JP2021163116A - Pressure reduction valve - Google Patents

Pressure reduction valve Download PDF

Info

Publication number
JP2021163116A
JP2021163116A JP2020063162A JP2020063162A JP2021163116A JP 2021163116 A JP2021163116 A JP 2021163116A JP 2020063162 A JP2020063162 A JP 2020063162A JP 2020063162 A JP2020063162 A JP 2020063162A JP 2021163116 A JP2021163116 A JP 2021163116A
Authority
JP
Japan
Prior art keywords
passage
valve
fluid
pressure
secondary side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020063162A
Other languages
Japanese (ja)
Inventor
和久 井上
Kazuhisa Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2020063162A priority Critical patent/JP2021163116A/en
Priority to KR1020210038055A priority patent/KR102502817B1/en
Priority to CN202110317384.XA priority patent/CN113464693B/en
Publication of JP2021163116A publication Critical patent/JP2021163116A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/0413Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded in the form of closure plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K17/00Safety valves; Equalising valves, e.g. pressure relief valves
    • F16K17/02Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side
    • F16K17/04Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded
    • F16K17/06Safety valves; Equalising valves, e.g. pressure relief valves opening on surplus pressure on one side; closing on insufficient pressure on one side spring-loaded with special arrangements for adjusting the opening pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/14Actuating devices; Operating means; Releasing devices actuated by fluid for mounting on, or in combination with, hand-actuated valves
    • F16K31/145Actuating devices; Operating means; Releasing devices actuated by fluid for mounting on, or in combination with, hand-actuated valves the fluid acting on a diaphragm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K7/00Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves
    • F16K7/12Diaphragm valves or cut-off apparatus, e.g. with a member deformed, but not moved bodily, to close the passage ; Pinch valves with flat, dished, or bowl-shaped diaphragm
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D16/00Control of fluid pressure
    • G05D16/04Control of fluid pressure without auxiliary power
    • G05D16/06Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule
    • G05D16/063Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane
    • G05D16/0636Control of fluid pressure without auxiliary power the sensing element being a flexible membrane, yielding to pressure, e.g. diaphragm, bellows, capsule the sensing element being a membrane characterised by the loading device of the membrane, e.g. spring

Abstract

To provide a pressure reduction valve capable of preventing generation of a turbulent flow on a more downstream side than a valve body.SOLUTION: A pressure reduction valve includes: an actuator 13 for activating a pressure force; a main body 12; a supply air port 19 (a partition wall) partitioning a fluid channel 16 into a primary in-flow passage 17 and a secondary out-flow passage 18; a valve seat 22 provided around a valve opening part 21; and a valve body 25 for opening and closing the valve opening part 21, and further includes: a diaphragm 31 stretched, being sandwiched between the actuator 13 and the main body 12; a pressure chamber 34 making a pressure of the secondary out-flow passage 18 work on the diaphragm 31; and a spring member 26 for biasing the valve body 25 in a valve closing direction. The main body 12 is provided with a suction tube 35 (a suction passage) and a thin plate-like separator 41 for dividing the inside of the secondary out-flow passage 18 into a first passage which the suction tube 35 opens and a second passage on the opposite side.SELECTED DRAWING: Figure 1

Description

本発明は、2次側の流体の圧力が一定になるように弁体が動作する減圧弁に関する。 The present invention relates to a pressure reducing valve in which the valve body operates so that the pressure of the fluid on the secondary side becomes constant.

従来、2次側の流体の圧力が一定になるように弁体が動作する減圧弁としては、例えば特許文献1に記載されているものがある。特許文献1に開示された減圧弁は、図12に示すように、流体通路1を開閉する弁体2と、弁体2を駆動するアクチュエータ3とを備えている。流体は、流体通路1内を図12において右側から左側に流れる。 Conventionally, as a pressure reducing valve in which the valve body operates so that the pressure of the fluid on the secondary side becomes constant, for example, there is one described in Patent Document 1. As shown in FIG. 12, the pressure reducing valve disclosed in Patent Document 1 includes a valve body 2 that opens and closes the fluid passage 1, and an actuator 3 that drives the valve body 2. The fluid flows in the fluid passage 1 from the right side to the left side in FIG.

アクチュエータ3は、弁体2を開弁方向に付勢するばね部材4と、弁体2に連結されたダイアフラム5が壁の一部となる圧力室6とを有している。圧力室6は、流体通路1の弁体2より下流側に連通路7によって連通されており、下流側の流体通路1aの圧力が連通路7を通して導入される。弁体2は、圧力室6の圧力と、ばね部材4のばね力とが釣り合う状態で停止し、下流側の流体通路1aの圧力低下に伴って圧力室6の圧力が低下することによって、ばね部材4のばね力で開弁方向に移動する。 The actuator 3 has a spring member 4 that urges the valve body 2 in the valve opening direction, and a pressure chamber 6 in which the diaphragm 5 connected to the valve body 2 is a part of the wall. The pressure chamber 6 is communicated with the communication passage 7 on the downstream side of the valve body 2 of the fluid passage 1, and the pressure of the fluid passage 1a on the downstream side is introduced through the communication passage 7. The valve body 2 stops in a state where the pressure of the pressure chamber 6 and the spring force of the spring member 4 are in equilibrium, and the pressure of the pressure chamber 6 decreases as the pressure of the fluid passage 1a on the downstream side decreases, so that the spring It moves in the valve opening direction by the spring force of the member 4.

特許文献1に示す減圧弁において流体は、図12中に実線の矢印と破線の矢印で示すように流れる。実線の矢印は、高流速・高流量で流れる流体の流動経路を示し、破線の矢印は、低流速・低流量で流れる流体の流動経路を示す。この減圧弁においては、弁体2より下流側で高流速・高流量の流体と、低流速・低流量の流体とが互いに干渉し合って、乱流が発生する。乱流が発生する範囲を図12中に二点鎖線Aで示す。 In the pressure reducing valve shown in Patent Document 1, the fluid flows as shown by the solid line arrow and the broken line arrow in FIG. The solid line arrow indicates the flow path of the fluid flowing at high flow velocity and high flow rate, and the broken line arrow indicates the flow path of the fluid flowing at low flow velocity and low flow rate. In this pressure reducing valve, a fluid having a high flow velocity and a high flow rate and a fluid having a low flow velocity and a low flow rate interfere with each other on the downstream side of the valve body 2, and turbulence is generated. The range in which turbulence occurs is shown by the alternate long and short dash line A in FIG.

特開2001−255942号公報Japanese Unexamined Patent Publication No. 2001-255942

特許文献1に記載されているような、下流側の流体通路1aの圧力が低下したときに弁体2が開弁方向に移動する減圧弁においては、流体の流量が大流量となるときに弁体2を開弁方向に大きく移動させることができず、下流側の流体通路1aの圧力が低下し易いという問題があった。この理由は、弁体2より下流側で乱流が発生するからであると考えられる。すなわち、乱流が発生すると、連通路7の開口の近傍を流れる流体の流速が低下し、いわゆるベルヌーイの負圧の原理で連通路7内から下流側の流体通路1aに向けて流体が吸い出されるという効果が得られなくなるからであると考えられる。 In a pressure reducing valve in which the valve body 2 moves in the valve opening direction when the pressure of the fluid passage 1a on the downstream side decreases as described in Patent Document 1, the valve is valved when the flow rate of the fluid becomes large. There is a problem that the body 2 cannot be moved significantly in the valve opening direction, and the pressure in the fluid passage 1a on the downstream side tends to decrease. It is considered that the reason for this is that turbulence occurs on the downstream side of the valve body 2. That is, when turbulence occurs, the flow velocity of the fluid flowing near the opening of the communication passage 7 decreases, and the fluid is sucked out from the inside of the communication passage 7 toward the fluid passage 1a on the downstream side by the principle of so-called Bernoulli's negative pressure. It is considered that this is because the effect of being squeezed cannot be obtained.

本発明の目的は、弁体より下流側で乱流が発生することを防ぎ、流体の流速を高くすることが可能な減圧弁を提供することである。 An object of the present invention is to provide a pressure reducing valve capable of preventing turbulence from occurring on the downstream side of the valve body and increasing the flow velocity of the fluid.

この目的を達成するために、本発明に係る減圧弁は、予め調整された押圧力を作用させるアクチュエータと、流体源から供給された流体が流入する流入口と、前記流入口から流入した流体が外部に流出される流出口とを有し、かつ前記流入口と前記流出口の間を連通して流体を流す流体通路を有する本体ボデーと、前記本体ボデー内に設けられ、前記流体通路を1次側の流入通路と2次側の流出通路とに区画する隔壁と、前記隔壁を貫通して前記1次側の流入通路と前記2次側の流出通路とを連通する弁開口の周囲に設けられた弁座と、前記弁座に着座または離間する弁部を有し、前記弁開口を開閉する弁体と、前記アクチュエータと前記本体ボデーとに挟持され、かつ、前記弁体の動作方向と直交する方向に張設されて、前記アクチュエータからの押圧力を受けて前記弁体を前記弁開口が開く方向に動作させるダイアフラムと、前記2次側の流出通路の圧力を前記ダイアフラムに対し前記弁体を前記弁開口が閉じる方向に動作させるように作用させる圧力室と、前記弁体を前記弁開口が閉じる方向に付勢力を作用させるばねとを有する減圧弁において、前記2次側の流出通路は、前記ダイアフラムの張設方向と平行な方向に延びるとともに、前記弁体の動作方向に対して直交するように前記流出口に向かって延伸し、前記本体ボデーは、前記2次側の流出通路と前記圧力室とを連通する吸引通路を備えているとともに、前記2次側の流出通路の内部を前記吸引通路が開口する第1の通路と、反対側の第2の通路とに分割する薄板状のセパレータを備えているものである。 In order to achieve this object, the pressure reducing valve according to the present invention includes an actuator that applies a pre-adjusted pressing force, an inflow port into which a fluid supplied from a fluid source flows in, and a fluid flowing in from the inflow port. A main body having an outlet that flows out to the outside and having a fluid passage that communicates between the inlet and the outlet to flow a fluid, and a main body provided in the main body, the fluid passage is 1 Provided around a partition partition that divides the inflow passage on the secondary side and the outflow passage on the secondary side, and a valve opening that penetrates the partition and communicates the inflow passage on the primary side and the outflow passage on the secondary side. A valve seat, a valve body that has a valve portion that is seated or separated from the valve seat and that opens and closes the valve opening, is sandwiched between the actuator and the main body body, and has an operating direction of the valve body. A diaphragm that is stretched in the direction orthogonal to each other and operates the valve body in the direction in which the valve opening opens in response to a pressing force from the actuator, and the pressure of the outflow passage on the secondary side is applied to the diaphragm with respect to the valve. In a pressure reducing valve having a pressure chamber that causes the body to operate in the direction in which the valve opening closes, and a spring that causes the valve body to act in a direction in which the valve opening closes, an outflow passage on the secondary side. Extends in a direction parallel to the extension direction of the diaphragm and extends toward the outlet so as to be orthogonal to the operating direction of the valve body, and the main body body is an outflow passage on the secondary side. A thin plate that is provided with a suction passage that communicates with the pressure chamber and divides the inside of the outflow passage on the secondary side into a first passage through which the suction passage opens and a second passage on the opposite side. It is equipped with a fluid separator.

本発明は、前記減圧弁において、前記第1の通路に流速が相対的に高い流体が流れ、前記第2の通路に流速が相対的に低い流体が流れるように構成されていてもよい。 In the present invention, the pressure reducing valve may be configured such that a fluid having a relatively high flow velocity flows through the first passage and a fluid having a relatively low flow velocity flows through the second passage.

本発明は、前記減圧弁において、前記セパレータは、前記2次側の流出通路の壁面に嵌合するリングの内部に設けられ、前記リングには、前記吸引通路に接続される貫通孔が穿設されていてもよい。 In the present invention, in the pressure reducing valve, the separator is provided inside a ring fitted to the wall surface of the outflow passage on the secondary side, and the ring is provided with a through hole connected to the suction passage. It may have been done.

本発明は、前記減圧弁において、前記セパレータは、断面形状が翼型となるように形成されているとともに、前記第1の通路を流れる流体の流速が上昇するように構成されていてもよい。 In the present invention, in the pressure reducing valve, the separator may be formed so that the cross section has an airfoil shape, and the flow velocity of the fluid flowing through the first passage may increase.

本発明は、前記減圧弁において、前記セパレータの最大翼厚位置と対向する位置に前記吸引通路が位置付けられていてもよい。 In the present invention, the suction passage may be positioned at a position facing the maximum blade thickness position of the separator in the pressure reducing valve.

本発明によれば、セパレータが弁体より下流側で乱流が発生することを防ぐため、流体の流速を高くすることが可能な減圧弁を提供することができる。 According to the present invention, it is possible to provide a pressure reducing valve capable of increasing the flow velocity of the fluid in order to prevent the separator from generating turbulent flow on the downstream side of the valve body.

図1は、本発明に係る減圧弁の断面図である。FIG. 1 is a cross-sectional view of a pressure reducing valve according to the present invention. 図2は、要部を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing a main part. 図3は、セパレータの斜視図である。FIG. 3 is a perspective view of the separator. 図4は、流体の流れる経路を説明するための断面図である。FIG. 4 is a cross-sectional view for explaining the flow path of the fluid. 図5は、セパレータの変形例を示す断面図である。FIG. 5 is a cross-sectional view showing a modified example of the separator. 図6は、セパレータの斜視図である。FIG. 6 is a perspective view of the separator. 図7は、セパレータを拡大して示す断面図である。FIG. 7 is an enlarged cross-sectional view showing the separator. 図8は、流体の流れる経路を説明するための断面図である。FIG. 8 is a cross-sectional view for explaining the flow path of the fluid. 図9は、セパレータの変形例を示す断面図である。FIG. 9 is a cross-sectional view showing a modified example of the separator. 図10は、セパレータの変形例を示す断面図である。FIG. 10 is a cross-sectional view showing a modified example of the separator. 図11は、流体の流量の変化に対する流体通路と圧力室との圧力差の変化を示すグラフである。FIG. 11 is a graph showing the change in the pressure difference between the fluid passage and the pressure chamber with respect to the change in the flow rate of the fluid. 図12は、従来の減圧弁の断面図である。FIG. 12 is a cross-sectional view of a conventional pressure reducing valve.

以下、本発明に係る減圧弁の一実施の形態を図1〜図11を参照して詳細に説明する。
図1に示す減圧弁11は、図1の下側に位置する本体ボデー12と、この本体ボデー12に取付けられた予め調整された押圧力を作用させるアクチュエータ13とを備えている。
この実施の形態による本体ボデー12は、アクチュエータ13が取付けられた弁収容部12aと、アクチュエータ13とは反対側に位置するカップ状のドレンボウル12bとによって構成されている。
Hereinafter, an embodiment of the pressure reducing valve according to the present invention will be described in detail with reference to FIGS. 1 to 11.
The pressure reducing valve 11 shown in FIG. 1 includes a main body 12 located on the lower side of FIG. 1 and an actuator 13 attached to the main body 12 for applying a pre-adjusted pressing force.
The main body 12 according to this embodiment is composed of a valve accommodating portion 12a to which the actuator 13 is attached and a cup-shaped drain bowl 12b located on the opposite side of the actuator 13.

この本体ボデー12は、図1において右側の端部に、図示していない流体源から供給された流体が流入する流入口14を有し、図1において左側の端部に、流入口14から流入した流体が外部に流出される流出口15を有している。また、本体ボデー12の内部には、流入口14と流出口15の間を連通して流体を流す流体通路16が設けられているとともに、流体通路16を1次側の流入通路17と2次側の流出通路18とに区画する吸気ポート19が設けられている。この実施の形態においては、給気ポート19が本発明でいう「隔壁」に相当する。 The main body 12 has an inflow port 14 into which a fluid supplied from a fluid source (not shown) flows in at the right end in FIG. 1, and flows in from the inflow 14 into the left end in FIG. It has an outflow port 15 through which the fluid is discharged to the outside. Further, inside the main body 12, a fluid passage 16 that communicates between the inflow port 14 and the outflow port 15 to flow a fluid is provided, and the fluid passage 16 is provided as a primary side inflow passage 17 and a secondary side. An intake port 19 for partitioning the outflow passage 18 on the side is provided. In this embodiment, the air supply port 19 corresponds to the "bulkhead" in the present invention.

給気ポート19は、円柱状に形成されており、図2に示すように、1次側の流入通路17と2次側の流出通路18とを連通する貫通孔からなる弁開口21を有している。弁開口21の上流側端部の周囲には、環状の弁座22が設けられている。給気ポート19内には、弁開口21に対して直交する方向に放射状に延びる複数の連通孔23が形成されている。また、給気ポート19の外周部には、周方向の全域にわたって延びる環状の溝24が形成されている。この溝24の一部は、2次側の流出通路18に接続されている。連通孔23は、弁開口21から環状の溝24に延びるように形成されている。 The air supply port 19 is formed in a columnar shape, and as shown in FIG. 2, has a valve opening 21 formed of a through hole communicating the inflow passage 17 on the primary side and the outflow passage 18 on the secondary side. ing. An annular valve seat 22 is provided around the upstream end of the valve opening 21. A plurality of communication holes 23 extending radially in the direction orthogonal to the valve opening 21 are formed in the air supply port 19. Further, an annular groove 24 extending over the entire circumferential direction is formed on the outer peripheral portion of the air supply port 19. A part of the groove 24 is connected to the outflow passage 18 on the secondary side. The communication hole 23 is formed so as to extend from the valve opening 21 to the annular groove 24.

弁開口21の内部には、弁開口21を開閉する弁体25が挿入されている。弁体25は、弁開口21に挿入された円柱状の軸部25aと、軸部25aの一端(下端)に設けられた弁部25bとを有しており、給気ポート19を貫通した状態で移動自在に支持されている。この弁体25の一端(弁部25bの下端)は、ばね部材26によって他方(上方)に向けて付勢され、弁体25の他端(軸部25aの上端)は、後述するアクチュエータ13からの押圧力によって一端(下方)に向けて押されている。弁体25の弁部25bは、アクチュエータ13からの押圧力がばね部材26のばね力より小さいときに弁座22に着座し、アクチュエータ13からの押圧力がばね部材26のばね力より大きいときに弁座22から離間する。 A valve body 25 for opening and closing the valve opening 21 is inserted inside the valve opening 21. The valve body 25 has a columnar shaft portion 25a inserted into the valve opening 21 and a valve portion 25b provided at one end (lower end) of the shaft portion 25a, and penetrates the air supply port 19. It is supported so that it can be moved freely. One end of the valve body 25 (the lower end of the valve portion 25b) is urged toward the other (upward) by the spring member 26, and the other end of the valve body 25 (the upper end of the shaft portion 25a) is from the actuator 13 described later. It is pushed toward one end (downward) by the pushing pressure of. The valve portion 25b of the valve body 25 is seated on the valve seat 22 when the pressing force from the actuator 13 is smaller than the spring force of the spring member 26, and when the pressing force from the actuator 13 is larger than the spring force of the spring member 26. Separate from the valve seat 22.

アクチュエータ13の下端には、図1に示すように、上述した弁体25の軸部25aに対向するようにダイアフラム31が設けられている。ダイアフラム31は、弁体25の動作方向と直交する方向(図1においては左右方向)に延びる状態で、本体ボデー12とアクチュエータ13のボンネット32とに挟まれて張設されている。ダイアフラム31の中央部には、押圧部材33が取り付けられており、この押圧部材33はその内部にボンネット32の内部空間(アクチュエータ内室40)とダイアフラム31と本体ボデー12に囲隔された圧力室34とに連通する連通路33aが形成されており、この連通路33aの圧力室34側の開口33bは弁体25の軸部25aの上端の直上に位置する。 As shown in FIG. 1, a diaphragm 31 is provided at the lower end of the actuator 13 so as to face the shaft portion 25a of the valve body 25 described above. The diaphragm 31 is stretched between the main body 12 and the bonnet 32 of the actuator 13 in a state of extending in a direction orthogonal to the operating direction of the valve body 25 (left-right direction in FIG. 1). A pressing member 33 is attached to the central portion of the diaphragm 31, and the pressing member 33 has an internal space of the bonnet 32 (actuator inner chamber 40), a pressure chamber surrounded by the diaphragm 31 and the main body 12 inside the pressing member 33. A communication passage 33a communicating with the 34 is formed, and the opening 33b of the communication passage 33a on the pressure chamber 34 side is located directly above the upper end of the shaft portion 25a of the valve body 25.

この押圧部材33と弁体25の軸部25aとは後述するように当接する状態と離間している状態の何れかの状態をとり、押圧部材33に弁体25の軸部25aが当接する状態では、連通路33aの圧力室34側の開口33bは弁軸25aの上端によって閉塞され、連通路33aは遮断される。一方、押圧部材33と弁体25の軸部25aとが離間した状態では、連通路33aは開放されるので圧力室34とアクチュエータ内室40は連通する。なお、ボンネット32の側壁の一部にはアクチュエータ内室40とアクチュエータ13の外部とに連通する排気孔39が形成されており、押圧部材33の連通路33aが遮断されている場合にはアクチュエータ内室40内の圧力はアクチュエータ13の外部の圧力(大気圧)と等しくなる。 The pressing member 33 and the shaft portion 25a of the valve body 25 are in contact with each other or separated from each other as described later, and the shaft portion 25a of the valve body 25 is in contact with the pressing member 33. Then, the opening 33b on the pressure chamber 34 side of the communication passage 33a is closed by the upper end of the valve shaft 25a, and the communication passage 33a is blocked. On the other hand, when the pressing member 33 and the shaft portion 25a of the valve body 25 are separated from each other, the communication passage 33a is opened so that the pressure chamber 34 and the actuator inner chamber 40 communicate with each other. An exhaust hole 39 that communicates with the actuator inner chamber 40 and the outside of the actuator 13 is formed in a part of the side wall of the bonnet 32, and when the communication passage 33a of the pressing member 33 is blocked, the inside of the actuator is formed. The pressure inside the chamber 40 becomes equal to the pressure outside the actuator 13 (atmospheric pressure).

一方、押圧部材33の連通路33aが開放されている場合には大気圧よりは高圧の圧力室34内の流体は連通路33aを通ってアクチュエータ内室40に流入し、更に排気孔39を通ってアクチュエータ13の外部に排出される。
ここでダイアフラム31の変位について述べると、ダイアフラム31はその圧力室34側の面からダイアフラム31を上向きに押圧する力F1と、ダイアフラム31のアクチュエータ内室40側の面からダイアフラム31を下向きに押圧する力F2とを受け、この力F1と力F2との大小関係によってダイアフラム31の変位の方向が決まる。即ち、力F1が力F2よりも大である場合には、ダイアフラム31の中央部が本体ボデー12から離れる方向に変位する。
On the other hand, when the communication passage 33a of the pressing member 33 is open, the fluid in the pressure chamber 34 having a pressure higher than the atmospheric pressure flows into the actuator inner chamber 40 through the communication passage 33a, and further passes through the exhaust hole 39. Is discharged to the outside of the actuator 13.
Here, the displacement of the diaphragm 31 will be described. The diaphragm 31 presses the diaphragm 31 downward from the surface of the diaphragm 31 on the actuator inner chamber 40 side and the force F1 that presses the diaphragm 31 upward from the surface on the pressure chamber 34 side. In response to the force F2, the direction of displacement of the diaphragm 31 is determined by the magnitude relationship between the force F1 and the force F2. That is, when the force F1 is larger than the force F2, the central portion of the diaphragm 31 is displaced in the direction away from the main body body 12.

そして、これに連動して弁体25が弁座22に弁部25bが着座する方向(即ち弁開口21が閉じられる方向)に移動する。反対に力F1が力F2よりも小である場合には、ダイアフラム31の中央部が本体ボデー12に近接する方向に変位する。そして、これに連動して弁体25の軸部25aの先端が押圧部材33に当接した状態を保ちながら弁体25が弁部25bが弁座22から離れる方向(即ち弁開口21が開く方向)に移動する。このように、ダイアフラム31の変位は、弁体25を動作方向に進退させて弁開口21を開閉させる。 Then, in conjunction with this, the valve body 25 moves in the direction in which the valve portion 25b is seated on the valve seat 22 (that is, the direction in which the valve opening 21 is closed). On the contrary, when the force F1 is smaller than the force F2, the central portion of the diaphragm 31 is displaced in the direction close to the main body body 12. Then, in conjunction with this, the valve body 25 is in the direction in which the valve portion 25b is separated from the valve seat 22 (that is, the direction in which the valve opening 21 is opened) while maintaining the state in which the tip of the shaft portion 25a of the valve body 25 is in contact with the pressing member 33. ). In this way, the displacement of the diaphragm 31 causes the valve body 25 to move forward and backward in the operating direction to open and close the valve opening 21.

圧力室34の一部は、2次側の流出通路18とダイアフラム31との間に位置するように形成されている。この実施の形態による2次側の流出通路18は、ダイアフラム31の張設方向と平行な方向に延びるとともに、弁体25の動作方向に対して直交するように流出口15に向かって延伸している。本体ボデー12における圧力室34と2次側の流出通路18との間には、貫通孔からなるサクションチューブ35が設けられている。この実施の形態においては、このサクションチューブ35が本発明でいう「吸引通路」に相当する。サクションチューブ35は、圧力室34と2次側の流出通路18とを連通している。このため、圧力室34には、2次側の流出通路18からサクションチューブ35を介して流体が導入される。このように2次側の流出通路18から導入された流体の圧力が圧力室34内の圧力となって、ダイアフラム31に対し上向きに押圧する力F1を与え、その結果弁体25を弁開口21が閉じる方向に動作させる。 A part of the pressure chamber 34 is formed so as to be located between the outflow passage 18 on the secondary side and the diaphragm 31. The outflow passage 18 on the secondary side according to this embodiment extends in a direction parallel to the extension direction of the diaphragm 31, and extends toward the outflow port 15 so as to be orthogonal to the operating direction of the valve body 25. There is. A suction tube 35 formed of a through hole is provided between the pressure chamber 34 in the main body 12 and the outflow passage 18 on the secondary side. In this embodiment, the suction tube 35 corresponds to the "suction passage" in the present invention. The suction tube 35 communicates the pressure chamber 34 with the outflow passage 18 on the secondary side. Therefore, the fluid is introduced into the pressure chamber 34 from the outflow passage 18 on the secondary side via the suction tube 35. In this way, the pressure of the fluid introduced from the outflow passage 18 on the secondary side becomes the pressure in the pressure chamber 34, and a force F1 for pressing upward is applied to the diaphragm 31, and as a result, the valve body 25 is opened to the valve opening 21. Operates in the closing direction.

ダイアフラム31の中央部に設けられた押圧部材33は、アクチュエータ内室40に収容設置された圧縮コイルばねからなる調圧ばね36によって本体ボデー12に向けて付勢されている。この調圧ばね36は、一端部(下端部)が押圧部材33に保持されて、この押圧部材33を押すとともに、他端部(上端部)が調圧ばね36を保持するように設置される調圧ばね受け37を押す状態でこれらの部材の間に設けられている。調圧ばね受け37は、ボンネット32に螺合された調圧ノブ38の一端(下端)が当接し、調圧ノブ38と調圧ばね36とによって挟まれている。このように押圧部材33と調圧ばね受け37とに保持された調圧ばね36は、ダイアフラム31に対して予め調整された下向きに押圧する力F2を与え、その結果弁体25を弁開口21が開く方向に動作させる。 The pressing member 33 provided in the central portion of the diaphragm 31 is urged toward the main body 12 by a pressure adjusting spring 36 composed of a compression coil spring housed and installed in the actuator inner chamber 40. The pressure adjusting spring 36 is installed so that one end (lower end) is held by the pressing member 33 to push the pressing member 33 and the other end (upper end) holds the pressure adjusting spring 36. It is provided between these members in a state where the pressure adjusting spring receiver 37 is pushed. The pressure adjusting spring receiver 37 is in contact with one end (lower end) of the pressure adjusting knob 38 screwed into the bonnet 32, and is sandwiched between the pressure adjusting knob 38 and the pressure adjusting spring 36. The pressure adjusting spring 36 held by the pressing member 33 and the pressure adjusting spring receiver 37 applies a pre-adjusted downward pressing force F2 to the diaphragm 31, and as a result, opens the valve body 25 with the valve opening 21. Operates in the direction that opens.

このように、ダイアフラム31には上向きに押圧する力F1と下向きに押圧する力F2とが作用するが、弁体25の動作方向は、圧力室34内の圧力と、調圧ばね36のばね力との大小関係に基づいて決まる。圧力室34内の圧力が調圧ばね36のばね力より大きい場合は、上述の通り弁体25を弁開口21が閉じる方向に動作させ、その結果、弁開口21から2次側の流出通路18へ流れる流体の流量が減少する。一方、圧力室34内の圧力が調圧ばね36のばね力より小さい場合には、弁体25を弁開口21が開く方向に動作させ、その結果、弁開口21から2次側の流出通路18へ流れる流体の流量が増加する。
この実施の形態による減圧弁11は、大流量時に圧力室34内の圧力を低くするために、2次側の流出通路18にセパレータ41が設けられている。
In this way, the upward pressing force F1 and the downward pressing force F2 act on the diaphragm 31, but the operating directions of the valve body 25 are the pressure in the pressure chamber 34 and the spring force of the pressure adjusting spring 36. It is decided based on the magnitude relationship with. When the pressure in the pressure chamber 34 is larger than the spring force of the pressure adjusting spring 36, the valve body 25 is operated in the direction in which the valve opening 21 closes as described above, and as a result, the outflow passage 18 on the secondary side from the valve opening 21 The flow rate of fluid flowing to is reduced. On the other hand, when the pressure in the pressure chamber 34 is smaller than the spring force of the pressure adjusting spring 36, the valve body 25 is operated in the direction in which the valve opening 21 opens, and as a result, the outflow passage 18 on the secondary side from the valve opening 21 The flow rate of fluid flowing to increases.
The pressure reducing valve 11 according to this embodiment is provided with a separator 41 in the outflow passage 18 on the secondary side in order to reduce the pressure in the pressure chamber 34 at the time of a large flow rate.

セパレータ41は、薄板状に形成されており、図2に示すように、2次側の流出通路18の内部をサクションチューブ35が開口する第1の通路42と、反対側の第2の通路43とに分割している。この実施の形態によるセパレータ41は、厚みが一定の平板によって形成され、図3に示すように、リング44の内部にリング44の軸線C(図2参照)と平行に延びるように設けられている。リング44は、2次側の流出通路18の壁面に嵌合するように形成されている。リング44の内周面44aは、リング44より上流側に位置する2次側の流出通路18の内壁面45に段差が生じることがないように接続されている。 The separator 41 is formed in a thin plate shape, and as shown in FIG. 2, a first passage 42 in which the suction tube 35 opens inside the outflow passage 18 on the secondary side and a second passage 43 on the opposite side. It is divided into and. The separator 41 according to this embodiment is formed of a flat plate having a constant thickness, and is provided inside the ring 44 so as to extend parallel to the axis C (see FIG. 2) of the ring 44, as shown in FIG. .. The ring 44 is formed so as to fit on the wall surface of the outflow passage 18 on the secondary side. The inner peripheral surface 44a of the ring 44 is connected so that a step does not occur on the inner wall surface 45 of the outflow passage 18 on the secondary side located on the upstream side of the ring 44.

リング44には、サクションチューブ35に接続される貫通孔46が穿設されている。このため、サクションチューブ35の実質的な開口部は、リング44内まで延長されることになる。
セパレータ41によって分けられた第1の通路42および第2の通路43は、弁体25の動作方向に並んでいる。
The ring 44 is provided with a through hole 46 connected to the suction tube 35. Therefore, the substantial opening of the suction tube 35 is extended into the ring 44.
The first passage 42 and the second passage 43 separated by the separator 41 are arranged in the operating direction of the valve body 25.

この減圧弁11においては、弁体25の弁部25bが弁座22から離れて開弁状態になることによって、流体が図1および図4中に矢印で示すように流れる。図4においては、高流速・高流量で流れる流体の流動経路を太線の矢印で示し、低流速・低流量で流れる流体の流動経路を細線で示している。高流速・高流量で流れる流体は、弁開口21の入口(弁座22)と2次側の流出通路18との距離が最短になる経路を通って流れる。すなわち、この流体は、弁開口21から2次側の流出通路18に向けて延びる一つの連通路23aを通って流れる。この流体は、弁開口21から連通路23aに入ることにより流れる方向が変えられ、慣性によって第1の通路42に向かうように流れる。一方、低流速・低流量で流れる流体は、弁開口21から他の連通路23bと環状の溝24とを通って2次側の流出通路18に流れ込む。この流体は、高流速・高流量で流れる流体を避けるように、主に第2の通路43に流入するようになる。 In the pressure reducing valve 11, the valve portion 25b of the valve body 25 is separated from the valve seat 22 to open the valve, so that the fluid flows as shown by arrows in FIGS. 1 and 4. In FIG. 4, the flow path of the fluid flowing at a high flow velocity and a high flow rate is indicated by a thick line arrow, and the flow path of the fluid flowing at a low flow velocity and a low flow rate is indicated by a thin line. The fluid flowing at a high flow velocity and a high flow rate flows through the path where the distance between the inlet (valve seat 22) of the valve opening 21 and the outflow passage 18 on the secondary side is the shortest. That is, this fluid flows through one communication passage 23a extending from the valve opening 21 toward the outflow passage 18 on the secondary side. The flow direction of this fluid is changed by entering the communication passage 23a from the valve opening 21, and the fluid flows toward the first passage 42 by inertia. On the other hand, the fluid flowing at a low flow velocity and a low flow rate flows from the valve opening 21 through the other communication passage 23b and the annular groove 24 into the outflow passage 18 on the secondary side. This fluid mainly flows into the second passage 43 so as to avoid the fluid flowing at a high flow velocity and a high flow rate.

このように、この減圧弁11においては、高流速・高流量で流れる流体と、低流速・低流量で流れる流体とがセパレータ41によって分離されるようになる。このため、弁体25より下流側(2次側の流出通路18の上流側端部)で乱流が発生することを防ぐことができる。2次側の流出通路18で乱流が発生し難いと、乱流が生じる場合と較べてサクションチューブ35の開口部(貫通孔46の開口部)の近傍を流れる流体の流速が高くなるから、いわゆるベルヌーイの負圧の原理で圧力室34内の流体がサクションチューブ354を通って2次側の流出通路18に吸い出されるようになり、圧力室34内の圧力が低下する。以下においては、このようにベルヌーイの負圧の原理で圧力室34内の圧力が低下する現象を単に「サクションチューブ効果」という。この実施の形態においては、サクションチューブ効果により大流量時に弁開度を相対的に大きくすることができるから、大流量時に2次側の流出通路18の圧力が低下することを確実に防ぐことができる。 In this way, in the pressure reducing valve 11, the fluid flowing at a high flow velocity and a high flow rate and the fluid flowing at a low flow velocity and a low flow rate are separated by the separator 41. Therefore, it is possible to prevent turbulence from occurring on the downstream side of the valve body 25 (the upstream end of the outflow passage 18 on the secondary side). If turbulence is unlikely to occur in the outflow passage 18 on the secondary side, the flow velocity of the fluid flowing near the opening of the suction tube 35 (opening of the through hole 46) will be higher than in the case where turbulence occurs. According to the so-called Bernoulli negative pressure principle, the fluid in the pressure chamber 34 is sucked out to the outflow passage 18 on the secondary side through the suction tube 354, and the pressure in the pressure chamber 34 decreases. In the following, the phenomenon in which the pressure in the pressure chamber 34 decreases due to Bernoulli's negative pressure principle is simply referred to as the "suction tube effect". In this embodiment, since the valve opening can be relatively increased at the time of a large flow rate due to the suction tube effect, it is possible to reliably prevent the pressure of the outflow passage 18 on the secondary side from dropping at the time of a large flow rate. can.

この実施の形態による減圧弁11においては、第1の通路42に流速が相対的に高い流体が流れ、第2の通路43に流速が相対的に低い流体が流れるように構成されている。このため、サクションチューブ効果がより一層顕著になるから、大流量時の2次側の流出通路18の圧力を相対的に高くすることができる。 The pressure reducing valve 11 according to this embodiment is configured such that a fluid having a relatively high flow velocity flows through the first passage 42 and a fluid having a relatively low flow velocity flows through the second passage 43. Therefore, since the suction tube effect becomes more remarkable, the pressure of the outflow passage 18 on the secondary side at the time of a large flow rate can be relatively increased.

この実施の形態によるセパレータ41は、2次側の流出通路18の壁面に嵌合するリング44の内部に設けられている。リング44には、サクションチューブ35に接続される貫通孔46が穿設されている。このため、セパレータ41を本体ボデー12とは別体に形成して本体ボデー12に組み付けることができるから、セパレータ41を有する減圧弁11を簡単に製造することができる。 The separator 41 according to this embodiment is provided inside the ring 44 that fits into the wall surface of the outflow passage 18 on the secondary side. The ring 44 is provided with a through hole 46 connected to the suction tube 35. Therefore, since the separator 41 can be formed separately from the main body 12 and assembled to the main body 12, the pressure reducing valve 11 having the separator 41 can be easily manufactured.

(セパレータの変形例)
セパレータは図5〜図10に示すように構成することができる。図5〜図10において、図1〜図4によって説明したものと同一もしくは同等の部材については、同一符号を付し詳細な説明を適宜省略する。
図5に示すセパレータ51は、断面形状が翼型となるように形成されており、図6に示すように、リング44の内部に設けられている。このセパレータ41の翼型は、ジューコフスキー翼と呼ばれている翼型である。セパレータ41は、第1の通路42を流れる流体の流速が上昇するように、前縁51a(図7参照)が上流側に位置する状態でリング44の径方向の一端から他端まで一定の断面形状で延びている。
(Modification example of separator)
The separator can be configured as shown in FIGS. 5-10. In FIGS. 5 to 10, the same or equivalent members as those described with reference to FIGS. 1 to 4 are designated by the same reference numerals, and detailed description thereof will be omitted as appropriate.
The separator 51 shown in FIG. 5 is formed so that the cross-sectional shape has an airfoil shape, and is provided inside the ring 44 as shown in FIG. The airfoil of the separator 41 is an airfoil called a Zhukovskiy wing. The separator 41 has a constant cross section from one end to the other end in the radial direction of the ring 44 with the leading edge 51a (see FIG. 7) located on the upstream side so that the flow velocity of the fluid flowing through the first passage 42 increases. It extends in shape.

図7に示すように、このセパレータ51の前縁51aと後縁51bとを結ぶ翼弦線52は、リング44の軸線Cに対して傾斜している。翼弦線52が軸線Cに対して傾斜する方向は、流体が流れる方向の下流側に向かうにしたがって次第に第1の通路42が広くなるような方向である。また、セパレータ41は、最大翼厚位置51cがリング44の貫通孔46と対向するように構成されている。すなわち、セパレータ41の最大翼厚位置51cと対向する位置にサクションチューブ35が位置付けられている。 As shown in FIG. 7, the chord wire 52 connecting the leading edge 51a and the trailing edge 51b of the separator 51 is inclined with respect to the axis C of the ring 44. The direction in which the chord line 52 is inclined with respect to the axis C is such that the first passage 42 gradually widens toward the downstream side in the direction in which the fluid flows. Further, the separator 41 is configured such that the maximum blade thickness position 51c faces the through hole 46 of the ring 44. That is, the suction tube 35 is positioned at a position facing the maximum blade thickness position 51c of the separator 41.

この翼型のセパレータ41を使用した減圧弁11においては、流体が第1の通路42内でセパレータ41に沿って流れることにより、この流体の流速が上昇する。すなわち、図8中に太線で示すように第1の通路42内に流入した高流速・高流量の流体が第1の通路42内で加速されるようになる。図8においては、加速された流体を白抜きの矢印で示している。 In the pressure reducing valve 11 using the airfoil-shaped separator 41, the flow velocity of the fluid increases as the fluid flows along the separator 41 in the first passage 42. That is, as shown by the thick line in FIG. 8, the fluid having a high flow velocity and a high flow rate flowing into the first passage 42 is accelerated in the first passage 42. In FIG. 8, the accelerated fluid is indicated by a white arrow.

断面形状が翼型となるようにセパレータを形成するにあたっては、翼型を図9および図10に示すような形状に形成することができる。
図9に示すセパレータ61の翼型は、平底翼と呼称される翼型で、第2の通路43側が略平坦に形成されている。このセパレータ61は、前縁61aと後縁61bとを結ぶ翼弦線62がリング44の軸線Cと平行になるようにリング44に設けられている。リング44の貫通孔46は、セパレータ61の最大翼厚位置61cと対向する位置に設けられている。
When forming the separator so that the cross-sectional shape is an airfoil, the airfoil can be formed into a shape as shown in FIGS. 9 and 10.
The airfoil of the separator 61 shown in FIG. 9 is an airfoil called a flat-bottomed blade, and the second passage 43 side is formed substantially flat. The separator 61 is provided on the ring 44 so that the chord wire 62 connecting the leading edge 61a and the trailing edge 61b is parallel to the axis C of the ring 44. The through hole 46 of the ring 44 is provided at a position facing the maximum blade thickness position 61c of the separator 61.

図10に示すセパレータ63の翼型は、対称翼と呼称される翼型で、前縁63aと後縁63bを結ぶ翼弦線64を中心として線対称となるように形成されている。また、翼弦線64は、リング44の軸線Cと平行である。リング44の貫通孔46は、セパレータ63の最大翼厚位置63cと対向する位置に設けられている。 The airfoil of the separator 63 shown in FIG. 10 is an airfoil called a symmetric wing, and is formed so as to be line-symmetrical about a chord line 64 connecting the leading edge 63a and the trailing edge 63b. Further, the chord wire 64 is parallel to the axis C of the ring 44. The through hole 46 of the ring 44 is provided at a position facing the maximum blade thickness position 63c of the separator 63.

図5〜図10に示すように断面形状が翼型のセパレータ51,61,63を使用することにより、セパレータ自体が乱流発生の原因になることがないことと、第1の通路42を流れる流体の流速を高くすることができることとが相俟って、大きなサクションチューブ効果が得られる。したがって、この実施の形態においても、大流量時に2次側の流出通路18の圧力と圧力室34の圧力との差圧を大きくすることができるために、大流量時に2次側の流出通路18の圧力が低下することを確実に防ぐことができる。 By using the separators 51, 61, 63 having an airfoil-shaped cross section as shown in FIGS. 5 to 10, the separator itself does not cause turbulence and flows through the first passage 42. Combined with the ability to increase the flow velocity of the fluid, a large suction tube effect can be obtained. Therefore, also in this embodiment, the pressure difference between the pressure of the outflow passage 18 on the secondary side and the pressure of the pressure chamber 34 can be increased at the time of a large flow rate, so that the outflow passage 18 on the secondary side can be increased at the time of a large flow rate. It is possible to surely prevent the pressure from dropping.

図5〜図10に示す断面翼型形状のセパレータ51,61,63を有する減圧弁11においては、最大翼厚位置51c、61c,63cと対向する位置にサクションチューブ35が位置付けられている。このため、第1の通路42の内壁で最も圧力が低くなる位置にサクションチューブ35が開口することになるから、サクションチューブ効果が最大になる。 In the pressure reducing valve 11 having the separators 51, 61, 63 having an airfoil-shaped cross section shown in FIGS. 5 to 10, the suction tube 35 is positioned at a position facing the maximum blade thickness positions 51c, 61c, 63c. Therefore, the suction tube 35 is opened at the position where the pressure is the lowest on the inner wall of the first passage 42, so that the suction tube effect is maximized.

図1〜図8に示したセパレータ41を使用した減圧弁11においては、図11に示すようなサクションチューブ効果が得られた。図11は2次側の流出通路18を流れる流体の体積流量と、サクションチューブの上流側と下流側の圧力差とを示すグラフである。圧力差は、第1の通路42に開口するサクションチューブ35の開口部の圧力と、圧力室34内の圧力との圧力差である。図11において、実線は図5〜図8に示した断面翼型のセパレータ51を使用した場合を示し、破線は、図1〜図4に示した平板状のセパレータ41を使用した場合を示す。また、一点鎖線は、比較例として、セパレータを使用しない場合を示す。 In the pressure reducing valve 11 using the separator 41 shown in FIGS. 1 to 8, the suction tube effect as shown in FIG. 11 was obtained. FIG. 11 is a graph showing the volumetric flow rate of the fluid flowing through the outflow passage 18 on the secondary side and the pressure difference between the upstream side and the downstream side of the suction tube. The pressure difference is the pressure difference between the pressure at the opening of the suction tube 35 opening in the first passage 42 and the pressure inside the pressure chamber 34. In FIG. 11, the solid line shows the case where the cross-section airfoil type separator 51 shown in FIGS. 5 to 8 is used, and the broken line shows the case where the flat plate-shaped separator 41 shown in FIGS. 1 to 4 is used. Further, the alternate long and short dash line shows a case where a separator is not used as a comparative example.

図11から分かるように、セパレータ41,51を使用することによって、大流量時にサクションチューブ効果により圧力差が大きくなる。特に、断面翼型のセパレータ51を使用した場合は、顕著に圧力差が大きくなる。セパレータ41,51を使用しない場合は、大流量時に生じた乱流が原因でサクションチューブ35内の圧力が上昇し、逆効果となることが分かる。 As can be seen from FIG. 11, by using the separators 41 and 51, the pressure difference becomes large due to the suction tube effect at a large flow rate. In particular, when the cross-section airfoil separator 51 is used, the pressure difference becomes significantly large. It can be seen that when the separators 41 and 51 are not used, the pressure in the suction tube 35 rises due to the turbulent flow generated at the time of a large flow rate, which has an adverse effect.

セパレータの断面形状を翼型とするにあたって、翼型の形状は、図5〜図10で示した形状に限定されることはない。翼型の形状は、第1の通路42で流体の流速が上昇する形状であれば、どのような形状であっても同様の効果を得ることができる。 When the cross-sectional shape of the separator is an airfoil, the shape of the airfoil is not limited to the shape shown in FIGS. 5 to 10. The same effect can be obtained regardless of the shape of the airfoil as long as the flow velocity of the fluid increases in the first passage 42.

11…減圧弁、12…本体ボデー、14…流入口、15…流出口、16…流体通路、17…1次側の流入通路、18…2次側の流出通路、19…給気ポート(隔壁)、21…弁開口、22…弁座、25…弁体、25b…弁部、31…ダイアフラム、34…圧力室、35…サクションチューブ(吸引通路)、36…調圧ばね、41,51,61,63…セパレータ、42…第1の通路、43…第2の通路、44…リング、46…貫通孔、51c,61c,63c…最大翼厚位置。 11 ... Pressure reducing valve, 12 ... Main body, 14 ... Inlet, 15 ... Outlet, 16 ... Fluid passage, 17 ... Primary side inflow passage, 18 ... Secondary side outflow passage, 19 ... Air supply port (bulkhead) ), 21 ... Valve opening, 22 ... Valve seat, 25 ... Valve body, 25b ... Valve part, 31 ... Diaphragm, 34 ... Pressure chamber, 35 ... Suction tube (suction passage), 36 ... Pressure regulating spring, 41, 51, 61, 63 ... Separator, 42 ... First passage, 43 ... Second passage, 44 ... Ring, 46 ... Through hole, 51c, 61c, 63c ... Maximum blade thickness position.

Claims (5)

予め調整された押圧力を作用させるアクチュエータと、
流体源から供給された流体が流入する流入口と、前記流入口から流入した流体が外部に流出される流出口とを有し、かつ前記流入口と前記流出口の間を連通して流体を流す流体通路を有する本体ボデーと、
前記本体ボデー内に設けられ、前記流体通路を1次側の流入通路と2次側の流出通路とに区画する隔壁と、
前記隔壁を貫通して前記1次側の流入通路と前記2次側の流出通路とを連通する弁開口の周囲に設けられた弁座と、
前記弁座に着座または離間する弁部を有し、前記弁開口を開閉する弁体と、
前記アクチュエータと前記本体ボデーとに挟持され、かつ、前記弁体の動作方向と直交する方向に張設されて、前記アクチュエータからの押圧力を受けて前記弁体を前記弁開口が開く方向に動作させるダイアフラムと、
前記2次側の流出通路の圧力を前記ダイアフラムに対し前記弁体を前記弁開口が閉じる方向に動作させるように作用させる圧力室と、
前記弁体を前記弁開口が閉じる方向に付勢力を作用させるばねと
を有する減圧弁において、
前記2次側の流出通路は、前記ダイアフラムの張設方向と平行な方向に延びるとともに、前記弁体の動作方向に対して直交するように前記流出口に向かって延伸し、
前記本体ボデーは、前記2次側の流出通路と前記圧力室とを連通する吸引通路を備えているとともに、前記2次側の流出通路の内部を前記吸引通路が開口する第1の通路と、反対側の第2の通路とに分割する薄板状のセパレータを備えていることを特徴とする減圧弁。
An actuator that applies a pre-adjusted pressing force and
It has an inflow port into which the fluid supplied from the fluid source flows in, and an outflow port in which the fluid flowing in from the inflow port flows out to the outside, and communicates the fluid between the inflow port and the outflow port. A main body with a fluid passage to flow, and
A partition wall provided in the main body and dividing the fluid passage into an inflow passage on the primary side and an outflow passage on the secondary side.
A valve seat provided around a valve opening that penetrates the partition wall and communicates the inflow passage on the primary side and the outflow passage on the secondary side.
A valve body that has a valve portion that sits on or separates from the valve seat and opens and closes the valve opening.
It is sandwiched between the actuator and the main body and stretched in a direction orthogonal to the operating direction of the valve body, and operates in the direction in which the valve opening opens in response to the pressing force from the actuator. Diaphragm to let
A pressure chamber that causes the pressure of the outflow passage on the secondary side to act on the diaphragm so that the valve body operates in the direction in which the valve opening closes.
In a pressure reducing valve having a spring that applies an urging force to the valve body in a direction in which the valve opening closes.
The outflow passage on the secondary side extends in a direction parallel to the extension direction of the diaphragm and extends toward the outflow port so as to be orthogonal to the operating direction of the valve body.
The main body body includes a suction passage that communicates the outflow passage on the secondary side and the pressure chamber, and a first passage through which the suction passage opens inside the outflow passage on the secondary side. A pressure reducing valve including a thin plate-shaped separator that divides into a second passage on the opposite side.
請求項1記載の減圧弁において、
前記第1の通路に流速が相対的に高い流体が流れ、前記第2の通路に流速が相対的に低い流体が流れるように構成されていることを特徴とする減圧弁。
In the pressure reducing valve according to claim 1,
A pressure reducing valve characterized in that a fluid having a relatively high flow velocity flows through the first passage and a fluid having a relatively low flow velocity flows through the second passage.
請求項1または請求項2記載の減圧弁において、
前記セパレータは、前記2次側の流出通路の壁面に嵌合するリングの内部に設けられ、 前記リングには、前記吸引通路に接続される貫通孔が穿設されていることを特徴とする減圧弁。
In the pressure reducing valve according to claim 1 or 2.
The separator is provided inside a ring fitted to the wall surface of the outflow passage on the secondary side, and the ring is provided with a through hole connected to the suction passage. valve.
請求項1〜請求項3のいずれか一つに記載の減圧弁において、
前記セパレータは、断面形状が翼型となるように形成されているとともに、前記第1の通路を流れる流体の流速が上昇するように構成されていることを特徴とする減圧弁。
In the pressure reducing valve according to any one of claims 1 to 3.
The separator is a pressure reducing valve which is formed so as to have an airfoil-shaped cross section and is configured to increase the flow velocity of a fluid flowing through the first passage.
請求項4記載の減圧弁において、
前記セパレータの最大翼厚位置と対向する位置に前記吸引通路が位置付けられていることを特徴とする減圧弁。
In the pressure reducing valve according to claim 4,
A pressure reducing valve characterized in that the suction passage is positioned at a position facing the maximum blade thickness position of the separator.
JP2020063162A 2020-03-31 2020-03-31 Pressure reduction valve Pending JP2021163116A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020063162A JP2021163116A (en) 2020-03-31 2020-03-31 Pressure reduction valve
KR1020210038055A KR102502817B1 (en) 2020-03-31 2021-03-24 Pressure reducing valve
CN202110317384.XA CN113464693B (en) 2020-03-31 2021-03-25 Pressure reducing valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020063162A JP2021163116A (en) 2020-03-31 2020-03-31 Pressure reduction valve

Publications (1)

Publication Number Publication Date
JP2021163116A true JP2021163116A (en) 2021-10-11

Family

ID=77868372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020063162A Pending JP2021163116A (en) 2020-03-31 2020-03-31 Pressure reduction valve

Country Status (3)

Country Link
JP (1) JP2021163116A (en)
KR (1) KR102502817B1 (en)
CN (1) CN113464693B (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2956006B2 (en) * 1994-05-24 1999-10-04 株式会社山武 Valve device
JP3704223B2 (en) 1997-03-26 2005-10-12 Smc株式会社 Pressure reducing valve
JP3923665B2 (en) 1998-09-22 2007-06-06 日野自動車株式会社 EGR device for supercharged engine
JP2001255942A (en) 2000-03-10 2001-09-21 Inax Corp Pressure-reducing valve
KR100554723B1 (en) * 2005-12-08 2006-02-24 주식회사 삼진정밀 Pilot-relief valve
US8485213B2 (en) 2008-12-17 2013-07-16 Emerson Process Management Regulator Technologies, Inc. Internal relief valve apparatus for use with loading regulators
CN103175581A (en) * 2011-12-21 2013-06-26 新奥科技发展有限公司 Flow channel structure and fluid flow measurement device
JP5968660B2 (en) * 2012-03-27 2016-08-10 株式会社不二工機 Pressure reducing valve
JP6864533B2 (en) * 2017-04-18 2021-04-28 アズビル株式会社 Pneumatic controller and control valve

Also Published As

Publication number Publication date
KR102502817B1 (en) 2023-02-23
CN113464693B (en) 2024-03-12
CN113464693A (en) 2021-10-01
KR20210122124A (en) 2021-10-08

Similar Documents

Publication Publication Date Title
JP2016540159A (en) Flow control in an aspirator to generate vacuum suction using the Venturi effect
JP2012500368A (en) Microvalve device with improved fluid routing
JP4275463B2 (en) Electro-pneumatic air regulator
JP2021163116A (en) Pressure reduction valve
CN110799759B (en) Centrifugal compressor
JPS5824676A (en) Recirculating device for exhaust gas
JP2012215186A (en) Solenoid valve
JP6390659B2 (en) Fuel injection valve
JP2001099016A (en) Pressure control valve
JP4201516B2 (en) Pressure regulator
JP3942435B2 (en) Fuel pressure regulating valve
JP2020084953A (en) Diaphragm pump
JP5449941B2 (en) Poppet valve with inclined purge hole and method for reducing pressure inside poppet valve
JP2011069235A5 (en)
JP7396943B2 (en) water governor
JPH04327083A (en) Pilot type solenoid valve
US11947367B2 (en) Pressure control characteristic—diffuser
JP7341936B2 (en) Blower
JP2003067056A (en) Sheet structure of pressure reducing valve
JP4406865B2 (en) Pulsating diaphragm fuel pump
JP2002207519A (en) Pressure reducing valve
JP4879662B2 (en) Reed valve
JP2002333924A (en) Pressure regulator
US4401092A (en) Exhaust gas recirculation system
US4257226A (en) By-pass valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240213