、図5Bのようにバルブ43が切り替えられることにより、バルブ43のポートP33とポートP34が連通し、ポートP36とポートP31が連通した状態となる。このとき、バルブ43のポートP32及びポートP35は、他のポートに連通していない。
この図5Bの状態では、送液ポンプ3から送液される移動相は、バルブ43のポートP31、ポートP36、ポートP34及びポートP33を介して、検出器6へと導かれる。すなわち、移動相は遠心式流動場分画装置1の流路161内を通過せず、流路161内への移動相の送液が停止される。
この状態で、回転部10が初期回転数のまま維持されることにより、流路161内で液体試料中の粒子が遠心力によって沈降する。図5Aの状態で液体試料が第1通過口162から流路161内に導入される際、回転部10は回転しているため、液体試料中の各粒子には流路161内に導入された直後から遠心力が作用する。したがって、その後に図5Bの状態となり、液体試料中の各粒子が流路161内で沈降する際には、各粒子の多くは流路161内における第1通過口162近傍に沈降する。
送液再開時(分析開始時)には、図5Cのようにバルブ43が切り替えられる。この図5Cの状態では、バルブ43のポートP32とポートP33が連通し、ポートP34とポートP35が連通し、ポートP36とポートP31が連通した状態となる。
これにより、切替機構4が図5Aのような第1の状態とは異なる第2の状態に切り替えられ、図5Aの状態(試料導入時)とは逆方向に沿って流路161内に移動相が導入される。すなわち、送液ポンプ3から送液される移動相は、バルブ43のポートP31、ポートP36、ポートP34及びポートP35を介して、第2通過口163から遠心式流動場分画装置1の流路161内に導入される。流路161内を通過した移動相は第1通過口162から導出され、バルブ43のポートP32及びポートP33を介して、検出器6へと導かれる。
この状態で、回転部10の回転数が徐々に低下されることにより、流路161内に沈降された各粒子が、サイズ及び比重が小さい粒子から順に第1通過口162から導出され、検出器6へと導かれる。このように、送液ポンプ3及び切替機構4は、液体試料の導入時とは逆方向に沿って流路161内に移動相を導入させることにより、流路161内に沈降された液体試料中の粒子を第1通過口162から導出させる導出機構9を構成している。
このように、本実施例では、第1の状態(図5A)と第2の状態(図5C)とで、切替機構4におけるバルブ43の切替状態が異なる。
6.遠心式流動場分画システムの第2実施形態
図6は、第2実施形態に係る遠心式流動場分画装置1を備えた遠心式流動場分画システムの構成例を示す概略図である。図6の遠心式流動場分画システムは、遠心式流動場分画装置1の他に、移動相貯留部2、第1送液ポンプ31、第2送液ポンプ32、第1バルブ44、第2バルブ45、試料注入装置5、検出器6及び移動相回収部7などを備えている。遠心式流動場分画装置1の具体的構成は第1実施形態と同様であるため、詳細な説明を省略する。
移動相貯留部2には、例えば水又は有機系溶媒などからなる移動相が貯留されている。移動相は、第1送液ポンプ31又は第2送液ポンプ32により移動相貯留部2内から送り出され、遠心式流動場分画装置1に導入される。試料注入装置5は、第1送液ポンプ31と遠心式流動場分画装置1との間に設けられている。試料注入装置5から試料が注入された移動相は、液体試料として遠心式流動場分画装置1に導入される。
検出器6は、試料注入装置5と遠心式流動場分画装置1の間から分岐した流路441、及び、第2送液ポンプ32と遠心式流動場分画装置1の間から分岐した流路451に、それぞれ連通している。すなわち、検出器6は、流路441を介して遠心式流動場分画装置1の第1通過口162に連通するとともに、流路451を介して遠心式流動場分画装置1の第2通過口163に連通している。
第1バルブ44及び第2バルブ45は、例えば二方バルブである。第1バルブ44は、流路441に設けられ、当該流路441内における移動相の通過を許容する状態と、移動相の通過を制限する状態とに切替可能である。第2バルブ45は、流路451に設けられ、当該流路451内における移動相の通過を許容する状態と、移動相の通過を制限する状態とに切替可能である。遠心式流動場分画装置1により分級された液体試料中の各粒子は検出器6へと送られ、当該検出器6において検出された後、移動相回収部7に回収される。
図7A〜図7Cは、遠心式流動場分画システムの概略図であり、図7Aは試料導入時、図7Bは遠心沈降時、図7Cは送液再開時の状態をそれぞれ示している。
試料導入時には、まず第1バルブ44が閉じられるとともに第2バルブ45が開かれた状態で、第1送液ポンプ31が駆動される。このとき、第2送液ポンプ32の駆動は停止している。これにより、図7Aに矢印で示すように、第1送液ポンプ31から送液される移動相が、第1通過口162から遠心式流動場分画装置1の流路161内に導入される。流路161内を通過した移動相は第2通過口163から導出され、流路451を介して検出器6へと導かれる。
この状態で試料注入装置5から移動相に試料が注入されることにより、液体試料が第1通過口162から流路部材16の流路161内に導入される。このように、第1送液ポンプ31及び試料注入装置5は、第1通過口162を介して流路161内に液体試料を導入させる導入機構8を構成している。このとき、回転部10は、初期回転数が維持された状態で回転している。
遠心沈降時(リラクゼーション時間)には、第1送液ポンプ31が駆動された状態のまま、第1バルブ44が開かれるとともに第2バルブ45が閉じられる。このとき、第2送液ポンプ32の駆動は停止した状態のままである。これにより、図7Bに矢印で示すように、第1送液ポンプ31から送液される移動相が、流路441を介して検出器6へと導かれる。すなわち、移動相は遠心式流動場分画装置1の流路161内を通過せず、流路161内への移動相の送液が停止される。
この状態で、回転部10が初期回転数のまま維持されることにより、流路161内で液体試料中の粒子が遠心力によって沈降する。図7Aの状態で液体試料が第1通過口162から流路161内に導入される際、回転部10は回転しているため、液体試料中の各粒子には流路161内に導入された直後から遠心力が作用する。したがって、その後に図7Bの状態となり、液体試料中の各粒子が流路161内で沈降する際には、各粒子の多くは流路161内における第1通過口162近傍に沈降する。
送液再開時(分析開始時)には、第1バルブ44が開かれるとともに第2バルブ45が閉じられた状態のまま、第1送液ポンプ31の駆動が停止され、第2送液ポンプ32が駆動される。これにより、図7Cに矢印で示すように、第2送液ポンプ32から送液される移動相が、第2通過口163から遠心式流動場分画装置1の流路161内に導入される。流路161内を通過した移動相は第1通過口162から導出され、流路441を介して検出器6へと導かれる。
この状態で、回転部10の回転数が徐々に低下されることにより、流路161内に沈降された各粒子が、サイズ及び比重が小さい粒子から順に第1通過口162から導出され、検出器6へと導かれる。このように、第2送液ポンプ32は、液体試料の導入時とは逆方向に沿って流路161内に移動相を導入させることにより、流路161内に沈降された液体試料中の粒子を第1通過口162から導出させる導出機構9を構成している。
このように、本実施形態では、導入機構8が、一方の送液ポンプ(第1送液ポンプ31)を駆動させることにより、流路161内に液体試料を導入させ(図7A)、導出機構9が、他方の送液ポンプ(第2送液ポンプ32)を駆動させることにより、液体試料の導入時とは逆方向に沿って流路161内に移動相を導入させる(図7C)。
7.態様
上述した複数の例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
(第1項)一態様に係る遠心式流動場分画システムは、
回転軸線を中心に回転するロータと、
前記ロータに取り付けられ、内部に液体試料の流路が形成されるとともに、前記流路に連通する液体試料の通過口が形成された円弧状の流路部材と、
前記通過口を介して前記流路内に液体試料を導入させる導入機構と、
前記ロータを回転させることにより、前記流路内における液体試料中の粒子を遠心力によって沈降させる回転駆動部と、
液体試料の導入時とは逆方向に沿って前記流路内に移動相を導入させることにより、前記流路内に沈降された液体試料中の粒子を前記通過口から導出させる導出機構とを備えていてもよい。
第1項に記載の遠心式流動場分画システムによれば、通過口を介して流路内に導入され、遠心力によって通過口近傍に沈降された液体試料中の粒子が、液体試料の導入時とは逆方向に沿って流路内に導入される移動相によって、再び通過口から導出される。これにより、通過口近傍に沈降された粒子を通過口から直ぐに導出させることができる。したがって、流路内に沈降された液体試料中の粒子が流路内から導出されるまでの経路を短縮することができる。
サイズ及び比重が小さい粒子は、作用する遠心力が小さいため、試料導入時に流路内で分布する距離が長くなる。したがって、保持可能な粒子のサイズ及び比重の下限に合わせて流路を長くする必要がある。このような理由で流路を長くした場合であっても、試料導入時とは逆方向に沿って流路内に移動相を導入することにより、サイズ及び比重が比較的大きい粒子を通過口から直ぐに導出させることができるため、当該粒子の分解能が向上する。また、流路を長くすれば、幅広いサイズ及び比重の粒子を分級することができる。
(第2項)第1項に記載の遠心式流動場分画システムにおいて、
移動相を送液する送液ポンプと、
前記送液ポンプにより送液される移動相の流通方向を切り替える切替機構とを備え、
前記導入機構は、前記切替機構を第1の状態にして前記流路内に液体試料を導入させ、
前記導出機構は、前記切替機構を前記第1の状態とは異なる第2の状態に切り替えることにより、液体試料の導入時とは逆方向に沿って前記流路内に移動相を導入させてもよい。
第2項に記載の遠心式流動場分画システムによれば、切替機構を第1の状態と第2の状態とで切り替えることにより、流路内に導入される移動相を容易に逆方向に切り替えることができる。
(第3項)第2項に記載の遠心式流動場分画システムにおいて、
前記切替機構は、複数のマルチポートバルブを含み、
前記第1の状態と前記第2の状態とで、前記複数のマルチポートバルブの切替状態の組み合わせが異なっていてもよい。
第3項に記載の遠心式流動場分画システムによれば、複数のマルチポートバルブの切替状態の組み合わせを異ならせるだけの簡単な構成で、流路内に導入される移動相を容易に逆方向に切り替えることができる。
(第4項)第2項に記載の遠心式流動場分画システムにおいて、
前記切替機構は、1つのマルチポートバルブを含み、
前記第1の状態と前記第2の状態とで、前記1つのマルチポートバルブの切替状態が異なっていてもよい。
第4項に記載の遠心式流動場分画システムによれば、1つのマルチポートバルブの切替状態を異ならせるだけの簡単な構成で、流路内に導入される移動相を容易に逆方向に切り替えることができる。
(第5項)第1項に記載の遠心式流動場分画システムにおいて、
移動相を送液する2つの送液ポンプを備え、
前記導入機構は、前記2つの送液ポンプの一方を駆動させることにより、前記流路内に液体試料を導入させ、
前記導出機構は、前記2つの送液ポンプの他方を駆動させることにより、液体試料の導入時とは逆方向に沿って前記流路内に移動相を導入させてもよい。
第5項に記載の遠心式流動場分画システムによれば、2つの送液ポンプの駆動を切り替えることにより、流路内に導入される移動相を容易に逆方向に切り替えることができる。
8.変形例
遠心式流動場分画装置1の構成は、図2に例示されるような構成に限られるものではなく、流路内における液体試料中の粒子を遠心力によって分級することができるような構成であれば、他の構成であってもよい。
通過口を介して流路内に液体試料を導入させる導入機構、及び、液体試料の導入時とは逆方向に沿って流路内に移動相を導入させる導出機構は、上記実施形態に例示されるような構成に限られるものではなく、送液ポンプ又はバルブなどの各種部材を任意に組み合わせて構成することが可能である。
遠心沈降時(リラクゼーション時間)には、移動相が流路内を通過することなく検出器に導かれるような構成に限らず、移動相の送液が停止されてもよい。また、送液再開時(分析開始時)から直ぐに移動相を逆方向に沿って流路内に導入させるのではなく、例えば、送液再開時から所定時間の間は、試料導入時と同様に移動相を流路内に導入させ、所定時間経過後に、試料導入時とは逆方向に沿って流路内に移動相を導入させてもよい。あるいは、液体試料に含まれる粒子のサイズ及び比重に応じて、送液再開時に流路内への移動相の導入方向を逆方向に切り替えるか否かを決定してもよい。
1 遠心式流動場分画装置
2 移動相貯留部
3 送液ポンプ
4 切替機構
5 試料注入装置
6 検出器
7 移動相回収部
8 導入機構
9 導出機構
10 回転部
11 回転軸
14 ロータ
16 流路部材
31 第1送液ポンプ
32 第2送液ポンプ
40 モータ
41 第1バルブ
42 第2バルブ
43 バルブ
44 第1バルブ
45 第2バルブ
161 流路
162 第1通過口
163 第2通過口

Claims (5)

  1. 回転軸線を中心に回転するロータと、
    前記ロータに取り付けられ、内部に液体試料の流路が形成されるとともに、前記流路に連通する液体試料の通過口が形成された円弧状の流路部材と、
    前記通過口を介して前記流路内に液体試料を導入させる導入機構と、
    前記ロータを回転させることにより、前記流路内における液体試料中の粒子を遠心力によって沈降させる回転駆動部と、
    液体試料の導入時とは逆方向に沿って前記流路内に移動相を導入させることにより、前記流路内に沈降された液体試料中の粒子を前記通過口から導出させる導出機構とを備える、遠心式流動場分画システム。
  2. 移動相を送液する送液ポンプと、
    前記送液ポンプにより送液される移動相の流通方向を切り替える切替機構とを備え、
    前記導入機構は、前記切替機構を第1の状態にして前記流路内に液体試料を導入させ、
    前記導出機構は、前記切替機構を前記第1の状態とは異なる第2の状態に切り替えることにより、液体試料の導入時とは逆方向に沿って前記流路内に移動相を導入させる、請求項1に記載の遠心式流動場分画システム。
  3. 前記切替機構は、複数のマルチポートバルブを含み、
    前記第1の状態と前記第2の状態とで、前記複数のマルチポートバルブの切替状態の組み合わせが異なる、請求項2に記載の遠心式流動場分画システム。
  4. 前記切替機構は、1つのマルチポートバルブを含み、
    前記第1の状態と前記第2の状態とで、前記1つのマルチポートバルブの切替状態が異なる、請求項2に記載の遠心式流動場分画システム。
  5. 移動相を送液する2つの送液ポンプを備え、
    前記導入機構は、前記2つの送液ポンプの一方を駆動させることにより、前記流路内に液体試料を導入させ、
    前記導出機構は、前記2つの送液ポンプの他方を駆動させることにより、液体試料の導入時とは逆方向に沿って前記流路内に移動相を導入させる、請求項1に記載の遠心式流動場分画システム。
JP2020072200A 2020-04-14 2020-04-14 遠心式流動場分画システム Active JP7380400B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020072200A JP7380400B2 (ja) 2020-04-14 2020-04-14 遠心式流動場分画システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020072200A JP7380400B2 (ja) 2020-04-14 2020-04-14 遠心式流動場分画システム

Publications (2)

Publication Number Publication Date
JP2021169055A true JP2021169055A (ja) 2021-10-28
JP7380400B2 JP7380400B2 (ja) 2023-11-15

Family

ID=78119354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020072200A Active JP7380400B2 (ja) 2020-04-14 2020-04-14 遠心式流動場分画システム

Country Status (1)

Country Link
JP (1) JP7380400B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034371A1 (ja) * 2022-08-10 2024-02-15 株式会社島津製作所 測定方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253756A (ja) * 1985-08-30 1987-03-09 Hitachi Koki Co Ltd 遠心分離機用ロ−タ
JPH01182736A (ja) * 1988-01-16 1989-07-20 Jeol Ltd 沈降場流動分画分析方法
US20060151403A1 (en) * 2005-01-07 2006-07-13 Universite De Limoges Separation device comprising a separation channel and a counter-channel
JP2008200566A (ja) * 2007-02-16 2008-09-04 Shimadzu Corp フィールドフローフラクショネーション装置
WO2018116441A1 (ja) * 2016-12-22 2018-06-28 株式会社島津製作所 遠心式流動場分画装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6253756A (ja) * 1985-08-30 1987-03-09 Hitachi Koki Co Ltd 遠心分離機用ロ−タ
JPH01182736A (ja) * 1988-01-16 1989-07-20 Jeol Ltd 沈降場流動分画分析方法
US20060151403A1 (en) * 2005-01-07 2006-07-13 Universite De Limoges Separation device comprising a separation channel and a counter-channel
JP2008200566A (ja) * 2007-02-16 2008-09-04 Shimadzu Corp フィールドフローフラクショネーション装置
WO2018116441A1 (ja) * 2016-12-22 2018-06-28 株式会社島津製作所 遠心式流動場分画装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034371A1 (ja) * 2022-08-10 2024-02-15 株式会社島津製作所 測定方法

Also Published As

Publication number Publication date
JP7380400B2 (ja) 2023-11-15

Similar Documents

Publication Publication Date Title
AU2017340293B2 (en) Apparatus for high-throughput rapid trapping of circulating tumor cells and method for purifying circulating tumor cells
US11318464B2 (en) Automated machine for sorting of biological fluids
US8333891B2 (en) Field flow fractionator with controllable cross flow along its length
US7442315B2 (en) Separation device comprising a separation channel and a counter-channel
CN1934129B (zh) 分级装置和分级方法
US20100055766A1 (en) Microfluidic cartridge for separating target molecules, and separator and method of separating target molecules using same
JP2021169055A (ja) 遠心式流動場分画システム
JP2016028242A (ja) 流体制御処理システム
CN104736718A (zh) 用于操纵流体样品中的组分的装置和方法
KR101636120B1 (ko) 집적형 회전 pcr 방법 및 이를 위한 집적형 회전 pcr용 마이크로칩
US20200408726A1 (en) Sealing a field flow fractionator
JP6371857B2 (ja) 粒子濾過装置および粒子濾過方法
EP2161562B1 (en) Device, system and method for storing and sorting cellular samples
CN110951579A (zh) 免疫磁珠分选容器、分选装置及分选系统
CN108025320A (zh) 样品分离和收集的方法和设备
US20230201842A1 (en) Centrifugal field-flow fractionation device including arc-shaped channel member
CN208771642U (zh) 一种上旋式离心机
US20200001308A1 (en) Centrifugal field-flow fractionation device
CN215742274U (zh) 一种细胞裂解液分离装置
WO2021140935A1 (ja) 遠心式流動場分画装置
DE19611940A1 (de) Verfahren zur zentrifugationstechnischen Durchführung von Partikeltrennungen, insbesondere auf biologischem Sektor
CN210596030U (zh) 免疫磁珠分选容器、分选装置及分选系统
Filipe et al. Effects of protein–protein interaction in ultrafiltration based fractionation processes
US20230003631A1 (en) Analysis system
KR102626812B1 (ko) 외부와의 노출이 없도록 설계되는 타겟 대상물의 자동 분리 시스템 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231016

R151 Written notification of patent or utility model registration

Ref document number: 7380400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151