JP2021162577A - Gas detection device - Google Patents

Gas detection device Download PDF

Info

Publication number
JP2021162577A
JP2021162577A JP2021036353A JP2021036353A JP2021162577A JP 2021162577 A JP2021162577 A JP 2021162577A JP 2021036353 A JP2021036353 A JP 2021036353A JP 2021036353 A JP2021036353 A JP 2021036353A JP 2021162577 A JP2021162577 A JP 2021162577A
Authority
JP
Japan
Prior art keywords
substrate
joining member
detection device
light
gas detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021036353A
Other languages
Japanese (ja)
Other versions
JP7569712B2 (en
Inventor
優二 池田
Yuji Ikeda
圭一郎 桑田
Keiichiro Kuwata
貴明 古屋
Takaaki Furuya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to US17/208,004 priority Critical patent/US11662305B2/en
Publication of JP2021162577A publication Critical patent/JP2021162577A/en
Application granted granted Critical
Publication of JP7569712B2 publication Critical patent/JP7569712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To provide a gas detection device capable of suppressing the occurrence of distortion of an optical path.SOLUTION: A gas detection device 1 includes a substrate 2, a light-emitting element 3 provided to a main surface 20 of the substrate and emitting light, a light-receiving element 4 provided to the main surface 20 of the substrate and receiving light, a light guide member 5 that guides the light emitted from the light-emitting element to the light-receiving element, a first bonding member 6, and a second bonding member 7. The first bonding member bonds between the substrate and the light guide member, and when external force is applied to the light guide member, the first bonding member suppresses the movement in a direction parallel and/or perpendicular to the main surface 20 of the substrate. The second bonding member bonds between the substrate and the light guide member, and when external force is applied to the light guide member or distortion due to thermal expansion occurs, the second bonding member suppresses the movement of the light guide member in the direction parallel to the main surface of the substrate and/or suppresses the movement within a plane perpendicular to the main surface of the substrate. At least one of the first bonding member and the second bonding member can move in the plane parallel to the main surface of the substrate or the plane perpendicular to the main surface of the substrate.SELECTED DRAWING: Figure 1

Description

本開示はガス検出装置に関する。 The present disclosure relates to a gas detector.

ガスを検出するガス検出装置が様々な分野で利用されている。例えば特許文献1は、赤外線を放射する光源と、特定波長の赤外線を検出する検出器とを同一のケース内に備え、当該ケース内に被検出ガスが導入されるように構成された装置を開示する。 Gas detectors that detect gas are used in various fields. For example, Patent Document 1 discloses an apparatus in which a light source that emits infrared rays and a detector that detects infrared rays of a specific wavelength are provided in the same case, and a gas to be detected is introduced into the case. do.

特開2015−184211号公報Japanese Unexamined Patent Publication No. 2015-184211

ここで、特許文献1に記載されるガス検出装置において、光路管は基板固定部の溝及び固定具によって基板及びケースに対して強固に接合される。そのため、例えば熱膨張による基板及びケースの歪みが光路管に伝わって、光路の歪みが生じ、若しくは光学面の相対位置が変化し、ガス検出感度が変動するおそれがある。 Here, in the gas detection device described in Patent Document 1, the optical path tube is firmly joined to the substrate and the case by the groove and the fixture of the substrate fixing portion. Therefore, for example, the distortion of the substrate and the case due to thermal expansion is transmitted to the optical path tube, causing distortion of the optical path, or the relative position of the optical surface may change, and the gas detection sensitivity may fluctuate.

かかる点に鑑みてなされた本開示の目的は、光路の歪みの発生を抑制することが可能なガス検出装置を提供することにある。 An object of the present disclosure made in view of such a point is to provide a gas detection device capable of suppressing the occurrence of distortion of an optical path.

本開示の一実施形態に係るガス検出装置は、
基板と、
前記基板の主面に設けられ、光を発する発光素子と、
前記基板の主面に設けられ、前記光を受け取る受光素子と、
前記発光素子が発した前記光を前記受光素子に導く導光部材と、
第1の接合部材と、
第2の接合部材とを備え、
前記第1の接合部材は、前記基板と前記導光部材とを接合し、かつ、前記導光部材に対する外力を加えた際に前記基板の主面と平行及び/又は垂直な方向に動きを抑制し、
前記第2の接合部材は前記基板と前記導光部材とを接合し、前記導光部材に対する外力を加えた際又は熱膨張による歪みが生じた際に、前記基板の主面と平行な方向に前記導光部材の動きを抑制し、及び/又は、前記基板の主面に垂直な平面内に動きを抑制し、
第1の接合部材及び第2の接合部材の少なくとも一方は、前記基板の主面と平行な方向又は前記基板の主面に垂直な平面内に動きうる。
The gas detection device according to the embodiment of the present disclosure is
With the board
A light emitting element provided on the main surface of the substrate and emitting light,
A light receiving element provided on the main surface of the substrate and receiving the light,
A light guide member that guides the light emitted by the light emitting element to the light receiving element, and
With the first joining member,
With a second joining member
The first joining member joins the substrate and the light guide member, and suppresses movement in a direction parallel to and / or perpendicular to the main surface of the substrate when an external force is applied to the light guide member. death,
The second joining member joins the substrate and the light guide member in a direction parallel to the main surface of the substrate when an external force is applied to the light guide member or distortion occurs due to thermal expansion. Suppressing the movement of the light guide member and / or suppressing the movement in a plane perpendicular to the main surface of the substrate.
At least one of the first joining member and the second joining member can move in a direction parallel to the main surface of the substrate or in a plane perpendicular to the main surface of the substrate.

本開示の一実施形態に係るガス検出装置は、
光を発する発光素子と前記光を受け取る受光素子とを主面に設けた基板と、
前記発光素子が発した前記光を前記受光素子に導く導光部材と、
前記基板と前記導光部材とを接合する第1の接合部材と、
前記基板と前記導光部材とを接合し、前記第1の接合部材より低い接合度を有する第2の接合部材と、を備える。
The gas detection device according to the embodiment of the present disclosure is
A substrate on which a light emitting element that emits light and a light receiving element that receives the light are provided on the main surface, and
A light guide member that guides the light emitted by the light emitting element to the light receiving element, and
A first joining member that joins the substrate and the light guide member,
A second joining member that joins the substrate and the light guide member and has a lower joining degree than the first joining member is provided.

本開示の一実施形態に係るガス検出装置は、
基板と、
前記基板の主面に設けられ、光を発する発光素子と、
前記基板の主面に設けられ、前記光を受け取る受光素子と、
前記発光素子が発した前記光を前記受光素子に導く導光部材と、
第1の接合部材と、
第2の接合部材と、を備え、
前記第1の接合部材は、前記基板と前記導光部材とを、基板の平面と平行な第1方向に第1拘束度で、前記基板の平面と平行かつ前記1方向と垂直な第2方向に第2拘束度で、及び前記基板の平面に垂直な第3方向に第3拘束度で、それぞれの並進方向に拘束し、
前記第2の接合部材は、前記基板と前記導光部材とを、前記第1方向に第4拘束度で、前記第2方向に第5拘束度で、及び前記第3方向に第6拘束度で、それぞれの並進方向に拘束し、
前記第1拘束度から前記第6拘束度のうち少なくとも1つはゼロであり、前記第1拘束度と前記第4拘束度の何れか一方はゼロではなく、前記第2拘束度と前記第5拘束度の何れか一方はゼロではなく、前記第3拘束度と前記第6拘束度の何れか一方はゼロではない。
The gas detection device according to the embodiment of the present disclosure is
With the board
A light emitting element provided on the main surface of the substrate and emitting light,
A light receiving element provided on the main surface of the substrate and receiving the light,
A light guide member that guides the light emitted by the light emitting element to the light receiving element, and
With the first joining member,
With a second joining member
The first joining member places the substrate and the light guide member in a first direction parallel to the plane of the substrate with a first restraint degree, and a second direction parallel to the plane of the substrate and perpendicular to the one direction. With a second degree of restraint, and with a third degree of restraint in the third direction perpendicular to the plane of the substrate, constrained in each translational direction.
The second joining member holds the substrate and the light guide member in the first direction with a fourth degree of restraint, in the second direction with a fifth degree of restraint, and in the third direction with a sixth degree of restraint. So, restrain in each translation direction,
At least one of the first restraint degree to the sixth restraint degree is zero, and one of the first restraint degree and the fourth restraint degree is not zero, and the second restraint degree and the fifth restraint degree are not zero. One of the restraint degrees is not zero, and one of the third restraint degree and the sixth restraint degree is not zero.

本開示の一実施形態によれば、光路の歪みの発生を抑制することが可能なガス検出装置が提供され得る。 According to one embodiment of the present disclosure, a gas detection device capable of suppressing the occurrence of distortion of the optical path can be provided.

図1は、本開示の一実施形態に係るガス検出装置の一部を透過させた斜視図である。FIG. 1 is a perspective view showing a part of the gas detection device according to the embodiment of the present disclosure. 図2は、ガス検出装置の断面の一例を示す図である。FIG. 2 is a diagram showing an example of a cross section of the gas detection device. 図3は、第1及び第2の接合部材の配置及び形状の一例を示す図である。FIG. 3 is a diagram showing an example of the arrangement and shape of the first and second joining members. 図4は、第1の接合部材の配置の別の例を示す図である。FIG. 4 is a diagram showing another example of the arrangement of the first joining member. 図5は、第2の接合部材の断面拡大図である。FIG. 5 is an enlarged cross-sectional view of the second joining member. 図6は、ガス検出装置の断面の別の例を示す図である。FIG. 6 is a diagram showing another example of the cross section of the gas detection device. 図7は、第1の接合部材の配置及び形状の別の例を示す図である。FIG. 7 is a diagram showing another example of the arrangement and shape of the first joining member. 図8は、第1の接合部材の形状の別の例を示す図である。FIG. 8 is a diagram showing another example of the shape of the first joining member. 図9は、第1の接合部材の形状の別の例を示す図である。FIG. 9 is a diagram showing another example of the shape of the first joining member. 図10は、導光部材の別の構成例を示す図である。FIG. 10 is a diagram showing another configuration example of the light guide member. 図11は、長穴を説明するための図である。FIG. 11 is a diagram for explaining an elongated hole. 図12は、物面(発光面)での強度分布と像面(受光面)における照度分布とを説明するための図である。FIG. 12 is a diagram for explaining the intensity distribution on the object surface (light emitting surface) and the illuminance distribution on the image surface (light receiving surface). 図13は、拘束点と歪みとの関係を説明するための図である。FIG. 13 is a diagram for explaining the relationship between the restraint point and the strain. 図14は、第1の接合部材の形状の別の例を示す図である。FIG. 14 is a diagram showing another example of the shape of the first joining member. 図15は、第1及び第2の接合部材の配置を説明する図である。FIG. 15 is a diagram illustrating the arrangement of the first and second joining members.

(第1実施形態)
図1は、本開示の一実施形態に係るガス検出装置1の一部を透過させた斜視図である。ガス検出装置1は、一例として30mm×20mm×10mmの小型の装置であって、ガスセンサーとも称される。本実施形態において、ガス検出装置1は、導入した気体を透過した赤外線に基づいて被検出ガスの濃度を測定する、NDIR(Non Dispersive InfraRed)方式の装置である。被検出ガスは、例えば二酸化炭素、水蒸気、メタン、プロパン、ホルムアルデヒド、一酸化炭素、一酸化窒素、アンモニア、二酸化硫黄又はアルコール等である。
(First Embodiment)
FIG. 1 is a perspective view showing a part of the gas detection device 1 according to the embodiment of the present disclosure. The gas detection device 1 is, for example, a small device having a size of 30 mm × 20 mm × 10 mm, and is also referred to as a gas sensor. In the present embodiment, the gas detection device 1 is an NDIR (Non Dispersive InfraRed) type device that measures the concentration of the gas to be detected based on the infrared rays transmitted through the introduced gas. The gas to be detected is, for example, carbon dioxide, water vapor, methane, propane, formaldehyde, carbon monoxide, nitric oxide, ammonia, sulfur dioxide or alcohol.

ガス検出装置1は、基板2と、発光素子3と、受光素子4と、導光部材5と、第1の接合部材6と、第2の接合部材7と、を備える。図1では、導光部材5の一部を透過させてガス検出装置1の構成例を示しており、基板2の主面20に設けられた発光素子3及び受光素子4が見えている。本実施形態において、主面20は、基板2の面積が最も大きい面のうちで導光部材5と対向する面である。 The gas detection device 1 includes a substrate 2, a light emitting element 3, a light receiving element 4, a light guide member 5, a first joining member 6, and a second joining member 7. FIG. 1 shows a configuration example of the gas detection device 1 by transmitting a part of the light guide member 5, and the light emitting element 3 and the light receiving element 4 provided on the main surface 20 of the substrate 2 are visible. In the present embodiment, the main surface 20 is a surface facing the light guide member 5 among the surfaces having the largest area of the substrate 2.

以下、図1に示すように、xy平面が基板2の主面20と平行であるように、直交座標が設定される。z軸方向は、基板2の主面20に垂直な方向である。x軸方向及びy軸方向は、基板2の主面20の辺と平行である。ここで、y軸方向は、後述する第1の反射部51と第2の反射部52とが向かい合う方向に対応する。 Hereinafter, as shown in FIG. 1, the orthogonal coordinates are set so that the xy plane is parallel to the main surface 20 of the substrate 2. The z-axis direction is a direction perpendicular to the main surface 20 of the substrate 2. The x-axis direction and the y-axis direction are parallel to the side of the main surface 20 of the substrate 2. Here, the y-axis direction corresponds to the direction in which the first reflecting portion 51 and the second reflecting portion 52, which will be described later, face each other.

基板2は、ガス検出装置1の部品を実装し、実装された電子部品の電気的な接続を行う板状の部材である。基板2は、発光素子3と、受光素子4と、を主面20に設ける。基板2はさらに別の電子部品を実装してよい。例えば、基板2は主面20又は主面20と反対の面である底面に、発光素子3及び受光素子4の少なくとも一方を制御するコントローラを設けてよい。また、基板2は主面20又は底面に、ガス濃度算出における演算を実行する演算部を備えてよい。演算部は、読み込むプログラムに応じた機能を実行する汎用のプロセッサ、及び、特定の処理に特化した専用のプロセッサの少なくとも1つを含んでよい。専用のプロセッサは、特定用途向けIC(ASIC;Application Specific Integrated Circuit)を含んでよい。プロセッサは、プログラマブルロジックデバイス(PLD;Programmable Logic Device)を含んでよい。演算部は、上記のコントローラと一体化されていてよい。 The substrate 2 is a plate-shaped member on which the components of the gas detection device 1 are mounted and the mounted electronic components are electrically connected. The substrate 2 is provided with a light emitting element 3 and a light receiving element 4 on the main surface 20. Yet another electronic component may be mounted on the substrate 2. For example, the substrate 2 may be provided with a controller for controlling at least one of the light emitting element 3 and the light receiving element 4 on the main surface 20 or the bottom surface opposite to the main surface 20. Further, the substrate 2 may be provided on the main surface 20 or the bottom surface with a calculation unit that executes a calculation in calculating the gas concentration. The arithmetic unit may include at least one of a general-purpose processor that executes a function according to a program to be read and a dedicated processor specialized in a specific process. Dedicated processors may include application specific integrated circuits (ASICs). The processor may include a programmable logic device (PLD). The arithmetic unit may be integrated with the above controller.

発光素子3は、被検出ガスの検出に用いられる光を発する部品である。発光素子3は、被検出ガスによって吸収される波長を含む光を出力するものであれば特に制限されない。本実施形態において、発光素子3が発する光は赤外線であるが、これに限定されない。本実施形態において、発光素子3はLED(light emitting diode、発光ダイオード)であるが、別の例として半導体レーザ、有機発光素子又はMEMS(Micro Electro Mechanical Systems)ヒータ等であり得る。発光素子3は、基板2の主面20の第1の領域21に設けられる。第1の領域21は、z軸方向において、後述する第1のミラー511と対向する位置に定められる。 The light emitting element 3 is a component that emits light used for detecting a gas to be detected. The light emitting element 3 is not particularly limited as long as it outputs light including a wavelength absorbed by the gas to be detected. In the present embodiment, the light emitted by the light emitting element 3 is infrared rays, but the light is not limited to this. In the present embodiment, the light emitting device 3 is an LED (light emitting diode), but another example may be a semiconductor laser, an organic light emitting device, a MEMS (Micro Electro Mechanical Systems) heater, or the like. The light emitting element 3 is provided in the first region 21 of the main surface 20 of the substrate 2. The first region 21 is defined at a position facing the first mirror 511, which will be described later, in the z-axis direction.

受光素子4は、導入した気体を透過した光を受け取る部品である。受光素子4は、被検出ガスによって吸収される波長を含む光の帯域に感度を有するものであれば特に制限されない。本実施形態において、受光素子4が受け取る光は赤外線であるが、これに限定されない。本実施形態において、受光素子4はフォトダイオード(Photodiode)であるが、別の例としてフォトトランジスタ又はサーモパイル、焦電センサ、ボロメータ等であり得る。受光素子4は、受け取った光を電気信号に変換して、変換した電気信号を出力する。電気信号は、例えば演算部に出力される。電気信号を受け取った演算部は、光の透過率等に基づいて被検出ガスの濃度を演算する。受光素子4は、基板2の主面20の第2の領域22に設けられる。第2の領域22は、z軸方向において、後述する第5のミラー513と対向する位置に定められる。受光素子4は波長選択機能を有する光学フィルタを備えていてよい。 The light receiving element 4 is a component that receives light transmitted through the introduced gas. The light receiving element 4 is not particularly limited as long as it has sensitivity in the band of light including the wavelength absorbed by the gas to be detected. In the present embodiment, the light received by the light receiving element 4 is infrared rays, but the light is not limited to this. In the present embodiment, the light receiving element 4 is a photodiode, but another example may be a phototransistor or a thermopile, a pyroelectric sensor, a bolometer, or the like. The light receiving element 4 converts the received light into an electric signal and outputs the converted electric signal. The electric signal is output to, for example, a calculation unit. The calculation unit that receives the electric signal calculates the concentration of the detected gas based on the light transmittance and the like. The light receiving element 4 is provided in the second region 22 of the main surface 20 of the substrate 2. The second region 22 is defined at a position facing the fifth mirror 513, which will be described later, in the z-axis direction. The light receiving element 4 may include an optical filter having a wavelength selection function.

導光部材5は、発光素子3が発した光を受光素子4に導く部材である。導光部材5は、ガス検出装置1の光学系である。導光部材5は光学部材を備え、発光素子3から受光素子4への光路を構成する。換言すると、導光部材5は、発光素子3と受光素子4とを光学的に接続させる。ここで、光学部材は例えばミラー及びレンズ等である。 The light guide member 5 is a member that guides the light emitted by the light emitting element 3 to the light receiving element 4. The light guide member 5 is an optical system of the gas detection device 1. The light guide member 5 includes an optical member and constitutes an optical path from the light emitting element 3 to the light receiving element 4. In other words, the light guide member 5 optically connects the light emitting element 3 and the light receiving element 4. Here, the optical member is, for example, a mirror, a lens, or the like.

本実施形態において、導光部材5は、第1の反射部51と、第2の反射部52と、を備える。第1の反射部51は、光学部材として、第1のミラー511と、第3のミラー512と、第5のミラー513と、を備える。第1の反射部51は、発光素子3から発せられた光を最初に反射する鏡を持ち、及び受光素子4が受け取る光を最後に反射する鏡を持つ。第2の反射部52は、光学部材として、第2のミラー521と、第4のミラー522と、を備える。導光部材5は、発光素子3が発した光を、第1のミラー511、第2のミラー521、第3のミラー512、第4のミラー522及び第5のミラー513の順に反射して、受光素子4に導く。光路は、導光部材5と基板2との間に設けられた、気体が導入されるセル54を通過するように構成される。別の例として、導光部材5が備えるミラーの数は5つ以外の1つ以上であってよい。また、導光部材5は光路の一部においてレンズを備える構成であってよい。 In the present embodiment, the light guide member 5 includes a first reflecting portion 51 and a second reflecting portion 52. The first reflecting unit 51 includes a first mirror 511, a third mirror 512, and a fifth mirror 513 as optical members. The first reflecting unit 51 has a mirror that first reflects the light emitted from the light emitting element 3, and has a mirror that finally reflects the light received by the light receiving element 4. The second reflecting unit 52 includes a second mirror 521 and a fourth mirror 522 as optical members. The light guide member 5 reflects the light emitted by the light emitting element 3 in the order of the first mirror 511, the second mirror 521, the third mirror 512, the fourth mirror 522, and the fifth mirror 513. It leads to the light receiving element 4. The optical path is configured to pass through the cell 54 into which the gas is introduced, which is provided between the light guide member 5 and the substrate 2. As another example, the number of mirrors included in the light guide member 5 may be one or more other than five. Further, the light guide member 5 may be configured to include a lens in a part of the optical path.

導光部材5において、第1の反射部51は、第2の反射部52に対する相対位置が固定される。例えば、第1の反射部51及び第2の反射部52は樹脂製であって一体形成されてよい。第1の反射部51及び第2の反射部52のミラーは、一体形成の後に金属メッキで加工されてよい。別の例として、第1の反射部51及び第2の反射部52は個別に形成されて、接着剤、ネジ、ツメ、はめ合い、グロメット、溶着等によって強力に固定されてよい。 In the light guide member 5, the position of the first reflecting portion 51 with respect to the second reflecting portion 52 is fixed. For example, the first reflecting portion 51 and the second reflecting portion 52 may be made of resin and integrally formed. The mirrors of the first reflecting portion 51 and the second reflecting portion 52 may be metal-plated after being integrally formed. As another example, the first reflective portion 51 and the second reflective portion 52 may be individually formed and strongly fixed by an adhesive, screws, claws, fittings, grommets, welding or the like.

第1のミラー511は、焦点にある発光素子3から射出された光を反射する集光鏡である。第1のミラー511は例えば凹面鏡である。第1のミラー511の形状として、楕円面が使用されてよい。本実施形態において、第1のミラー511は、焦点にある発光素子3からz軸方向に発せられた光をxy平面方向に反射する。ここで、xy平面方向は、x軸方向及びy軸方向の少なくとも1つの方向の成分を有する方向である。ただし、xy平面方向は、z軸方向成分を有していてよい。 The first mirror 511 is a condensing mirror that reflects the light emitted from the light emitting element 3 at the focal point. The first mirror 511 is, for example, a concave mirror. An ellipsoidal surface may be used as the shape of the first mirror 511. In the present embodiment, the first mirror 511 reflects the light emitted from the focal light emitting element 3 in the z-axis direction in the xy plane direction. Here, the xy plane direction is a direction having components in at least one direction in the x-axis direction and the y-axis direction. However, the xy plane direction may have a z-axis direction component.

第2のミラー521、第3のミラー512及び第4のミラー522は、入射した光を反射する。第2のミラー521、第3のミラー512及び第4のミラー522の少なくとも1つは、集光機能を有する集光鏡であってよい。第2のミラー521、第3のミラー512及び第4のミラー522の少なくとも1つは、例えば凹面鏡であってよい。図1に示すように、第2のミラー521は、入射した第1のミラー511からの光を、第3のミラー512へ反射する。第3のミラー512は、入射した第2のミラー521からの光を、第4のミラー522へ反射する。第4のミラー522は、入射した第3のミラー512からの光を、第5のミラー513へ反射する。 The second mirror 521, the third mirror 512, and the fourth mirror 522 reflect the incident light. At least one of the second mirror 521, the third mirror 512, and the fourth mirror 522 may be a condensing mirror having a condensing function. At least one of the second mirror 521, the third mirror 512 and the fourth mirror 522 may be, for example, a concave mirror. As shown in FIG. 1, the second mirror 521 reflects the incident light from the first mirror 511 to the third mirror 512. The third mirror 512 reflects the incident light from the second mirror 521 to the fourth mirror 522. The fourth mirror 522 reflects the incident light from the third mirror 512 to the fifth mirror 513.

第5のミラー513は、入射した光を受光素子4に集光させる集光鏡である。第5のミラー513は例えば凹面鏡である。第5のミラー513の形状として、楕円面が使用されてよい。本実施形態において、第5のミラー513は、入射した第4のミラー522からのxy平面方向の光をz軸方向の成分を有するように反射する。具体的には、第5のミラー513は、焦点位置にある受光素子4において集光するように入射した光を反射する。 The fifth mirror 513 is a condensing mirror that condenses the incident light on the light receiving element 4. The fifth mirror 513 is, for example, a concave mirror. An ellipsoidal surface may be used as the shape of the fifth mirror 513. In the present embodiment, the fifth mirror 513 reflects the incident light from the fourth mirror 522 in the xy plane direction so as to have a component in the z-axis direction. Specifically, the fifth mirror 513 reflects the incident light so as to be focused by the light receiving element 4 at the focal position.

第1のミラー511、第2のミラー521、第3のミラー512、第4のミラー522及び第5のミラー513を構成する材料は、例えば、金属、ガラス、セラミックス、ステンレス等であってよいが、この限りではない。検出感度向上の観点から、これらのミラーを構成する材料は、光の吸収係数が小さく反射率が高い材料で構成されることが好ましい。具体的には、アルミニウム、金、銀を含む合金、誘電体、若しくはこれらの積層体のコーティングが施された樹脂筐体が好ましい。信頼性及び経時変化の観点から金又は金を含む合金層でコーティングされた樹脂筐体が好ましい。さらに、反射率を高め、かつ経年劣化を避けるために金属層の表面に誘電体積層膜を形成することが好ましい。第1のミラー511及び第5のミラー513が樹脂筐体への蒸着又はめっきによって形成される場合、金属材料で形成される場合と比較して、高生産性と軽量化の向上を図ることができる。さらに、基板2との熱膨張係数差が縮まり、熱変形が抑制され、感度の変動が抑制される。また、導光部材5は切削加工で成形されてよく、生産性の観点からより好ましくは射出成型で成形されることが望ましい。 The materials constituting the first mirror 511, the second mirror 521, the third mirror 512, the fourth mirror 522, and the fifth mirror 513 may be, for example, metal, glass, ceramics, stainless steel, or the like. , Not limited to this. From the viewpoint of improving the detection sensitivity, the material constituting these mirrors is preferably made of a material having a small light absorption coefficient and a high reflectance. Specifically, a resin housing coated with an alloy containing aluminum, gold, or silver, a dielectric, or a laminate thereof is preferable. From the viewpoint of reliability and aging, a resin housing coated with gold or an alloy layer containing gold is preferable. Further, it is preferable to form a dielectric laminated film on the surface of the metal layer in order to increase the reflectance and avoid deterioration over time. When the first mirror 511 and the fifth mirror 513 are formed by vapor deposition or plating on a resin housing, it is possible to improve productivity and weight reduction as compared with the case where the first mirror 511 and the fifth mirror 513 are formed of a metal material. can. Further, the difference in the coefficient of thermal expansion from the substrate 2 is reduced, thermal deformation is suppressed, and fluctuations in sensitivity are suppressed. Further, the light guide member 5 may be molded by cutting, and it is more preferable that the light guide member 5 is molded by injection molding from the viewpoint of productivity.

第1の接合部材6は、基板2と導光部材5とを接合する部材である。本実施形態において、第1の接合部材6は、1本の柱体であって、基板2に接合する第1の底面部61(図2参照)と、導光部材5に接合する第2の底面部62と、を有する。第1の底面部61と基板2とは、例えば接着剤、グロメット又はネジ、溶着、ツメ、はめ合い等によって接合される。第2の底面部62と導光部材5との接合も同様である。また、生産性の観点から、構成部材の数が削減されるため第1の接合部材6と導光部材5は一体成型されていることが望ましい。 The first joining member 6 is a member that joins the substrate 2 and the light guide member 5. In the present embodiment, the first joining member 6 is a single pillar body, and the first bottom surface portion 61 (see FIG. 2) joined to the substrate 2 and the second joining member 6 to be joined to the light guide member 5. It has a bottom surface portion 62 and. The first bottom surface portion 61 and the substrate 2 are joined by, for example, an adhesive, grommets or screws, welding, claws, fitting, or the like. The same applies to the joining of the second bottom surface portion 62 and the light guide member 5. Further, from the viewpoint of productivity, it is desirable that the first joining member 6 and the light guide member 5 are integrally molded in order to reduce the number of constituent members.

第2の接合部材7は、第1の接合部材6と異なる位置において、基板2と導光部材5とを接合する部材である。第2の接合部材7の挿入部7a(図2参照)は導光部材5と接続される。第2の接合部材7の挿入部7aは、導光部材5と例えば接着剤、グロメット又はネジ、溶着ツメ、はめ合い等によって強固に接続されてよい。別の例として、第2の接合部材7の挿入部7aは、導光部材5と同じ材料であって、導光部材5と一体形成されてよい。導光部材5と一体形成される場合、構成部材の数が削減されるため、生産性が向上する。図1に示すように、第1の反射部51が第1の接合部材6によって基板2と接合されて、第2の反射部52が第2の接合部材7によって基板2と接合される。 The second joining member 7 is a member that joins the substrate 2 and the light guide member 5 at a position different from that of the first joining member 6. The insertion portion 7a (see FIG. 2) of the second joining member 7 is connected to the light guide member 5. The insertion portion 7a of the second joining member 7 may be firmly connected to the light guide member 5 by, for example, an adhesive, a grommet or a screw, a welding claw, a fitting or the like. As another example, the insertion portion 7a of the second joining member 7 may be made of the same material as the light guide member 5 and may be integrally formed with the light guide member 5. When integrally formed with the light guide member 5, the number of constituent members is reduced, so that productivity is improved. As shown in FIG. 1, the first reflecting portion 51 is joined to the substrate 2 by the first joining member 6, and the second reflecting portion 52 is joined to the substrate 2 by the second joining member 7.

図2は、ガス検出装置1の断面の一例を示す図である。図2では、基板2と、第3のミラー512を含む導光部材5と、第1の接合部材6と、第2の接合部材7と、をyz平面に平行な面で切断した断面が示されている。セル54は、基板2と導光部材5とで挟まれた、ガス検出装置1の内部に形成される。導光部材5は、セル54に気体を導入する通気口53を備える。通気口53は、セル54からの気体の排出でも使用され得る。本実施形態において、第1の接合部材6は、中空の円柱体である。第1の底面部61は、基板2の底面から中空部分にネジが挿入されることによって、基板2と接合される。第2の底面部62は、中空部分にグロメットが挿入されて広がることによって、導光部材5と接合される。別の例として、第1の接合部材6は、中実の円柱体であってよい。第1の底面部61と基板2、及び、第2の底面部62と導光部材5は、接着剤、溶着、ツメ、はめ合い等によって接合されてよい。 FIG. 2 is a diagram showing an example of a cross section of the gas detection device 1. FIG. 2 shows a cross section of the substrate 2, the light guide member 5 including the third mirror 512, the first joining member 6, and the second joining member 7 cut along a plane parallel to the yz plane. Has been done. The cell 54 is formed inside the gas detection device 1 sandwiched between the substrate 2 and the light guide member 5. The light guide member 5 includes a vent 53 for introducing a gas into the cell 54. The vent 53 can also be used to expel gas from the cell 54. In the present embodiment, the first joining member 6 is a hollow cylinder. The first bottom surface portion 61 is joined to the substrate 2 by inserting a screw into the hollow portion from the bottom surface of the substrate 2. The second bottom surface portion 62 is joined to the light guide member 5 by inserting a grommet into the hollow portion and expanding the second bottom surface portion 62. As another example, the first joining member 6 may be a solid cylinder. The first bottom surface portion 61 and the substrate 2, and the second bottom surface portion 62 and the light guide member 5 may be joined by an adhesive, welding, claws, fitting, or the like.

第2の接合部材7は、挿入部7aと、留め具7bと、を備える。挿入部7aは、上記のように、一部が導光部材5と強固に接続される。挿入部7aは、少なくとも一部が基板2のホール25に挿入される。別の例として、留め具7bの少なくとも一部がホール25に挿入される場合もある。ホール25は基板2に設けられた穴である。本実施形態において、ホール25は基板2をz軸方向すなわち厚み方向に貫通する。本実施形態において、挿入部7aは円柱体である。挿入部7aは、導光部材5と接続される面と反対側の面に、留め具7bが挿入される穴を有する。留め具7bは、基板2の底面のホール25から挿入されて、挿入部7aを留める。本実施形態において、留め具7bはネジであるが、他の具体例としてピン又はグロメット等であり得る。留め具7b及び挿入部7aの穴は、互いに対応するネジ山を有する。換言すると、留め具7bは挿入部7aをねじ留めする。ここで、別の例として、第2の接合部材7は、留め具7bのない構成であってよい。つまり、第2の接合部材7は、留め具7b用の穴がない挿入部7aのみで構成されてよい。この場合に、ホール25は主面20に設けられ、基板2をz軸方向に貫通しない穴であってよい。図2の第1のミラー511、基板2の主面20及び発光素子3は、図1の同じ番号が付された要素と同じであるため、説明を省略する。理由は後述するがホール25が一方向に伸長した長穴であってよい。また好ましくはホール25が、第1の接合部材と第2の接合部材の基板2の主面への垂直投影像のそれぞれの中心をつないだ方向に対して伸長している穴であってよい。ここで伸長した方向とは、長穴において長径を有する方向のことである。ホール25が長穴であり第2の接合部材7が留め具7bで留められている構成である場合には、第2の接合部材は、導光部材5に対する外力を加えた際又は熱膨張による歪みが生じた際に、基板2の主面20と平行であって、長穴の伸長する方向である、ある1方向以外の導光部材の動きを抑制する。外力の一例としては、ガス検出装置1の基板2を土台に固定し、導光部材5の代表点を押すことで、z軸方向にねじりを加えることである。詳細には代表点として、例えば第1の接合部材以外の導光部材5の一点、若しくは第1の接合部材から最も遠い導光部材5の表面の点を選択し、ここに外力を加える。他にも代表点としては導光部材5の各面の幾何中心を選んでよい。また外力の方向は基板2の主面20と平行な方向かつ代表点と第1の接合部をつなぐ方向に垂直な方向である。また、第2の接合部材7が留め具7bのない構成である場合、第2の接合部材7は基板2の主面20と垂直方向に自由に動ける。そのため、導光部材5に対する外力を加えた際又は熱膨張による歪みが生じた際に、第2の接合部材7は基板2の主面20に垂直な平面内に動きを抑制される。ここで長穴とは、図11に示すように、穴の外周に平行な2つの線分を含む形状の穴のことである。具体例として長穴とは、それぞれの中心が線分上に並ぶよう、同じ径の円を連続的に並べ、重ね合わせた図形の穴、又は長方形状の穴であってよい。ただし、第1の接合部材及び第2の接合部材が、それぞれ基板の主面と平行な方向及び垂直な方向に動きを抑制するものは本開示の実施形態から除かれる場合がある。 The second joining member 7 includes an insertion portion 7a and a fastener 7b. As described above, a part of the insertion portion 7a is firmly connected to the light guide member 5. At least a part of the insertion portion 7a is inserted into the hole 25 of the substrate 2. As another example, at least a portion of the fastener 7b may be inserted into the hole 25. The hole 25 is a hole provided in the substrate 2. In the present embodiment, the hole 25 penetrates the substrate 2 in the z-axis direction, that is, in the thickness direction. In the present embodiment, the insertion portion 7a is a cylindrical body. The insertion portion 7a has a hole on the surface opposite to the surface connected to the light guide member 5 into which the fastener 7b is inserted. The fastener 7b is inserted through the hole 25 on the bottom surface of the substrate 2 to fasten the insertion portion 7a. In this embodiment, the fastener 7b is a screw, but may be a pin, a grommet, or the like as another specific example. The holes of the fastener 7b and the insertion portion 7a have threads corresponding to each other. In other words, the fastener 7b screwed the insertion portion 7a. Here, as another example, the second joining member 7 may have a configuration without the fastener 7b. That is, the second joining member 7 may be composed only of the insertion portion 7a having no hole for the fastener 7b. In this case, the hole 25 may be a hole provided on the main surface 20 and does not penetrate the substrate 2 in the z-axis direction. Since the first mirror 511 of FIG. 2, the main surface 20 of the substrate 2, and the light emitting element 3 are the same as the elements with the same numbers in FIG. 1, description thereof will be omitted. The reason will be described later, but the hole 25 may be an elongated hole extending in one direction. Further, preferably, the hole 25 may be a hole extending in the direction connecting the centers of the vertical projection images of the first joining member and the second joining member on the main surface of the substrate 2. Here, the extending direction is a direction having a major axis in the elongated hole. When the hole 25 is a long hole and the second joining member 7 is fastened by the fastener 7b, the second joining member is subjected to an external force applied to the light guide member 5 or due to thermal expansion. When distortion occurs, the movement of the light guide member other than one direction, which is parallel to the main surface 20 of the substrate 2 and is the direction in which the elongated hole extends, is suppressed. As an example of the external force, the substrate 2 of the gas detection device 1 is fixed to the base, and the representative point of the light guide member 5 is pushed to apply a twist in the z-axis direction. Specifically, as a representative point, for example, one point of the light guide member 5 other than the first joining member, or a point on the surface of the light guide member 5 farthest from the first joining member is selected, and an external force is applied thereto. In addition, as a representative point, the geometric center of each surface of the light guide member 5 may be selected. The direction of the external force is parallel to the main surface 20 of the substrate 2 and perpendicular to the direction connecting the representative point and the first joint. Further, when the second joining member 7 has no fastener 7b, the second joining member 7 can freely move in the direction perpendicular to the main surface 20 of the substrate 2. Therefore, when an external force is applied to the light guide member 5 or when distortion occurs due to thermal expansion, the second joining member 7 is suppressed from moving in a plane perpendicular to the main surface 20 of the substrate 2. Here, the elongated hole is a hole having a shape including two line segments parallel to the outer circumference of the hole, as shown in FIG. As a specific example, the elongated hole may be a hole of a figure in which circles having the same diameter are continuously arranged and overlapped so that their centers are lined up on a line segment, or a rectangular hole. However, those in which the first joining member and the second joining member suppress the movement in the directions parallel to and perpendicular to the main surface of the substrate, respectively, may be excluded from the embodiments of the present disclosure.

図3は、第1の接合部材6の配置及び形状の一例を示す図である。図3では、z軸の負方向に向かって見た基板2の主面20が示されている。垂直投影像6iは、第1の接合部材6が基板2の主面20に対して垂直に投影された像である。本実施形態において、基板2の主面20への垂直投影像6iは中空円形である。別の例として、第1の接合部材6が中実の円柱体の場合に、垂直投影像6iは中実円形である。ここで、図3において、第1の領域21の中心21cと、第2の領域22の中心22cと、を結ぶ線分の中点24が示されている。また、図3において、第1の領域21の中心21cと第2の領域22の中心22cとを結ぶ線分の垂直二等分線23が示されている。また、挿入部7a及び留め具7bを備える第2の接合部材7が、ホール25に対して隙間を有しながら、挿入されている様子が示されている。本実施形態において、第1の接合部材6は、基板2の主面20への垂直投影像6iが、垂直二等分線23上にあるように配置される。また、詳細について後述するが、第2の接合部材7は導光部材5を自由に動ける方向をもって、つまり自由度を有して接合するために、実質的に、基板2と導光部材5とが第1の接合部材6によって接合されている。ここで垂直投影像6iとは、基板2の主面20の直上にある第1の接合部材6の断面形状であってよい。 FIG. 3 is a diagram showing an example of the arrangement and shape of the first joining member 6. In FIG. 3, the main surface 20 of the substrate 2 viewed in the negative direction of the z-axis is shown. The vertical projection image 6i is an image in which the first joining member 6 is projected perpendicularly to the main surface 20 of the substrate 2. In the present embodiment, the vertical projection image 6i on the main surface 20 of the substrate 2 is a hollow circle. As another example, when the first joining member 6 is a solid cylinder, the vertical projection image 6i is a solid circle. Here, in FIG. 3, the midpoint 24 of the line segment connecting the center 21c of the first region 21 and the center 22c of the second region 22 is shown. Further, in FIG. 3, a vertical bisector 23 of a line segment connecting the center 21c of the first region 21 and the center 22c of the second region 22 is shown. Further, it is shown that the second joining member 7 including the insertion portion 7a and the fastener 7b is inserted with a gap with respect to the hole 25. In the present embodiment, the first joining member 6 is arranged so that the vertical projection image 6i on the main surface 20 of the substrate 2 is on the vertical bisector 23. Further, as will be described in detail later, the second joining member 7 is substantially joined to the substrate 2 and the light guide member 5 in order to join the light guide member 5 in a direction in which the light guide member 5 can move freely, that is, with a degree of freedom. Is joined by the first joining member 6. Here, the vertical projection image 6i may be a cross-sectional shape of the first joining member 6 directly above the main surface 20 of the substrate 2.

第1の接合部材6及び第2の接合部材7は、弾性率が大きく、変形しにくい材料を用いることができる。例えば第1の接合部材6及び第2の接合部材7の材料は、LCP(液晶ポリマー)、PP(ポリプロピレン)、PEEK(ポリエーテルエーテルケトン)、PA(ポリアミド)、PPE(ポリフェニレンエーテル)、PC(ポリカーボネート)、又はPPS(ポリフェニレンスルファイド)、PMMA(ポリメタクリル酸メチル樹脂)等、及び、これらの2つ以上を混合した硬質樹脂か、又は耐熱性の観点から金属であってよい。また第1の接合部材6及び第2の接合部材7と導光部材5は同じ材料であってよい。第1の接合部材6及び第2の接合部材7と導光部材5の材料が同じであれば熱膨張差が生じないため、熱歪みを抑えることができる。基板2と導光部材5とは、実質的に第1の接合部材6で接合される。そのため、基板2が例えば熱膨張によって変形しても、拘束点が一つで過拘束になっていないため、導光部材5は基板2の変形の影響を受けない。例えば、基板2がy軸方向に広がるように変形した場合に、導光部材5が基板2と実質的に一点だけで接続されているので、光学部材は歪みを生じることなく一点を中心に相似縮小(膨張)する。その場合、光学性能には影響がない。 For the first joining member 6 and the second joining member 7, a material having a large elastic modulus and being hard to be deformed can be used. For example, the materials of the first joining member 6 and the second joining member 7 are LCP (liquid crystal polymer), PP (polypropylene), PEEK (polyetheretherketone), PA (polyether), PPE (polyphenylene ether), PC ( Polypropylene), PPS (polyphenylene sulfide), PMMA (polymethylmethacrylate resin), etc., and a hard resin in which two or more of these are mixed, or a metal from the viewpoint of heat resistance may be used. Further, the first joining member 6, the second joining member 7, and the light guide member 5 may be made of the same material. If the materials of the first joining member 6 and the second joining member 7 and the light guide member 5 are the same, there is no difference in thermal expansion, so that thermal strain can be suppressed. The substrate 2 and the light guide member 5 are substantially joined by the first joining member 6. Therefore, even if the substrate 2 is deformed due to thermal expansion, for example, the light guide member 5 is not affected by the deformation of the substrate 2 because there is only one restraint point and the substrate 2 is not over-constrained. For example, when the substrate 2 is deformed so as to spread in the y-axis direction, the light guide member 5 is connected to the substrate 2 at substantially only one point, so that the optical members are similar to each other around one point without causing distortion. Shrink (expand). In that case, the optical performance is not affected.

また、仮に第2の接合部材7が存在せず、基板2と導光部材5とに異なる力が作用する場合、第1の接合部材6は軸方向に変形しにくいが、一方でねじれ変形及び曲げ変形を生じうる。そのため、導光部材5は、たとえば第2の接合部材7が導光部材5をx方向には拘束しない場合、基板2に対して第1の接合部材6を回転軸とする回転移動することがあり得る。すなわち、第1の接合部材6は導光部材5に対して基板2の主面20と平行な方向に外力を加えた際に回転軸となる。換言すると、導光部材5が基板2に対して動く場合に回転軸となりえる。ここで動くとは、基板2を固定し、かつ導光部材5の側面に基板2の主面に平行な剪断応力を印加した際に、導光部材5と基板2が相対的に回転することであってよい。しかし、図12に示す通り物面(発光面)での強度分布と像面(受光面)における照度分布は、回転軸に対して点対称に分布している。したがって、導光部材5が基板2(つまり発光面)に対して変形し移動しても、発光面がつくる受光面における照度分布の移動ベクトルは、受光部の移動ベクトルと一致する。このため受光面が受け取る照度分布に変化は生じず、ガス検出感度の変動がさらに抑制される。ここで物面(発光面)とは発光素子3の発光部において気体と触れ合う面でかつ光学的な透過性を持つ材料でできている面である。また像面(受光面)とは受光素子4の受感部において気体と触れ合う面でかつ光学的な透過性を持つ材料でできている面である。 Further, if the second joining member 7 does not exist and different forces act on the substrate 2 and the light guide member 5, the first joining member 6 is hard to be deformed in the axial direction, but on the other hand, it is twisted and deformed. Bending deformation can occur. Therefore, for example, when the second joining member 7 does not restrain the light guide member 5 in the x direction, the light guide member 5 may rotate with respect to the substrate 2 with the first joining member 6 as the rotation axis. could be. That is, the first joining member 6 becomes a rotation axis when an external force is applied to the light guide member 5 in a direction parallel to the main surface 20 of the substrate 2. In other words, when the light guide member 5 moves with respect to the substrate 2, it can be a rotation axis. Moving here means that when the substrate 2 is fixed and a shear stress parallel to the main surface of the substrate 2 is applied to the side surface of the light guide member 5, the light guide member 5 and the substrate 2 rotate relatively. It may be. However, as shown in FIG. 12, the intensity distribution on the object surface (light emitting surface) and the illuminance distribution on the image surface (light receiving surface) are point-symmetrically distributed with respect to the rotation axis. Therefore, even if the light guide member 5 deforms and moves with respect to the substrate 2 (that is, the light emitting surface), the movement vector of the illuminance distribution on the light receiving surface formed by the light emitting surface matches the moving vector of the light receiving portion. Therefore, the illuminance distribution received by the light receiving surface does not change, and the fluctuation of the gas detection sensitivity is further suppressed. Here, the object surface (light emitting surface) is a surface that comes into contact with a gas in the light emitting portion of the light emitting element 3 and is made of a material having optical transparency. The image plane (light receiving surface) is a surface that comes into contact with gas in the sensitive portion of the light receiving element 4 and is made of a material having optical transparency.

ここで、図4は第1の接合部材6の配置の別の例を示す図である。図4の各要素は、図3における同じ符号の要素と同じであるため、説明を省略する。図4に示すように、第1の接合部材6は基板2の主面20上の異なる位置に設けられてよい。つまり、第1の接合部材6は、基板2の主面20へ垂直投影像6iが、垂直二等分線23上にないように配置されてよい。また、第1の接合部材6は、y軸方向について、第1のミラー511及び第5のミラー513より、第2のミラー521及び第4のミラー522に近い位置に配置されてよい。ただし、上記のように、光路を保つために、発光素子3及び受光素子4が第1の反射部51との間で直接的に光を受発光することが必要である。そのため、第1の接合部材6は、導光部材5が基板2に対して動く場合に、第1の反射部51の移動量が第2の反射部52の移動量よりも小さくなる位置に設けられることが好ましい。つまり、回転軸となる第1の接合部材6は、第2の反射部52よりも第1の反射部51に近い位置に設けられることが好ましい。具体的には、第1の接合部材6の垂直投影像6iが中点24に近いことが好ましい。 Here, FIG. 4 is a diagram showing another example of the arrangement of the first joining member 6. Since each element of FIG. 4 is the same as the element having the same reference numeral in FIG. 3, the description thereof will be omitted. As shown in FIG. 4, the first joining member 6 may be provided at different positions on the main surface 20 of the substrate 2. That is, the first joining member 6 may be arranged so that the vertical projection image 6i is not on the vertical bisector 23 on the main surface 20 of the substrate 2. Further, the first joining member 6 may be arranged at a position closer to the second mirror 521 and the fourth mirror 522 than the first mirror 511 and the fifth mirror 513 in the y-axis direction. However, as described above, in order to maintain the optical path, it is necessary for the light emitting element 3 and the light receiving element 4 to directly receive and emit light from the first reflecting portion 51. Therefore, the first joining member 6 is provided at a position where the amount of movement of the first reflecting portion 51 is smaller than the amount of movement of the second reflecting portion 52 when the light guide member 5 moves with respect to the substrate 2. Is preferable. That is, it is preferable that the first joining member 6 serving as the rotation axis is provided at a position closer to the first reflecting portion 51 than to the second reflecting portion 52. Specifically, it is preferable that the vertical projection image 6i of the first joining member 6 is close to the midpoint 24.

ここで、図4の場合においても第2の接合部材7は、導光部材5に外力を加えた際又は熱膨張による歪みが生じた際に、基板2の主面20と平行な方向以外の導光部材5の動きを抑制する。換言すると第2の接合部材7は基板2の主面20に垂直な方向の動きを抑制する。 Here, also in the case of FIG. 4, the second joining member 7 is in a direction other than the direction parallel to the main surface 20 of the substrate 2 when an external force is applied to the light guide member 5 or when distortion occurs due to thermal expansion. The movement of the light guide member 5 is suppressed. In other words, the second joining member 7 suppresses movement in the direction perpendicular to the main surface 20 of the substrate 2.

一例としては、第1の接合部材から最も遠い導光部材5の表面の点を始点として、導光部に対して基板2の主面20と平行方向かつ始点と第1の接合部をつなぐ直線の垂直方向に外力を加えた際に、第1の接合部材が回転軸となる場合では、第2の接合部材は基板2の主面20に垂直な方向の動きと、第1の接合部材と第2の接合部材の基板2の主面20への垂直投影像のそれぞれの中心をつないだ方向の動きを抑制する。 As an example, a straight line connecting the start point and the first joint portion in a direction parallel to the main surface 20 of the substrate 2 with respect to the light guide portion, starting from a point on the surface of the light guide member 5 farthest from the first joint member. When the first joining member becomes the axis of rotation when an external force is applied in the vertical direction of the substrate 2, the second joining member moves in the direction perpendicular to the main surface 20 of the substrate 2 and the first joining member and the first joining member. The movement of the second joining member in the direction connecting the centers of the vertical projection images on the main surface 20 of the substrate 2 is suppressed.

別の例としては、熱膨張による歪みが生じた際、第2の接合部材は基板2の主面20に垂直な方向の動きと、第1の接合部材と第2の接合部材の基板2の主面20への垂直投影像のそれぞれの中心をつないだ方向以外の動きを抑制する。 As another example, when distortion occurs due to thermal expansion, the second joining member moves in a direction perpendicular to the main surface 20 of the substrate 2, and the substrate 2 of the first joining member and the second joining member The movement other than the direction connecting the centers of the vertical projection images on the main surface 20 is suppressed.

図5は、第2の接合部材7の断面拡大図である。本実施形態において、挿入部7a及び留め具7bを備える第2の接合部材7は、ホール25に対してxy平面に平行な方向に隙間を有する。図5に示すように、挿入部7aのうちホール25に挿入された部分の側面7asは、少なくとも一部が基板2のホール25の側面2sと接しない。図5の例において、仮に第2の接合部材7がy軸正方向に最大に移動して挿入部7aの側面7asとホール25の側面2sとが接触しても、y軸負方向側では隙間が生じる。これに対し、第1の底面部61、すなわち第1の接合部材6のうち基板2と接合される部分は、基板2との間に空間を有しない。xy平面方向について隙間を有する第2の接合部材7は、第1の接合部材6より低い接合度を有する。ここで、接合度は、接合させる対象の動きにくさを意味する。本実施形態において、接合度が高いとは、導光部材5が基板2に対して強く接合されている、又は、隙間なく密接に接合されているため基板2に対して移動しにくい状態を示す。接合度が低いとは、導光部材5が基板2に対して弱く接合されている、又は、隙間があるように接合されている、若しくは側面7asと側面2sが一部接してはいるが摩擦が少なく基板2に対して移動しやすい状態を示す。 FIG. 5 is an enlarged cross-sectional view of the second joining member 7. In the present embodiment, the second joining member 7 including the insertion portion 7a and the fastener 7b has a gap in the direction parallel to the xy plane with respect to the hole 25. As shown in FIG. 5, at least a part of the side surface 7as of the portion of the insertion portion 7a inserted into the hole 25 does not come into contact with the side surface 2s of the hole 25 of the substrate 2. In the example of FIG. 5, even if the second joining member 7 moves to the maximum in the positive direction of the y-axis and the side surface 7as of the insertion portion 7a and the side surface 2s of the hole 25 come into contact with each other, there is a gap on the negative side of the y-axis. Occurs. On the other hand, the first bottom surface portion 61, that is, the portion of the first joining member 6 to be joined to the substrate 2 does not have a space between the first bottom surface portion 61 and the substrate 2. The second joining member 7 having a gap in the xy plane direction has a lower joining degree than the first joining member 6. Here, the degree of joining means the difficulty of moving the object to be joined. In the present embodiment, a high degree of bonding means a state in which the light guide member 5 is strongly bonded to the substrate 2 or is closely bonded to the substrate 2 so that it is difficult to move to the substrate 2. .. A low degree of bonding means that the light guide member 5 is weakly bonded to the substrate 2, or is bonded so that there is a gap, or the side surface 7as and the side surface 2s are partially in contact with each other but friction. It shows a state in which there is little and it is easy to move with respect to the substrate 2.

上記のように、導光部材5は、基板2に対して第1の接合部材6を回転軸として回転移動することがあり得る。第2の接合部材7は、z軸を回転軸とした自由な回転移動を抑制するが、ホール25との間に隙間を有することによって、微小な回転移動を許容する。ここで、許容される微小な回転移動は、隙間の大きさで定めることが可能である。上記のように、第1の反射部51が発光素子3から発せられた光及び受光素子4が受け取る光を直接的に反射することが可能である限り、光路は回転移動の前と同じく保たれる。よって、第2の接合部材7とホール25との間の隙間は、導光部材5が基板2に対して最大に移動しても導光部材5に対する光路が保たれるように設定される。また第2の接合部材7と第1の接合部材6は、それぞれの接合部材の取り付け公差が同じ場合、両接合部材間の距離が離れているほうが、光学部材の角度ずれが少なく、量産収率の観点から良い。特に第1の接合部材と第2の接合部材の基板2の主面20への垂直投影像のそれぞれの中心間の距離が、基板2における最大距離の半分よりも長いほうが好ましい。ここで異種樹脂材料間の熱膨張係数差が100ppm程度であり、電子機器一般の使用環境の最大温度差が150℃程度であるため、熱膨張による歪みの量はそれぞれの積から導光部材5の最大長の1.5%と見積もられる。したがって、隙間は導光部材5の最大長の1.5%以上と設計すればよい。 As described above, the light guide member 5 may rotate with respect to the substrate 2 with the first joining member 6 as the rotation axis. The second joining member 7 suppresses free rotational movement with the z-axis as the rotation axis, but allows minute rotational movement by having a gap between the second joining member 7 and the hole 25. Here, the permissible minute rotational movement can be determined by the size of the gap. As described above, as long as the first reflecting unit 51 can directly reflect the light emitted from the light emitting element 3 and the light received by the light receiving element 4, the optical path is maintained as before the rotational movement. Is done. Therefore, the gap between the second joining member 7 and the hole 25 is set so that the optical path for the light guide member 5 is maintained even if the light guide member 5 moves to the maximum with respect to the substrate 2. Further, when the mounting tolerances of the second joining member 7 and the first joining member 6 are the same, the larger the distance between the two joining members, the smaller the angular deviation of the optical members, and the mass production yield. Good from the point of view of. In particular, it is preferable that the distance between the centers of the vertical projection images of the first joining member and the second joining member on the main surface 20 of the substrate 2 is longer than half of the maximum distance on the substrate 2. Here, the difference in coefficient of thermal expansion between dissimilar resin materials is about 100 ppm, and the maximum temperature difference in the general usage environment of electronic devices is about 150 ° C. Therefore, the amount of strain due to thermal expansion is the product of each of the light guide members 5. It is estimated to be 1.5% of the maximum length of. Therefore, the gap may be designed to be 1.5% or more of the maximum length of the light guide member 5.

また、図5に示すように、基板2のホール25は、留め具7bであるネジの頭部が接触する段差が設けられている。留め具7bが導光部材5と接続された挿入部7aとねじ留めされることによって、z軸方向において、基板2と導光部材5とは強く接合される。そのため、導光部材5の基板2に対するz軸方向への移動はさらに制限され、z方向の並進自由度が失われる。また二つの拘束点をつなぐ軸に対する回転自由度に関して、第1の接合部材6と基板は面接触しているため、回転が抑制され回転の自由度が失われている。換言すると、導光部材5は、第1の接合部材6と第2の接合部材7と基板2との接点を結んだ軸を中心とする回転自由度を持たない。 Further, as shown in FIG. 5, the hole 25 of the substrate 2 is provided with a step in which the head of the screw, which is the fastener 7b, comes into contact with the hole 25. By screwing the fastener 7b to the insertion portion 7a connected to the light guide member 5, the substrate 2 and the light guide member 5 are strongly joined in the z-axis direction. Therefore, the movement of the light guide member 5 with respect to the substrate 2 in the z-axis direction is further restricted, and the translational freedom in the z-direction is lost. Further, regarding the degree of freedom of rotation with respect to the shaft connecting the two restraint points, since the first joining member 6 and the substrate are in surface contact with each other, rotation is suppressed and the degree of freedom of rotation is lost. In other words, the light guide member 5 does not have a degree of freedom of rotation about an axis connecting the contact points between the first joining member 6, the second joining member 7, and the substrate 2.

また、第1の接合部材6は基板2に対して導光部材5のx軸、y軸、z軸の各々に対しての並進方向の自由度を拘束する。一方で第2の接合部材7は、上述の通り、基板2の主面20と垂直な方向の導光部材5の動きを抑制する。第2の接合部材7は、好ましくはホール25との間に隙間を有することによって、隙間が存在する方向に対しては自由度を拘束しない。図13に示すように、一般に過拘束とは対象物に対して、二つ以上の拘束点で、さらに同じ自由度に対して拘束がなされている場合に発生する。熱膨張などで対象物が変形した場合に、拘束点をつなぐ線分に沿って歪みが生じうる。過拘束である場合、その歪みは拘束点によって自由に伸長できないため、拘束点をつなぐ方向と別の方向にその歪みが逸れることで、全体の相似縮小(膨張)以外の変形をもたらす。 Further, the first joining member 6 constrains the degree of freedom in the translation direction with respect to each of the x-axis, y-axis, and z-axis of the light guide member 5 with respect to the substrate 2. On the other hand, as described above, the second joining member 7 suppresses the movement of the light guide member 5 in the direction perpendicular to the main surface 20 of the substrate 2. The second joining member 7 preferably has a gap between it and the hole 25, so that the degree of freedom is not constrained in the direction in which the gap exists. As shown in FIG. 13, over-constraint generally occurs when two or more restraint points and the same degree of freedom are constrained to an object. When the object is deformed due to thermal expansion or the like, distortion may occur along the line segment connecting the restraint points. In the case of over-constraint, the strain cannot be freely extended by the restraint points, so that the strain deviates in a direction different from the direction in which the restraint points are connected, resulting in deformation other than the overall similarity reduction (expansion).

よって、図11に示すように、ホール25は長穴であることによって、過拘束状態でなくなる。そのため、その長穴の伸長する方向には、第2の接合部材7は自由に動くことができ、熱膨張による歪みが低減される。特に第1の接合部材と第2の接合部材の基板2の主面20への垂直投影像のそれぞれの中心をつないだ方向に対して伸長していると、ガス検出装置1は、膨張による光学性能の劣化を抑制することが可能である。なぜならば拘束点間で歪みが生じうるが、その拘束点間をつなぐ方向に拘束がないときは、自由に動くことでその歪みをすべて解消でき、温度変化による相似縮小(膨張)以外の変形をもたらさないからである。 Therefore, as shown in FIG. 11, the hole 25 is not in an over-restrained state because it is a long hole. Therefore, the second joining member 7 can move freely in the direction in which the elongated hole extends, and the strain due to thermal expansion is reduced. In particular, when the first joining member and the second joining member extend in the direction connecting the centers of the vertical projection images of the substrate 2 on the main surface 20, the gas detection device 1 is optical due to expansion. It is possible to suppress the deterioration of performance. This is because distortion can occur between restraint points, but when there is no constraint in the direction connecting the restraint points, all the distortion can be eliminated by moving freely, and deformation other than similarity reduction (expansion) due to temperature changes can be achieved. Because it does not bring.

以上のように、本実施形態に係るガス検出装置1は、上記の構成によって、例えば基板2に熱膨張による歪みが生じても、導光部材5がその変形の影響を受けない。また、上記のように、導光部材5が基板2に対して最大に移動しても、第2の接合部材7によって光路は適切に保たれる。したがって、ガス検出装置1は、相似縮小(膨張)以外の変形による光学性能の劣化を抑制することが可能である。 As described above, in the gas detection device 1 according to the present embodiment, even if the substrate 2 is distorted due to thermal expansion due to the above configuration, the light guide member 5 is not affected by the deformation. Further, as described above, even if the light guide member 5 moves to the maximum with respect to the substrate 2, the optical path is appropriately maintained by the second joining member 7. Therefore, the gas detection device 1 can suppress deterioration of optical performance due to deformation other than similarity reduction (expansion).

また、ガス検出装置1は、基板2の主面20へ垂直投影像6iが、第1の領域21の中心と第2の領域22の中心とを結ぶ線分の垂直二等分線上にあるように配置されることによって、像面(受光面)上の照度分布が変化を受けず、ガス検出感度の変動が抑制される。図12に示す通り物面(発光面)での強度分布と像面(受光面)における照度分布は、回転軸に対して点対称に分布しており、熱膨張によって基板2が変形した場合、上記の垂直二等分線に対し左右対称に変形が起こる。発光面がつくる受光面における照度分布の移動は、受光面の移動と、方向及び量が一致するからである。 Further, in the gas detection device 1, the vertical projection image 6i on the main surface 20 of the substrate 2 is located on the perpendicular bisector of the line segment connecting the center of the first region 21 and the center of the second region 22. By arranging in, the illuminance distribution on the image plane (light receiving plane) is not changed, and the fluctuation of the gas detection sensitivity is suppressed. As shown in FIG. 12, the intensity distribution on the object surface (light emitting surface) and the illuminance distribution on the image surface (light receiving surface) are distributed point-symmetrically with respect to the rotation axis, and when the substrate 2 is deformed by thermal expansion, Deformation occurs symmetrically with respect to the above vertical bisector. This is because the movement of the illuminance distribution on the light receiving surface formed by the light emitting surface coincides with the movement of the light receiving surface in the direction and amount.

また、図15に示すとおり、第1の接合部材6及び第2の接合部材7の基板の主面への垂直投影像が領域Rtに配置されていれば、熱膨張によって基板2が変形した場合、同じ理由から像面(受光面)上の照度分布が変化を受けづらく、ガス検出感度の変動が抑制される。ここで、直線Lpは、第1の領域21の中心と第2の領域22の中心とを結ぶ線分の垂直二等分線23である。直線Leは、直線Lpと平行な第1の領域21を通る直線である。直線Ldは、直線Lpと平行な第2の領域22を通る直線である。領域Rtは、直線Leと直線Ldに挟まれた基板の主面内の最大の領域である。 Further, as shown in FIG. 15, if the vertical projection images of the first joining member 6 and the second joining member 7 on the main surface of the substrate are arranged in the region Rt, the substrate 2 is deformed by thermal expansion. For the same reason, the illuminance distribution on the image plane (light receiving plane) is less likely to change, and fluctuations in gas detection sensitivity are suppressed. Here, the straight line Lp is a vertical bisector 23 of a line segment connecting the center of the first region 21 and the center of the second region 22. The straight line Le is a straight line passing through the first region 21 parallel to the straight line Lp. The straight line Ld is a straight line passing through the second region 22 parallel to the straight line Lp. The region Rt is the largest region in the main surface of the substrate sandwiched between the straight line Le and the straight line Ld.

(第2実施形態)
図6は、本開示の別の実施形態に係るガス検出装置1の断面の一例を示す図である。本実施形態に係るガス検出装置1は、上記の第1実施形態に係るガス検出装置1と比べて、第1の接合部材6の構成が異なる。その他の構成要素は、第1実施形態に係るガス検出装置1と同じである。例えば、本実施形態に係るガス検出装置1の斜視図は、第1実施形態と同じく図1で示される。また、第1実施形態に係るガス検出装置1と同じ構成要素については、図1〜図4と同じ符号を付しており、詳細な説明を省略する。
(Second Embodiment)
FIG. 6 is a diagram showing an example of a cross section of the gas detection device 1 according to another embodiment of the present disclosure. The gas detection device 1 according to the present embodiment has a different configuration of the first joining member 6 from the gas detection device 1 according to the first embodiment described above. Other components are the same as those of the gas detection device 1 according to the first embodiment. For example, a perspective view of the gas detection device 1 according to the present embodiment is shown in FIG. 1 as in the first embodiment. Further, the same components as those of the gas detection device 1 according to the first embodiment are designated by the same reference numerals as those in FIGS. 1 to 4, and detailed description thereof will be omitted.

図6に示すように、本実施形態において第1の接合部材6は柱体でない。第1の接合部材6は、第1の底面部61を含む第1の部分6aと、第2の底面部62を含む第2の部分6bと、第1の部分6a、第2の部分6b及び第3のミラー512を結合する結合部63と、を備える。第3のミラー512が第1の接合部材6と結合されることによって、第1の反射部51の第2の反射部52に対する相対位置はさらに強固に固定される。 As shown in FIG. 6, in the present embodiment, the first joining member 6 is not a pillar body. The first joining member 6 includes a first portion 6a including a first bottom surface portion 61, a second portion 6b including a second bottom surface portion 62, a first portion 6a, a second portion 6b, and the like. A coupling portion 63 for coupling the third mirror 512 is provided. By connecting the third mirror 512 to the first joining member 6, the relative position of the first reflecting portion 51 with respect to the second reflecting portion 52 is more firmly fixed.

図7は、本実施形態における、第1の接合部材6の配置及び形状の一例を示す図である。図7では、z軸の負方向に向かって見た基板2の主面20が示されている。本実施形態において、基板2の主面20への垂直投影像6iは弓形である。第1の接合部材6は、基板2の主面20へ垂直投影像6iが、第1の領域21の中心21cと第2の領域22の中心22cとを結ぶ線分の中点24を含むように配置される。上記のように、第1の接合部材6の垂直投影像6iが中点24に近くすることで、第1の反射部51の移動量を第2の反射部52の移動量よりも小さくできるので、光路パラメーターのからのずれを小さく保つことに寄与する。 FIG. 7 is a diagram showing an example of the arrangement and shape of the first joining member 6 in the present embodiment. In FIG. 7, the main surface 20 of the substrate 2 viewed in the negative direction of the z-axis is shown. In the present embodiment, the vertical projection image 6i on the main surface 20 of the substrate 2 is arcuate. In the first joining member 6, the vertical projection image 6i on the main surface 20 of the substrate 2 includes the midpoint 24 of the line segment connecting the center 21c of the first region 21 and the center 22c of the second region 22. Is placed in. As described above, since the vertical projection image 6i of the first joining member 6 is close to the midpoint 24, the amount of movement of the first reflecting portion 51 can be made smaller than the amount of movement of the second reflecting portion 52. , Contributes to keeping the deviation of the optical path parameters small.

以上のように、本実施形態に係るガス検出装置1は、上記の構成によって、第1実施形態と同じ効果を奏する。また、本実施形態に係るガス検出装置1は、第3のミラー512も結合する結合部63を有する第1の接合部材6を備えることによって、第1の反射部51の第2の反射部52に対する相対位置をさらに強固に固定することができる。 As described above, the gas detection device 1 according to the present embodiment has the same effect as that of the first embodiment by the above configuration. Further, the gas detection device 1 according to the present embodiment includes a first joining member 6 having a coupling portion 63 to which the third mirror 512 is also coupled, whereby the second reflecting portion 52 of the first reflecting portion 51 is provided. The relative position to the relative can be fixed more firmly.

(変形例)
以上、実施形態を諸図面及び実施例に基づき説明したが、当業者であれば本開示に基づき種々の変形及び修正を行うことが容易であることに注意されたい。したがって、これらの変形及び修正は本開示の範囲に含まれることに留意すべきである。例えば、各部材、各手段などに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の手段などを1つに組み合わせたり、或いは分割したりすることが可能である。
(Modification example)
Although the embodiments have been described above based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications and modifications based on the present disclosure. It should be noted, therefore, that these modifications and modifications are within the scope of this disclosure. For example, the functions included in each member, each means, and the like can be rearranged so as not to be logically inconsistent, and a plurality of means and the like can be combined or divided into one.

例えば、第1の接合部材6は、垂直投影像6iが多角形の形状であってよい。一つの変形例として、図8に示すように、垂直投影像6iが四角形であって、第1の接合部材6は四角柱であってよい。 For example, in the first joining member 6, the vertical projection image 6i may have a polygonal shape. As one modification, as shown in FIG. 8, the vertical projection image 6i may be a quadrangle, and the first joining member 6 may be a quadrangular prism.

例えば、上記の実施形態において、第1の接合部材6は1つの部品で構成されると説明した。第1の接合部材6は複数の部品で構成されてよい。ここで、複数の部品は、互いに離れているが、導光部材5に対して基板2の主面20と平行な方向に外力を加えた際に全体として回転軸となるように、ある程度近接して配置されている。一つの変形例として、図9に示すように、垂直投影像6iが複数の中実円形であってよい。このとき、第1の接合部材6は、基板2と導光部材5とをより強固に接合することが可能である。 For example, in the above embodiment, it has been described that the first joining member 6 is composed of one component. The first joining member 6 may be composed of a plurality of parts. Here, although the plurality of parts are separated from each other, they are close to each other to some extent so as to become a rotation axis as a whole when an external force is applied to the light guide member 5 in a direction parallel to the main surface 20 of the substrate 2. Is arranged. As one modification, as shown in FIG. 9, the vertical projection image 6i may be a plurality of solid circles. At this time, the first joining member 6 can join the substrate 2 and the light guide member 5 more firmly.

例えば、上記の実施形態において、一体形成又は接着剤等によって、第1の反射部51は、第2の反射部52に対する相対位置が固定されると説明した。一つの変形例として、図10に示すように、第2の反射部52は、第1の反射部51と共に、第1の接合部材6の第2の底面部62と接着剤、ネジ、ツメ、はめ合い、グロメット、溶着等によって強力に接合されてよい。このとき、第2の反射部52は、第2のミラー521及び第4のミラー522と一体形成され、第1の反射部51まで延びる延長部523を備えてよい。 For example, in the above embodiment, it has been explained that the position of the first reflecting portion 51 with respect to the second reflecting portion 52 is fixed by integral formation or an adhesive or the like. As one modification, as shown in FIG. 10, the second reflecting portion 52, together with the first reflecting portion 51, has the second bottom surface portion 62 of the first joining member 6, and the adhesive, screws, claws, and the like. It may be strongly bonded by fitting, grommet, welding or the like. At this time, the second reflecting portion 52 may include an extension portion 523 that is integrally formed with the second mirror 521 and the fourth mirror 522 and extends to the first reflecting portion 51.

例えば、上記の実施形態において、第1の接合部材6は、z軸方向に長辺を有する形状であるが、z軸以外の方向に長辺を有する形状であってよい。例えば図14に示すように、第1の接合部材6は、x軸方向に長辺を有する柱体であってよい。第1の接合部材6は、基板2の主面20のx軸と平行な一辺と、その一辺と対向する第1の反射部51の底面部分のそれぞれと、接着剤等で接続されてよい。このとき、導光部材5は、基板2に対して第1の接合部材6を回転軸としてz軸正方向に移動し得る。しかし、留め具7bによって、z軸方向において基板2と導光部材5とが強く接合されれば、導光部材5の移動を抑制することができる。 For example, in the above embodiment, the first joining member 6 has a shape having a long side in the z-axis direction, but may have a shape having a long side in a direction other than the z-axis. For example, as shown in FIG. 14, the first joining member 6 may be a pillar body having a long side in the x-axis direction. The first joining member 6 may be connected to one side of the main surface 20 of the substrate 2 parallel to the x-axis and to each of the bottom surface portion of the first reflecting portion 51 facing the one side with an adhesive or the like. At this time, the light guide member 5 can move in the z-axis positive direction with the first joining member 6 as the rotation axis with respect to the substrate 2. However, if the substrate 2 and the light guide member 5 are strongly joined by the fastener 7b in the z-axis direction, the movement of the light guide member 5 can be suppressed.

例えば、上記の実施形態において、第1の反射部51が高い接合度を有する第1の接合部材6によって基板2と接合されて、第2の反射部52が低い接合度を有する第2の接合部材7によって基板2と接合される。ここで、第1の接合部材6及び第2の接合部材7と、第1の反射部51及び第2の反射部52との組み合わせは、上記の実施形態の例に限定されない。例えば、第1の反射部51が第2の接合部材7によって基板2と接合されて、第2の反射部52が第1の接合部材6によって基板2と接合されてよい。また、例えば、第1の接合部材6及び第2の接合部材7は、第1の反射部51又は第2の反射部52うち所望の反射部と基板2とを接合してよい。 For example, in the above embodiment, the first reflecting portion 51 is joined to the substrate 2 by the first joining member 6 having a high joining degree, and the second reflecting portion 52 is joined to the substrate 2 by a second joining member having a low joining degree. It is joined to the substrate 2 by the member 7. Here, the combination of the first joining member 6 and the second joining member 7 and the first reflecting portion 51 and the second reflecting portion 52 is not limited to the example of the above embodiment. For example, the first reflecting portion 51 may be joined to the substrate 2 by the second joining member 7, and the second reflecting portion 52 may be joined to the substrate 2 by the first joining member 6. Further, for example, the first joining member 6 and the second joining member 7 may join the desired reflecting portion of the first reflecting portion 51 or the second reflecting portion 52 to the substrate 2.

上述した実施形態を別の捉え方をすると、本実施形態のガス検出装置は、基板と、基板の主面20に設けられ、光を発する発光素子3と、基板の主面20に設けられ、光を受け取る受光素子4と、発光素子3が発した光を受光素子4に導く導光部材と、第1の接合部材と、第2の接合部材と、を備え、第1の接合部材は、基板と導光部材とを、基板の平面と平行な第1方向に第1拘束度、基板の平面と平行かつ1方向と垂直な第2方向に第2拘束度、及び基板の平面に垂直な第3方向に第3拘束度でそれぞれ並進方向に拘束し、第2の接合部材は、基板と導光部材とを、第1方向に第4拘束度、第2方向に第5拘束度、第3方向に第6拘束度でそれぞれ並進方向に拘束し、拘束度のうち少なくとも1つはゼロであり、第1拘束度と第4拘束度の何れか一方はゼロではなく、第2拘束度と第5拘束度の何れか一方はゼロではなく、第3拘束度と第6拘束度の何れか一方はゼロではないガス検出装置である。 Another way of thinking about the above-described embodiment is that the gas detection device of the present embodiment is provided on the substrate, the main surface 20 of the substrate, the light emitting element 3 that emits light, and the main surface 20 of the substrate. A light receiving element 4 that receives light, a light guide member that guides the light emitted by the light emitting element 3 to the light receiving element 4, a first joining member, and a second joining member are provided. The substrate and the light guide member have a first degree of restraint in the first direction parallel to the plane of the substrate, a second degree of restraint in the second direction parallel to the plane of the substrate and perpendicular to one direction, and perpendicular to the plane of the substrate. The substrate and the light guide member are constrained in the third direction by the third restraint in the translational direction, respectively, and the second joining member holds the substrate and the light guide member in the fourth restraint in the first direction, the fifth restraint in the second direction, and the second. Constrained in the translational direction with the sixth restraint in each of the three directions, at least one of the restraints is zero, and one of the first and fourth restraints is not zero, but the second restraint. One of the fifth restraint degree is not zero, and one of the third restraint degree and the sixth restraint degree is a gas detection device which is not zero.

ここで、拘束度とは、対象物がある方向に対して並進に自由に動けるか否かを表す指標であり、拘束度がゼロとはその方向に対象物が自由に動けることを指す。具体的に拘束度を測定する方法として、対象物の一点を規定量X変位させ、そのときに対象物全体の平均変位量Yを測定する方法が挙げられる。このとき、拘束度は(X−Y)/Xの絶対値である。ただし、拘束度が0.01以下の場合はゼロとする。 Here, the degree of restraint is an index indicating whether or not the object can move freely in translation with respect to a certain direction, and the degree of restraint of zero means that the object can move freely in that direction. As a specific method for measuring the degree of restraint, there is a method in which one point of the object is displaced by a specified amount X and the average displacement amount Y of the entire object is measured at that time. At this time, the degree of restraint is an absolute value of (XY) / X. However, if the degree of restraint is 0.01 or less, it is set to zero.

第1から第6拘束度のうち少なくとも1つがゼロであることにより、第1の接合部材と第2の接合部材の少なくともいずれか一方が、第1から第3方向の何れか一方に自由に動くことが可能になる。 Since at least one of the first to sixth restraint degrees is zero, at least one of the first joining member and the second joining member is free to move in any one of the first to third directions. Will be possible.

また、第1拘束度と第4拘束度の何れか一方がゼロでなく、第2拘束度と第5拘束度の何れか一方がゼロでなく、かつ、第3拘束度と第6拘束度の何れか一方がゼロでないことにより、導光部材全体が基板から離脱することを防止する。 Further, either one of the first restraint degree and the fourth restraint degree is not zero, one of the second restraint degree and the fifth restraint degree is not zero, and one of the third restraint degree and the sixth restraint degree is not zero. Since one of them is not zero, the entire light guide member is prevented from being separated from the substrate.

すなわち、導光部材と基板とが、全体としては固定され、かつ、導光部材に対する外力を加えた際又は熱膨張による歪みが生じた際に第1から第3方向の何れか一方に自由に動くことが可能であるため、装置の信頼性は保ちつつ、光路の歪みの発生を抑制することが可能となる。 That is, the light guide member and the substrate are fixed as a whole, and are free to move in either the first to third directions when an external force is applied to the light guide member or when distortion occurs due to thermal expansion. Since it can move, it is possible to suppress the occurrence of distortion of the optical path while maintaining the reliability of the device.

各拘束度をゼロにする方法は特に制限されないが、上述した実施形態に示したとおり、接合部材の挿入部をホールに挿入する形態において留め具を外す方法(これにより第3、第6拘束度がゼロになりうる)、挿入部がホールの側面と接しない形態とする方法(これにより第1、第2、第4、第5拘束度がゼロになりうる)が挙げられる。 The method of setting each degree of restraint to zero is not particularly limited, but as shown in the above-described embodiment, a method of removing the fastener in the form of inserting the insertion portion of the joining member into the hole (thus, the third and sixth restraint degrees). Can be zero), and a method in which the insertion portion does not come into contact with the side surface of the hole (thus, the first, second, fourth, and fifth restraint degrees can be zero).

基板の平面方向に対する外力及び応力に対する光路の歪みの発生を抑制するためには、第4拘束度及び/又は第5拘束度をゼロにすれば良い(この場合、第2の接合部材側が基板に平行な面方向に少なくとも一方に自由に動く)。あるいは、第1拘束度及び/又は第2拘束度をゼロにすれば良い(この場合、第1の接合部材側が基板に平行な面方向に少なくとも一方に自由に動く)。 In order to suppress the occurrence of distortion of the optical path due to external force and stress in the plane direction of the substrate, the fourth restraint degree and / or the fifth restraint degree may be set to zero (in this case, the second joining member side is attached to the substrate. Freely move in at least one direction in parallel planes). Alternatively, the first degree of restraint and / or the second degree of restraint may be set to zero (in this case, the first joining member side freely moves in at least one direction in the plane direction parallel to the substrate).

基板の垂直方向に対する外力及び応力に対する光路の歪みの発生を抑制するためには、第6拘束度をゼロにすれば良い(この場合、第2の接合部材側が基板に垂直な方向に自由に動く)。あるいは、第3拘束度をゼロにすれば良い(この場合、第1の接合部材側が基板に垂直な方向に自由に動く)。 In order to suppress the occurrence of distortion of the optical path due to external force and stress in the vertical direction of the substrate, the sixth restraint degree may be set to zero (in this case, the second joining member side freely moves in the direction perpendicular to the substrate). ). Alternatively, the third degree of restraint may be set to zero (in this case, the first joining member side freely moves in the direction perpendicular to the substrate).

信頼性及び組み立て容易性の観点から、第1〜第3拘束度がゼロではないことが好ましい場合がある。 From the viewpoint of reliability and ease of assembly, it may be preferable that the first to third restraints are not zero.

1 ガス検出装置
2 基板
2s ホールの側面
3 発光素子
4 受光素子
5 導光部材
6 第1の接合部材
6a 第1の部分
6b 第2の部分
6i 垂直投影像
7 第2の接合部材
7a 挿入部
7as 挿入部の側面
7b 留め具
20 主面
21 第1の領域
21c 第1の領域の中心
22 第2の領域
22c 第2の領域の中心
23 垂直二等分線
24 中点
25 ホール
51 第1の反射部
52 第2の反射部
53 通気口
54 セル
61 第1の底面部
62 第2の底面部
63 結合部
511 第1のミラー
512 第3のミラー
513 第5のミラー
521 第2のミラー
522 第4のミラー
523 延長部
1 Gas detector 2 Substrate 2s Side of hole 3 Light emitting element 4 Light receiving element 5 Light guide member 6 First joining member 6a First part 6b Second part 6i Vertical projection image 7 Second joining member 7a Insertion part 7as Side of insertion 7b Fastener 20 Main surface 21 First area 21c Center of first area 22 Second area 22c Center of second area 23 Vertical bisector 24 Midpoint 25 Hole 51 First reflection Part 52 Second reflective part 53 Vent 54 Cell 61 First bottom part 62 Second bottom part 63 Joint part 511 First mirror 512 Third mirror 513 Fifth mirror 521 Second mirror 522 Fourth Mirror 523 extension

Claims (25)

基板と、
前記基板の主面に設けられ、光を発する発光素子と、
前記基板の主面に設けられ、前記光を受け取る受光素子と、
前記発光素子が発した前記光を前記受光素子に導く導光部材と、
第1の接合部材と、
第2の接合部材とを備え、
前記第1の接合部材は、前記基板と前記導光部材とを接合し、かつ、前記導光部材に対する外力を加えた際に前記基板の主面と平行及び/又は垂直な方向に動きを抑制し、
前記第2の接合部材は前記基板と前記導光部材とを接合し、前記導光部材に対する外力を加えた際又は熱膨張による歪みが生じた際に、前記基板の主面と平行な方向に前記導光部材の動きを抑制し、及び/又は、前記基板の主面に垂直な平面内に動きを抑制し、
第1の接合部材及び第2の接合部材の少なくとも一方は、前記基板の主面と平行な方向又は前記基板の主面に垂直な平面内に動きうるガス検出装置。
With the board
A light emitting element provided on the main surface of the substrate and emitting light,
A light receiving element provided on the main surface of the substrate and receiving the light,
A light guide member that guides the light emitted by the light emitting element to the light receiving element, and
With the first joining member,
With a second joining member
The first joining member joins the substrate and the light guide member, and suppresses movement in a direction parallel to and / or perpendicular to the main surface of the substrate when an external force is applied to the light guide member. death,
The second joining member joins the substrate and the light guide member in a direction parallel to the main surface of the substrate when an external force is applied to the light guide member or distortion occurs due to thermal expansion. Suppressing the movement of the light guide member and / or suppressing the movement in a plane perpendicular to the main surface of the substrate.
A gas detection device in which at least one of the first joining member and the second joining member can move in a direction parallel to the main surface of the substrate or in a plane perpendicular to the main surface of the substrate.
前記第1の接合部材は、前記基板を固定し、前記第1の接合部材から最も遠い前記導光部材の表面の点を始点として、前記導光部に対して前記基板の主面と平行方向かつ前記始点と第1の接合部をつなぐ直線の垂直方向に外力を加えた際に回転軸となる、請求項1に記載のガス検出装置。 The first joining member fixes the substrate and starts from a point on the surface of the light guide member farthest from the first joining member in a direction parallel to the main surface of the substrate with respect to the light guide portion. The gas detection device according to claim 1, which serves as a rotation axis when an external force is applied in the vertical direction of a straight line connecting the start point and the first joint. 前記基板はホールを備え、
前記第2の接合部材は、前記導光部材と接続されて、少なくとも一部が前記ホールに挿入される挿入部を備える、請求項1又は2に記載のガス検出装置。
The substrate has holes
The gas detection device according to claim 1 or 2, wherein the second joining member is connected to the light guide member and includes an insertion portion in which at least a part thereof is inserted into the hole.
前記ホールは前記基板を貫通し、
前記第2の接合部材は、前記基板の主面と反対の面である底面の前記ホールから挿入されて、前記挿入部を留める留め具を備える、請求項3に記載のガス検出装置。
The hole penetrates the substrate and
The gas detection device according to claim 3, wherein the second joining member is inserted from the hole on the bottom surface opposite to the main surface of the substrate and includes a fastener for fastening the insertion portion.
前記留め具は前記挿入部をねじ留めする、請求項4に記載のガス検出装置。 The gas detection device according to claim 4, wherein the fastener is screwed to the insertion portion. 前記挿入部のうち前記ホールに挿入された部分の側面は、少なくとも一部が前記ホールの側面と接しない、請求項3から5のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 3 to 5, wherein at least a part of the side surface of the insertion portion inserted into the hole does not come into contact with the side surface of the hole. 第1の接合部材のうち前記基板と接合される部分は、前記基板との間に空間を有しない、請求項6に記載のガス検出装置。 The gas detection device according to claim 6, wherein the portion of the first joining member to be joined to the substrate does not have a space between the first joining member and the substrate. 前記ホールは、長穴である、請求項3から請求項7のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 3 to 7, wherein the hole is an elongated hole. 前記長穴は、前記第1の接合部材と前記第2の接合部材の前記基板の主面への垂直投影像のそれぞれの中心をつないだ方向に対して伸長している穴である、請求項8に記載のガス検出装置。 The long hole is a hole extending in a direction connecting the centers of the vertical projection images of the first joining member and the second joining member on the main surface of the substrate. 8. The gas detection device according to 8. 前記第2の接合部材が、熱膨張による歪みが生じた際、前記第1の接合部材と前記第2の接合部材の前記基板の主面への垂直投影像のそれぞれの中心をつないだ方向以外の動きを抑制する請求項1から9のいずれか一項に記載のガス検出装置。 When the second joining member is distorted due to thermal expansion, the direction other than the direction in which the centers of the first joining member and the vertical projection image of the second joining member on the main surface of the substrate are connected to each other. The gas detection device according to any one of claims 1 to 9, wherein the movement of the gas detection device is suppressed. 前記導光部材は、第1の反射部と第2の反射部とを備える、請求項1から10のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 1 to 10, wherein the light guide member includes a first reflecting portion and a second reflecting portion. 前記第1の反射部は、第2の反射部に対する相対位置が固定される、請求項11に記載のガス検出装置。 The gas detection device according to claim 11, wherein the position of the first reflecting portion is fixed relative to the second reflecting portion. 前記第1の反射部は、前記第1の接合部材によって前記基板と接合され、
前記第2の反射部は、前記第2の接合部材によって前記基板と接合される、請求項11又は12に記載のガス検出装置。
The first reflecting portion is joined to the substrate by the first joining member, and is joined to the substrate.
The gas detection device according to claim 11 or 12, wherein the second reflecting portion is joined to the substrate by the second joining member.
前記第1の接合部材は複数の部品で構成される、請求項1から13のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 1 to 13, wherein the first joining member is composed of a plurality of parts. 前記第1の接合部材は1つの部品で構成される、請求項1から13のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 1 to 13, wherein the first joining member is composed of one component. 前記第1の接合部材は、前記基板の主面への垂直投影像が、中実円形、中空円形、弓形又は多角形である、請求項15に記載のガス検出装置。 The gas detection device according to claim 15, wherein the first joining member has a solid circular shape, a hollow circular shape, a bow shape, or a polygonal shape as a vertical projection image on the main surface of the substrate. 前記受光素子の中心と前記発光素子の中心とを結ぶ線分の垂直二等分線を直線Lpとし、前記受光素子を通る直線で前記直線Lpと平行なものを直線Ldとし、前記発光素子を通る直線で前記直線Lpと平行なものを直線Leとし、前記直線Ldと前記直線Leに挟まれた前記基板の主面内の最大の領域を領域Rtとし、前記第1の接合部材の前記基板の主面への垂直投影像が前記領域Rtに存在する、請求項1から16のいずれか一項に記載のガス検出装置。 The perpendicular bisector of the line connecting the center of the light receiving element and the center of the light emitting element is defined as a straight line Lp, and the straight line passing through the light receiving element and parallel to the straight line Lp is defined as a straight line Ld. A straight line passing through and parallel to the straight line Lp is defined as a straight line Le, a maximum region in the main surface of the substrate sandwiched between the straight line Ld and the straight line Le is defined as a region Rt, and the substrate of the first joining member is defined as a region Rt. The gas detection device according to any one of claims 1 to 16, wherein a vertical projection image of the above on the main surface exists in the region Rt. 前記第1の接合部材は、前記第1の接合部材の前記基板の主面への垂直投影像が、前記直線Lp上にあるように配置される、請求項17に記載のガス検出装置。 The gas detection device according to claim 17, wherein the first joining member is arranged so that a vertical projection image of the first joining member on the main surface of the substrate is arranged on the straight line Lp. 前記第1の接合部材と前記第2の接合部材の前記基板の主面への垂直投影像のそれぞれの中心間の距離が、前記基板における最大距離の半分よりも長い、請求項1から請求項18のいずれか一項に記載のガス検出装置。 Claims 1 to claim that the distance between the centers of the first joining member and the vertical projection image of the second joining member on the main surface of the substrate is longer than half of the maximum distance on the substrate. 18. The gas detector according to any one of 18. 光を発する発光素子と前記光を受け取る受光素子とを主面に設けた基板と、
前記発光素子が発した前記光を前記受光素子に導く導光部材と、
前記基板と前記導光部材とを接合する第1の接合部材と、
前記基板と前記導光部材とを接合し、前記第1の接合部材より低い接合度を有する第2の接合部材と、を備える、ガス検出装置。
A substrate on which a light emitting element that emits light and a light receiving element that receives the light are provided on the main surface, and
A light guide member that guides the light emitted by the light emitting element to the light receiving element, and
A first joining member that joins the substrate and the light guide member,
A gas detection device comprising a second joining member that joins the substrate and the light guide member and has a joining degree lower than that of the first joining member.
前記第2の接合部材の接合度は、前記第1の接合部材の接合度よりも小さい請求項1から19のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 1 to 19, wherein the degree of joining of the second joining member is smaller than the degree of joining of the first joining member. 基板と、
前記基板の主面に設けられ、光を発する発光素子と、
前記基板の主面に設けられ、前記光を受け取る受光素子と、
前記発光素子が発した前記光を前記受光素子に導く導光部材と、
第1の接合部材と、
第2の接合部材と、を備え、
前記第1の接合部材は、前記基板と前記導光部材とを、基板の平面と平行な第1方向に第1拘束度で、前記基板の平面と平行かつ前記1方向と垂直な第2方向に第2拘束度で、及び前記基板の平面に垂直な第3方向に第3拘束度で、それぞれの並進方向に拘束し、
前記第2の接合部材は、前記基板と前記導光部材とを、前記第1方向に第4拘束度で、前記第2方向に第5拘束度で、及び前記第3方向に第6拘束度で、それぞれの並進方向に拘束し、
前記第1拘束度から前記第6拘束度のうち少なくとも1つはゼロであり、前記第1拘束度と前記第4拘束度の何れか一方はゼロではなく、前記第2拘束度と前記第5拘束度の何れか一方はゼロではなく、前記第3拘束度と前記第6拘束度の何れか一方はゼロではないガス検出装置。
With the board
A light emitting element provided on the main surface of the substrate and emitting light,
A light receiving element provided on the main surface of the substrate and receiving the light,
A light guide member that guides the light emitted by the light emitting element to the light receiving element, and
With the first joining member,
With a second joining member
The first joining member places the substrate and the light guide member in a first direction parallel to the plane of the substrate with a first restraint degree, and a second direction parallel to the plane of the substrate and perpendicular to the one direction. With a second degree of restraint, and with a third degree of restraint in the third direction perpendicular to the plane of the substrate, constrained in each translational direction.
The second joining member holds the substrate and the light guide member in the first direction with a fourth degree of restraint, in the second direction with a fifth degree of restraint, and in the third direction with a sixth degree of restraint. So, restrain in each translation direction,
At least one of the first restraint degree to the sixth restraint degree is zero, and one of the first restraint degree and the fourth restraint degree is not zero, and the second restraint degree and the fifth restraint degree are not zero. A gas detection device in which one of the restraint degrees is not zero and one of the third restraint degree and the sixth restraint degree is not zero.
前記第4拘束度及び/又は前記第5拘束度がゼロである請求項22に記載のガス検出装置。 The gas detection device according to claim 22, wherein the fourth degree of restraint and / or the fifth degree of restraint is zero. 前記第6拘束度がゼロである請求項22に記載のガス検出装置。 The gas detection device according to claim 22, wherein the sixth degree of restraint is zero. 前記第1拘束度、前記第2拘束度及び前記第3拘束度がゼロではない、請求項22から24のいずれか一項に記載のガス検出装置。 The gas detection device according to any one of claims 22 to 24, wherein the first degree of restraint, the second degree of restraint, and the third degree of restraint are not zero.
JP2021036353A 2020-03-31 2021-03-08 Gas detection equipment Active JP7569712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/208,004 US11662305B2 (en) 2020-03-31 2021-03-22 Gas detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020064487 2020-03-31
JP2020064487 2020-03-31

Publications (2)

Publication Number Publication Date
JP2021162577A true JP2021162577A (en) 2021-10-11
JP7569712B2 JP7569712B2 (en) 2024-10-18

Family

ID=78003173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021036353A Active JP7569712B2 (en) 2020-03-31 2021-03-08 Gas detection equipment

Country Status (1)

Country Link
JP (1) JP7569712B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201000756D0 (en) 2010-01-18 2010-03-03 Gas Sensing Solutions Ltd Gas sensor with radiation guide
JP6626281B2 (en) 2015-07-10 2019-12-25 旭化成エレクトロニクス株式会社 Gas sensor

Also Published As

Publication number Publication date
JP7569712B2 (en) 2024-10-18

Similar Documents

Publication Publication Date Title
EP1987346B1 (en) Dome gas sensor
JP6347051B2 (en) device
EP1972923B1 (en) Optical absorption gas sensor
JP6530652B2 (en) Light emitting and receiving device
JP5870270B2 (en) Detector
JPH10239235A (en) Infrared ray gas analyzer
JP2007192638A (en) Gas sensor
US20240210306A1 (en) Gas detection apparatus
JP2021162577A (en) Gas detection device
JP2007205920A (en) Multiple reflection type cell, and infrared type gas detector
US11644417B2 (en) Gas detection apparatus
JP2006275632A (en) Spectroscopic gas sensor
JP2021144027A (en) Gas detector
CN106959271B (en) Long optical path air chamber with stable packaging structure
US20210302309A1 (en) Gas detection apparatus
JP5266859B2 (en) Photoelectric sensor
JP3853709B2 (en) Method for calculating a fixed position between a light projecting unit and a light receiving unit in a liquid detection device in a tube and a liquid detection device in a tube
JP7490398B2 (en) Gas Sensors
CN114965339A (en) Integrated infrared gas sensor with special-shaped gas chamber and using method thereof
US11474031B2 (en) Gas detection apparatus
JP2021148782A (en) Gas detector
US20240035958A1 (en) Gas detection apparatus
US20240310276A1 (en) Optical concentration measuring apparatus
JP2008004916A (en) Optical module
JP2023162987A (en) Gas detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240627

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240702

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240910