JP3853709B2 - Method for calculating a fixed position between a light projecting unit and a light receiving unit in a liquid detection device in a tube and a liquid detection device in a tube - Google Patents

Method for calculating a fixed position between a light projecting unit and a light receiving unit in a liquid detection device in a tube and a liquid detection device in a tube Download PDF

Info

Publication number
JP3853709B2
JP3853709B2 JP2002205509A JP2002205509A JP3853709B2 JP 3853709 B2 JP3853709 B2 JP 3853709B2 JP 2002205509 A JP2002205509 A JP 2002205509A JP 2002205509 A JP2002205509 A JP 2002205509A JP 3853709 B2 JP3853709 B2 JP 3853709B2
Authority
JP
Japan
Prior art keywords
tube
light
light receiving
outer diameter
receiving unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002205509A
Other languages
Japanese (ja)
Other versions
JP2004045319A5 (en
JP2004045319A (en
Inventor
建一 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsuden KK
Original Assignee
Tsuden KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsuden KK filed Critical Tsuden KK
Priority to JP2002205509A priority Critical patent/JP3853709B2/en
Publication of JP2004045319A publication Critical patent/JP2004045319A/en
Publication of JP2004045319A5 publication Critical patent/JP2004045319A5/ja
Application granted granted Critical
Publication of JP3853709B2 publication Critical patent/JP3853709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、断面が円形の円筒形管(パイプ、チューブ、カテーテルを含む)内に、外部から液体が有るか否かを自動的かつ安定的に検出する管内液体検出装置の改良に関し、又、本発明は、中空円筒形パイプ内の液位を検出するための液位検出装置に関し、更に、本発明は、管内液体検出装置における投光部と受光部との固定位置演算方法にも関する。
【0002】
【従来の技術】
従来、タンクや液体貯蔵容器内の液位を検出する場合、タンク底部に接続された小径の液位検出用中空パイプに液位検出装置を装着し、中空パイプ内の液位(タンク内と同レベルの液位)を検出することが行われている。しかして、
a1) 米国特許USP5065037には、F.J.Markらにより、断面が円形の管内の管径の直径方向に変化する液位を検出するため、1つの投光部と、管内を屈折透過した光を2つの異なった検出位置で受光する受光部を設け、これらの2つの受光部の出力を比較して管内の液位を検出する装置が開示されている。又、
a2) 特開平9−280923号には、中空透明パイプ内の管径の軸芯方向に変化する液位を検出するための液位検出装置が開示され、この装置では、ホルダーと、このホルダーに設けられ断面が円形状をなす透明パイプの外周面に接触する一対の支持部と、上記ホルダーに設けられ透明パイプの内周部に投光する投光手段と、ホルダーに設けられ投光手段から投光され透明パイプの内周面で反射された光を受光する受光手段とが設けられ、上記投光手段は、透明パイプの内周部のうち一方の支持部の近傍を通り透明パイプの軸芯線に対して平行な線に沿う内周面に光を投射するようになっている。
【0003】
【発明が解決しようとする課題】
b1) 上記a1)のUSP5065037の管内液位検出装置では、上記投光部と受光部の空間的配置関係は、予め管径に応じて、例えば、0.75Rの位置と固定されているため、上記液体検出装置を取り付ける円筒形管の外径が大径管の場合と小径管の場合とで、20%以上異なる場合には、その取付冶具/手段は、それぞれ、取付管径に応じて全く別個に設計し直さなければならないため、例えば、外径が6mmの小径管と、外径が25mmの大径管とでは、全く外形寸法の異なる液位検出装置を用意しなければならないという問題点があった。又、
b2) a2)の特開平9−280923号の液位検出装置では、該装置を取り付ける円筒形管の外径が大径管の場合と小径管の場合とで、20%以上異なっても、その取付冶具/手段を共通化しようとする努力はみられるが、投光手段は、液位検出用管の内周部に検知光を投射し、当該管の内周面で効率良く反射するように調節され(従って、精密/正確に管の内周面からの反射光を受光しようとすると、管の外径が異なれば、投光部の投射角度調節作業が必須である)、かつ、かかる管の内周面の反射光を受光し処理するようになっているので、作業者の技量による検知精度のばらつきは精密な受光動作では避けられず、又、反射光量を受光するために、管が透明部材で形成されるという条件が必須であり、更に、管の内周面に気泡等が付着したり、その近傍空間で気泡が移動していると、受光部の出力が非常に変動し、かかる気泡の反射光量に対する影響は装置側で全く除去できず、非常に気泡に弱い装置であるという根本的な問題点があり、更に又、液体が着色していると、透過光量でなく反射光量を演算処理するため、液体の色に非常に反射光量が影響を受け、安定的に装置が作動できないという問題点もあった。
本発明は上述のような事情からなされたものであり、本発明の目的は、管径の軸芯方向に変化する液位の検出方法及び装置であって、管径が異なった場合でも、投光部の投射角度調節作業が不要であり、又、当該管が透明な部材で形成されていなくても光が半透明材等の透光可能な透光材で構成されていれば使用可能であり、更に、光を投射する管の外部から、着色した液体や粘度の高く気泡の発生し易い液体であっても非常に安定して作動/検出すると共に、装置を取付ける円筒形管の外径が大径管の場合と小径管の場合とで、20%以上異なっていても、全く同一のセンサ本体が利用可能であり、装置の設置が簡単で熟練を要しない管内液体検出装置における投光部と受光部との固定位置演算方法及び管内液体検出装置並びに液位検出装置を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、投光部と受光部とを組合せて円筒形管内の液体の有無を検出する管内液体検出装置における前記投光部と受光部との固定位置演算方法に関し、本発明の目的は、
前記投光部及び受光部と、前記円筒形管との間に、当該管内液体検出装置を装着可能な最大管径に適合させた面が形成された光路変更手段をそれぞれ設け、
前記管の外部から当該管の中空内部の空気中に、ほぼ一定の検出角度で前記液体検知用透過光が屈折して入射するように前記投光部及び光路変更手段からなる光学経路を介して、前記透過光を投射せしめ、かつ、前記管の中空内部の空気中に液体が無い場合、前記屈折光が、直接、前記光路変更手段及び前記受光部により受光されるように前記受光部を配設し、
前記円筒形管の外径が前記最大管径の外径管であって、その中空内部に液体が無い場合、前記光路変更手段により、当該円筒形管の中空内部の空気中を前記検知用透過光が透過するようにし、かつ、当該円筒形管の円筒中心より当該液体検出装置を取り付ける側に、前記検知用透過光が透過するように前記投光部及び受光部の固定位置をそれぞれ幾何方程式及び光学方程式を連立させて演算する工程と、
前記円筒形管の外径が前記最大管径より小さい外径を有する管であって、前記最大管径より20%以上小さい最小径の管であって、その中空内部に液体が無い場合、前記光路変更手段を介して前記検知用透過光が空気中を透過し、その後前記円筒形管に入射せしめると共に、前記円筒形管の中空内部の空気中を前記検知用透過光が透過するようにし、その後、前記円筒形管から空気中を透過した前記検知用透過光を前記光路変更手段を介して前記受光部へ伝播せしめ、かつ、前記円筒形管の中空内部の空気中を前記検知用透過光が透過する場合、当該円筒形管の円筒中心より当該液体検出装置を取り付ける側を、前記検知用透過光が透過するように、前記投光部及び受光部の固定位置をそれぞれ幾何方程式及び光学方程式を連立させて演算する工程と、
予め設定した空間的固定位置の投光部及び受光部取付位置に対し、前記円筒形管の外径が前記最大管径の場合に演算した前記投光部及び受光部の固定位置と、前記円筒形管の外径が前記最小径の管の場合に演算した前記投光部及び受光部の固定位置とをそれぞれ演算し、前記種々の外径が変わる外径管に対して、当該管の中空内部に液体が無い場合、前記予め設定した空間的固定位置の投光部及び受光部が、安定的に前記屈折・透過光の主光束を受光可能となるような位置を、前記投光部及び/又は受光部の固定位置を変動させ、外径が最大管径から最小管径まで変わる外径管に対する前記投光部の固定位置の変動する差、及び、外径が最大管径から最小管径まで変わる外径管に対する前記受光部の固定位置の変動する差が、それぞれ所定の範囲内となるまで、前記幾何方程式及び光学方程式を連立させて演算し、前記投光部及び/又は受光部の固定位置を変動させることを繰り返す工程と、を含むことによって達成される。
【0005】
【発明の実施の形態】
以下、図面に基づいて、本発明の好適な実施例について詳細に説明する。
図1(A)は、液体貯蔵容器(タンク、カテーテル等)1内の液位検出に本発明の液位検出装置4sを応用した1例を示し、管3に本発明の管内液体検出装置4を取り付けた概略図であり、図1(B)は、その拡大正面図、図1(C)は、その拡大上面図、図1(D)は、その拡大側面図である。
図2(A)は、管内液体検出装置4の縦断面図であり、図2(B)は、透光材ケース41の上面図、図2(C)は、その底面図、図2(D)は、その側面図である。
図3(A)は、不透光材ケース42の縦断面図であり、図3(B)は、その上面図、図3(C)は、その底面図、図3(D)は、その側面図である。
図4(A)は、緊締具44の上面図であり、図4(B)は、その線4B-4Bでの部分断面図、図4(C)は、その線4C-4Cでの断面図、図4(D)は、その底面図である。
図5(A)は、締結材430の上面図であり、図5(B)は、その正面図、図5(C)は、その側面図である。
図6は、本発明の投光部52から受光部54までの全体の光学経路を、各屈折点での角度を中心に示した水平断面図である。
図7は、本発明の投光部52から受光部54までの全体の光学経路を、各屈折点での位置座標を中心に示した水平断面図である。
図8は、本発明の投光部52、光路変更手段407とケース内径r1の関係を示す図である。
図9は、光路変更手段407の屈折点P2での入射光P1-P2、屈折光l23の関係を示す水平断面図である。
図10は、光路変更手段407の屈折点P2から円筒形管3の外側屈折点P3へ透過光が伝播する光学経路を示す水平断面図である。
図11は、円筒形管3の外側屈折点P3でその内部に屈折光が伝播する場合の光学経路を示す図である。
図12は、円筒形管3の管材内部を屈折光がその内部に伝播する光学経路を示す図である。
図13は、円筒形管3の内側屈折点P4での屈折光の光学経路を示す図である。
図14は、円筒形管3の中空内部を屈折光が伝播し、内側屈折点P5で管材内部に屈折する場合の光学経路を示す図である。
図15は、円筒形管3の管材内部を屈折光がその外部に伝播する光学経路を示す図である。
図16は、円筒形管3の外側屈折点P6でその外部に屈折光が伝播する場合の光学経路を示す図である。
図17は、円筒形管3の外側屈折点P6から光路変更手段411の屈折点P7へ透過光が伝播する光学経路を示す図である。
図18は、光路変更手段411の屈折点P7でその内部に屈折光が伝播する光学経路を示す図である。
図19は、光路変更手段411の屈折点PPから受光部54に屈折光が伝播する光学経路を示す図である。
図20は、本発明の液位検出装置4s/管内液体検出装置4を、中程度の外径の管3に取り付けた場合の、光学経路を示す水平断面図である。
図21は、本発明の液位検出装置4s/管内液体検出装置4を、最大外径の管3aに取り付けた場合の、光学経路を示す水平断面図である。
図22は、本発明の液位検出装置4s/管内液体検出装置4を、最小外径の管3bに取り付けた場合の、光学経路を示す水平断面図である。
図23(A)は、本発明の大外径用緊締具44aの上面図であり、図23(B)は、その線23B-23Bでの部分断面図、図23(C)は、その線23C-23Cでの断面図、図23(D)は、その底面図である。
図24(A)は、本発明の小外径用緊締具44bの上面図であり、図24(B)は、その線24B-24Bでの部分断面図、図24(C)は、その線24C-24Cでの断面図、図24(D)は、その底面図である。
図25は、本発明の光路変更手段の内側断面が平面で形成された管内液体検出装置4aの水平断面図である。
図26は、本発明の投光部/受光部を非対称に配置して、最大外径管及び最小外径管に対する固定位置の間の誤差が、所定の誤差εの範囲内となる管内液体検出装置4bの水平断面図である。
【0006】
図1(A)は、液体貯蔵容器(タンク、カテーテル等)1内の液位検出に本発明の液位検出装置4sを応用した1例を示したもので、液体貯蔵容器1には供給パイプ1aから液体2が注入され、排出パイプ1bから液体2が外部に供給され、同図では、液位h1の位置まで液体2が注入されていると共に、液体貯蔵容器1の底部一端に液位検出用の中空突起1cが設けられ、この突起部1cに、外形が円筒形状の液位検出用中空管(パイプ、ホース、又は、カテーテル用チューブ等)3が連結・装着され、管継手3a等により緊締されると共に、その他端には、外気と連通した防塵用キャップ3b等が装着され、更に管3の所望の高さ位置hfxには、中空管3内の管径の軸芯方向に変化する液体の液位(容器1内と同レベルの液位で図1(A)ではh1)を検出する液位検出装置4sが装着、固定され、例えば、液位がhfxに到達した時点で、供給パイプ1aからの液体2の注入が、液位検出装置4sからの停止制御信号により図示しないホンプ制御手段等により停止制御されるようになっている。従って、本発明の液位検出装置4sは、装着/固定した管3の部位に液体が存在するか、又は、空気が存在するかを検知する管内液体検出装置4としても利用可能である。
しかして、液位検出装置4s(以下、管内液体検出装置4も同等であるので、液位検出装置4sとのみ記す)の管3への固定方法は、例えば、管3を液位検出装置4sのケース本体41、42とサドル状の緊締具44との内側円弧形状部により圧接/密着して固定/挟持すると共に、本体両端に配設された棒ネジ43aー蝶ナット43b等の螺着可能な緊締手段43により、ケース本体41、42と、内側圧接面が円筒状で、圧接/密着して固定/挟持する円筒形管の軸芯位置を、その外径が変動しても一定の空間位置関係に保持して固定可能なサドル状緊締具44とで管3を圧接し挟持した状態で固定するようになっており、具体的には、ケース本体41、42の中心線とサドル状緊締具44の中心線と、円筒形管3の軸芯とが、同一平面上にあるように圧接/密着して固定/挟持するようになっている。又、液位検出装置4sの本体裏側(管3を挟持し、投光部/受光部の配設されている面の回路基板50を介した反対側)には、電源ケーブル/信号ケーブル59が接続され、更に、液体2の有無を表示するセンシング状態の表示手段(LED、又は、光ファイバ等からなる)46や、センサの感度調節用可変抵抗器48等が感度調節の高低方向を示す矢印47と共に、設けられている。
又、ケース本体41、42は、中央に於いて2分割できるように嵌合可能に構成され、本実施例では、ケース本体41は、投光部52の発光手段から放射される光源の波長に対して透過可能な透光材で構成され、又、本体42は、発光手段から放射される光源の波長に対して、完全に、又は、少なくとも50%以上遮断する不透光材で構成するのが好ましく、投光部52と受光部54を制御すると共に、受光部の出力を処理して管内液体の有無を検出する液体有無判定手段(例えば、演算増幅器、反転増幅器等から構成されるものや、MPU(マイクロプロセッサ)等を利用してもよい)55を実装する回路基板50を中央下部側壁に設けられた溝420に嵌合・挟持し、組立て及び受光レベル等の感度調節終了後、図示しないシリコーン充填材等を注入孔474,476,478等から注入して、防水/防爆用に密閉すると共に、完全遮光するようになっている。かかる投光部52/受光部54を含む光学系と、ケーブル59、表示手段46、可変抵抗器48等からなる非光学系とを、回路基板50の前側及び後側に、それぞれ光学的に完全に分離させて配置することにより、装置4sの光学系ノイズを最小限に低減できると共に、装置4sの設置空間を最小化でき、更に、調整作業や点検/確認作業等の非常にし易い構造となっている。
尚、本発明の投光部52の発光手段としては、通常LED(半導体発光ダイオード)や赤外レーザー発光素子、光ファイバー(投光レンズ系を含む)等の光源手段が利用可能であり、かかる光源手段から光が放射/投射されるが、防爆構造が特に要求される場合には、投光部52及び受光部54は、ガラス又はプラスティク製の光ファイバー並びに結像/集光レンズ系等の光学系部材のみからなる構造の採用が好ましく、回路基板50等は、遠隔の防爆構造体内部に設け、その間は光ファイバー等の光伝送手段で中継/接続し、図示しない遠隔の電気回路基板により電気信号処理するのが好ましい。又、受光部54としては、MOS構造やCCD構造の光電変換素子や光ファイバー(集光レンズ系を含む)等が利用可能であるが、防爆構造が特に要求される場合には、投光部52及び受光部54は、ガラス又はプラスティク製の光ファイバー等の光学系のみで構成するのが好ましい。
【0007】
次に、図2を参照して、透光材や透明材及び/又は半透明材からなり光路変更手段407,411をケースと一体に形成したケース本体41と装置4sの構造を説明すると、透光材からなるケース本体41の上部殻体中央には、不透光材/遮光材からなるケース本体42との嵌合用切欠溝402が設けられると共に、その下方に凸形状の中空嵌合部403が形成され、その接合面側周辺には嵌合可能な重複端部401が形成され、又、ケース41の両側には、本液位検出装置4sが装着可能な管3の最大管径に適合させた半径r1の円筒曲面406が形成され、円筒曲面406の裏側には楔状光路変更手段407、411が設けられ、更に、上部殻体上面左右端部の嵌合面側に、管3を緊締具44と密着挟持するための棒ネジ頭部43aを有する金属製締結材430を埋設し挿通するための半円形穴421が設けられ、その上部には半円状凸部(ボス)422が形成されている。又、上部殻体上面の半円形穴421の中央切欠溝402側に、それぞれ、ケース本体42との嵌合用切欠溝404が上下斜方向に形成され、上部殻体上面両側のより中央に近い部位にケース本体42との嵌合凹部424が設けられている。
又、光路変更手段407では、円筒状曲面406の反対側に、投光部52を格納する空間409が形成され、平面状斜面408に投光部52の発光手段が、好ましくは、透明の接着剤により、後述する所定の投射角度で接着/固定され、その外周側面には遮光部材60を接着剤により貼着するのが好ましく、更に斜面408の上下両側には、左斜下方に向けて平板状の突起部410が形成され投光部52/遮光部材60を挟持すると共に、上方突起部410の上面は、切欠溝404の下面を形成するようになっている。
他方、光路変更手段411では、円筒曲面406の反対側に、MOS構造やCCD構造の光電変換素子や光ファイバー等からなる受光部54を格納する空間413が形成され、平面状斜面412に受光部54の受光手段が、好ましくは、透明の接着剤により後述する所定の投射角度で接着/固定され、その外周側面には遮光部材60を接着剤により貼着するのが好ましく、更に、斜面412の上下両側には、右斜下方に向けて平板状の突起部414が形成され受光部54/遮光部材60を挟持すると共に、上方突起部414の上面は、切欠溝404の下面を形成するようになっている。
更に、下部殻体の嵌合面側に、半円形穴426,428,440がそれぞれ形成され、穴426は、センサの感度調節用可変抵抗器48を操作するために使用され、穴428は、センサの作動状態表示手段46の可視窓として使用され、穴440は、コネクタを介して電源線及び信号線59を接続するのに使用され、穴440の更に下方には、半円状凸部(ボス)442が形成されている。更に又、側部殻体の中央内側には、ケース本体42との嵌合用凹部436が形成され、右外側側壁の凸部422の下方には、液位の検出位置決め用マーク45が刻設されている。
又、透光材からなるケース本体41は、その上部殻体、下部殻体、底部殻体、側部殻体を、光路変更手段407,411と共に、一体に形成するのが好ましく、その構成材料としては、ガラス、セラミックス部材、又は、ABS樹脂、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリプロピレン、ポリビニルアルコール、メタクリル樹脂、石油樹脂、ポリアミド、ポリ塩化ビニリデン、ポリカーボネート、ポリアセタール、弗素樹脂、ポリイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリベンズイミダゾール、ポリシクロオレフィン等の熱可塑性樹脂、又は、フェノール樹脂、尿素樹脂、不飽和ポリエステル、ポリウレタン、アルキド樹脂、メラミン樹脂、エポキシ樹脂等の熱硬化性樹脂、則ち、熱可塑性樹脂又は熱硬化性樹脂等の合成樹脂部材、又は、プラスチック、又は、
ポリ乳酸、ポリアミノ酸、脂肪族ポリエステル、ポリーεーカプロラクトン、ポリビニルアルコール、キトサン、澱粉、セルロース等と汎用性ポリマーとの混合物等の生分解樹脂材、又は、ウレタンゴム、シリコーンゴム、ポリエチレン及びポリスチレンの共重合体をポリマーの主成分とする低硬度ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、ブチルゴム、アクリルゴム、スチレンーブタジエンゴム、エチレンープロピレンゴム、クロロプレンゴム、アクリロニトリルーブタジエンゴム、弗素ゴム、多硫化ゴム、ポリエーテルゴム、クロロスルホン化ポリエチレン等の合成ゴム、又は、天然ゴム、又は、これらの組合せから成るグループから選択されたもの、
更に、ポリアミド、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリケトンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリ四弗化エチレン、芳香族ポリエステル、ポリアミノビスマレイミド、トリアジン樹脂等のエンジニアリングプラスチック部材、ガラス又はセラミックス部材、及びこれらの組合せから成るグループから構成されている材料が利用可能であり、
特に、透光材や、透明材及び/又は半透明材を含む光路変更手段407、411の構成材料としては、ガラス、セラミックス部材、又は、ABS樹脂、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリプロピレン、ポリビニルアルコール、メタクリル樹脂、石油樹脂、ポリアミド、ポリ塩化ビニリデン、ポリカーボネート、ポリアセタール、弗素樹脂、ポリイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリベンズイミダゾール、ポリシクロオレフィン等の熱可塑性樹脂、又は、フェノール樹脂、尿素樹脂、不飽和ポリエステル、ポリウレタン、アルキド樹脂、メラミン樹脂、エポキシ樹脂等の熱硬化性樹脂、則ち、熱可塑性樹脂又は熱硬化性樹脂等の合成樹脂部材、又は、プラスチック、又は、ポリ乳酸、ポリアミノ酸、脂肪族ポリエステル、ポリーεーカプロラクトン、ポリビニルアルコール、キトサン、澱粉、セルロース等と汎用性ポリマーとの混合物等の生分解樹脂部材、又は、ウレタンゴム、シリコーンゴム、ポリエチレン及びポリスチレンの共重合体をポリマーの主成分とする低硬度ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、ブチルゴム、アクリルゴム、スチレンーブタジエンゴム、エチレンープロピレンゴム、クロロプレンゴム、アクリロニトリルーブタジエンゴム、弗素ゴム、多硫化ゴム、ポリエーテルゴム、クロロスルホン化ポリエチレン等の合成ゴム、又は、天然ゴム、又は、これらの組合せから成るグループから選択されたもの、
更に、ポリアミド、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリケトンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリ四弗化エチレン、芳香族ポリエステル、ポリアミノビスマレイミド、トリアジン樹脂等のエンジニアリングプラスチック部材、ガラス又はセラミックス部材、及びこれらの組合せから成るグループから構成されている材料が利用可能である。
尚、ケース本体41,42及びキャプ状緊締具44は、有害な反射光等を防止するため、黒色で着色するのが好ましい。
【0008】
次に、図3を参照して、不透光材/遮光材からなるケース本体42の構造を説明すると、ケース本体42の上部殻体中央に透光材ケース本体41との嵌合用に断面が凸形状の突起子450がケース本体41との嵌合方向に突出して形成され、その円筒状上面451は、半径r1に対して、僅かに+公差で突出させて形成するのが好ましく、その下方には横方向に、上面452及び下面453を有する薄板状の嵌合突起子450が形成され、ケース本体41の中空部403と嵌合可能になっており、かかる突起子450により、投光部52から発光・投射された透過光が、直接、受光部54により受光されることを、極力防止するようになっている。従って、図20乃至図22に示すように、内周中空円筒の中心軸に対して対称な位置に配置される場合には、不透光部材/遮光部材からなる嵌合突起子450の上面452より低い位置に、投光部52及び受光部54を配置するのが好ましい。
又、ケース本体42の上部殻体中央で、突起子450の突出方向と反対側には、本液位検出装置4sが装着可能な管3の最大管径D44aに適合させた半径r1で、軸心方向に所定の幅を有する円筒曲面462が形成され、円筒曲面462の裏側は、所定の厚さの薄板状円筒殻体で形成され、更に、上部円筒殻体の左右両方端部の嵌合面側に、変形山形状の嵌合突起子456が、本体41の嵌合溝404及び凹部424と密着嵌合するように突出して形成され、突起子456の上曲面457は、円筒曲面462と同一の曲率半径r1で形成され、右下斜方に形成された薄板状平板部458は溝404に密着嵌合可能となっている。又、管3を緊締具44と密着挟持するための棒ネジ状頭部を有する締結材430を埋設し挿通するための半円形穴421に接合する半円形穴466が左右両端部に形成され、その上部にはそれぞれ半円状凸部(ボス)468が形成されている。
又、突起子456は左右凸部468の近傍に形成されているが、中央突起子450側には、それぞれ、切欠溝404と嵌合する薄板状突起部460が形成され、上部殻体上面両側のより中央に近い部位にケース本体41の嵌合凹部424と密着嵌合する断面が円弧状の薄板状突起部459が形成され、光路変更手段407,411に対し上方からのノイズ光を遮断するようになっている。更に、光路変更手段407の円筒曲面462の反対側に、投光部52を格納する空間が形成され、又、光路変更手段411の円筒曲面462の反対側に、受光部54を格納する空間が形成され、
更に、下部殻体の嵌合面側に、半円形穴484,488,490がそれぞれ形成され、穴490は、穴426と共に、センサの感度調節用可変抵抗器48を操作するために使用され、穴488は、穴428と共に、センサの作動状態表示手段46の可視窓として使用され、穴484は、穴440と共に、コネクタを介して電源及び信号線59を接続するのに使用され、穴484の下方周辺には半円状凸部486が形成されている。更に又、側部殻体の中央内側には、本体41との嵌合用突起子470が形成され、その先端部472は更に鈎状の係合突起が形成され、突起子470の下方には、溝420に接合し、回路基板50を嵌合・挟持するための溝部482が形成され、正面後方の薄板状殻体には、液体有無判定手段55の判定閾値/増幅器の増幅度を設定/調節すると共に、シリコーン樹脂等の防水/防爆充填剤(遮光材を兼ねる)の注入孔としても利用可能な穴474,476,478等が形成されている。又、注入する防水充填剤は、投光部、受光部に対する遮光材としても有用である。
又、ケース本体42は、その上部殻体、下部殻体、底部殻体、側部殻体を、突起子450,456,470と共に、一体に形成するのが好ましく、その構成材料としては、不透光材/遮光材や、不透光材/遮光材構造を含んだものが好ましく、鉄、アルミニウム、マグネシウム、チタン等の金属材料や、木材、紙、ガラス、セラミックス部材、又は、ABS樹脂、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリプロピレン、ポリビニルアルコール、メタクリル樹脂、石油樹脂、ポリアミド、ポリ塩化ビニリデン、ポリカーボネート、ポリアセタール、弗素樹脂、ポリイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリベンズイミダゾール、ポリシクロオレフィン等の熱可塑性樹脂、又は、フェノール樹脂、尿素樹脂、不飽和ポリエステル、ポリウレタン、アルキド樹脂、メラミン樹脂、エポキシ樹脂等の熱硬化性樹脂、則ち、熱可塑性樹脂又は熱硬化性樹脂等の合成樹脂部材、又は、プラスチック、又は、ポリ乳酸、ポリアミノ酸、脂肪族ポリエステル、ポリーεーカプロラクトン、ポリビニルアルコール、キトサン、澱粉、セルロース等と汎用性ポリマーとの混合物等の生分解樹脂部材、又は、ウレタンゴム、シリコーンゴム、ポリエチレン及びポリスチレンの共重合体をポリマーの主成分とする低硬度ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、ブチルゴム、アクリルゴム、スチレンーブタジエンゴム、エチレンープロピレンゴム、クロロプレンゴム、アクリロニトリルーブタジエンゴム、弗素ゴム、多硫化ゴム、ポリエーテルゴム、クロロスルホン化ポリエチレン等の合成ゴム、又は、天然ゴム、又は、これらの組合せから成るグループから選択されたもの、
更に、ポリアミド、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリケトンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリ四弗化エチレン、芳香族ポリエステル、ポリアミノビスマレイミド、トリアジン樹脂等のエンジニアリングプラスチック部材、ガラス又はセラミックス部材、及びこれらの組合せから成るグループから構成されている材料が利用可能である。
又、上記材料42が、単体では透光性を有する場合(例えば、合成樹脂材)には、光線(可視光、紫外光を含む)/赤外線を遮断する方法としては、光線/赤外線を反射、遮蔽又は吸収する性能を上記材料42に配合/付与したり、光線遮断性能を有するフィルムを貼り付ける方法がある。例えば、有機ポリマーフィルムの表面にAl、Ag、Au等の金属薄膜層と該層上に保護層を積層してなる光線反射フィルム材や、光線/近赤外線吸収色素を含有した接着ポリマーをガラス或いは樹脂板に貼り合せた光線/近赤外線吸収板や、透明フィルムの表面にアンチモン含有酸化スズ微粒子、インジウム含有酸化スズ微粒子等の光線/熱線遮蔽性無機微粒子を含有してなる透明遮蔽フィルムや透明樹脂に硫化第二銅を配合してなる近赤外線吸収透明樹脂組成物がある。又、ポリカーボネート樹脂等に酸化チタン被覆マイカを配合してなる光線/赤外線遮断材や、フタロシアニン系近赤外線吸収化合物を用いた赤外線遮蔽材や、合成樹脂とフタロシアニン系近赤外線吸収剤と2種以上の顔料又は染料からなる着色剤とを配合することにより、光線/赤外線を遮蔽してもよく、2種以上、好ましくは3種以上の顔料又は染料からなる着色剤としては、カーボンブラック、シアニン系グリーン有機顔料、アントラキノン系ヴァイオレット染料、キノリン系イエロー染料、アントラキノン系レッド染料があり、又、顔料及び染料を併用して使用することが好ましい。
尚、ケース本体41,42及びキャプ状緊締具44は、有害な反射光等を防止するため、黒色で着色するのが好ましい。
【0009】
次に、図4を参照して、サドル状緊締具44の構造を説明すると、本発明の液位検出装置4sでは、管3と密着し圧接するケース本体41、42の円筒曲面406,462の曲率半径r1は、装着される管3の外径が変更されても、常時一定の固定した曲率半径r1であるが、サドル状の緊締具44の下面に形成された円筒曲面520の曲率半径r2は、管3に密着して管3を緊締/挟持し、ケース本体41、42と、内側圧接面が円筒状で圧接/密着して固定/挟持する円筒形管の軸芯位置を、その外径が変動しても一定の空間位置関係に保持して固定可能なサドル状緊締具44とで管3を圧接し挟持した状態で固定するため、例えば、ケース本体41、42の中心線とサドル状緊締具44の中心線と、円筒形管3の軸芯とが、同一平面上にあるような空間位置関係に保持し固定可能となるために、装着され挟持される管3の外径D44が150%以上変動する場合には、曲率半径r2を変化させたものを、複数種類用意するのが好ましく、管3の最大曲率半径と最小曲率半径が、約4〜6倍程度変動する場合には、少なくとも4種類程度、曲率半径r2を変化させたものを用意するのが好ましい。しかして、緊締具44の中央左右両端部には、棒ネジやボルト43a等を挿通し保持する貫通穴502が形成され、その上下両面周辺には、円形凸部(ボス)504が形成され、緊締具44の下面には、管3を緊締保持するため管3の外周半径r2に密着し圧接/接合可能な所定の大きさの半径で、軸心方向に所定の長さを有する円筒曲面520が形成され、その反対側上面には、軽量化のため左右方向にリブ510が形成され、更に、前後左右の四隅には、略矩形状の凹部506が形成され、管3を緊締挟持しても緊締具44の剛性強度が確保でき、変形しにくい断面構造となっている。
次に、図5を参照して、平行した2つの棒ネジ状頭部43aを有する締結材430の構造を説明すると、本発明の液位検出装置4sでは、検出装置4sの管3への固定は、装置4sのケース本体41、42とサドル状の緊締具44との内側円弧形状部により圧接/密着して挟持すると共に、本体両端に平行して配設された2つの棒ネジ43aー蝶ナット43b等の螺着可能な緊締手段43により、ケース本体41、42とサドル状緊締具44とで管3を圧接し挟持した状態で密着固定するようになっている。
則ち、管径の変動する管3を緊締具44の下面に形成された円筒曲面520の曲率半径部により緊締/挟持し、ケース本体41、42と、緊締具44との円筒状内側圧接面で円筒形管3の軸芯位置を、その外径が変動しても絶えず一定の空間位置関係に、安定して精密/高精度に固定可能であるが、変動する外径管3への取付作業は簡単かつ容易とするため、例えば、十分な取付精度を安定して確保するためには、棒ネジ43aー連結板432からなる締結材430は、鉄、ステンレス等の金属材で構成し、2つの棒ネジ43aを、図5(C)に示すようにL形状の金属製連結板432の上面に、それぞれ、相互の平行度及び対称性を確保して溶接等で固着したものを、ケース本体41の後部奥側に配設すると、管3の外径が2〜4倍以上変動しても、ケース本体41、42の対称中心線と、サドル状緊締具44の対称中心線と、円筒形管3の軸芯とが、管3の如何なる外径に対しても、同一平面上にあるような一定の空間位置関係に保持した状態で、安定的に固定可能な配置関係を形成することができ好ましい。
かかる一定の空間的配置関係を固定し管3を挟持する力は、棒ネジ43aー蝶ナット43bの螺着する力に依存するため、十分な螺着力を安定して確保するためには、棒ネジ43aー連結板432からなる締結材430は、鉄、ステンレス等の金属材で構成し、その表面を黒色塗装するのが好ましく、これらの棒ネジ43aをそれぞれ単独で穴421に植設するよりは、図5(C)に示すようにL形状の金属製連結板432の上面に、それぞれ溶接等で固着したものを、ケース本体41の後部奥側に配設したほうが、棒ネジ43aー蝶ナット43bにより管3を密着挟持するのに十分な大きさの力が確保できると共に、ケース本体41,42の穴421周辺の局所部位にかかる締結力が直接作用せず、又、連結板432により外部の不要な散乱光等を遮断する効果も期待でき好ましい。
【0010】
かかる構成において、図6乃至図19を参照して、その動作を説明する。先ず、図2に対応させて示す図6は、本発明の液位検出装置4sにおいて、投光部52から受光部54までの光学経路の主要部全体を拡大して示すものであり、管3への接合面406の断面が半径r1の円形状の光路変更手段407,411の屈折率をn1とし、その円形中心をO0とし、管3の屈折率をn2とし、管3の最大外径r1より小さい外径をr2、内径をr3、その中心点をO3とし、本発明の液位検出装置4sが装着可能な管3の最大外径をr1とし、その中心をx-y座標の原点O0(0,0)とし、光路変更手段407の投光部52の取付平面408と、光路変更手段411の受光部54の取付平面412との交線(交点)P0と上記原点O0とを結ぶ直線をy軸に採用し、原点と上記交点P0との距離を、座標(0,-y0)で表記し、原点O0においてy軸に垂直な方向をx軸とする。又、上記投光部52の取付面408への固定位置を座標P1(ーx1,-y1)で表記し、受光部54の取付面412への固定位置を座標P8(x8,-y8)で表記する。かくして、原点O0と点P0、P1とで形成される角度θ1が定義され、原点O0と点P0、P8とで形成される角度θ31も同様に定義される。
尚、投光部52/受光部54の設置/固定位置は、図6に示すように、その透過光の光学的中心が、不透光材/遮光材からなるケース本体42の凸形状突起子450及びその円筒状上面451により遮られ、直接、投射光が投光部52から受光部54に入射しない空間位置関係で固定するのが好ましく、管3内部の屈折/透過光l45(又は直線P4ーP5)が、投光部52と受光部54との光学的中心を結ぶ直線P1ーP8と略平行に透過する場合には、投光部52と受光部54の光学的中心P1,P8を、それぞれ円筒状上面451よりも下方に配設することで、かかる関係は満たすことが可能である。
次に、投光部52から受光部54までの光学経路の主要部を、図6,7により説明すると、先ず、点P1から、水平面と角度θ1をなす投光部52の発光手段(LEDや光ファイバーを含む)の主光束が、図2の取付面408に垂直に投射されると、ケース41と一体に形成された光路変更手段407の内部を直進して透過し、図6に示す内側円形で曲率半径r1の断面406の点P2に、入射角θ2で入射し、点P2において空気中に屈折角θ3で屈折する。更に、空気中を屈折角θ3で直進すると、管3の曲率半径r2の外周面で点P3の位置に入射角θ4で入射し、屈折率n2の管3の内部に屈折角θ5で屈折し、そのまま直進して、内側円形で曲率半径r3の断面の点P4に、入射角θ6で入射し、管3の中空内部の空気中に屈折角θ7で屈折する。次に、管3中空内部の空気中を屈折角θ7で直進すると、管3の曲率半径r3の内周面で点P5の位置に入射角θ8で入射し、屈折率n2の管3の内部に屈折角θ9で屈折し、そのまま直進して、管3の曲率半径r2の外周面で点P6の位置に入射角θ10で入射し、管3の外部空気中に屈折角θ11で屈折し、そのまま空気中を直進して、ケース本体41と一体に形成された光路変更手段411の内側円形で曲率半径r1の断面406の点P7に、入射角θ12で入射し、屈折率n1の光路変更手段411の内部をそのまま直進すると、受光部取付面412の点P8の位置に入射角θ14で入射し、そこから水平面と角度θ31をなす受光部54に受光されるようになっている。上記光路P1ーP2ーP3ーP4ーP5ーP6ーP7ーP8の各屈折点の座標を、図7に示すように、それぞれ、点P2=(-x2,-y2)、点P3=(-x3,-y3)、点P4=(-x4,y4)、点P5=(x5,-y5)、点P6=(x6,-y6)、点P7=(x7,-y7)で表記する。
かくして、管3の最大外径r1が所定の大きさで固定され、光路変更手段407の水平面となす角度θ1も、所定の大きさに決定し固定され、投光部52の取付面408への取付位置P1(ーx1,-y1)も、直接、投射光が投光部52から受光部54に入射しない空間位置関係で固定位置に設定した場合、本発明の目的は、管の最大外径r1より小さい外径r2及び内径r3を有する管3が外径r2及び内径r3に関して種々の値に変動しても、管3の内部を液体2が無い場合屈折・透過した光l45を、受光部取付位置P8が、予め設定した空間的固定位置の受光部取付位置P8であっても安定的に屈折・透過光の主光束を受光可能となるような位置が存在するか?、存在する場合には、管3の最大外径r1を所定の大きさに固定した場合、上記光路変更手段の設定角度θ1、θ31の値、及び、投光部52の取付位置P1(ーx1,-y1)、受光部54の取付位置P8(x8,-y8)の値は、どのような値であるか?と置き換えることができ、結論から述べると、後述するように、かかる投光部、受光部の配置関係は、無数に存在し、その具体的求め方を以下に詳述する。
【0011】
先ず、図6乃至図19には、管3内部の屈折/透過光l45(又は直線P4ーP5)が、投光部52と受光部54との光学的中心を結ぶ直線P1ーP8と平行でなく斜めに透過する場合の1例を図示してあり、かかる場合、管3の最大外径r1が所定の大きさで固定され、光路変更手段407の角度θ1も所定の大きさに決定し固定され、投光部52の取付面408への取付位置P1(ーx1,-y1)も固定位置に設定されると、座標x1とy1とは、独立して変更できず、液体検出装置を取り付ける円筒形管の外径が最大の外径管の場合、その円筒中心より下方の液体検出装置を取り付ける側に、液体検知用透過光が透過するように投光部及び受光部の固定位置をそれぞれ幾何方程式及び光学方程式を連立させて演算し、又、液体検出装置を取り付ける円筒形管の外径が最小の外径管の場合、その円筒中心より下方の液体検出装置を取り付ける側を、液体検知用透過光が透過するように投光部及び受光部の固定位置をそれぞれ幾何方程式及び光学方程式を連立させて演算する。
具体的には、図6及び図8に示す半径r1、角度θ1及び交点P0のy座標y0と、点P1の座標値x1,y1との間には、次の幾何方程式が成り立つ。
y0 = y1 + x1・cot(θ1) ・・・(1)
次に、図7及び図8に示す点P2の座標値x2,y2を、点P1の座標値x1,y1で表すと、光路P1ーP2は、x軸と角度θ1をなし、光路P1ーP2は、内側半径r1の円周とも交わるので、点P1の座標値x1,y1と、点P2の座標値x2,y2との間には、以下の幾何方程式が成り立つ。直線条件より、
y1 = (x1-x2)・tan(θ1) + y2 ・・・(2)
点P2が半径r1の円周上にあるので、
x2・x2 + y2・y2 = r1・r1 ・・・(3)
次に、図9に示す点P2の位置で、半径P2ーO0がy軸となす角度θ20と、入射角θ2、屈折角θ3、及び空気中への屈折光l23がx軸となす角度θ21との間には、以下の幾何方程式が成り立つ。
点P2が半径r1の円周上にあるので、
x2/y2 = tan(θ20) ・・・(4)
又、点P1を通りx軸に平行な直線とy軸との交点をP10とし、点P1を通りx軸に平行な直線と、直線O0ーP2とが交わる点をP11とすると、角P2P11P10は、θ1+θ2に等しく、三角形O0P11P10が直角三角形であるから、
θ1 + θ2 + θ20 = π/2 ・・・(5)
入射角θ2と屈折角θ3との間には、光路変更手段407の屈折率n1より次の光学方程式が成り立つ。
sin(θ3)/sin(θ2) = n1 ・・・(6)
更に、直線O0ーP2が、点P2においてx軸となす角度は、θ3+θ21に等しいので、
θ3 + θ21 + θ20 = π/2 ・・・(7)
尚、図9において、点P1を、角度θ20>45度とし、点P1aの位置で示すように、より上方に配置し、例えば、角度θ2<0.0とすると、点P2aの位置で空気中への屈折光l2a3が、直線P2aーO0より上方に伝搬するので、受光位置が、第4象限から第2象限の位置に変更してしまい、一般に、好ましくない。
次に、図10に示す点P3の座標値x3,y3を、点P2の座標値x2,y2で表すと、光路P2ーP3は、x軸と角度θ21をなし、光路P2ーP3は、管3の外周半径r2の円周とも交わるので、点P2の座標値x2,y2と、点P3の座標値x3,y3との間には、以下の幾何方程式が成り立つ。直線条件より、
y2 = (x2-x3)・tan(θ21) + y3 ・・・(8)
点P3が半径r2の円周上にあるので、
x3・x3 + (r1-r2-y3)・(r1-r2-y3) = r2・r2 ・・・(9)
次に、図11に示す点P3の位置で、光路P2ーP3がx軸となす角度θ21、半径P3ーO3がy軸となす角度θ22と、入射角θ4、屈折角θ5、及び管3内への屈折光l34がx軸となす角度θ23との間には、以下の幾何方程式が成り立つ。
点P3が半径r2の円周上にあるので、
x3/(y3-r1+r2) = tan(θ22) ・・・(10)
又、直線O3ーP3が、点P2を通りx軸に平行な直線と交わる点をP12とし、点P2を通りx軸に平行な直線がy軸と交わる点をP13とすると、角P3P12P13は、θ21+θ4に等しく、三角形O3P12P13が直角三角形であるから、
θ21 + θ4 + θ22 = π/2 ・・・(11)
入射角θ4と屈折角θ5との間には、屈折率n2より次の光学方程式が成り立つ。sin(θ5)/sin(θ4) = n2 ・・・(12)
更に、図12に示すように、直線O3ーP3が、点P3においてx軸となす角度は、θ5+θ23に等しいので、
θ5 + θ23 + θ22 = π/2 ・・・(13)
次に、図12に示す点P4の座標値x4,y4を、点P3の座標値x3,y3で表すと、光路P3ーP4は、x軸と角度θ23をなし、光路P3ーP4は、管3の内側半径r3の円周とも交わるので、点P3の座標値x3,y3と、点P4の座標値x4,y4との間には、以下の幾何方程式が成り立つ。直線条件より、
y3 = (x3-x4)・tan(θ23) + y4 ・・・(14)
点P4が半径r3の円周上にあるので、
x4・x4 + (r1-r2-y4)・(r1-r2-y4) = r3・r3 ・・・(15)
次に、図13に示す点P4の位置で、光路P3ーP4がx軸となす角度θ23、半径P4ーO3がy軸となす角度θ24と、入射角θ6、屈折角θ7、及び管3内部の空気中への屈折光P4ーP5がx軸となす角度θ25との間には、以下の幾何方程式が成り立つ。
点P4が半径r3の円周上にあるので、
x4/(y4-r1+r2) = tan(θ24) ・・・(16)
又、直線O3ーP4が、x軸に平行な直線と交わる点をP14とし、このx軸に平行な直線がy軸と交わる点をP15とすると、角P4P14P15は、θ23+θ6に等しく、三角形O3P14P15が直角三角形であるから、
θ23 + θ6 + θ24 = π/2 ・・・(17)
入射角θ6と屈折角θ7との間には、管3の屈折率n2より次の光学方程式が成り立つ。
sin(θ7)/sin(θ6) = n2 ・・・(18)
更に、直線O3ーP4が、点P4においてx軸となす角度は、θ7+θ25に等しいので、
θ7 + θ25 + θ24 = π/2 ・・・(19)
次に、図14に示す点P5の座標値x5,y5を、点P4の座標値x4,y4で表すと、光路P4ーP5は、x軸と角度θ25をなし、光路P4ーP5は、管3の内側半径r3の円周とも交わるので、点P4の座標値x4,y4と、点P5の座標値x5,y5との間には、以下の幾何方程式が成り立つ。直線条件より、
y4 = y5 + (x4+x5)・tan(θ25) ・・・(20)
点P5が半径r3の円周上にあるので、
x5・x5 + (r1-r2-y5)・(r1-r2-y5) = r3・r3 ・・・(21)
次に、図14に示す点P5の位置で、光路P4ーP5がx軸となす角度θ25、半径P5ーO3がy軸となす角度θ26と、入射角θ8、屈折角θ9、及び管3内部の屈折率n2の部材中への屈折光l56がx軸となす角度θ27との間には、以下の幾何方程式が成り立つ。
点P5が半径r3の円周上にあるので、
x5/(y5-r1+r2) = tan(θ26) ・・・(22)
又、点P5を通りx軸に平行な直線がy軸と交わる点をP16とすると、角P4P5P16は、θ25に等しく、三角形O3P5P16が直角三角形であるから、
θ8 − θ25 + θ26 = π/2 ・・・(23)
入射角θ8と屈折角θ9との間には、屈折率n2より次の光学方程式が成り立つ。
sin(θ8)/sin(θ9) = n2 ・・・(24)
更に、直線O3ーP5が、点P5においてx軸となす角度は、θ9+θ27に等しいので、
θ9 + θ27 + θ26 = π/2 ・・・(25)
次に、図15に示す点P6の座標値x6,y6を、点P5の座標値x5,y5で表すと、光路P5ーP6は、x軸と角度θ27をなし、光路P5ーP6は、管3の外周半径r2の円周とも交わるので、点P5の座標値x5,y5と、点P6の座標値x6,y6との間には、以下の幾何方程式が成り立つ。直線条件より、
y6 = (x6ーx5)・tan(θ27) + y5 ・・・(26)
点P6が半径r2の円周上にあるので、
x6・x6 + (r1-r2-y6)・(r1-r2-y6) = r2・r2 ・・・(27)
次に、図16に示す点P6の位置で座標値x6,y6、光路P5ーP6がx軸となす角度θ27、半径P6ーO3がy軸となす角度θ28と、入射角θ10、屈折角θ11、及び管3内部の屈折率n2の部材から空気中への屈折光l67がx軸となす角度θ29との間には、以下の幾何方程式が成り立つ。
点P6が半径r2の円周上にあるので、
x6/(y6-r1+r2) = tan(θ28) ・・・(28)
又、点P6を通りx軸に平行な直線がy軸と交わる点をP17とすると、角P5P6P17は、θ27に等しく、三角形O3P6P17が直角三角形であるから、
θ27 + θ10 + θ28 = π/2 ・・・(29)
入射角θ10と屈折角θ11との間には、屈折率n2より次の光学方程式が成り立つ。
sin(θ11)/sin(θ10) = n2 ・・・(30)
更に、直線O3ーP6が、点P6においてx軸となす角度は、θ11+θ29に等しいので、
θ11 + θ29 + θ28 = π/2 ・・・(31)
次に、図17に示す点P7の座標値x7,y7を、点P6の座標値x6,y6で表すと、光路P6ーP7は、x軸と角度θ29をなし、光路P6ーP7は、光路変更手段411の内周半径r1の円周とも交わるので、点P6の座標値x6,y6と、点P7の座標値x7,y7との間には、以下の幾何方程式が成り立つ。直線条件より、
y7 = (x7ーx6)・tan(θ29) + y6 ・・・(32)
点P7が半径r1の円周上にあるので、
x7・x7 + y7・y7 = r1・r1 ・・・(33)
次に、図18に示す点P7の位置で座標値x7,y7、光路P6ーP7がx軸となす角度θ29、半径P7ーO0がy軸となす角度θ30と、入射角θ12、屈折角θ13、及び空気中から光路変更手段411内部の屈折率n1の部材への屈折光l78がx軸となす角度θ31との間には、以下の幾何方程式が成り立つ。
点P7が半径r1の円周上にあるので、
x7/y7 = tan(θ30) ・・・(34)
又、点P7を通りx軸に平行な直線がy軸と交わる点をP18とすると、角P6P7P18は、θ29に等しく、三角形O0P7P18が直角三角形であるから、
θ29 + θ12 + θ30 = π/2 ・・・(35)
入射角θ12と屈折角θ13との間には、屈折率n1より次の光学方程式が成り立つ。
sin(θ12)/sin(θ13) = n1 ・・・(36)
更に、直線O0ーP7が、点P7においてx軸となす角度は、θ13+θ31に等しいので、
θ13 + θ31 + θ30 = π/2 ・・・(37)
次に、図19に示す点P8の座標値x8,y8を、点P7の座標値x7,y7で表すと、光路P7ーP8は、x軸と角度θ31をなし、光路P7ーP8は、光路変更手段411の取付平面412と交わるので、点P7の座標値x7,y7と、点P8の座標値x8,y8との間には、以下の幾何方程式が成り立つ。直線条件より、
y8 = (x8ーx7)・tan(θ31) + y7 ・・・(38)
かくして、
条件1) 管3の最大外径r1を固定し、光路変更手段407,411の水平面となす角度θ1,θ31もそれぞれ固定した場合、投光部52の取付面408への取付位置P1(ーx1,-y1)を更に所定の固定位置に設定しても、外径r2及び内径r3が種々の値に変動する管3に対して、管3内部を屈折・透過した光l45が、予め固定して設定した受光部取付位置P8であっても安定的に透過光の主光束を受光可能となるような位置P8が存在するか?となる。
【0012】
【実施例】
上記図6乃至図19には、管3内部の屈折/透過光l45(又は直線P4ーP5)が、投光部52と受光部54との光学的中心を結ぶ直線P1ーP8と平行でなく斜めに透過する場合の1例を示したが、解析をより簡単にするために、
条件2) 管3内部の屈折/透過光l45(又は直線P4ーP5)が、投光部52と受光部54との光学的中心を結ぶ直線P1ーP8と略平行(従って、x軸に関しても略平行となる)に透過するように投光部52の位置/角度を設定すると、図20に示すように、かかる場合には、光の対称性から光学的対称軸(図20では、y軸)sj1に対して、大略対称に光が進行し、従って、角度θ1とθ31は、それぞれ、y軸sj1に対して対称であるから、ほぼ等しくなり、同様にして、角度θ7≒θ8、角度θ6≒θ9、角度θ5≒θ10、角度θ4≒θ11、角度θ3≒θ12、角度θ2≒θ13、角度θ1≒θ31の関係が、それぞれ、y軸に関する対称性から成立する。又、かかる場合には、光の対称性からy軸に対して、投光部52及び受光部54の位置もほぼ対称な配置となり、上記光路P1ーP2ーP3ーP4ーP5ーP6ーP7ーP8の中で、光路P1ーP2ーP3ーP4までの光学経路が解析でき、光路P4ーP5がx軸に対して略平行であれば、上記条件1は満たすことが分かる。更に、管3内部の透過光l45が、投光部52と受光部54との光学的中心を結ぶ直線P1ーP8と略平行に透過する場合には、投光部52から受光部54までの光学経路が最短となり、後述する投光部52及び受光部54を対称的に配置しない場合よりも光学経路が短かく、結果として、投光部52の発光素子の強度を低減させても、十分なS/N比を確保できる利点がある。
尚、管径の変動する管3を緊締具44の下面に形成された円筒曲面520の曲率半径部により緊締/挟持し、ケース本体41、42と、緊締具44との円筒状内側圧接面で円筒形管3の軸芯位置を、その外径が変動しても絶えず一定の空間位置関係(図20において、ケース本体41、42の対称中心線sj1と、サドル状緊締具44の対称中心線sj1と、円筒形管3の軸芯O3とが、管3の如何なる外径に対しても、光学的対称軸sj1=y軸と一致した同一平面上にあるような一定の空間位置関係)に、安定して精密/高精度に固定するため、管3の外径に応じて、緊締具44を変更するのが好ましく、中程度の大きさの外径の管3を、図20に示す光学的対称軸sj1に物理的に対称に配置するためには、図4に示すような緊締具44の内側接合円筒面520の内径が大きさD44に形成されたものを使用し、最大径を含む大外径の大きさの管3aを、図21に示す光学的対称軸sj2に物理的に対称に配置するためには、図23に示すような緊締具44aの内側接合円筒面520aの内径が大きさD44aに形成されたものを使用し、最小径を含む小外径の大きさの管3bを、図22に示す光学的対称軸sj3に物理的に対称に配置するためには、図24に示すような緊締具44bの内側接合円筒面520bの内径が大きさD44bに形成されたものを使用するのが、好ましい。
そこで、
条件31) 図21に示すように、外径r2=r1の最大外径の管3aの場合に、y軸に対して、投光部52及び受光部54の位置を、ほぼ対称な位置に配置可能とするためには、管3aの内側屈折点P4aの位置を、管の中心O3(=O0)よりも下方の位置に設定する必要がある。この条件と図9より、
y0 ー y1 > r1 ・・・(39)
かつ
y1 > r1 ・・・(40)
又、
条件32) 図22に示すように、外径r2bの最小外径の管3bの場合に、y軸に対して、投光部52及び受光部54の位置を、ほぼ対称な位置に配置可能とするためには、管3bの内側屈折点P4bの位置を、管の中心O3bよりも下方の位置に設定する必要があり、更に、最小外径の管3bの内側屈折点P4bの位置を、管の中心O3bよりも下方で、適切な位置に設定すると、最小外径の管3bの管厚(=r2-r3)の影響を最小限とすることができる。ここで、最大外径r1と最小外径r2bとの比をmとすると、
r1 / r2b = m ・・・(41)
【0013】
上記条件2〜条件32を整理し、
f0) 初期設定として、例えば、円筒形管の最大外径r1=25.4mmに、最小外径r2b=6mmに、それぞれ設定すると、
m = 最大外径r1/最小外径r2b = 4.2 ・・・(42)
となる。更に、光路変更手段407,411を含むケース本体41の屈折率n1は、一般に、合成樹脂材やガラスの屈折率が、1.2〜2.2の範囲にあるので、
n1 = 1.2 〜 2.2 ・・・(43)
であるが、ポリカーボネイト等の合成樹脂材でケース本体を製作すると、
n1 ≒ 1.5 ・・・(44)
となる。次に、図22及び式4より、以下の近似式が得られる。
tan(θ20) = x2/y2 ≒ x1/y1 ≒ x1/r1 ・・・(45)
又、式1を変形すると、
tan(θ1)= x1/(y0-y1) ≒ tan(θ20)/(y0/r1-1) ・・・(46)
更に、図22より、

Figure 0003853709
であるから、
k1 = y0/r1 ・・・(48)
と置くと、式46及び47は、次式のように置換できる。
tan(θ1) ≒ tan(θ20)/(k1-1) ・・・(49)
tan(θ1/m) ≒ 1/(m・(k1-1)+1) ・・・(50)
更に、図22において、直線P0ーP2とx軸との交点を、点Q0とし、点P2を通りx軸に平行な直線とy軸との交点を、点Q2とすると、三角形P0O0Q0と、三角形P0Q2P2とは、相似であるから、
r1/y0 = 1/k1 ≒ x2/(y0-y2) ・・・(51)
これを変形すると、
x2 ≒ (y0-y2)/k1 = r1・k1/(k1+1/tan(θ20)) ・・・(52)
又、式45及び式1から、
x1 ≒ r1・tan(θ20) ・・・(53)
y1 = y0−x1/tan(θ1) = r1・(k1ーtan(θ20)/tan(θ1)) ・・・(54)
例えば、
k1 = 2.0 ・・・(55)
とすると、式50より
tan(θ1/m) ≒ 1/(m・(k1-1)+1)=1/5.2=0.1923・・・(56)
従って、θ1は次式のように演算できる。
Figure 0003853709
又、θ20は、式49より
tan(θ20) ≒ (k1-1)・tan(θ1)・・・(59)
従って、
Figure 0003853709
次に、式5より
Figure 0003853709
であるから、式55の設定を変更し、
k1 = 2.0+0.5 = 2.5 ・・・(64)
として、上記と同様に演算すると、式57、60、62より、
Figure 0003853709
Figure 0003853709
θ2 = π/2 ー θ1 ー θ20 = 13.25度 ・・・(69)
かくして、適当に初期設定した倍率m及びk1より、適当な初期値θ1,θ20及びθ2が演算できた。
【0014】
f1) 次に、液体検出装置4を取り付ける円筒形管の外径が最大の外径管(r2=r1)の場合、その円筒中心より下方の液体検出装置を取り付ける側を、検知用透過光l45が透過するように投光部及び受光部の固定位置(ーx1,-y1)、(x8,-y8)=(x1(rmax),-y1(rmax))をそれぞれ幾何方程式及び光学方程式を連立させて演算する。この条件は、式62のθ2が、0より大きければ、必ず成立する。則ち、
θ2 = π/2 −θ1 −θ20 > 0.0 ・・・(70)
上記式53、54と式65,67,69を組み合わせると、次式が得られる。
x1(rmax) ≒ r1・tan(θ20) = r1・0.9654 ・・・(71)
y1(rmax) = r1・(k1ーtan(θ20)/tan(θ1)) ≒ r1 ・・・(72)
尚、液体検出装置を取り付ける円筒形管の外径が最大の外径管(r2=r1)を含む大外径管(例えば、外径D44a≒2・r1〜1.6・r1の管)3aの場合、管3aを所定の空間位置関係(例えば、ケース本体41,42、管3a、緊締具44aのそれぞれの対称軸が、全て同一平面上にある関係)に固定/保持する緊締具44aの内側接合面520aは、外径D44aの円筒形状に形成するのが好ましく、図23(B)に示すように、その外側には、蝶ネジ43bが干渉しないように、切欠部524を形成するのが、好ましい。
【0015】
f2) 又、液体検出装置を取り付ける円筒形管の外径が最小の外径管(r2=r2b)の場合、図22において、円筒中心O3より下方の液体検出装置を取り付ける側の部位を、検知用透過光l45が透過するように、投光部及び受光部の固定位置(ーx1,-y1)、(x8,-y8)=(x1(rmin),-y1(rmin))をそれぞれ幾何方程式及び光学方程式を連立させて演算する。
式6より、
Figure 0003853709
又、式7から
Figure 0003853709
図11から、
x3 ≒ r2 = r1/m ・・・(77)
y3−(r1-r1/m) ≒ r2/2 = r1/(2・m) ・・・(78)
従って、式10より
Figure 0003853709
これより、
θ22 ≒ 63.43度 ・・・(80)
と演算でき、更に、式11より、
Figure 0003853709
と演算でき、円筒形管3の屈折率n2を
n2 = 1.5 ・・・(83)
とすると、式12及び13より、角度θ5、θ23が、以下のように演算できる。
Figure 0003853709
又、
Figure 0003853709
【0016】
次に、図13を参照し、上記条件2を満たすとすると、角度θ25は、以下の値となる。
θ25 ≒ 0.0 ・・・(88)
又、
θ7 + θ25 = θ23 + θ6 ・・・(89)
であるから、
θ7 ≒ θ23 + θ6 ・・・(90)
これを式18に代入すると、
sin(θ23+θ6) = n2*sin(θ6) ・・・(91)
この式を変形すると、
tan(θ6) = sin(θ23)/(n2−cos(θ23))・・・(92)
より、式87の値を代入すると、
Figure 0003853709
が、得られ、これを式90に代入すると、
θ7 ≒ θ23 + θ6 = 61.79度 ・・・(95)
更に、式19から、
Figure 0003853709
が得られる。
上記式88〜97の解析においては、x3,y3,x4,y4の座標を一切使用していない。従って、式81から
θ4 = π/2 −θ21 −θ22 > 0.0 ・・・(98)
であれば、円筒中心O3より下方の液体検出装置を取り付ける側の部位を、検知用透過光l45が透過するように、投光部及び受光部の固定位置(ーx1,-y1)、(x8,-y8)をそれぞれ演算することは可能である。則ち、式98の条件を満たせば、点P3、P4の座標に関係なく、管3内の屈折/透過条件を満たすことが分かる。
例えば、図13を最小外径r2b=r1/mの管3bに適用し、先ず、式96、97を式15、16に代入すると、点P4の座標は次式で演算できる。
x4 = r3・sin(θ24) ・・・(99)
y4 = r3・cos(θ24) + yO3 ・・・(100)
次に、点P3の座標は式9、10、14より、次式で演算できる。
x3 = r2・sin(θ22) ・・・(101)
y3 = r2・cos(θ22) + yO3 ・・・(102)
又、点P2の座標は式3、4より、次式で演算できる。
x2 = r1・sin(θ20) ・・・(103)
y2 = r1・cos(θ20) ・・・(104)
更に、点P1の座標(x1,y1)は、次式の2つの直線の交点より、演算可能である。
y +y2 = tan(θ1)・(x+x2) ・・・(105)
y +y0 = (-1/tan(θ1))・x ・・・(106)
則ち、
Figure 0003853709
Figure 0003853709
かくして、円筒形管の外径が最小の外径管(r2=r2b)の場合、条件2を満たす検知用透過光l45が透過する場合の、投光部及び受光部の固定位置(-x1,-y1)、(x8,-y8)=(x1(rmin),-y1(rmin))が、式107、108により、それぞれ演算可能である。
尚、液体検出装置を取り付ける円筒形管の外径が最小の外径管(r2=r2b)を含む小外径管(例えば、外径D44b≒2.6・r2b〜2・r2bの管)3bの場合、管3b内に液体2が注入されると、図22において、点P4からの検知用透過光l45bが屈折せず、又は、非常に小さい屈折角で屈折して液体2内を直進し透過する。その結果、管3bの外周壁に当たって反射した光が、受光部の固定位置に入射する距離が比較的短く、十分減衰していないので、受光部54が誤動作する可能性がある。かかる誤動作を確実に防止するためには、小外径管3bを所定の空間位置関係(例えば、ケース本体41,42、管3b、緊締具44bのそれぞれの対称軸が、全て同一平面上にある関係)に固定/保持する緊締具44bの内側接合面520bは、外径D44bの円筒形状に形成するのが好ましく、更に、円筒形状の内側接合面520bには、図24(D)に示すような溝状切欠口522を形成しておくと、図22に示すような略直進した液体透過光l45bが、そのまま、切欠口522の内部に誘導/乱反射され、受光部54に入射する光量を大幅に低減できるので、好ましい。
【0017】
f3) 更に、上記f1)の円筒形管の外径が最大の外径管の場合に演算した上記投光部及び受光部の固定位置と、上記f2)の円筒形管の外径が最小の外径管の場合に演算した投光部及び受光部の固定位置との誤差を演算し、かかる固定位置誤差が少なくなるように、上記円筒形管の外径が最大の場合の投光部及び受光部の固定位置、及び/又は、上記円筒形管の外径が最小の外径管の場合の投光部及び受光部の固定位置を変更する。
尚、上記投光部及び受光部の固定位置を演算する場合、更に、円筒形管の外径が、最大の外径管(r2=r1)と最小の外径管(r2=r2b)の中間の1/2の外径管(r2=(r1+r2b)/2)に対しても、上記投光部及び受光部の固定位置を演算すると、上記投光部及び受光部の固定位置の変動がどのような傾向を有するか、より詳細に把握でき好ましい。
更に又、上記f1)の液体検出装置4を取り付ける円筒形管の外径が最大の外径管(r2=r1)の場合、液体検出装置における投光部及び受光部の固定位置(ーx1,-y1)、(x8,-y8)=(x1(rmax),-y1(rmax))の演算に、上記式88〜97の解析結果を応用すると、先ず、図9に対応させて示す図21において、点P2の位置での、光路変更手段407から管3aへの屈折条件は、入射角θ2、屈折角θ32に対して、光路変更手段407の屈折率n1と、管3aの屈折率n2とが等しいことから、次式が成り立つ。
θ32 = θ2 ・・・(111)
又、図13に対応させて示す図21において、点P4の位置で、光路P2ーP4がx軸となす角度θ23=θ1であり、半径P4ーO0がy軸となす角度θ24=θ20であり、入射角θ61、屈折角θ71、及び管3a内部の空気中への屈折光P4ーP5がx軸となす角度θ25との間には、式17の替わりに次式が成り立つ。
θ1 + θ61 + θ20 = π/2 ・・・(112)
更に、入射角θ61と屈折角θ71との間には、管3の屈折率n2より次式が成り立つ。
sin(θ71)/sin(θ61) = n2 ・・・(113)
同様にして、図14に対応させて示す図21において、点P5の位置で、入射角θ81と屈折角θ91との間には、管3の屈折率n2より次式が成り立つ。
sin(θ81)/sin(θ91) = n2 ・・・(114)
しかして、式66及び式17より、
θ23=θ1 ≒ 32.76度 ・・・(115)
とすると、
Figure 0003853709
が得られ、これを式90に代入すると、
θ71 ≒ θ23 + θ61 = 72.15度 ・・・(117)
更に、式19から、
Figure 0003853709
が、得られる。
又、図21において、角P2O0P0=θ20は、
Figure 0003853709
であるから、点P2の座標は式103、104より演算でき、更に、点P1の座標(x1,y1)は、式107、109より演算でき、
Figure 0003853709
Figure 0003853709
従って、上記を整理すると、式71、72からは、
x1(rmax) ≒ r1・tan(θ20) = r1・0.9654 ・・・(71)
y1(rmax) = r1・(k1ーtan(θ20)/tan(θ1)) ≒ r1 ・・・(72)
が得られ、、又、式108、110、123、125からは、
-x1(rmin)=0.6069・r1 ・・・(108)
-y1(rmin)=0.92463・r1 ・・・(110)
が得られるので、上記例では、円筒形管の外径が最大の外径管の場合の投光部(及び受光部)の固定位置x1(rmax),y1(rmax)、及び、円筒形管の外径が最小の外径管の場合の投光部(及び受光部)の固定位置x1(rmin),y1(rmin)を、x,y座標共に、その絶対値が大きくなる方向に移動させて、再度、上記演算を繰り返すとよい。
【0018】
f4) 上記f3)の固定位置変更工程を、最大外径管及び最小外径管の固定位置の間の誤差が、所定の誤差εの範囲内(例えば、最大外径管の外径r1が、1m前後の場合には、半径が数mmの円の範囲内、又、最大外径管の外径が、25mm前後の場合には、半径が1.0mmの円の範囲内、好ましくは、半径が0.5mmの円の範囲内)となるまで繰り返す。
更に、円筒形管の外径が最大及び最小の外径管の投光部(及び受光部)の固定位置x1,y1を、x,y座標を変動させて、再度、上記f1)〜f3)の演算を繰り返しても、最大外径管と最小外径管の固定位置の間の誤差が、所定の誤差εの範囲内に収まらない場合には、上記光路変更手段の取付面408,412の傾斜角θ1及び/又はθ31を変更させたり、取付面の交点P0の座標y0を変更させて、上記f1)〜f3)の演算を繰り返すとよい。
かくして、傾斜角θ1及び取付面の交点P0の座標y0を適切に設定すると、m=4.2で、かつ、最大外径管の外径が25mm前後の場合、所定の誤差εの範囲を、半径が0.1mmの円の範囲内となるまで繰り返し、精密に調整することが可能である。
尚、上記所定の誤差εの範囲は、投光部52及び受光部54の指向感度特性及び受光面積の大きさに依存し、受光部54に株式会社東芝製のシリコン・フォト・ダイオードTPS704を採用した場合には、受光部が1辺の長さ2.66mmの正方形受光部から構成され、その半値角θ1/2は、±65度である。従って、比較的大きな管径の計測を実行する場合には、受光部の前面に集光レンズ系を配設することが好ましい。
又、投光部52に、株式会社松下電器産業製のGaAs赤外発光ダイオードLN155を採用した場合には、指向感度特性の半値角θ1/2は、±80度となり、更に、投光部52に、株式会社東芝製のGaAs赤外発光ダイオードTLN107Aを採用した場合には、指向感度特性の半値角θ1/2は、±15度となり、気泡の影響を低減した計測を実行する場合には、指向感度特性の半値角θ1/2が大きな角度の発光素子を利用するのが好ましい。
又、上記例では、光路変更手段407、411を介在させて、投光部52及び受光部54が、直接、管3に接触したり、又は、外部に露出するのを防止したが、光路変更手段407、411を省略して投光部52及び受光部54を構成したり、光路変更手段407、411を、投光部52及び受光部54側に一体に組み込んで形成し、直接、管3に接触させたり、又は、外部に露出せしめても、本発明の液体検出装置4は、構成可能であり、かかる場合には、最大外径管から最小外径管まで、全ての計測対象となる外径管3に対して、投光部52からの投射光、及び、受光部54への屈折/透過光が、それぞれ、一定の角度θ21、及び、θ29で、管3に投光/受光できるように構成するとよい。
【0019】
次に、図20に対応させて示す図25は、本発明の液体検出装置4aの別の構成の1例であり、それぞれ、同様の番号を付した装置は、同様の機能を果たすと共に、液体検出装置4aでは、内側断面形状を、円筒面406から平面406a,406bに変更し、光路変更手段407a、411aを平面プリズム状に形成すると共に、ケース本体42の中央嵌合突起子450aに形成された管3との円筒状接合上面451aの上下方向の長さを、投光部52から投射した光束が、直接、受光部54に入射しないように、十分長く形成したもので、かかる投光部52から受光部54への光学経路の場合にも、管径の変動する管3を緊締具44の下面に形成された円筒曲面520の曲率半径部により緊締/挟持し、ケース本体41a、42aと、緊締具44との円筒状内側圧接/接合面で円筒形管3の軸芯位置を、その外径が変動しても絶えず一定の空間位置関係(図25において、ケース本体41aの対称中心線sj4と、サドル状緊締具44の対称中心線sj4と、円筒形管3の軸芯O3とが、管3の如何なる外径に対しても、光学的対称軸sj4=y軸と一致した同一平面上にあるような一定の空間位置関係)に、安定して精密/高精度に固定するため、管3の外径に応じて、緊締具44を変更するのが好ましく、
中程度の大きさの外径の管3を、光学的対称軸sj4に物理的に対称に配置するためには、図4に示すような緊締具44の内側接合円筒面520の内径が大きさD44に形成されたものを使用し、最大径を含む大外径の大きさの管3aを、光学的対称軸に物理的に対称に配置するためには、図23に示すような緊締具44aの内側接合円筒面520aの内径が大きさD44aに形成されたものを使用し、最小径を含む小外径の大きさの管3bを、光学的対称軸に物理的に対称に配置するためには、図24に示すような緊締具44bの内側接合円筒面520bの内径が大きさD44bに形成されたものを使用するのが、好ましい。
又、上記f0)〜f4)の解析工程は、内側断面が平面状であっても、全く同様に実行することができ、管3の中空内部を、屈折透過光が、x軸に、ほぼ平行に伝搬する条件で、従って、光学的対称軸sj4に対して、対称的に、投光部52及び受光部54の固定位置を演算することができる。
【0020】
次に、図20に対応させて示す図26は、本発明の液体検出装置4bの別の構成の1例であり、それぞれ、同様の番号を付した装置は、同様の機能を果たすと共に、液体検出装置4bでは、液体検出装置4と同様にケース本体41b,42bの内側断面形状が、円筒面406で形成されているが、投光部52及び受光部54を、y軸に関して、非対称に配置した1例であり、図26の配置例でも、上記と同様に、投光部52から投射した光束が、直接、受光部54に入射しないように、途中の光学経路に、遮光材450bを介在させる必要がある。
かかる投光部52から受光部54への非対称な配置の光学経路の場合にも、管径の変動する管3を緊締具44の下面に形成された円筒曲面520の曲率半径部により緊締/挟持し、ケース本体41b、42bと、緊締具44との円筒状内側圧接/接合面で円筒形管3の軸芯位置を、その外径が変動しても絶えず一定の空間位置関係(図26において、ケース本体41bの中心線aj5と、サドル状緊締具44の中心線aj5と、円筒形管3の軸芯O3とが、管3の如何なる外径に対しても、y軸と一致した同一平面上にあるような一定の空間位置関係)に、安定して精密/高精度に固定するため、管3の外径に応じて、上述と同様に緊締具44を変更するのが好ましい。しかして、図26に示すような投光部52と受光部54との非対称な配置の光学経路の場合には、上記f0)〜f4)の解析工程は、幾何方程式及び光学方程式を連立させてなる式1〜式38の非線形方程式を、直接、数値解析により解くことにより実行でき、上記f1)の円筒形管の外径が最大の外径管の場合に演算した投光部及び受光部の固定位置と、上記f2)の円筒形管の外径が最小の外径管の場合に演算した投光部及び受光部の固定位置と、f2-2)円筒形管の外径が、最大の外径管(r2=r1)と最小の外径管(r2=r2b)の中間の1/2の外径管(r2=(r1+r2b)/2)に対して演算した投光部及び受光部の固定位置とを、相互に比較し、
更に、上記f3)と同様にして、上記f1)の円筒形管の外径が最大の外径管の場合に演算した上記投光部及び受光部の固定位置と、上記f2)の円筒形管の外径が最小の外径管の場合に演算した投光部及び受光部の固定位置との誤差を演算し、かかる固定位置誤差が少なくなるように、上記円筒形管の外径が最大の場合の投光部及び受光部の固定位置、及び/又は、上記円筒形管の外径が最小の外径管の場合の投光部及び受光部の固定位置を変更する。
又、上記f4)と同様にして、上記f3)の固定位置変更工程を、最大外径管及び最小外径管の固定位置の間の誤差が、所定の誤差εの範囲内(例えば、最大外径管の外径r1が、1m前後の場合には、半径が数mmの円の範囲内、又、最大外径管の外径が、25mm前後の場合には、半径が1.0mmの円の範囲内、好ましくは、半径が0.5mmの円の範囲内)となるまで繰り返す。更に、円筒形管の外径が最大及び最小の外径管の投光部(及び受光部)の固定位置x1,y1を、x,y座標を変動させて、再度、上記f1)〜f3)の演算を繰り返しても、最大外径管と最小外径管の固定位置の間の誤差が、所定の誤差εの範囲内に収まらない場合には、上記光路変更手段の取付面408,412の傾斜角θ1及び/又はθ31を変更させたり、取付面の交点P0の座標y0を変更させて、上記f1)〜f3)の演算を繰り返すとよい。
但し、図26に示すような投光部52と受光部54との非対称な配置の場合には、最大外径管及び最小外径管の固定位置の間の誤差が、所定の誤差εの範囲内である光学経路が演算できた場合、対称な配置の場合に求まった光学経路と比較すると、投光部52から受光部54までの光学経路の長さが、一般に、長くなり、従って、受光光量の低下が観測され、一般には、装置のS/N比が低下する傾向にある。
しかしながら、傾斜角θ1及び取付面の交点P0の座標y0を適切に設定すると、多少演算時間はかかるが、非対称な投光部/受光部の配置であっても、最大外径と最小外径の比がm=4.2で、かつ、最大外径管の外径が25mm前後の場合、上記所定の誤差εの範囲を、誤差半径が0.5mmの円の範囲内となるまで繰り返し、精密に調整することが可能である。
【0021】
【発明の効果】
以上説明したように、本発明の投光部と受光部との固定位置演算方法によれば、管径の軸芯方向に変化する管内液体検出装置/液位検出装置において、管径が異なった場合でも、予め上記f4)の工程により、最大外径管及び最小外径管の固定位置の間の誤差が、所定の誤差εの範囲内となる位置を、液体検知用透過光の光学経路に沿って、幾何方程式及び光学方程式を連立させてなる式1〜式38の非線形方程式を、直接、数値解析により解くことにより精密に求めて、誤差範囲内の投光部及び受光部の固定位置に、それぞれ、投光部及び受光部を配設しているので、投光部の投射角度調節作業が全く不要であり、又、光を投射する管の外部から管内に屈折/透過した検知光により液体の有無を判定しているので、着色した液体や粘度の高く気泡の発生し易い液体であっても非常に安定して液体の有無判定が実行できると共に、装置を取付ける円筒形管の外径が大径管の場合と小径管の場合とで、20%以上、好ましくは200%以上、更に好ましくは、400%以上異なっていても、全く同一のセンサ本体が利用可能であり、装置の設置が簡単で熟練を要しない液体検出装置における投光部と受光部との固定位置演算方法を提供することができる。
又、本発明の管内液体検出装置及び/又は液位検出装置によれば、管径の軸芯方向に変化する液位に対して、当該管が透明部材で形成されていなくても光が半透明材等の透光可能な部材で構成されていれば使用可能であり、又、管径が異なった場合でも、投光部の投射角度調節作業が全く不要であり、更に、光を投射する管の外部から管内に屈折/透過した検知光により液体の有無を判定しているので、着色した液体や粘度の高く気泡の発生し易い液体であっても非常に安定して液体の有無判定が実行できると共に、装置を取付ける円筒形管の外径が大径管の場合と小径管の場合とで、20%以上、好ましくは200%以上、更に好ましくは、400%以上異なっていても、全く同一のセンサ本体が利用可能であり、装置の設置が簡単/確実で、設置空間が非常に狭くて済み、調節が容易で、取扱いに熟練を要しない液体検出装置/液位検出装置を提供することができる。
【図面の簡単な説明】
【図1】 図1(A)は、液体貯蔵容器(タンク、カテーテル等)1内の液位検出に本発明の液位検出装置4sを応用した1例で、管3に本発明の管内液体検出装置4を取り付けた概略図であり、図1(B)は、その拡大正面図、図1(C)は、その拡大上面図、図1(D)は、その拡大側面図である。
【図2】 図2(A)は、管内液体検出装置4の縦断面図であり、図2(B)は、透光材ケース41の上面図、図2(C)は、その底面図、図2(D)は、その側面図である。
【図3】 図3(A)は、不透光材ケース42の縦断面図であり、図3(B)は、その上面図、図3(C)は、その底面図、図3(D)は、その側面図である。
【図4】 図4(A)は、緊締具44の上面図であり、図4(B)は、その線4B-4Bでの部分断面図、図4(C)は、その線4C-4Cでの断面図、図4(D)は、その底面図である。
【図5】 図5(A)は、締結材430の上面図であり、図5(B)は、その正面図、図5(C)は、その側面図である。
【図6】 本発明の投光部52から受光部54までの全体の光学経路を、各屈折点での角度を中心に示した図である。
【図7】 本発明の投光部52から受光部54までの全体の光学経路を、各屈折点での位置座標を中心に示した図である。
【図8】 本発明の投光部52、光路変更手段407とケース内径r1の関係を示す図である。
【図9】 光路変更手段407の屈折点P2での入射光P1-P2、屈折光l23の関係を示す図である。
【図10】 光路変更手段407の屈折点P2から円筒形管3の外側屈折点P3へ透過光が伝播する光学経路を示す図である。
【図11】 円筒形管3の外側屈折点P3でその内部に屈折光が伝播する場合の光学経路を示す図である。
【図12】 円筒形管3の管材内部を屈折光がその内部に伝播する光学経路を示す図である。
【図13】 円筒形管3の内側屈折点P4での屈折光の光学経路を示す図である。
【図14】 円筒形管3の中空内部を屈折光が伝播し、内側屈折点P5で管材内部に屈折する場合の光学経路を示す図である。
【図15】 円筒形管3の管材内部を屈折光がその外部に伝播する光学経路を示す図である。
【図16】 円筒形管3の外側屈折点P6でその外部に屈折光が伝播する場合の光学経路を示す図である。
【図17】 円筒形管3の外側屈折点P6から光路変更手段411の屈折点P7へ透過光が伝播する光学経路を示す図である。
【図18】 光路変更手段411の屈折点P7でその内部に屈折光が伝播する光学経路を示す図である。
【図19】 光路変更手段411の屈折点PPから受光部54に屈折光が伝播する光学経路を示す図である。
【図20】 本発明の液位検出装置4s/管内液体検出装置4を、中程度の外径の管3に取り付けた場合の、光学経路を示す横断面図である。
【図21】 本発明の液位検出装置4s/管内液体検出装置4を、最大外径の管3aに取り付けた場合の、光学経路を示す横断面図である。
【図22】 本発明の液位検出装置4s/管内液体検出装置4を、最小外径の管3bに取り付けた場合の、光学経路を示す横断面図である。
【図23】 図23(A)は、本発明の別の緊締具44aの上面図であり、図23(B)は、その線23B-23Bでの部分断面図、図23(C)は、その線23C-23Cでの断面図、図23(D)は、その底面図である。
【図24】 図24(A)は、本発明の又別の緊締具44bの上面図であり、図24(B)は、その線24B-24Bでの部分断面図、図24(C)は、その線24C-24Cでの断面図、図24(D)は、その底面図である。
【図25】 本発明の光路変更手段の内側断面が平面で形成された管内液体検出装置4aの水平断面図である。
【図26】 本発明の投光部/受光部を非対称に配置して、最大外径管及び最小外径管に対する固定位置の間の誤差が、所定の誤差εの範囲内となる管内液体検出装置4bの水平断面図である。
【符号の説明】
2 液体
3,3a、3b 円筒形管
4、4a、4b 管内液体検出装置
4s 管内液位検出装置
41 透光材ケース
42 遮光材ケース
43 締結部材
430
44,44a,44b 緊締具
407、411 光路変更手段
450 遮光材突起子
46 表示手段
50 回路基板
52 投光部
54 受光部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in an in-tube liquid detection device that automatically and stably detects whether or not there is liquid from the outside in a cylindrical tube (including a pipe, tube, and catheter) having a circular cross section, and The present invention relates to a liquid level detecting device for detecting a liquid level in a hollow cylindrical pipe, and further relates to a method for calculating a fixed position between a light projecting unit and a light receiving unit in the liquid detecting device in a tube.
[0002]
[Prior art]
Conventionally, when detecting the liquid level in a tank or a liquid storage container, a liquid level detection device is attached to a small-diameter liquid level detection hollow pipe connected to the bottom of the tank, and the liquid level in the hollow pipe (same as in the tank). Level liquid level) is being detected. But
a1) In USP 5065037, FJMark et al. detected two different levels of light emitted from one light projecting unit and light refracted through the tube to detect the liquid level that changes in the diameter direction of the tube diameter in the tube with a circular cross section. There has been disclosed an apparatus for detecting a liquid level in a pipe by providing a light receiving portion that receives light at a detection position and comparing the outputs of these two light receiving portions. or,
a2) Japanese Patent Laid-Open No. 9-280923 discloses a liquid level detection device for detecting a liquid level that changes in the axial direction of the diameter of a hollow transparent pipe. In this device, a holder and a holder A pair of supporting portions that are provided in contact with the outer peripheral surface of the transparent pipe having a circular cross section; a light projecting unit that is provided on the holder and that projects on the inner peripheral portion of the transparent pipe; and a light projecting unit that is provided on the holder. A light receiving means for receiving the light that is projected and reflected by the inner peripheral surface of the transparent pipe, and the light projecting means passes through the vicinity of one of the inner peripheral portions of the transparent pipe and passes through the shaft of the transparent pipe. Light is projected onto the inner peripheral surface along a line parallel to the core wire.
[0003]
[Problems to be solved by the invention]
b1) In the in-pipe liquid level detection device of USP5065037 of a1) above, the spatial arrangement relationship between the light projecting unit and the light receiving unit is fixed in advance according to the tube diameter, for example, at a position of 0.75R. When the outer diameter of the cylindrical tube to which the liquid detection device is attached differs by 20% or more between the case of the large diameter tube and the case of the small diameter tube, the mounting jig / means are completely different depending on the diameter of the mounting tube. For example, there is a problem that a liquid level detection device having a completely different external dimension must be prepared for a small diameter pipe with an outer diameter of 6 mm and a large diameter pipe with an outer diameter of 25 mm. there were. or,
b2) In the liquid level detection device disclosed in Japanese Patent Application Laid-Open No. 9-280923 of a2), even if the outer diameter of the cylindrical tube to which the device is attached differs by 20% or more between the large diameter tube and the small diameter tube, Efforts to make the mounting jig / means common are seen, but the light projecting means projects the detection light onto the inner peripheral part of the liquid level detection pipe and efficiently reflects it on the inner peripheral surface of the pipe. (Accordingly, if the reflected light from the inner peripheral surface of the tube is received precisely / accurately, if the outer diameter of the tube is different, the projection angle adjustment work of the light projecting unit is essential), and such a tube Because it is designed to receive and process the reflected light from the inner peripheral surface of the sensor, variations in detection accuracy due to the skill of the operator are unavoidable in precise light-receiving operation, and in order to receive the reflected light amount, the tube The condition that it is formed of a transparent member is essential, and further, bubbles or the like adhere to the inner peripheral surface of the tube. If the bubbles are moving in the nearby space, the output of the light receiving part will fluctuate very much, and the influence on the reflected light quantity of such bubbles cannot be removed at all on the device side, and it is fundamentally a device that is very sensitive to bubbles In addition, if the liquid is colored, the amount of reflected light is calculated instead of the amount of transmitted light, so the amount of reflected light is greatly affected by the color of the liquid and the device cannot operate stably. There was also a problem.
The present invention has been made in view of the above circumstances, and an object of the present invention is a method and an apparatus for detecting a liquid level that changes in the axial direction of a pipe diameter, even if the pipe diameter is different. It is not necessary to adjust the projection angle of the light part, and even if the tube is not formed of a transparent member, it can be used if it is made of a translucent material such as a translucent material. In addition, from the outside of the tube that projects light, even the colored liquid or the liquid that is highly viscous and easily generates bubbles can be activated / detected very stably, and the outer diameter of the cylindrical tube to which the device is mounted Even if there is a difference of 20% or more between the case of a large-diameter pipe and the case of a small-diameter pipe, the same sensor body can be used. Position calculation method between the head portion and the light receiving portion, the liquid detection device in the pipe, and the liquid level detection device It is to provide a.
[0004]
[Means for Solving the Problems]
The present invention relates to a method for calculating a fixed position of the light projecting unit and the light receiving unit in the in-pipe liquid detection device that detects the presence or absence of liquid in the cylindrical tube by combining the light projecting unit and the light receiving unit.
Between the light projecting unit and the light receiving unit and the cylindrical tube, optical path changing means each having a surface adapted to the maximum tube diameter to which the in-tube liquid detection device can be mounted is provided,
Via the optical path composed of the light projecting unit and the optical path changing means so that the transmitted light for liquid detection is refracted and incident at a substantially constant detection angle from the outside of the tube into the air inside the hollow of the tube. When the transmitted light is projected and there is no liquid in the air inside the hollow of the tube, the light receiving unit is arranged so that the refracted light is directly received by the optical path changing unit and the light receiving unit. Set up
The outer diameter of the cylindrical tube is The outer diameter tube of the maximum tube diameter, there is no liquid inside the hollow In this case, the optical path changing means allows the transmitted light for detection to pass through the air inside the hollow of the cylindrical tube, and on the side where the liquid detection device is attached from the center of the cylinder of the cylindrical tube, Calculating the fixed positions of the light projecting part and the light receiving part by simultaneous geometric equations and optical equations so that the transmitted light for detection is transmitted;
The outer diameter of the cylindrical tube is A tube having an outer diameter smaller than the maximum tube diameter and having a minimum diameter that is 20% or more smaller than the maximum tube diameter, and there is no liquid inside the hollow In this case, the detection transmitted light is transmitted through the air through the optical path changing means, and then is incident on the cylindrical tube, and the detected transmitted light is transmitted through the air inside the hollow of the cylindrical tube. After that, the transmitted light for detection that has passed through the air from the cylindrical tube is propagated to the light receiving unit via the optical path changing means, and the air in the hollow inside of the cylindrical tube is detected. When the transmitted light is transmitted, the geometric positions of the fixed positions of the light projecting unit and the light receiving unit are respectively transmitted so that the detection transmitted light is transmitted from the cylindrical center of the cylindrical tube to the side where the liquid detection device is attached. And calculating the optical equation simultaneously,
The fixed position of the light projecting unit and the light receiving unit calculated when the outer diameter of the cylindrical tube is the maximum tube diameter with respect to the light projecting unit and the light receiving unit mounting position at a preset spatial fixed position, and the cylinder Calculate the fixed position of the light projecting part and the light receiving part calculated when the outer diameter of the shape pipe is the minimum diameter pipe, and the hollow pipe When there is no liquid inside, the light projecting unit and the light receiving unit at the preset spatial fixed positions are positioned so that the main light beam of the refracted / transmitted light can be stably received. And / or the variation of the fixing position of the light projecting unit with respect to the outer diameter tube, where the outer diameter varies from the maximum tube diameter to the minimum tube diameter, and the outer diameter varies from the maximum tube diameter to the minimum tube Fluctuating difference in the fixed position of the light receiving unit with respect to the outer diameter tube that changes to the diameter Until each is within the prescribed range Calculating the geometric equation and the optical equation simultaneously, and changing the fixed position of the light projecting unit and / or the light receiving unit. And the step of repeating.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1A shows an example in which the liquid level detection device 4s of the present invention is applied to the liquid level detection in a liquid storage container (tank, catheter, etc.) 1. 1 (B) is an enlarged front view thereof, FIG. 1 (C) is an enlarged top view thereof, and FIG. 1 (D) is an enlarged side view thereof.
2A is a longitudinal sectional view of the in-tube liquid detection device 4, FIG. 2B is a top view of the translucent material case 41, FIG. 2C is a bottom view thereof, and FIG. ) Is a side view thereof.
3 (A) is a longitudinal sectional view of the opaque material case 42, FIG. 3 (B) is a top view thereof, FIG. 3 (C) is a bottom view thereof, and FIG. It is a side view.
4A is a top view of the fastener 44, FIG. 4B is a partial sectional view taken along line 4B-4B, and FIG. 4C is a sectional view taken along line 4C-4C. FIG. 4D is a bottom view thereof.
5A is a top view of the fastening material 430, FIG. 5B is a front view thereof, and FIG. 5C is a side view thereof.
FIG. 6 is a horizontal sectional view showing the entire optical path from the light projecting unit 52 to the light receiving unit 54 of the present invention, with the angle at each refraction point as the center.
FIG. 7 is a horizontal cross-sectional view showing the entire optical path from the light projecting unit 52 to the light receiving unit 54 of the present invention, centering on the position coordinates at each refraction point.
FIG. 8 is a diagram showing the relationship among the light projecting unit 52, the optical path changing means 407, and the case inner diameter r1 according to the present invention.
FIG. 9 is a horizontal sectional view showing the relationship between the incident light P1-P2 and the refracted light l23 at the refraction point P2 of the optical path changing means 407.
FIG. 10 is a horizontal sectional view showing an optical path through which transmitted light propagates from the refraction point P2 of the optical path changing means 407 to the outer refraction point P3 of the cylindrical tube 3.
FIG. 11 is a diagram showing an optical path when the refracted light propagates inside the cylindrical tube 3 at the outside refraction point P3.
FIG. 12 is a diagram showing an optical path through which refracted light propagates inside the tubular material of the cylindrical tube 3.
FIG. 13 is a diagram showing an optical path of refracted light at the inner refracting point P 4 of the cylindrical tube 3.
FIG. 14 is a diagram showing an optical path when refracted light propagates through the hollow interior of the cylindrical tube 3 and is refracted into the tube material at the inner refraction point P5.
FIG. 15 is a diagram showing an optical path through which refracted light propagates inside the tubular material of the cylindrical tube 3.
FIG. 16 is a diagram showing an optical path when the refracted light propagates to the outside at the outer refractive point P6 of the cylindrical tube 3. As shown in FIG.
FIG. 17 is a diagram showing an optical path through which transmitted light propagates from the outer refraction point P 6 of the cylindrical tube 3 to the refraction point P 7 of the optical path changing means 411.
FIG. 18 is a diagram showing an optical path through which refracted light propagates at the refraction point P7 of the optical path changing means 411.
FIG. 19 is a diagram showing an optical path through which refracted light propagates from the refraction point PP of the optical path changing means 411 to the light receiving unit 54.
FIG. 20 is a horizontal sectional view showing an optical path when the liquid level detection device 4s / in-tube liquid detection device 4 of the present invention is attached to a medium outer diameter tube 3. As shown in FIG.
FIG. 21 is a horizontal sectional view showing an optical path when the liquid level detection device 4s / in-tube liquid detection device 4 of the present invention is attached to the tube 3a having the maximum outer diameter.
FIG. 22 is a horizontal sectional view showing an optical path when the liquid level detection device 4s / in-tube liquid detection device 4 of the present invention is attached to the tube 3b having the minimum outer diameter.
FIG. 23 (A) is a top view of the large outer diameter fastener 44a of the present invention, FIG. 23 (B) is a partial cross-sectional view taken along line 23B-23B, and FIG. 23C-23C is a cross-sectional view, and FIG. 23D is a bottom view thereof.
24A is a top view of the small outer diameter fastener 44b of the present invention, FIG. 24B is a partial cross-sectional view taken along line 24B-24B, and FIG. 24C-24C is a cross-sectional view, and FIG. 24D is a bottom view thereof.
FIG. 25 is a horizontal sectional view of the in-tube liquid detection device 4a in which the inner cross section of the optical path changing means of the present invention is formed as a plane.
FIG. 26 shows an in-tube liquid detection in which the light projecting unit / light receiving unit of the present invention are arranged asymmetrically and the error between the fixed positions with respect to the maximum outer diameter tube and the minimum outer diameter tube is within a predetermined error ε. FIG. 4 is a horizontal sectional view of the device 4b.
[0006]
FIG. 1 (A) shows an example in which the liquid level detection device 4s of the present invention is applied to the liquid level detection in a liquid storage container (tank, catheter, etc.) 1. Liquid 2 is injected from 1a and liquid 2 is supplied to the outside from the discharge pipe 1b. In the same figure, liquid 2 is injected up to the position of liquid level h1, and the liquid level is detected at one end of the liquid storage container 1. Hollow projection 1c is provided, and a liquid level detection hollow tube (pipe, hose, catheter tube, etc.) 3 having a cylindrical outer shape is connected to and attached to the projection 1c, and a pipe joint 3a, etc. At the other end, a dustproof cap 3b or the like communicating with the outside air is attached, and at the desired height position hfx of the tube 3, the tube diameter in the hollow tube 3 is in the axial direction. Liquid level detection device 4 that detects the liquid level of the changing liquid (the level of liquid in the container 1 is h1 in FIG. 1A). When s is mounted and fixed, for example, when the liquid level reaches hfx, injection of the liquid 2 from the supply pipe 1a is stopped by a stop control signal (not shown) by a stop control signal from the liquid level detection device 4s. It has come to be. Therefore, the liquid level detection device 4s of the present invention can also be used as the in-tube liquid detection device 4 for detecting whether liquid is present or air is present at the portion of the tube 3 attached / fixed.
Accordingly, the liquid level detecting device 4s (hereinafter, the in-tube liquid detecting device 4 is also equivalent, so only the liquid level detecting device 4s) is fixed to the tube 3 by, for example, the method of fixing the tube 3 to the liquid level detecting device 4s. The main body 41, 42 and saddle-shaped fasteners 44 are pressed / contacted and fixed / clamped by an arcuate inner part, and can be screwed with rod screws 43a-wing nuts 43b etc. Even if the outer diameter of the cylindrical tube that is fixed / clamped with pressure contact / contact is fixed, the space between the case main bodies 41 and 42 and the inner pressure contact surface is cylindrical. The tube 3 is pressed against and clamped between the saddle-like fasteners 44 that can be held and fixed in position. Specifically, the center line of the case bodies 41 and 42 and the saddle-like fasteners are fixed. The center line of the tool 44 and the axial center of the cylindrical tube 3 are fixed in contact with each other so as to be on the same plane. It has become the jar. A power cable / signal cable 59 is provided on the back side of the main body of the liquid level detection device 4s (on the opposite side of the surface where the light emitting unit / light receiving unit is disposed via the circuit board 50). Further, the sensing state display means (LED or optical fiber) 46 for displaying the presence / absence of the liquid 2, the sensor sensitivity adjustment variable resistor 48, and the like indicate the direction of sensitivity adjustment. It is provided with 47.
In addition, the case main bodies 41 and 42 are configured to be fitable so that they can be divided into two at the center. In the present embodiment, the case main body 41 has the wavelength of the light source emitted from the light emitting means of the light projecting unit 52. The main body 42 is made of a light-transmitting material that completely or at least 50% cuts off the wavelength of the light source emitted from the light emitting means. Preferably, the light projecting unit 52 and the light receiving unit 54 are controlled, and the liquid presence / absence determining means for processing the output of the light receiving unit to detect the presence / absence of liquid in the tube (for example, an operational amplifier, an inverting amplifier, or the like) MPU (microprocessor) etc. may be used) The circuit board 50 on which the 55 is mounted is fitted and clamped in the groove 420 provided in the central lower side wall. Do not inject silicone filler etc. from the injection holes 474, 476, 478 etc. It is sealed for water / explosion protection and completely shielded from light. The optical system including the light projecting unit 52 / light receiving unit 54 and the non-optical system including the cable 59, the display means 46, the variable resistor 48, and the like are optically completely arranged on the front side and the rear side of the circuit board 50, respectively. By arranging them separately, the optical system noise of the device 4s can be reduced to a minimum, the installation space of the device 4s can be minimized, and a structure that is very easy for adjustment work, inspection / confirmation work, etc. ing.
As the light emitting means of the light projecting unit 52 of the present invention, light source means such as a normal LED (semiconductor light emitting diode), an infrared laser light emitting element, and an optical fiber (including a light projecting lens system) can be used. Light is emitted / projected from the means, but when an explosion-proof structure is particularly required, the light projecting unit 52 and the light receiving unit 54 are optical fibers such as glass or plastic optical fibers and an imaging / collecting lens system. Adopting a structure consisting only of system members is preferable. The circuit board 50 and the like are provided inside a remote explosion-proof structure, and between them are relayed / connected by optical transmission means such as an optical fiber, and an electric signal is transmitted by a remote electric circuit board (not shown). It is preferable to process. Further, as the light receiving unit 54, a MOS structure or a CCD structure photoelectric conversion element, an optical fiber (including a condensing lens system) or the like can be used. However, when an explosion-proof structure is particularly required, the light projecting unit 52 is used. The light receiving section 54 is preferably composed only of an optical system such as an optical fiber made of glass or plastic.
[0007]
Next, with reference to FIG. 2, the structure of the case body 41 and the device 4s, which are made of a translucent material, a transparent material, and / or a translucent material, and in which the optical path changing means 407, 411 are formed integrally with the case, will be described. In the center of the upper shell of the case main body 41, a notch groove 402 for fitting with a case main body 42 made of an opaque material / light shielding material is provided, and a convex hollow fitting portion 403 is formed below the groove In addition, overlapping end portions 401 that can be fitted are formed around the joint surface side, and the both sides of the case 41 are adapted to the maximum pipe diameter of the pipe 3 to which the liquid level detecting device 4s can be attached. A cylindrical curved surface 406 having a radius r1 is formed, and wedge-shaped optical path changing means 407 and 411 are provided on the back side of the cylindrical curved surface 406. Further, the tube 3 is fastened to the fitting surface of the upper left and right ends of the upper shell. A semicircular hole 421 is provided for embedding and inserting a metal fastening member 430 having a bar screw head 43a for tightly clamping with The upper semicircular protrusions (bosses) 422 is formed. In addition, a notch groove 404 for fitting with the case body 42 is formed in the upper and lower oblique directions on the center notch groove 402 side of the semicircular hole 421 on the upper shell upper surface, and is closer to the center on both sides of the upper shell upper surface. A fitting recess 424 with the case main body 42 is provided on the top.
Further, in the optical path changing means 407, a space 409 for storing the light projecting part 52 is formed on the opposite side of the cylindrical curved surface 406, and the light emitting means of the light projecting part 52 is preferably bonded to the flat slope 408. It is preferable that the light-shielding member 60 is adhered to and fixed to the outer peripheral side surface of the outer peripheral side surface with an adhesive. A projecting portion 410 is formed to sandwich the light projecting portion 52 / light shielding member 60, and the upper surface of the upper projecting portion 410 forms the lower surface of the notch groove 404.
On the other hand, in the optical path changing means 411, on the opposite side of the cylindrical curved surface 406, a space 413 is formed for storing the light receiving portion 54 made of a photoelectric conversion element having a MOS structure or a CCD structure, an optical fiber or the like, and the light receiving portion 54 is formed on the flat slope 412. The light receiving means is preferably bonded / fixed with a transparent adhesive at a predetermined projection angle, which will be described later, and a light shielding member 60 is preferably attached to the outer peripheral side surface with an adhesive. On both sides, a flat projection 414 is formed in the lower right direction to sandwich the light receiving portion 54 / light shielding member 60, and the upper surface of the upper projection 414 forms the lower surface of the notch groove 404. ing.
In addition, semicircular holes 426, 428, and 440 are formed on the mating surface side of the lower shell, respectively, and the hole 426 is used to operate the variable resistor 48 for adjusting the sensitivity of the sensor. Used as a visible window of the display means 46, the hole 440 is used to connect the power line and the signal line 59 via a connector, and a semicircular convex portion (boss) 442 is provided further below the hole 440. Is formed. Furthermore, a recess 436 for fitting with the case main body 42 is formed inside the center of the side shell, and a liquid level detection positioning mark 45 is engraved below the protrusion 422 on the right outer side wall. ing.
Further, the case body 41 made of a translucent material is preferably formed integrally with the upper shell, the lower shell, the bottom shell, and the side shell together with the optical path changing means 407, 411. Glass, ceramic members, or ABS resin, polyethylene, polyvinyl chloride, polystyrene, polypropylene, polyvinyl alcohol, methacrylic resin, petroleum resin, polyamide, polyvinylidene chloride, polycarbonate, polyacetal, fluorine resin, polyimide, polyetheretherketone, Thermoplastic resins such as polyphenylene sulfide, polybenzimidazole, and polycycloolefin, or thermosetting resins such as phenol resin, urea resin, unsaturated polyester, polyurethane, alkyd resin, melamine resin, and epoxy resin, that is, thermoplasticity Resin or thermosetting tree Synthetic resin member and the like, or a plastic, or,
Biodegradable resin materials such as polylactic acid, polyamino acid, aliphatic polyester, poly-ε-caprolactone, polyvinyl alcohol, chitosan, starch, cellulose and a mixture of general-purpose polymers, or urethane rubber, silicone rubber, polyethylene and polystyrene Low-hardness rubber, butadiene rubber, isoprene rubber, nitrile rubber, butyl rubber, acrylic rubber, styrene-butadiene rubber, ethylene-propylene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, fluorine rubber, many Selected from the group consisting of sulfurized rubber, polyether rubber, synthetic rubber such as chlorosulfonated polyethylene, or natural rubber, or a combination thereof,
Furthermore, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene ether, polyether ether ketone, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyketone sulfide, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene. Engineering plastic members such as ethylene fluoride, aromatic polyester, polyamino bismaleimide, and triazine resin, glass or ceramic members, and materials composed of a combination thereof are available.
In particular, as a constituent material of the light path changing means 407, 411 including a translucent material, a transparent material and / or a translucent material, glass, a ceramic member, ABS resin, polyethylene, polyvinyl chloride, polystyrene, polypropylene, polyvinyl Thermoplastic resins such as alcohol, methacrylic resin, petroleum resin, polyamide, polyvinylidene chloride, polycarbonate, polyacetal, fluorine resin, polyimide, polyetheretherketone, polyphenylene sulfide, polybenzimidazole, polycycloolefin, or phenol resin, urea Thermosetting resin such as resin, unsaturated polyester, polyurethane, alkyd resin, melamine resin, epoxy resin, that is, synthetic resin member such as thermoplastic resin or thermosetting resin, or plastic, polylactic acid, poly amino acid, Biodegradable resin members such as aliphatic polyester, poly-ε-caprolactone, polyvinyl alcohol, chitosan, starch, cellulose and a mixture of general-purpose polymers, or copolymers of urethane rubber, silicone rubber, polyethylene and polystyrene Low hardness rubber, butadiene rubber, isoprene rubber, nitrile rubber, butyl rubber, acrylic rubber, styrene-butadiene rubber, ethylene-propylene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, fluorine rubber, polysulfide rubber, polyether rubber Selected from the group consisting of synthetic rubbers such as chlorosulfonated polyethylene, natural rubber, or combinations thereof,
Furthermore, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene ether, polyether ether ketone, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyketone sulfide, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene. Materials composed of engineering plastic members such as ethylene fluoride, aromatic polyester, polyaminobismaleimide, triazine resin, glass or ceramic members, and combinations thereof can be used.
The case main bodies 41 and 42 and the cap-like fasteners 44 are preferably colored black to prevent harmful reflected light and the like.
[0008]
Next, with reference to FIG. 3, the structure of the case main body 42 made of an opaque material / light-shielding material will be described. The cross-section for fitting with the transparent material case main body 41 at the center of the upper shell of the case main body 42 is shown. A convex protrusion 450 is formed so as to protrude in the fitting direction with the case body 41, and its cylindrical upper surface 451 is preferably formed so as to protrude slightly with a + tolerance with respect to the radius r1. In the lateral direction, a thin plate-like fitting protrusion 450 having an upper surface 452 and a lower surface 453 is formed, and can be fitted to the hollow portion 403 of the case body 41. The transmitted light emitted and projected from 52 is directly prevented from being received by the light receiving unit 54 as much as possible. Therefore, as shown in FIG. 20 to FIG. 22, when arranged at a symmetrical position with respect to the central axis of the inner hollow cylinder, the upper surface 452 of the fitting protrusion 450 made of a light-impermeable member / light-shielding member. It is preferable to arrange the light projecting unit 52 and the light receiving unit 54 at a lower position.
Further, in the center of the upper shell of the case body 42, on the side opposite to the protruding direction of the protrusion 450, with a radius r1 adapted to the maximum pipe diameter D44a of the pipe 3 to which the present liquid level detecting device 4s can be attached, A cylindrical curved surface 462 having a predetermined width in the center direction is formed, and the back side of the cylindrical curved surface 462 is formed by a thin plate-shaped cylindrical shell having a predetermined thickness, and furthermore, fitting both left and right ends of the upper cylindrical shell On the surface side, a deformed mountain-shaped fitting protrusion 456 is formed so as to protrude and closely fit with the fitting groove 404 and the recess 424 of the main body 41, and the upper curved surface 457 of the protrusion 456 is a cylindrical curved surface 462. A thin plate-like flat plate portion 458 formed with the same curvature radius r1 and formed obliquely in the lower right oblique direction can be closely fitted in the groove 404. Also, semicircular holes 466 are formed at both left and right end portions for joining a semicircular hole 421 for embedding and inserting a fastening material 430 having a bar screw-shaped head for tightly clamping the tube 3 with the fastener 44, A semicircular convex portion (boss) 468 is formed on each of the upper portions.
The protrusions 456 are formed in the vicinity of the left and right convex portions 468. On the central protrusion 450 side, thin plate-like protrusion portions 460 that fit into the notch grooves 404 are formed, respectively. A thin plate-like protrusion 459 having an arcuate cross section that fits closely with the fitting recess 424 of the case main body 41 is formed at a position closer to the center of the case so as to block noise light from above on the optical path changing means 407 and 411. It has become. Further, a space for storing the light projecting portion 52 is formed on the opposite side of the cylindrical curved surface 462 of the optical path changing means 407, and a space for storing the light receiving portion 54 is provided on the opposite side of the cylindrical curved surface 462 of the optical path changing means 411. Formed,
Further, semicircular holes 484, 488, and 490 are respectively formed on the mating surface side of the lower shell, and the hole 490 is used together with the hole 426 to operate the variable resistor 48 for adjusting the sensitivity of the sensor. Along with the hole 428, it is used as a visible window of the sensor operating state display means 46, and the hole 484 is used together with the hole 440 to connect the power supply and signal line 59 through the connector. A semicircular convex portion 486 is formed. Furthermore, a projection 470 for fitting with the main body 41 is formed inside the center of the side shell, and a hook-like engagement projection is further formed at the tip 472, below the projection 470, A groove portion 482 is formed to be joined to the groove 420 to fit and clamp the circuit board 50, and the determination threshold value of the liquid presence / absence determination means 55 / amplifier amplification degree is set / adjusted in the thin plate-like shell at the front rear side In addition, holes 474, 476, 478 and the like that can be used as injection holes for a waterproof / explosion-proof filler (also serving as a light shielding material) such as a silicone resin are formed. The waterproof filler to be injected is also useful as a light shielding material for the light projecting part and the light receiving part.
The case main body 42 is preferably formed integrally with the upper shell, the lower shell, the bottom shell, and the side shell together with the protrusions 450, 456, and 470. As a constituent material thereof, an opaque material / A light-shielding material or a material containing an opaque material / light-shielding material structure is preferable. Metal materials such as iron, aluminum, magnesium, and titanium, wood, paper, glass, ceramic members, ABS resin, polyethylene, polychlorinated Thermoplastic resins such as vinyl, polystyrene, polypropylene, polyvinyl alcohol, methacrylic resin, petroleum resin, polyamide, polyvinylidene chloride, polycarbonate, polyacetal, fluorine resin, polyimide, polyetheretherketone, polyphenylene sulfide, polybenzimidazole, polycycloolefin Or phenol resin, urea resin, unsaturated polyester Thermosetting resin such as tellurium, polyurethane, alkyd resin, melamine resin, epoxy resin, that is, synthetic resin member such as thermoplastic resin or thermosetting resin, plastic, polylactic acid, polyamino acid, aliphatic Biodegradable resin components such as polyesters, poly-ε-caprolactone, polyvinyl alcohol, chitosan, starch, cellulose, etc. and general-purpose polymers, or copolymers of urethane rubber, silicone rubber, polyethylene and polystyrene Low hardness rubber, butadiene rubber, isoprene rubber, nitrile rubber, butyl rubber, acrylic rubber, styrene-butadiene rubber, ethylene-propylene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, fluorine rubber, polysulfide rubber, polyether rubber, chloro Sulfonated port Synthetic rubbers such as ethylene, or, those natural rubber, or selected from the group consisting of combinations,
Furthermore, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene ether, polyether ether ketone, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyketone sulfide, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene. Materials composed of engineering plastic members such as ethylene fluoride, aromatic polyester, polyaminobismaleimide, triazine resin, glass or ceramic members, and combinations thereof can be used.
In addition, when the material 42 is translucent as a single substance (for example, a synthetic resin material), as a method of blocking light (including visible light and ultraviolet light) / infrared, the light / infrared is reflected, There is a method of blending / providing the above-mentioned material 42 with the performance of shielding or absorbing, or attaching a film having light shielding performance. For example, a light reflecting film material obtained by laminating a metal thin film layer such as Al, Ag, Au, etc. on the surface of an organic polymer film and a protective layer on the layer, or an adhesive polymer containing a light / near infrared absorbing dye is made of glass or A light shielding / near infrared absorbing plate bonded to a resin plate, a transparent shielding film or a transparent resin comprising light / heat ray shielding inorganic fine particles such as antimony-containing tin oxide fine particles and indium-containing tin oxide fine particles on the surface of a transparent film There is a near-infrared absorbing transparent resin composition obtained by blending cupric sulfide. In addition, a light / infrared shielding material obtained by blending polycarbonate resin or the like with titanium oxide-coated mica, an infrared shielding material using a phthalocyanine-based near-infrared absorbing compound, a synthetic resin, a phthalocyanine-based near-infrared absorber, and two or more kinds Light / infrared rays may be blocked by blending with a colorant composed of a pigment or dye, and as a colorant composed of two or more, preferably three or more pigments or dyes, carbon black, cyanine green There are organic pigments, anthraquinone violet dyes, quinoline yellow dyes, and anthraquinone red dyes, and it is preferable to use pigments and dyes in combination.
The case main bodies 41 and 42 and the cap-like fasteners 44 are preferably colored black to prevent harmful reflected light and the like.
[0009]
Next, the structure of the saddle-like fastener 44 will be described with reference to FIG. 4. In the liquid level detection device 4s of the present invention, the curvature radii of the cylindrical curved surfaces 406 and 462 of the case bodies 41 and 42 that are in close contact with the tube 3 and press-contacted. r1 is a constant radius of curvature r1 that is always fixed even when the outer diameter of the tube 3 to be mounted is changed, but the radius of curvature r2 of the cylindrical curved surface 520 formed on the lower surface of the saddle-shaped fastener 44 is The tube 3 is tightly clamped / clamped in close contact with the tube 3, and the outer diameter of the axial position of the cylindrical tube that is fixed / clamped with the case body 41, 42 and the inner pressure contact surface in a cylindrical shape. Since the tube 3 is pressed and clamped with a saddle-like tightening tool 44 that can be held and fixed in a fixed spatial positional relationship even if it fluctuates, for example, the center line of the case bodies 41 and 42 and the saddle-like fastening Because the center line of the tool 44 and the axis of the cylindrical tube 3 can be held and fixed in a spatial positional relationship such that they are on the same plane. When the outer diameter D44 of the tube 3 to be mounted and sandwiched fluctuates by 150% or more, it is preferable to prepare a plurality of types with different curvature radii r2, the maximum curvature radius and the minimum curvature radius of the tube 3 However, when it fluctuates by about 4 to 6 times, it is preferable to prepare at least about four types having different curvature radii r2. Thus, through holes 502 for inserting and holding rod screws, bolts 43a and the like are formed at the left and right ends of the center of the fastener 44, and circular protrusions (bosses) 504 are formed around the upper and lower surfaces. On the lower surface of the fastener 44, a cylindrical curved surface 520 having a predetermined radius in the axial direction with a radius of a predetermined size capable of being in close contact with the outer peripheral radius r2 of the tube 3 and press-contacting / joining to hold the tube 3 tightly. On the opposite upper surface, ribs 510 are formed in the left-right direction for weight reduction. Further, substantially rectangular recesses 506 are formed at the four corners of the front, rear, left, and right, and the tube 3 is clamped and clamped. Also, the rigidity of the fasteners 44 can be secured, and the cross-sectional structure is difficult to deform.
Next, with reference to FIG. 5, the structure of the fastening member 430 having two parallel bar screw heads 43a will be described. In the liquid level detection device 4s of the present invention, the detection device 4s is fixed to the tube 3. The two bar screws 43a-butterflies arranged in parallel with both ends of the main body while being pressed and tightly held by the inner arc-shaped portion of the case main bodies 41, 42 of the apparatus 4s and the saddle-shaped tightening tool 44. By means of a fastening means 43 such as a nut 43b which can be screwed, the case body 41, 42 and the saddle-like fastening tool 44 are tightly fixed in a state where the tube 3 is pressed and clamped.
In other words, the pipe 3 having a variable pipe diameter is clamped / clamped by the radius of curvature of the cylindrical curved surface 520 formed on the lower surface of the clamp 44, and the cylindrical inner pressure contact surface between the case main bodies 41 and 42 and the clamp 44 In this way, the axial position of the cylindrical tube 3 can be fixed stably and accurately / highly in a constant spatial positional relationship even if its outer diameter changes, but it can be mounted on the outer diameter tube 3 that fluctuates. For easy and easy work, for example, in order to stably secure sufficient mounting accuracy, the fastening material 430 composed of the rod screw 43a-connecting plate 432 is made of a metal material such as iron or stainless steel, As shown in FIG. 5C, two rod screws 43a are fixed to the upper surface of the L-shaped metal connecting plate 432 by welding or the like while securing mutual parallelism and symmetry. When arranged on the rear back side of the main body 41, even if the outer diameter of the tube 3 fluctuates by 2 to 4 times or more, the symmetrical center line of the case main bodies 41 and 42, In a state where the symmetrical center line of the dollar-shaped fastener 44 and the axial center of the cylindrical tube 3 are held in a certain spatial positional relationship so as to be on the same plane with respect to any outer diameter of the tube 3, It is preferable because it can form an arrangement relationship that can be stably fixed.
Since the force for fixing the fixed spatial arrangement and clamping the tube 3 depends on the screwing force of the rod screw 43a-wing nut 43b, in order to ensure a sufficient screwing force stably, the rod The fastening material 430 composed of the screw 43a and the connecting plate 432 is made of a metal material such as iron or stainless steel, and the surface thereof is preferably painted black, and these rod screws 43a are individually implanted in the holes 421. As shown in FIG. 5 (C), the rod screw 43a-butterflies are arranged on the upper surface of the L-shaped metal connecting plate 432 by welding or the like and disposed on the back side of the rear portion of the case body 41. A force large enough to tightly clamp the tube 3 by the nut 43b can be secured, and the fastening force applied to the local area around the hole 421 of the case bodies 41, 42 does not act directly, and the connecting plate 432 An effect of blocking external scattered light and the like can be expected, which is preferable.
[0010]
In this configuration, the operation will be described with reference to FIGS. First, FIG. 6 shown corresponding to FIG. 2 shows an enlarged main part of the optical path from the light projecting unit 52 to the light receiving unit 54 in the liquid level detecting device 4s of the present invention. The circular optical path changing means 407 and 411 having a radius r1 in the cross section of the joining surface 406 is n1, the circular center is O0, the refractive index of the tube 3 is n2, and is smaller than the maximum outer diameter r1 of the tube 3. The outer diameter is r2, the inner diameter is r3, the center point is O3, the maximum outer diameter of the tube 3 to which the liquid level detection device 4s of the present invention can be attached is r1, and the center is the origin O0 (0,0) of the xy coordinates. ), And a straight line connecting an intersection line (intersection) P0 between the mounting plane 408 of the light projecting unit 52 of the optical path changing unit 407 and the mounting plane 412 of the light receiving unit 54 of the optical path changing unit 411 and the origin O0 is defined as the y axis. The distance between the origin and the intersection point P0 is expressed by coordinates (0, -y0), and the direction perpendicular to the y-axis at the origin O0 is the x-axis. In addition, the fixing position of the light projecting unit 52 on the mounting surface 408 is expressed by coordinates P1 (-x1, -y1), and the fixing position of the light receiving unit 54 on the mounting surface 412 is expressed by coordinates P8 (x8, -y8). write. Thus, the angle θ1 formed by the origin O0 and the points P0 and P1 is defined, and the angle θ31 formed by the origin O0 and the points P0 and P8 is similarly defined.
As shown in FIG. 6, the light projecting section 52 / light receiving section 54 is installed / fixed at the convex center of the case main body 42 in which the optical center of the transmitted light is made of an opaque material / light shielding material. 450 and its cylindrical upper surface 451 are preferably fixed in such a spatial positional relationship that the projection light does not directly enter the light receiving portion 54 from the light projecting portion 52, and the refracted / transmitted light l45 inside the tube 3 (or the straight line P4). -P5) is transmitted substantially parallel to the straight line P1-P8 connecting the optical centers of the light projecting part 52 and the light receiving part 54, the optical centers P1, P8 of the light projecting part 52 and the light receiving part 54 are These relationships can be satisfied by disposing them below the cylindrical upper surface 451, respectively.
Next, the main part of the optical path from the light projecting unit 52 to the light receiving unit 54 will be described with reference to FIGS. 6 and 7. First, the light emitting means (LED and light emitting means) of the light projecting unit 52 that forms an angle θ1 with the horizontal plane from the point P1. 2 is projected perpendicularly onto the mounting surface 408 of FIG. 2, the light passes through the optical path changing means 407 formed integrally with the case 41, and passes through the inner circular shape shown in FIG. Then, the light beam is incident on the point P2 of the cross section 406 having the radius of curvature r1 at the incident angle θ2, and refracted in the air at the refraction angle θ3 at the point P2. Further, when traveling straight in the air at a refraction angle θ3, it enters the position of point P3 on the outer peripheral surface of the curvature radius r2 of the tube 3 at the incident angle θ4, and refracts at the refraction angle θ5 inside the tube 3 having the refractive index n2. It goes straight as it is and enters the point P4 on the cross section of the inner circle with the radius of curvature r3 at an incident angle θ6 and refracts into the air inside the hollow of the tube 3 at a refraction angle θ7. Next, when the air travels straight inside the hollow of the tube 3 at a refraction angle θ7, it enters the point P5 at the angle P8 on the inner peripheral surface of the tube 3 with a radius of curvature r3, and enters the tube 3 having the refractive index n2. The light is refracted at the refraction angle θ9, goes straight as it is, enters the position of the point P6 on the outer peripheral surface of the curvature radius r2 of the tube 3 at the incident angle θ10, refracts into the external air of the tube 3 at the refraction angle θ11, and continues to air The optical path changing means 411, which is straight inside, enters the point P7 of the cross section 406 of the optical path changing means 411 formed integrally with the case body 41 and has a radius of curvature r1, at an incident angle θ12, and the optical path changing means 411 having the refractive index n1. When traveling straight through the inside, the light enters the point P8 on the light receiving portion mounting surface 412 at an incident angle θ14, and is received by the light receiving portion 54 that forms an angle θ31 with the horizontal plane. As shown in FIG. 7, the coordinates of the refraction points of the optical paths P1, P2, P3, P4, P5, P6, P7, and P8 are point P2 = (− x2, −y2) and point P3 = (−, respectively. x3, -y3), point P4 = (-x4, y4), point P5 = (x5, -y5), point P6 = (x6, -y6), point P7 = (x7, -y7).
Thus, the maximum outer diameter r1 of the tube 3 is fixed at a predetermined size, the angle θ1 formed with the horizontal plane of the optical path changing means 407 is also determined and fixed at a predetermined size, and the projection surface 52 is attached to the mounting surface 408. If the mounting position P1 (-x1, -y1) is also set to a fixed position in a spatial relationship where the projection light does not directly enter the light receiving section 54 from the light projecting section 52, the object of the present invention is to achieve the maximum outer diameter of the tube. Even if the tube 3 having an outer diameter r2 and an inner diameter r3 smaller than r1 varies to various values with respect to the outer diameter r2 and the inner diameter r3, the light l45 refracted and transmitted in the absence of the liquid 2 inside the tube 3 Is there a position where the main light flux of refracted / transmitted light can be received stably even if the mounting position P8 is the light receiving portion mounting position P8 which is a preset spatially fixed position? If present, when the maximum outer diameter r1 of the tube 3 is fixed to a predetermined size, the set angles θ1, θ31 of the optical path changing means and the mounting position P1 (−x1) of the light projecting unit 52 , -y1), what is the value of the mounting position P8 (x8, -y8) of the light receiving unit 54? From the conclusion, as will be described later, there are innumerable arrangement relationships between the light projecting units and the light receiving units, and a specific method for obtaining them will be described in detail below.
[0011]
First, in FIGS. 6 to 19, the refracted / transmitted light l45 (or straight line P4−P5) inside the tube 3 is parallel to the straight line P1−P8 connecting the optical centers of the light projecting part 52 and the light receiving part 54. In this case, the maximum outer diameter r1 of the tube 3 is fixed at a predetermined size, and the angle θ1 of the optical path changing means 407 is also determined and fixed at a predetermined size. If the mounting position P1 (-x1, -y1) on the mounting surface 408 of the light projecting unit 52 is also set to a fixed position, the coordinates x1 and y1 cannot be changed independently, and the liquid detection device is mounted. When the cylindrical tube has the largest outer diameter, the fixing position of the light projecting unit and the light receiving unit is set on the side where the liquid detection device below the center of the cylinder is attached so that the transmitted light for liquid detection is transmitted. When calculating the geometrical equation and optical equation simultaneously, and when the outer diameter of the cylindrical tube to which the liquid detector is installed is the smallest On the side where the liquid detection device below the center of the cylinder is attached, the fixed positions of the light projecting part and the light receiving part are calculated by simultaneously connecting the geometric equation and the optical equation so that the liquid detection transmitted light is transmitted.
Specifically, the following geometric equation is established between the radius r1, the angle θ1, and the y coordinate y0 of the intersection P0 and the coordinate values x1 and y1 of the point P1 shown in FIGS.
y0 = y1 + x1 · cot (θ1) (1)
Next, when the coordinate values x2, y2 of the point P2 shown in FIGS. 7 and 8 are expressed by the coordinate values x1, y1 of the point P1, the optical path P1-P2 forms an angle θ1 with the x-axis, and the optical path P1-P2 Is also intersected with the circumference of the inner radius r1, and the following geometric equation is established between the coordinate values x1, y1 of the point P1 and the coordinate values x2, y2 of the point P2. From the straight line condition,
y1 = (x1-x2) tan (θ1) + y2 (2)
Since point P2 is on the circumference of radius r1,
x2, x2 + y2, y2 = r1, r1 (3)
Next, at the position of the point P2 shown in FIG. 9, the angle θ20 formed by the radius P2−O0 with the y-axis, the incident angle θ2, the refraction angle θ3, and the angle θ21 formed by the refracted light l23 into the air with the x-axis. The following geometric equations hold between
Since point P2 is on the circumference of radius r1,
x2 / y2 = tan (θ20) (4)
If the intersection of the straight line passing through the point P1 and parallel to the x-axis and the y-axis is P10, and the point where the straight line passing through the point P1 and parallel to the x-axis and the straight line O0-P2 is P11, then the angle P2P11P10 is , Θ1 + θ2 and the triangle O0P11P10 is a right triangle,
θ1 + θ2 + θ20 = π / 2 (5)
Between the incident angle θ2 and the refraction angle θ3, the following optical equation holds based on the refractive index n1 of the optical path changing means 407.
sin (θ3) / sin (θ2) = n1 (6)
Furthermore, the angle that the straight line O0−P2 makes with the x-axis at the point P2 is equal to θ3 + θ21.
θ3 + θ21 + θ20 = π / 2 (7)
In FIG. 9, when the point P1 is set at an angle θ20> 45 degrees, and is disposed at a higher position as shown by the position of the point P1a. For example, when the angle θ2 <0.0, the point P1 enters the air at the point P2a. Since the refracted light l2a3 propagates above the straight line P2a-O0, the light receiving position is changed from the fourth quadrant to the second quadrant, which is generally not preferable.
Next, when the coordinate values x3, y3 of the point P3 shown in FIG. 10 are expressed by the coordinate values x2, y2 of the point P2, the optical path P2-P3 forms an angle θ21 with the x axis, and the optical path P2-P3 Therefore, the following geometric equation is established between the coordinate values x2, y2 of the point P2 and the coordinate values x3, y3 of the point P3. From the straight line condition,
y2 = (x2-x3) tan (θ21) + y3 (8)
Since point P3 is on the circumference of radius r2,
x3 ・ x3 + (r1-r2-y3) ・ (r1-r2-y3) = r2 ・ r2 (9)
Next, at the position of the point P3 shown in FIG. 11, the angle θ21 formed by the optical path P2-P3 with the x-axis, the angle θ22 formed by the radius P3-O3 with the y-axis, the incident angle θ4, the refraction angle θ5, and the inside of the tube 3 The following geometric equation holds between the angle θ23 formed by the refracted light l34 and the x axis.
Since point P3 is on the circumference of radius r2,
x3 / (y3-r1 + r2) = tan (θ22) (10)
If the straight line O3-P3 intersects with the straight line passing through the point P2 and parallel to the x axis is P12, and the point where the straight line passing through the point P2 and parallel to the x axis intersects with the y axis is P13, then the angle P3P12P13 is Since the triangle O3P12P13 is equal to θ21 + θ4 and is a right triangle,
θ21 + θ4 + θ22 = π / 2 (11)
Between the incident angle θ4 and the refraction angle θ5, the following optical equation is established from the refractive index n2. sin (θ5) / sin (θ4) = n2 (12)
Furthermore, as shown in FIG. 12, the angle formed by the straight line O3−P3 and the x axis at the point P3 is equal to θ5 + θ23.
θ5 + θ23 + θ22 = π / 2 (13)
Next, when the coordinate values x4, y4 of the point P4 shown in FIG. 12 are expressed by the coordinate values x3, y3 of the point P3, the optical path P3-P4 forms an angle θ23 with the x-axis, and the optical path P3-P4 3 also intersects with the circumference of the inner radius r3 of 3, the following geometric equation holds between the coordinate values x3, y3 of the point P3 and the coordinate values x4, y4 of the point P4. From the straight line condition,
y3 = (x3-x4) tan (θ23) + y4 (14)
Since point P4 is on the circumference of radius r3,
x4 ・ x4 + (r1-r2-y4) ・ (r1-r2-y4) = r3 ・ r3 (15)
Next, at the position of the point P4 shown in FIG. 13, the angle θ23 formed by the optical path P3−P4 with the x axis, the angle θ24 formed by the radius P4−O3 with the y axis, the incident angle θ6, the refraction angle θ7, and the inside of the tube 3 The following geometric equation holds between the angle θ25 formed by the refracted light P4−P5 into the air and the x axis.
Since point P4 is on the circumference of radius r3,
x4 / (y4-r1 + r2) = tan (θ24) (16)
If the point where the straight line O3-P4 intersects the straight line parallel to the x-axis is P14, and the point where the straight line parallel to the x-axis intersects the y-axis is P15, the angle P4P14P15 is equal to θ23 + θ6, and the triangle Because O3P14P15 is a right triangle,
θ23 + θ6 + θ24 = π / 2 (17)
Between the incident angle θ 6 and the refraction angle θ 7, the following optical equation is established from the refractive index n 2 of the tube 3.
sin (θ7) / sin (θ6) = n2 (18)
Furthermore, the angle that the straight line O3−P4 makes with the x axis at the point P4 is equal to θ7 + θ25.
θ7 + θ25 + θ24 = π / 2 (19)
Next, when the coordinate values x5 and y5 of the point P5 shown in FIG. 14 are expressed by the coordinate values x4 and y4 of the point P4, the optical path P4−P5 forms an angle θ25 with the x axis, and the optical path P4−P5 3 also intersects with the circumference of the inner radius r3 of 3, the following geometric equation holds between the coordinate values x4, y4 of the point P4 and the coordinate values x5, y5 of the point P5. From the straight line condition,
y4 = y5 + (x4 + x5) tan (θ25) (20)
Since point P5 is on the circumference of radius r3,
x5 ・ x5 + (r1-r2-y5) ・ (r1-r2-y5) = r3 ・ r3 (21)
Next, at the position of the point P5 shown in FIG. 14, the angle θ25 that the optical path P4−P5 makes with the x axis, the angle θ26 that the radius P5−O3 makes with the y axis, the incident angle θ8, the refraction angle θ9, and the inside of the tube 3 The following geometric equation holds between the angle θ27 formed by the refracted light l56 into the member having the refractive index n2 and the x axis.
Since point P5 is on the circumference of radius r3,
x5 / (y5-r1 + r2) = tan (θ26) (22)
If the point where a straight line passing through the point P5 and parallel to the x-axis intersects the y-axis is P16, the angle P4P5P16 is equal to θ25, and the triangle O3P5P16 is a right triangle.
θ8 − θ25 + θ26 = π / 2 (23)
Between the incident angle θ8 and the refraction angle θ9, the following optical equation holds from the refractive index n2.
sin (θ8) / sin (θ9) = n2 (24)
Furthermore, the angle that the straight line O3−P5 makes with the x axis at the point P5 is equal to θ9 + θ27.
θ9 + θ27 + θ26 = π / 2 (25)
Next, when the coordinate values x6, y6 of the point P6 shown in FIG. 15 are expressed by the coordinate values x5, y5 of the point P5, the optical path P5-P6 forms an angle θ27 with the x-axis, and the optical path P5-P6 Therefore, the following geometric equation is established between the coordinate values x5 and y5 of the point P5 and the coordinate values x6 and y6 of the point P6. From the straight line condition,
y6 = (x6-x5) tan (θ27) + y5 (26)
Since point P6 is on the circumference of radius r2,
x6 ・ x6 + (r1-r2-y6) ・ (r1-r2-y6) = r2 ・ r2 (27)
Next, at the position of the point P6 shown in FIG. 16, the coordinate value x6, y6, the angle θ27 that the optical path P5−P6 makes with the x axis, the angle θ28 that the radius P6−O3 makes with the y axis, the incident angle θ10, and the refraction angle θ11. And the angle θ29 formed by the light refracted light l67 from the member having the refractive index n2 inside the tube 3 into the air, the following geometric equation holds.
Since point P6 is on the circumference of radius r2,
x6 / (y6-r1 + r2) = tan (θ28) (28)
If the point where a straight line passing through the point P6 and parallel to the x-axis intersects the y-axis is P17, the angle P5P6P17 is equal to θ27, and the triangle O3P6P17 is a right triangle.
θ27 + θ10 + θ28 = π / 2 (29)
Between the incident angle θ10 and the refraction angle θ11, the following optical equation is established from the refractive index n2.
sin (θ11) / sin (θ10) = n2 (30)
Furthermore, the angle that the straight line O3−P6 makes with the x axis at the point P6 is equal to θ11 + θ29.
θ11 + θ29 + θ28 = π / 2 (31)
Next, when the coordinate values x7, y7 of the point P7 shown in FIG. 17 are expressed by the coordinate values x6, y6 of the point P6, the optical path P6-P7 forms an angle θ29 with the x-axis, and the optical path P6-P7 is the optical path. Since it also intersects with the circumference of the inner radius r1 of the changing means 411, the following geometric equation holds between the coordinate values x6, y6 of the point P6 and the coordinate values x7, y7 of the point P7. From the straight line condition,
y7 = (x7-x6) tan (θ29) + y6 (32)
Since point P7 is on the circumference of radius r1,
x7 · x7 + y7 · y7 = r1 · r1 (33)
Next, at the position of the point P7 shown in FIG. 18, the coordinate value x7, y7, the angle θ29 that the optical path P6−P7 makes with the x axis, the angle θ30 that the radius P7−O0 makes with the y axis, the incident angle θ12, and the refraction angle θ13. And the angle θ31 formed by the refracted light l78 from the air to the member having the refractive index n1 inside the optical path changing means 411 with the x axis, the following geometric equation holds.
Since point P7 is on the circumference of radius r1,
x7 / y7 = tan (θ30) (34)
If a point where a straight line passing through the point P7 and parallel to the x-axis intersects the y-axis is P18, the angle P6P7P18 is equal to θ29, and the triangle O0P7P18 is a right triangle.
θ29 + θ12 + θ30 = π / 2 (35)
Between the incident angle θ12 and the refraction angle θ13, the following optical equation is established from the refractive index n1.
sin (θ12) / sin (θ13) = n1 (36)
Furthermore, the angle that the straight line O0−P7 makes with the x-axis at the point P7 is equal to θ13 + θ31.
θ13 + θ31 + θ30 = π / 2 (37)
Next, when the coordinate values x8, y8 of the point P8 shown in FIG. 19 are expressed by the coordinate values x7, y7 of the point P7, the optical path P7-P8 forms an angle θ31 with the x axis, and the optical path P7-P8 is the optical path. Since it intersects with the mounting plane 412 of the changing means 411, the following geometric equation holds between the coordinate values x7, y7 of the point P7 and the coordinate values x8, y8 of the point P8. From the straight line condition,
y8 = (x8-x7) tan (θ31) + y7 (38)
Thus,
Condition 1) When the maximum outer diameter r1 of the tube 3 is fixed and the angles θ1 and θ31 formed with the horizontal planes of the optical path changing means 407 and 411 are also fixed, respectively, the mounting position P1 (−x1, − Even if y1) is further set to a predetermined fixed position, the light l45 refracted and transmitted through the inside of the tube 3 is fixed and set in advance for the tube 3 in which the outer diameter r2 and the inner diameter r3 vary to various values. Is there a position P8 at which the main light flux of the transmitted light can be stably received even at the received light receiving portion mounting position P8? It becomes.
[0012]
【Example】
6 to 19, the refracted / transmitted light l45 (or straight line P4-P5) inside the tube 3 is not parallel to the straight line P1-P8 connecting the optical centers of the light projecting part 52 and the light receiving part 54. An example of transmission through an angle is shown, but for easier analysis,
Condition 2) The refracted / transmitted light l45 (or straight line P4−P5) inside the tube 3 is substantially parallel to the straight line P1−P8 connecting the optical centers of the light projecting portion 52 and the light receiving portion 54 (and therefore also with respect to the x axis). When the position / angle of the light projecting unit 52 is set so as to transmit in a substantially parallel manner, as shown in FIG. 20, in such a case, the optical symmetry axis (in FIG. 20, the y axis) ) The light travels substantially symmetrically with respect to sj1, and therefore the angles θ1 and θ31 are symmetrical with respect to the y-axis sj1, respectively, so that they are almost equal. Similarly, the angles θ7≈θ8 and θ6 The relations of ≈θ9, angle θ5≈θ10, angle θ4≈θ11, angle θ3≈θ12, angle θ2≈θ13, angle θ1≈θ31 are established from symmetry with respect to the y-axis. In such a case, the positions of the light projecting section 52 and the light receiving section 54 are also substantially symmetrical with respect to the y-axis due to the symmetry of the light, and the optical paths P1, P2, P3, P4, P5, P6, P7. -P8, the optical path from the optical path P1-P2-P3-P4 can be analyzed, and if the optical path P4-P5 is substantially parallel to the x-axis, it can be seen that the above condition 1 is satisfied. Further, when the transmitted light l45 inside the tube 3 is transmitted substantially parallel to the straight line P1-P8 connecting the optical centers of the light projecting unit 52 and the light receiving unit 54, the light from the light projecting unit 52 to the light receiving unit 54 is transmitted. The optical path is the shortest, the optical path is shorter than the case where the light projecting unit 52 and the light receiving unit 54 described later are not symmetrically arranged, and as a result, even if the intensity of the light emitting element of the light projecting unit 52 is reduced, it is sufficient There is an advantage that a high S / N ratio can be secured.
In addition, the tube 3 having a variable pipe diameter is clamped / clamped by a radius of curvature of a cylindrical curved surface 520 formed on the lower surface of the clamp 44, and the cylindrical inner pressure contact surface between the case main bodies 41 and 42 and the clamp 44 is used. The axial position of the cylindrical tube 3 is always constant even when its outer diameter changes (in FIG. 20, the symmetrical centerline sj1 of the case bodies 41 and 42 and the symmetrical centerline of the saddle-shaped fastener 44). sj1 and the axial center O3 of the cylindrical tube 3 with respect to any outer diameter of the tube 3 in a certain spatial positional relationship such that the optical symmetry axis sj1 is on the same plane coincident with the y-axis) In order to stably and accurately fix the tube 3, it is preferable to change the fastener 44 in accordance with the outer diameter of the tube 3. The medium-sized outer tube 3 is an optical device shown in FIG. In order to arrange physically symmetrically about the symmetrical axis sj1, the inner diameter of the inner joint cylindrical surface 520 of the fastener 44 as shown in FIG. In order to physically and symmetrically arrange the pipe 3a having a large outer diameter including the maximum diameter with respect to the optical symmetry axis sj2 shown in FIG. 21, a fastener as shown in FIG. A tube 3b having a small outer diameter including a minimum diameter is physically connected to an optical symmetry axis sj3 shown in FIG. 22 by using an inner joint cylindrical surface 520a of 44a formed with an inner diameter of D44a. In order to arrange them symmetrically, it is preferable to use one in which the inner diameter of the inner joint cylindrical surface 520b of the fastening tool 44b is formed to the size D44b as shown in FIG.
Therefore,
Condition 31) As shown in FIG. 21, in the case of the tube 3a having the maximum outer diameter of outer diameter r2 = r1, the positions of the light projecting section 52 and the light receiving section 54 are substantially symmetrical with respect to the y axis. In order to make this possible, it is necessary to set the position of the inner refraction point P4a of the tube 3a to a position below the tube center O3 (= O0). From this condition and FIG.
y0 ー y1> r1 (39)
And
y1> r1 (40)
or,
Condition 32) As shown in FIG. 22, in the case of the tube 3b having the minimum outer diameter r2b, the positions of the light projecting portion 52 and the light receiving portion 54 can be arranged at substantially symmetrical positions with respect to the y axis. In order to achieve this, it is necessary to set the position of the inner refraction point P4b of the tube 3b to a position below the center O3b of the tube, and further, the position of the inner refraction point P4b of the tube 3b having the smallest outer diameter is If an appropriate position is set below the center O3b, the influence of the tube thickness (= r2-r3) of the tube 3b having the smallest outer diameter can be minimized. Here, if the ratio between the maximum outer diameter r1 and the minimum outer diameter r2b is m,
r1 / r2b = m (41)
[0013]
Arrange the above conditions 2 to 32,
f0) As an initial setting, for example, when setting the maximum outer diameter r1 = 25.4mm and the minimum outer diameter r2b = 6mm of the cylindrical tube,
m = maximum outer diameter r1 / minimum outer diameter r2b = 4.2 (42)
It becomes. Furthermore, the refractive index n1 of the case main body 41 including the optical path changing means 407, 411 is generally in the range of 1.2 to 2.2, as the refractive index of the synthetic resin material or glass.
n1 = 1.2 to 2.2 (43)
However, when the case body is made of synthetic resin material such as polycarbonate,
n1 ≒ 1.5 (44)
It becomes. Next, the following approximate expression is obtained from FIG.
tan (θ20) = x2 / y2 ≒ x1 / y1 ≒ x1 / r1 (45)
Also, if Equation 1 is transformed,
tan (θ1) = x1 / (y0-y1) ≈ tan (θ20) / (y0 / r1-1) (46)
Furthermore, from FIG.
Figure 0003853709
Because
k1 = y0 / r1 (48)
Then, equations 46 and 47 can be replaced as:
tan (θ1) ≒ tan (θ20) / (k1-1) (49)
tan (θ1 / m) ≒ 1 / (m · (k1-1) +1) (50)
Furthermore, in FIG. 22, if the intersection of the straight line P0-P2 and the x axis is point Q0, and the intersection of the straight line passing through the point P2 and parallel to the x axis is the point Q2, the triangle P0O0Q0 and the triangle Because P0Q2P2 is similar,
r1 / y0 = 1 / k1 ≒ x2 / (y0-y2) (51)
If this is transformed,
x2 ≒ (y0-y2) / k1 = r1 · k1 / (k1 + 1 / tan (θ20)) (52)
From Equation 45 and Equation 1,
x1 ≒ r1 · tan (θ20) (53)
y1 = y0−x1 / tan (θ1) = r1 · (k1−tan (θ20) / tan (θ1)) (54)
For example,
k1 = 2.0 (55)
Then, from Formula 50
tan (θ1 / m) ≒ 1 / (m · (k1-1) +1) = 1 / 5.2 = 0.1923 (56)
Therefore, θ1 can be calculated as follows:
Figure 0003853709
Also, θ20 is obtained from Equation 49.
tan (θ20) ≒ (k1-1) tan (θ1) (59)
Therefore,
Figure 0003853709
Next, from Equation 5
Figure 0003853709
Therefore, change the setting of Formula 55,
k1 = 2.0 + 0.5 = 2.5 (64)
As the above calculation, the equations 57, 60, 62 give
Figure 0003853709
Figure 0003853709
θ2 = π / 2-θ1-θ20 = 13.25 degrees (69)
Thus, appropriate initial values θ1, θ20, and θ2 could be calculated from the appropriately set magnifications m and k1.
[0014]
f1) Next, in the case of the outer diameter tube (r2 = r1) having the largest outer diameter of the cylindrical tube to which the liquid detection device 4 is attached, the side where the liquid detection device is installed below the center of the cylinder is connected to the detection transmitted light l45. The fixed position (-x1, -y1), (x8, -y8) = (x1 (rmax), -y1 (rmax)) of the light projecting part and the light receiving part are connected to the geometrical equation and the optical equation, respectively. Let's calculate. This condition is always satisfied if θ2 in Expression 62 is greater than zero. That is,
θ2 = π / 2−θ1−θ20> 0.0 (70)
Combining the above formulas 53 and 54 with formulas 65, 67 and 69 yields the following formula.
x1 (rmax) ≒ r1 · tan (θ20) = r1 · 0.9654 (71)
y1 (rmax) = r1 ・ (k1-tan (θ20) / tan (θ1)) ≒ r1 (72)
In the case of a large outer diameter pipe (for example, an outer diameter D44a ≒ 2 · r1 to 1.6 · r1) 3a including the outer diameter tube (r2 = r1) with the largest outer diameter of the cylindrical tube to which the liquid detection device is attached The inner joint of the fastening tool 44a that fixes / holds the pipe 3a in a predetermined spatial positional relationship (for example, the relation that the symmetry axes of the case main bodies 41 and 42, the pipe 3a, and the fastening tool 44a are all on the same plane). The surface 520a is preferably formed in a cylindrical shape having an outer diameter D44a, and as shown in FIG. 23B, a notch 524 is formed on the outer side so that the thumbscrew 43b does not interfere. preferable.
[0015]
f2) Also, in the case of the outer diameter tube (r2 = r2b) with the smallest outer diameter of the cylindrical tube to which the liquid detection device is attached, the part on the side where the liquid detection device is attached below the center O3 of the cylinder is detected in FIG. The fixed positions (-x1, -y1) and (x8, -y8) = (x1 (rmin), -y1 (rmin)) of the light projecting part and the light receiving part are used so that the transmitted light l45 is transmitted. And the optical equations are calculated simultaneously.
From Equation 6,
Figure 0003853709
From Equation 7
Figure 0003853709
From FIG.
x3 ≒ r2 = r1 / m (77)
y3− (r1-r1 / m) ≒ r2 / 2 = r1 / (2 ・ m) (78)
Therefore, from Equation 10
Figure 0003853709
Than this,
θ22 ≒ 63.43 degrees (80)
Further, from Equation 11,
Figure 0003853709
The refractive index n2 of the cylindrical tube 3 can be calculated as
n2 = 1.5 (83)
Then, from equations 12 and 13, the angles θ5 and θ23 can be calculated as follows.
Figure 0003853709
or,
Figure 0003853709
[0016]
Next, referring to FIG. 13, when the condition 2 is satisfied, the angle θ25 has the following value.
θ25 ≒ 0.0 (88)
or,
θ7 + θ25 = θ23 + θ6 (89)
Because
θ7 ≒ θ23 + θ6 (90)
Substituting this into Equation 18,
sin (θ23 + θ6) = n2 * sin (θ6) (91)
If this equation is transformed,
tan (θ6) = sin (θ23) / (n2−cos (θ23)) (92)
Therefore, when the value of Expression 87 is substituted,
Figure 0003853709
And substituting this into Equation 90 gives
θ7 ≒ θ23 + θ6 = 61.79 degrees (95)
Furthermore, from Equation 19,
Figure 0003853709
Is obtained.
In the analysis of the above equations 88 to 97, the coordinates of x3, y3, x4, and y4 are not used at all. Therefore, from Equation 81
θ4 = π / 2−θ21−θ22> 0.0 (98)
Then, the light projecting portion and the light receiving portion are fixed at positions (-x1, -y1), (x8) so that the transmitted light for detection l45 is transmitted through the portion on the side where the liquid detection device below the cylindrical center O3 is attached. , -y8) can be calculated respectively. In other words, if the condition of Expression 98 is satisfied, it will be understood that the refraction / transmission condition in the tube 3 is satisfied regardless of the coordinates of the points P3 and P4.
For example, when FIG. 13 is applied to the tube 3b having the minimum outer diameter r2b = r1 / m and the equations 96 and 97 are first substituted into the equations 15 and 16, the coordinates of the point P4 can be calculated by the following equation.
x4 = r3 · sin (θ24) (99)
y4 = r3.cos (θ24) + yO3 (100)
Next, the coordinates of the point P3 can be calculated by the following formulas from the formulas 9, 10, and 14.
x3 = r2 · sin (θ22) (101)
y3 = r2 · cos (θ22) + yO3 (102)
Further, the coordinates of the point P2 can be calculated by the following equations from the equations 3 and 4.
x2 = r1 · sin (θ20) (103)
y2 = r1 · cos (θ20) (104)
Furthermore, the coordinates (x1, y1) of the point P1 can be calculated from the intersection of two straight lines of the following equation.
y + y2 = tan (θ1) · (x + x2) (105)
y + y0 = (− 1 / tan (θ1)) × x (106)
That is,
Figure 0003853709
Figure 0003853709
Thus, when the cylindrical tube has the smallest outer diameter (r2 = r2b), when the transmitted light for detection l45 that satisfies the condition 2 is transmitted, the fixing position of the light projecting unit and the light receiving unit (-x1, -y1), (x8, -y8) = (x1 (rmin), -y1 (rmin)) can be calculated by equations 107 and 108, respectively.
In addition, in the case of a small outer diameter tube (for example, outer diameter D44b ≒ 2.6 · r2b to 2 · r2b) 3b including the outer diameter tube (r2 = r2b) with the smallest outer diameter of the cylindrical tube to which the liquid detection device is attached When the liquid 2 is injected into the tube 3b, in FIG. 22, the transmitted light l45b for detection from the point P4 is not refracted, or refracted at a very small refraction angle and travels straight through the liquid 2. . As a result, the light incident on the outer peripheral wall of the tube 3b is incident on the fixed position of the light receiving portion at a relatively short distance and is not sufficiently attenuated, so that the light receiving portion 54 may malfunction. In order to reliably prevent such a malfunction, the small outer diameter tube 3b has a predetermined spatial positional relationship (for example, the symmetry axes of the case main bodies 41 and 42, the tube 3b, and the fastener 44b are all on the same plane. The inner joint surface 520b of the fastener 44b that is fixed / held in the relationship) is preferably formed in a cylindrical shape having an outer diameter D44b. Further, the cylindrical inner joint surface 520b has a shape as shown in FIG. When the groove-shaped notch 522 is formed, the substantially straightly transmitted liquid light l45b as shown in FIG. 22 is guided / diffusely reflected inside the notch 522, and the amount of light incident on the light receiving unit 54 is greatly increased. Therefore, it is preferable.
[0017]
f3) Further, the fixed position of the light projecting unit and the light receiving unit calculated in the case of the outer diameter tube having the largest outer diameter of the cylindrical tube of f1) and the outer diameter of the cylindrical tube of f2) are the smallest. Calculate the error between the light projecting unit and the fixed position of the light receiving unit calculated in the case of the outer diameter tube, and the light projecting unit when the outer diameter of the cylindrical tube is maximum so that the fixed position error is reduced. The fixing position of the light receiving unit and / or the fixing position of the light projecting unit and the light receiving unit in the case of the outer diameter tube having the smallest outer diameter is changed.
In addition, when calculating the fixed position of the light projecting unit and the light receiving unit, the outer diameter of the cylindrical tube is intermediate between the largest outer diameter tube (r2 = r1) and the smallest outer diameter tube (r2 = r2b). For the outer diameter pipe (r2 = (r1 + r2b) / 2) of 1/2 of the above, if the fixed position of the light projecting part and the light receiving part is calculated, the change of the fixed position of the light projecting part and the light receiving part It is preferable because it can be understood in more detail what kind of tendency this has.
Furthermore, in the case where the outer diameter tube (r2 = r1) having the largest outer diameter of the cylindrical tube to which the liquid detection device 4 of the above f1) is attached is a fixed position (−x1, -y1), (x8, -y8) = (x1 (rmax), -y1 (rmax)) When the analysis results of the above equations 88 to 97 are applied to the calculation, first, FIG. The refractive conditions from the optical path changing means 407 to the tube 3a at the point P2 are the refractive index n1 of the optical path changing means 407 and the refractive index n2 of the pipe 3a with respect to the incident angle θ2 and the refractive angle θ32. Are equal, the following equation holds.
θ32 = θ2 (111)
In FIG. 21 corresponding to FIG. 13, at the point P4, the angle θ23 = θ1 formed by the optical path P2−P4 with the x axis and the angle θ24 = θ20 formed by the radius P4−O0 with the y axis. The following equation is established instead of Equation 17 between the incident angle θ61, the refraction angle θ71, and the angle θ25 formed by the refracted light P4−P5 into the air inside the tube 3a with the x axis.
θ1 + θ61 + θ20 = π / 2 (112)
Further, the following equation is established between the refractive angle n2 of the tube 3 between the incident angle θ61 and the refraction angle θ71.
sin (θ71) / sin (θ61) = n2 (113)
Similarly, in FIG. 21 corresponding to FIG. 14, the following equation is established from the refractive index n2 of the tube 3 between the incident angle θ81 and the refraction angle θ91 at the point P5.
sin (θ81) / sin (θ91) = n2 (114)
Thus, from Equation 66 and Equation 17,
θ23 = θ1 ≒ 32.76 degrees (115)
Then,
Figure 0003853709
And substituting this into equation 90 gives
θ71 ≒ θ23 + θ61 = 72.15 degrees (117)
Furthermore, from Equation 19,
Figure 0003853709
Is obtained.
In FIG. 21, the angle P2O0P0 = θ20 is
Figure 0003853709
Therefore, the coordinates of the point P2 can be calculated from the equations 103 and 104, and the coordinates (x1, y1) of the point P1 can be calculated from the equations 107 and 109.
Figure 0003853709
Figure 0003853709
Therefore, to summarize the above, from the equations 71 and 72,
x1 (rmax) ≒ r1 · tan (θ20) = r1 · 0.9654 (71)
y1 (rmax) = r1 ・ (k1-tan (θ20) / tan (θ1)) ≒ r1 (72)
And from equations 108, 110, 123, 125:
-x1 (rmin) = 0.6069 · r1 (108)
-y1 (rmin) = 0.92463 · r1 (110)
Therefore, in the above example, the fixed position x1 (rmax), y1 (rmax) of the light projecting part (and the light receiving part) in the case of the outer diameter tube having the largest outer diameter of the cylindrical tube, and the cylindrical tube Move the fixed position x1 (rmin) and y1 (rmin) of the light projecting part (and light receiving part) in the direction of increasing the absolute value of both x and y coordinates in the case of the outer diameter tube with the smallest outer diameter. Then, the above calculation may be repeated again.
[0018]
f4) In the fixing position changing step of f3) above, the error between the fixing positions of the maximum outer diameter pipe and the minimum outer diameter pipe is within a predetermined error ε (for example, the outer diameter r1 of the maximum outer diameter pipe is If the radius is around 1 m, the radius is within a circle of several mm, and if the outer diameter of the largest outer diameter tube is around 25 mm, the radius is within the circle of 1.0 mm, preferably the radius is Repeat until within 0.5mm circle.
Further, the fixed positions x1, y1 of the light projecting portion (and light receiving portion) of the outer diameter tube having the largest and smallest outer diameter of the cylindrical tube are changed again by changing the x, y coordinates, and the above f1) to f3) again. If the error between the fixed position of the maximum outer diameter tube and the minimum outer diameter tube does not fall within the predetermined error ε even after repeating the above calculation, the inclination angles of the mounting surfaces 408, 412 of the optical path changing means are as follows. It is preferable to repeat the above operations f1) to f3) by changing θ1 and / or θ31 or changing the coordinate y0 of the intersection P0 of the mounting surface.
Thus, when the inclination angle θ1 and the coordinate y0 of the intersection P0 of the mounting surface are appropriately set, when m = 4.2 and the outer diameter of the maximum outer diameter tube is around 25 mm, the range of the predetermined error ε is It is possible to make precise adjustments repeatedly until it is within the 0.1 mm circle.
Note that the range of the predetermined error ε depends on the directional sensitivity characteristics of the light projecting unit 52 and the light receiving unit 54 and the size of the light receiving area, and the silicon photo diode TPS704 manufactured by Toshiba Corporation is used for the light receiving unit 54. In this case, the light receiving part is composed of a square light receiving part having a side length of 2.66 mm, and its half-value angle θ1 / 2 is ± 65 degrees. Therefore, when measuring a relatively large tube diameter, it is preferable to dispose a condenser lens system in front of the light receiving unit.
When the GaAs infrared light emitting diode LN155 manufactured by Matsushita Electric Industrial Co., Ltd. is used for the light projecting unit 52, the half-value angle θ1 / 2 of the directional sensitivity characteristic becomes ± 80 degrees, and the light projecting unit 52 In addition, when GaAs infrared light emitting diode TLN107A manufactured by Toshiba Corporation is adopted, the half-value angle θ1 / 2 of the directional sensitivity characteristic becomes ± 15 degrees, and when performing measurement with reduced influence of bubbles, It is preferable to use a light emitting element having a large half-value angle θ1 / 2 of the directional sensitivity characteristic.
In the above example, the light path changing means 407 and 411 are interposed to prevent the light projecting unit 52 and the light receiving unit 54 from directly contacting the tube 3 or being exposed to the outside. The light projecting unit 52 and the light receiving unit 54 are configured by omitting the means 407 and 411, or the light path changing units 407 and 411 are integrally formed on the light projecting unit 52 and the light receiving unit 54 side to directly form the tube 3 The liquid detection device 4 of the present invention can be configured even if it is brought into contact with or exposed to the outside. In such a case, all the measurement objects from the maximum outer diameter tube to the minimum outer diameter tube can be measured. The projection light from the light projecting unit 52 and the refracted / transmitted light to the light receiving unit 54 can be projected / received to the tube 3 at the fixed angles θ21 and θ29, respectively. It may be configured as follows.
[0019]
Next, FIG. 25 shown corresponding to FIG. 20 is an example of another configuration of the liquid detection device 4a of the present invention. In the detection device 4a, the inner cross-sectional shape is changed from the cylindrical surface 406 to the flat surfaces 406a and 406b, and the optical path changing means 407a and 411a are formed in a flat prism shape, and are formed on the central fitting protrusion 450a of the case main body 42. The vertical length of the cylindrical joining upper surface 451a with the tube 3 is formed long enough so that the light beam projected from the light projecting unit 52 does not directly enter the light receiving unit 54. Also in the case of the optical path from 52 to the light receiving portion 54, the tube 3 with a variable tube diameter is clamped / clamped by the radius of curvature of the cylindrical curved surface 520 formed on the lower surface of the clamp 44, and the case main bodies 41a, 42a The outer diameter of the axial center position of the cylindrical tube 3 fluctuates at the cylindrical inner pressure welding / joining surface with the fastener 44 Even in this case, a constant spatial positional relationship (in FIG. 25, the symmetry center line sj4 of the case body 41a, the symmetry center line sj4 of the saddle-shaped fastener 44, and the axis O3 of the cylindrical tube 3 are To ensure stable and precise / high precision fixing to the outer surface of the tube 3, the optical symmetry axis sj4 = a constant spatial positional relationship on the same plane that coincides with the y-axis, regardless of the outer diameter. It is preferable to change the fastener 44 according to the diameter,
In order to arrange the medium-sized outer diameter tube 3 physically symmetrically with respect to the optical symmetry axis sj4, the inner diameter of the inner joint cylindrical surface 520 of the fastener 44 as shown in FIG. In order to use the one formed in D44 and physically and symmetrically arrange the tube 3a having a large outer diameter including the maximum diameter with respect to the optical symmetry axis, a fastener 44a as shown in FIG. In order to physically and symmetrically arrange the tube 3b with a small outer diameter including the minimum diameter on the optical symmetry axis, the inner diameter of the inner joint cylindrical surface 520a is formed to the size D44a. 24, it is preferable to use the inner fastener cylindrical surface 520b of the fastening tool 44b having an inner diameter of D44b as shown in FIG.
Further, the analysis steps f0) to f4) can be executed in the same manner even when the inner cross section is planar, and the refracted and transmitted light is almost parallel to the x axis in the hollow interior of the tube 3. Therefore, the fixed positions of the light projecting unit 52 and the light receiving unit 54 can be calculated symmetrically with respect to the optical symmetry axis sj4.
[0020]
Next, FIG. 26 shown corresponding to FIG. 20 is an example of another configuration of the liquid detection device 4b of the present invention. In the detection device 4b, the inner cross-sectional shape of the case main bodies 41b and 42b is formed by the cylindrical surface 406 as in the liquid detection device 4, but the light projecting unit 52 and the light receiving unit 54 are arranged asymmetrically with respect to the y axis. 26, the light shielding material 450b is interposed in the optical path in the middle so that the light beam projected from the light projecting unit 52 does not directly enter the light receiving unit 54 in the arrangement example of FIG. It is necessary to let
Even in the case of the asymmetrical arrangement of the optical path from the light projecting unit 52 to the light receiving unit 54, the tube 3 with a variable tube diameter is clamped / clamped by the radius of curvature of the cylindrical curved surface 520 formed on the lower surface of the clamp 44. The axial center position of the cylindrical tube 3 at the cylindrical inner pressure welding / joining surface between the case main bodies 41b and 42b and the fastening tool 44 is constantly constant even if the outer diameter varies (in FIG. 26). The center line aj5 of the case body 41b, the center line aj5 of the saddle-shaped fastener 44, and the axial center O3 of the cylindrical tube 3 are flush with the y-axis for any outer diameter of the tube 3. It is preferable to change the fastening tool 44 in the same manner as described above in accordance with the outer diameter of the tube 3 in order to stably and precisely fix it in a certain spatial positional relationship as described above. Thus, in the case of the asymmetrical arrangement of the optical path between the light projecting unit 52 and the light receiving unit 54 as shown in FIG. 26, the analysis steps f0) to f4) are performed by combining the geometric equation and the optical equation. The non-linear equations of Equations 1 to 38 can be executed directly by numerical analysis, and the light emitting unit and the light receiving unit calculated in the case of the outer diameter tube having the largest outer diameter of the cylindrical tube of f1) are used. The fixed position, the fixed position of the light projecting part and the light receiving part calculated in the case of the outer diameter tube having the smallest outer diameter of the cylindrical tube of f2), and f2-2) the outer diameter of the cylindrical tube is the largest. Light emitting unit and light reception calculated for an outer diameter pipe (r2 = (r1 + r2b) / 2) that is halfway between the outer diameter pipe (r2 = r1) and the smallest outer diameter pipe (r2 = r2b) Compared with the fixed position of the part,
Further, in the same manner as in f3), the fixing position of the light projecting unit and the light receiving unit calculated in the case of the outer diameter tube having the maximum outer diameter of the cylindrical tube in f1), and the cylindrical tube in the f2) Calculate the error between the fixed position of the light projecting part and the light receiving part calculated in the case of the outer diameter tube having the smallest outer diameter, and the outer diameter of the cylindrical tube is the largest so that the fixed position error is reduced. In this case, the fixing position of the light projecting part and the light receiving part and / or the fixing position of the light projecting part and the light receiving part in the case of the outer diameter tube having the smallest outer diameter is changed.
Similarly to f4), the fixing position changing process of f3) is performed so that the error between the fixing positions of the maximum outer diameter pipe and the minimum outer diameter pipe is within a predetermined error ε range (for example, the maximum outer diameter When the outer diameter r1 of the diameter tube is around 1 m, the radius is within the range of a few mm, and when the outer diameter of the largest outer diameter tube is around 25 mm, the radius is 1.0 mm. Repeat until it is within a range, preferably within a circle with a radius of 0.5 mm. Further, the fixed positions x1, y1 of the light projecting portion (and light receiving portion) of the outer diameter tube having the largest and smallest outer diameter of the cylindrical tube are changed again by changing the x, y coordinates, and the above f1) to f3) again. If the error between the fixed position of the maximum outer diameter tube and the minimum outer diameter tube does not fall within the predetermined error ε even after repeating the above calculation, the inclination angles of the mounting surfaces 408, 412 of the optical path changing means are as follows. It is preferable to repeat the above operations f1) to f3) by changing θ1 and / or θ31 or changing the coordinate y0 of the intersection P0 of the mounting surface.
However, in the case of the asymmetric arrangement of the light projecting unit 52 and the light receiving unit 54 as shown in FIG. 26, the error between the fixed positions of the maximum outer diameter tube and the minimum outer diameter tube is within a predetermined error ε. In general, the length of the optical path from the light projecting unit 52 to the light receiving unit 54 is longer than the optical path obtained in the case of symmetrical arrangement. A decrease in the amount of light is observed, and generally the S / N ratio of the apparatus tends to decrease.
However, if the inclination angle θ1 and the coordinate y0 of the intersection point P0 of the mounting surface are appropriately set, it takes some time to calculate, but even with an asymmetrical light projecting part / light receiving part arrangement, the maximum outer diameter and the minimum outer diameter When the ratio is m = 4.2 and the outer diameter of the maximum outer diameter tube is around 25 mm, repeat the above-mentioned predetermined error ε range until the error radius is within the circle of 0.5 mm and adjust precisely. It is possible.
[0021]
【The invention's effect】
As described above, according to the method for calculating the fixed position between the light projecting unit and the light receiving unit of the present invention, the pipe diameter is different in the in-pipe liquid detection apparatus / liquid level detection apparatus that changes in the axial direction of the pipe diameter. Even in this case, the position where the error between the fixed position of the maximum outer diameter tube and the minimum outer diameter tube is within the predetermined error ε is set in the optical path of the transmitted light for liquid detection by the above step f4). Along with this, the nonlinear equations of Equations 1 to 38, which are a combination of geometric equations and optical equations, are accurately obtained by directly solving by numerical analysis, and the fixed positions of the light projecting unit and the light receiving unit within the error range are obtained. Since the light projecting unit and the light receiving unit are respectively disposed, the projection angle adjustment work of the light projecting unit is not required at all, and the detection light refracted / transmitted into the tube from the outside of the light projecting tube is used. Since the presence or absence of liquid is judged, colored liquid and high viscosity It is possible to determine the presence or absence of a liquid very stably even if the liquid is liable to occur, and the outer diameter of the cylindrical tube to which the device is attached is 20% or more in the case of a large diameter tube and a small diameter tube, Preferably, even if they are different by 200% or more, more preferably 400% or more, the same sensor body can be used, and the light projecting unit and the light receiving unit in a liquid detection device that requires simple installation and does not require skill It is possible to provide a fixed position calculation method.
In addition, according to the in-tube liquid detection device and / or the liquid level detection device of the present invention, the light is half-cut even if the tube is not formed of a transparent member with respect to the liquid level that changes in the axial direction of the tube diameter. It can be used as long as it is made of a translucent member such as a transparent material, and even when the tube diameter is different, the projection angle adjustment work of the light projecting unit is not required at all, and light is projected. Since the presence / absence of the liquid is determined by the detection light refracted / transmitted into the tube from the outside of the tube, the presence / absence of the liquid can be determined very stably even for a colored liquid or a liquid having a high viscosity and easily generating bubbles. Even if the outer diameter of the cylindrical tube to which the device is attached is 20% or more, preferably 200% or more, more preferably 400% or more, the outer diameter of the cylindrical tube to which the apparatus is attached is large or small. The same sensor body can be used, installation is simple / reliable, and installation is easy. During that requires very narrow, adjustment is easy, it is possible to provide a do not require liquid detection device / liquid level detection device the skilled handling.
[Brief description of the drawings]
FIG. 1 (A) is an example in which the liquid level detection device 4s of the present invention is applied to liquid level detection in a liquid storage container (tank, catheter, etc.) 1; It is the schematic which attached the detection apparatus 4, FIG.1 (B) is the enlarged front view, FIG.1 (C) is the enlarged top view, FIG.1 (D) is the enlarged side view.
2 (A) is a longitudinal sectional view of the in-tube liquid detection device 4, FIG. 2 (B) is a top view of a translucent material case 41, and FIG. 2 (C) is a bottom view thereof. FIG. 2D is a side view thereof.
3 (A) is a longitudinal sectional view of the opaque case 42, FIG. 3 (B) is a top view thereof, FIG. 3 (C) is a bottom view thereof, and FIG. 3 (D). ) Is a side view thereof.
4A is a top view of the fastener 44, FIG. 4B is a partial sectional view taken along line 4B-4B, and FIG. 4C is the line 4C-4C. FIG. 4D is a bottom view of FIG.
5 (A) is a top view of the fastening material 430, FIG. 5 (B) is a front view thereof, and FIG. 5 (C) is a side view thereof.
6 is a diagram showing the entire optical path from a light projecting unit 52 to a light receiving unit 54 according to the present invention, centering on the angle at each refraction point. FIG.
FIG. 7 is a diagram showing an entire optical path from a light projecting unit 52 to a light receiving unit 54 according to the present invention, centering on position coordinates at each refraction point.
FIG. 8 is a diagram showing a relationship among a light projecting section 52, an optical path changing means 407 and a case inner diameter r1 according to the present invention.
FIG. 9 is a diagram showing the relationship between incident light P1-P2 and refracted light l23 at the refraction point P2 of the optical path changing means 407;
10 is a diagram showing an optical path through which transmitted light propagates from a refraction point P2 of the optical path changing means 407 to an outer refraction point P3 of the cylindrical tube 3. FIG.
FIG. 11 is a diagram showing an optical path when refracted light propagates inside the cylindrical tube 3 at the outside refraction point P3.
FIG. 12 is a diagram showing an optical path through which refracted light propagates inside a tubular material of a cylindrical tube 3;
13 is a diagram showing an optical path of refracted light at an inner refracting point P4 of the cylindrical tube 3. FIG.
FIG. 14 is a diagram showing an optical path when refracted light propagates through the hollow interior of a cylindrical tube 3 and is refracted into the tube material at an inner refraction point P5.
FIG. 15 is a diagram showing an optical path through which refracted light propagates inside a tubular material of a cylindrical tube 3.
FIG. 16 is a diagram showing an optical path when refracted light propagates to the outside at an outer refraction point P6 of the cylindrical tube 3;
17 is a diagram showing an optical path through which transmitted light propagates from an outer refractive point P6 of the cylindrical tube 3 to a refractive point P7 of the optical path changing means 411. FIG.
18 is a diagram showing an optical path through which refracted light propagates at the refraction point P7 of the optical path changing means 411. FIG.
19 is a diagram showing an optical path through which refracted light propagates from the refraction point PP of the optical path changing means 411 to the light receiving unit 54. FIG.
20 is a cross-sectional view showing an optical path when the liquid level detection device 4s / in-tube liquid detection device 4 of the present invention is attached to a medium outer diameter tube 3. FIG.
FIG. 21 is a transverse sectional view showing an optical path when the liquid level detection device 4s / in-tube liquid detection device 4 of the present invention is attached to a tube 3a having the maximum outer diameter.
FIG. 22 is a cross-sectional view showing an optical path when the liquid level detection device 4s / in-tube liquid detection device 4 of the present invention is attached to the tube 3b having the minimum outer diameter.
FIG. 23 (A) is a top view of another fastener 44a of the present invention, FIG. 23 (B) is a partial sectional view taken along line 23B-23B, and FIG. A sectional view taken along line 23C-23C, and FIG. 23D is a bottom view thereof.
FIG. 24 (A) is a top view of yet another fastener 44b of the present invention, FIG. 24 (B) is a partial sectional view taken along line 24B-24B, and FIG. FIG. 24D is a sectional view taken along line 24C-24C, and FIG. 24D is a bottom view thereof.
FIG. 25 is a horizontal sectional view of the in-tube liquid detection device 4a in which the inner cross section of the optical path changing means of the present invention is formed as a plane.
FIG. 26 shows an in-tube liquid detection in which the light projecting portion / light receiving portion of the present invention are arranged asymmetrically so that the error between the fixed positions with respect to the maximum outer diameter tube and the minimum outer diameter tube is within a predetermined error ε. FIG. 4 is a horizontal sectional view of the device 4b.
[Explanation of symbols]
2 liquid
3,3a, 3b Cylindrical tube
4, 4a, 4b In-pipe liquid detection device
4s In-pipe liquid level detector
41 Translucent material case
42 Shading material case
43 Fastening member
430
44, 44a, 44b Fasteners
407, 411 Optical path changing means
450 Shading material projection
46 Display means
50 circuit board
52 Projector
54 Receiver

Claims (9)

投光部と受光部とを組合せて円筒形管内の液体の有無を検出する管内液体検出装置における投光部と受光部との固定位置演算方法であって、
前記投光部及び受光部と、前記円筒形管との間に、当該管内液体検出装置を装着可能な最大管径に適合させた面が形成された光路変更手段をそれぞれ設け、
前記管の外部から当該管の中空内部の空気中に、ほぼ一定の検出角度で前記液体検知用透過光が屈折して入射するように前記投光部及び光路変更手段からなる光学経路を介して、前記透過光を投射せしめ、かつ、前記管の中空内部の空気中に液体が無い場合、前記屈折光が、直接、前記光路変更手段及び前記受光部により受光されるように前記受光部を配設し、
前記円筒形管の外径が前記最大管径の外径管であって、その中空内部に液体が無い場合、前記光路変更手段により、当該円筒形管の中空内部の空気中を前記検知用透過光が透過するようにし、かつ、当該円筒形管の円筒中心より当該液体検出装置を取り付ける側に、前記検知用透過光が透過するように前記投光部及び受光部の固定位置をそれぞれ幾何方程式及び光学方程式を連立させて演算する工程と、
前記円筒形管の外径が前記最大管径より小さい外径を有する管であって、前記最大管径より20%以上小さい最小径の管であって、その中空内部に液体が無い場合、前記光路変更手段を介して前記検知用透過光が空気中を透過し、その後前記円筒形管に入射せしめると共に、前記円筒形管の中空内部の空気中を前記検知用透過光が透過するようにし、その後、前記円筒形管から空気中を透過した前記検知用透過光を前記光路変更手段を介して前記受光部へ伝播せしめ、かつ、前記円筒形管の中空内部の空気中を前記検知用透過光が透過する場合、当該円筒形管の円筒中心より当該液体検出装置を取り付ける側を、前記検知用透過光が透過するように、前記投光部及び受光部の固定位置をそれぞれ幾何方程式及び光学方程式を連立させて演算する工程と、
予め設定した空間的固定位置の投光部及び受光部取付位置に対し、前記円筒形管の外径が前記最大管径の場合に演算した前記投光部及び受光部の固定位置と、前記円筒形管の外径が前記最小径の管の場合に演算した前記投光部及び受光部の固定位置とをそれぞれ演算し、前記種々の外径が変わる外径管に対して、当該管の中空内部に液体が無い場合、前記予め設定した空間的固定位置の投光部及び受光部が、安定的に前記屈折・透過光の主光束を受光可能となるような位置を、前記投光部及び/又は受光部の固定位置を変動させ、外径が最大管径から最小管径まで変わる外径管に対する前記投光部の固定位置の変動する差、及び、外径が最大管径から最小管径まで変わる外径管に対する前記受光部の固定位置の変動する差が、それぞれ所定の範囲内となるまで、前記幾何方程式及び光学方程式を連立させて演算し、前記投光部及び/又は受光部の固定位置を変動させることを繰り返す工程と、を含むことを特徴とする管内液体検出装置における投光部と受光部との固定位置演算方法。
A method for calculating a fixed position between the light projecting unit and the light receiving unit in the in-pipe liquid detection device that detects the presence or absence of liquid in the cylindrical tube by combining the light projecting unit and the light receiving unit,
Between the light projecting unit and the light receiving unit and the cylindrical tube, optical path changing means each having a surface adapted to the maximum tube diameter to which the in-tube liquid detection device can be mounted is provided,
Via the optical path composed of the light projecting unit and the optical path changing means so that the transmitted light for liquid detection is refracted and incident at a substantially constant detection angle from the outside of the tube into the air inside the hollow of the tube. When the transmitted light is projected and there is no liquid in the air inside the hollow of the tube, the light receiving unit is arranged so that the refracted light is directly received by the optical path changing unit and the light receiving unit. Set up
When the outer diameter of the cylindrical tube is the outer diameter tube having the maximum tube diameter and there is no liquid inside the hollow , the optical path changing means allows the detection transmission to pass through the air inside the hollow of the cylindrical tube. The geometric positions of the fixed positions of the light projecting unit and the light receiving unit are set so that light is transmitted and the detection light is transmitted from the cylindrical center of the cylindrical tube to the side where the liquid detection device is attached. And calculating the optical equation simultaneously,
Said outer diameter of the cylindrical tube is a tube having the largest tube diameter smaller outer diameter, said a maximum pipe smaller minimum diameter of the tube by 20% or more than the diameter, when there is no liquid in the hollow interior, wherein The detection transmitted light is transmitted through the air through the optical path changing means, and then incident on the cylindrical tube, and the detection transmitted light is transmitted through the air inside the hollow of the cylindrical tube, Thereafter, the transmitted light for detection that has passed through the air from the cylindrical tube is propagated to the light receiving unit via the optical path changing means, and the transmitted light for detection passes through the air inside the hollow of the cylindrical tube. Is transmitted from the center of the cylindrical tube to the side where the liquid detection device is attached, the fixed positions of the light projecting unit and the light receiving unit are respectively set to the geometric equation and the optical equation so that the transmitted light for detection is transmitted. Calculate with simultaneous And a step,
The fixed position of the light projecting unit and the light receiving unit calculated when the outer diameter of the cylindrical tube is the maximum tube diameter with respect to the light projecting unit and the light receiving unit mounting position at a preset spatial fixed position, and the cylinder Calculate the fixed position of the light projecting part and the light receiving part calculated when the outer diameter of the shape pipe is the minimum diameter pipe, and the hollow pipe When there is no liquid inside, the light projecting unit and the light receiving unit at the preset spatial fixed positions are positioned so that the main light beam of the refracted / transmitted light can be stably received. And / or the variation of the fixing position of the light projecting unit with respect to the outer diameter tube, where the outer diameter varies from the maximum tube diameter to the minimum tube diameter, and the outer diameter varies from the maximum tube diameter to the minimum tube the difference of variations in the fixed position of the light receiving portion with respect to the outer diameter pipe vary to diameter, respective predetermined Until 囲内, the geometric equations and the optical equation is simultaneous with operation, the tube liquid detection apparatus characterized by comprising a step of repeating varying the fixed position of the light projecting unit and / or the light receiving portion Method for calculating the fixed position between the light projecting part and the light receiving part in FIG.
前記光路変更手段に形成された前記管内液体検出装置を装着可能な最大管径に適合させた面が、
当該管内液体検出装置が装着可能な最大管径に適合させた半径を有する円筒曲面、又は、当該管内液体検出装置が装着可能な最大管径に適合させた平面である請求項1に記載の管内液体検出装置における投光部と受光部との固定位置演算方法。
The surface adapted to the maximum tube diameter to which the in-tube liquid detection device formed in the optical path changing means can be attached,
2. The inside of a tube according to claim 1, which is a cylindrical curved surface having a radius adapted to a maximum tube diameter to which the in-tube liquid detection device can be attached, or a plane adapted to a maximum tube diameter to which the in-tube liquid detection device can be attached. A method for calculating a fixed position between a light projecting unit and a light receiving unit in a liquid detection apparatus.
前記投光部と受光部との間に、前記投光部からの透過光が、直接、前記受光部により受光されることを防止する不透光材/遮光材を設けた請求項1又は2に記載の管内液体検出装置における投光部と受光部との固定位置演算方法。  The light-transmitting material / light-shielding material for preventing transmitted light from the light projecting unit from being directly received by the light receiving unit is provided between the light projecting unit and the light receiving unit. The fixed position calculation method of the light projection part and light-receiving part in the in-pipe liquid detection apparatus of description. 前記投光部及び受光部と、前記円筒形管との間に設けられた前記光路変更手段に対し、それぞれ、
前記投光部固定手段と前記光路変更手段とを一体に形成し、更に、
前記受光部固定手段と前記光路変更手段とを一体に形成するようにした請求項1乃至3のいずれか1項に記載の管内液体検出装置における投光部と受光部との固定位置演算方法。
For the optical path changing means provided between the light projecting unit and the light receiving unit, and the cylindrical tube,
The light projecting portion fixing means and the optical path changing means are integrally formed, and
The fixed position calculation method for the light projecting unit and the light receiving unit in the in-tube liquid detection device according to any one of claims 1 to 3, wherein the light receiving unit fixing unit and the optical path changing unit are integrally formed.
前記外径が前記最大管径から前記最小管径まで変わる前記円筒形管を、円筒曲面の形成された半径部を有する緊締具により挟持し、前記円筒形管の軸芯位置を、その外径が変わっても所定の空間位置関係に固定するようにした請求項1乃至4のいずれか1項に記載の管内液体検出装置における投光部と受光部との固定位置演算方法。 The cylindrical tube in which the outer diameter changes from the maximum tube diameter to the minimum tube diameter is clamped by a fastening tool having a radius portion formed with a cylindrical curved surface, and the axial center position of the cylindrical tube is determined by the outer diameter. The fixed position calculation method between the light projecting unit and the light receiving unit in the in-tube liquid detection device according to any one of claims 1 to 4, wherein the position is fixed to a predetermined spatial positional relationship even if the angle changes . 前記液体が、当該管内を管径の軸芯方向に変化する請求項1乃至5のいずれか1項に記載の管内液体検出装置における投光部と受光部との固定位置演算方法。  The method for calculating a fixed position between a light projecting unit and a light receiving unit in the in-pipe liquid detection device according to claim 1, wherein the liquid changes in the tube in the axial direction of the tube diameter. 前記投光部と前記受光部との間に、前記円筒形管の内/外周面で反射された投射光が、前記受光手段で受光されることを遮る遮光部材を設けるようにした請求項1乃至6のいずれか1項に記載の管内液体検出装置における投光部と受光部との固定位置演算方法。  2. A light shielding member is provided between the light projecting unit and the light receiving unit so as to block projection light reflected by the inner / outer peripheral surface of the cylindrical tube from being received by the light receiving unit. A method for calculating a fixed position between the light projecting unit and the light receiving unit in the in-pipe liquid detection device according to any one of claims 1 to 6. 前記円筒形管が、透明部材、及び/又は、半透明部材からなる透光部材で構成され、かつ、
ガラス、セラミックス部材、又は、ABS樹脂、ポリエチレン、ポリ塩化ビニル、ポリスチレン、ポリプロピレン、ポリビニルアルコール、メタクリル樹脂、石油樹脂、ポリアミド、ポリ塩化ビニリデン、ポリカーボネート、ポリアセタール、弗素樹脂、ポリイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリベンズイミダゾール、ポリシクロオレフィン等の熱可塑性樹脂、又は、フェノール樹脂、尿素樹脂、不飽和ポリエステル、ポリウレタン、アルキド樹脂、メラミン樹脂、エポキシ樹脂等の熱硬化性樹脂、則ち、熱可塑性樹脂又は熱硬化性樹脂等の合成樹脂部材、又は、プラスチック、又は、ポリアミノ酸、脂肪族ポリエステル、ポリーεーカプロラクトン、ポリビニルアルコール、キトサン、澱粉、セルロース等と汎用性ポリマーとの混合物等の生分解樹脂部材、又は、ウレタンゴム、シリコーンゴム、ポリエチレン及びポリスチレンの共重合体をポリマーの主成分とする低硬度ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、ブチルゴム、アクリルゴム、スチレンーブタジエンゴム、エチレンープロピレンゴム、クロロプレンゴム、アクリロニトリルーブタジエンゴム、弗素ゴム、多硫化ゴム、ポリエーテルゴム、クロロスルホン化ポリエチレン等の合成ゴム、又は、天然ゴム、又は、これらの組合せから成るグループから選択されたもの、
更に、ポリアミド、ポリカーボネート、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリフェニレンエーテル、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアリレート、ポリスルホン、ポリエーテルスルホン、ポリケトンスルフィド、ポリエーテルイミド、ポリアミドイミド、ポリイミド、ポリ四弗化エチレン、芳香族ポリエステル、ポリアミノビスマレイミド、トリアジン樹脂等のエンジニアリングプラスチック部材、ガラス又はセラミックス部材、及びこれらの組合せから成るグループから構成されている請求項1乃至7のいずれか1項に記載の管内液体検出装置における投光部と受光部との固定位置演算方法。
The cylindrical tube is composed of a transparent member and / or a translucent member made of a translucent member, and
Glass, ceramic members, or ABS resin, polyethylene, polyvinyl chloride, polystyrene, polypropylene, polyvinyl alcohol, methacrylic resin, petroleum resin, polyamide, polyvinylidene chloride, polycarbonate, polyacetal, fluorine resin, polyimide, polyetheretherketone, polyphenylene Thermoplastic resins such as sulfide, polybenzimidazole, polycycloolefin, or thermosetting resins such as phenol resin, urea resin, unsaturated polyester, polyurethane, alkyd resin, melamine resin, epoxy resin, that is, thermoplastic resin Or a synthetic resin member such as a thermosetting resin, or plastic, or polyamino acid, aliphatic polyester, poly ε-caprolactone, polyvinyl alcohol, chitosan, starch, cellulose Biodegradable resin components such as a mixture of polymer and general-purpose polymer, or low-hardness rubber, butadiene rubber, isoprene rubber, nitrile rubber, butyl rubber whose main component is a polymer of urethane rubber, silicone rubber, polyethylene and polystyrene , Synthetic rubber such as acrylic rubber, styrene-butadiene rubber, ethylene-propylene rubber, chloroprene rubber, acrylonitrile-butadiene rubber, fluorine rubber, polysulfide rubber, polyether rubber, chlorosulfonated polyethylene, or natural rubber, or these Selected from the group consisting of
Furthermore, polyamide, polycarbonate, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyphenylene ether, polyether ether ketone, polyphenylene sulfide, polyarylate, polysulfone, polyethersulfone, polyketone sulfide, polyetherimide, polyamideimide, polyimide, polytetrafluoroethylene. The pipe according to any one of claims 1 to 7, comprising a group consisting of engineering plastic members such as ethylene fluoride, aromatic polyester, polyamino bismaleimide, triazine resin, glass or ceramic members, and combinations thereof. A method for calculating a fixed position between a light projecting unit and a light receiving unit in a liquid detection apparatus.
前記投光部の発光手段に、半導体発光ダイオード、赤外レーザー発光素子、投光用光ファイバーの少なくとも1つを含む請求項1乃至8のいずれか1項に記載の管内液体検出装置における投光部と受光部との固定位置演算方法。  The light projecting unit in the in-pipe liquid detection device according to claim 1, wherein the light emitting unit of the light projecting unit includes at least one of a semiconductor light emitting diode, an infrared laser light emitting element, and a light projecting optical fiber. And fixed position calculation method for the light receiving unit.
JP2002205509A 2002-07-15 2002-07-15 Method for calculating a fixed position between a light projecting unit and a light receiving unit in a liquid detection device in a tube and a liquid detection device in a tube Expired - Lifetime JP3853709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002205509A JP3853709B2 (en) 2002-07-15 2002-07-15 Method for calculating a fixed position between a light projecting unit and a light receiving unit in a liquid detection device in a tube and a liquid detection device in a tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002205509A JP3853709B2 (en) 2002-07-15 2002-07-15 Method for calculating a fixed position between a light projecting unit and a light receiving unit in a liquid detection device in a tube and a liquid detection device in a tube

Publications (3)

Publication Number Publication Date
JP2004045319A JP2004045319A (en) 2004-02-12
JP2004045319A5 JP2004045319A5 (en) 2004-11-18
JP3853709B2 true JP3853709B2 (en) 2006-12-06

Family

ID=31710798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002205509A Expired - Lifetime JP3853709B2 (en) 2002-07-15 2002-07-15 Method for calculating a fixed position between a light projecting unit and a light receiving unit in a liquid detection device in a tube and a liquid detection device in a tube

Country Status (1)

Country Link
JP (1) JP3853709B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006010597A (en) * 2004-06-29 2006-01-12 Takashi Wada Detection sensor for out of liquid
JP5559646B2 (en) * 2010-09-17 2014-07-23 株式会社ウエルコ Liquid sensor
KR101707553B1 (en) * 2015-07-13 2017-02-16 주식회사 케이씨텍 Sensor bracket for Liquid Level Sensor Equipped on Tank
KR200489769Y1 (en) * 2017-09-29 2019-08-05 주식회사 세바 Ultrasonic flow meter with enhanced adhesion to pipe
JP7162252B2 (en) * 2019-01-25 2022-10-28 パナソニックIpマネジメント株式会社 Liquid detection sensor
KR102243463B1 (en) * 2019-11-13 2021-04-22 주식회사 케이씨 Height adjustment device of level sensor
KR102542776B1 (en) * 2021-08-31 2023-06-14 (주)아이엘케이 Tie rod measurement fixing jig

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6244264U (en) * 1985-09-06 1987-03-17
JP2978107B2 (en) * 1996-04-12 1999-11-15 サンクス株式会社 Liquid level detector
JP2001336966A (en) * 2000-05-29 2001-12-07 Sunx Ltd Liquid detecting apparatus
JP3719130B2 (en) * 2000-11-10 2005-11-24 株式会社山武 Liquid level monitoring device

Also Published As

Publication number Publication date
JP2004045319A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
US5442435A (en) Fluid composition sensor using reflected or refracted light monitoring
JP4758769B2 (en) Gas detector
US20190099082A1 (en) Fiber assembly for respiratory gas detection
JP3853709B2 (en) Method for calculating a fixed position between a light projecting unit and a light receiving unit in a liquid detection device in a tube and a liquid detection device in a tube
JPH02173719A (en) Light transmission type spectorscope
US7780258B2 (en) Media sensor with polarization filter
CN110632008B (en) Multipoint reflection type photoelectric body sensor probe and photoelectric gas detection device
US20030030790A1 (en) Failure detecting optoelectronic sensor
US10025077B2 (en) Device for measuring solution concentration
JP4474664B2 (en) In-pipe liquid detector
US7507981B2 (en) System for identifying a characteristic of a printing media
JP4537568B2 (en) Leak sensor
US11650150B2 (en) Prism for measuring liquid concentration
US7860355B2 (en) ATR-probe
CN110779892B (en) Liquid drop sensor
JP2004045319A5 (en)
JP5369569B2 (en) Oil type monitor
JP4192587B2 (en) Device for detecting the presence or absence of liquid in a light transmissive container
JPH08247933A (en) Detection device of particle concentration in liquid
JP6194783B2 (en) Attachment of optical components and photoelectric sensor unit provided with the same
EP3492882B1 (en) Liquid level detection sensor and specimen testing apparatus
CN210071649U (en) Quadruple optical path air chamber and gas detection equipment
JP3863448B2 (en) Liquid level detector
KR20220126773A (en) Optical detector to detect gases and suspended solids
JP2020159909A (en) Gas concentration detector and gas concentration measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060906

R150 Certificate of patent or registration of utility model

Ref document number: 3853709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term