JP2021162526A - Highly precise temperature measurement method of heating element traveling continuously - Google Patents

Highly precise temperature measurement method of heating element traveling continuously Download PDF

Info

Publication number
JP2021162526A
JP2021162526A JP2020066658A JP2020066658A JP2021162526A JP 2021162526 A JP2021162526 A JP 2021162526A JP 2020066658 A JP2020066658 A JP 2020066658A JP 2020066658 A JP2020066658 A JP 2020066658A JP 2021162526 A JP2021162526 A JP 2021162526A
Authority
JP
Japan
Prior art keywords
image
temperature
measurement
heating element
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020066658A
Other languages
Japanese (ja)
Inventor
寛之 臼井
Hiroyuki Usui
健司 三井
Kenji Mitsui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Photonics Ltd
Original Assignee
Mitsui Photonics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Photonics Ltd filed Critical Mitsui Photonics Ltd
Priority to JP2020066658A priority Critical patent/JP2021162526A/en
Publication of JP2021162526A publication Critical patent/JP2021162526A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

To establish a highly precise temperature measurement method of a heating element traveling continuously by suppressing a decrease in measurement precision in noncontact measurement of temperature distribution of a heating element moved continuously and a decrease in precision because of discontinuity of a measurement image caused by a temperature change in a measurement line.SOLUTION: A camera in which a 2-wavelength filter is installed in a mosaic pattern in each pixel of a CCD or a C-MOS sensor is prepared. A shield is installed in an upper part of a measurement object part of a fluid heating element such that a heating element is exposed in a rectangular strip form with a direction perpendicular to a flow as a long side. The positions of respective strip-shaped images obtained by continuously photographing the exposed part by the camera are recognized from the shape of an unheated material, a plurality of strip images are processed so as to obtain a composited image as a continuous image or a single image, and the image is processed by a two-color temperature method so as to obtain a temperature distribution, thus establishing a precise measurement method.SELECTED DRAWING: Figure 2

Description

製造工程において、連続的に移動させる発熱体の温度分布を非接触で高精度に計測する方法に関する。 The present invention relates to a method of measuring the temperature distribution of a heating element that is continuously moved in a manufacturing process with high accuracy without contact.

連続的に移動する発熱体に対する従来の計測方法は、非加熱材料の上方等に点計測の放射温度計またはサーモグラフィーを設置し定時刻にデーターを取得していた。 (図1) In the conventional measurement method for a continuously moving heating element, a radiation thermometer or thermography for point measurement is installed above a non-heated material and data is acquired at a fixed time. (Fig. 1)

その他の方法としては、フォトダイオードを移動方向と直角に一列多数配置したラインセンサーカメラを設置し、ベルトコンベアーの速度をも取得して放射温度を分布として得るサーモグラフィーも考案された。 As another method, a thermography was devised in which a large number of line sensor cameras in which a large number of photodiodes were arranged at right angles to the moving direction were installed, and the speed of the belt conveyor was also acquired to obtain the radiation temperature as a distribution.

特開2020−38107JP-A-2020-38107 特開2001−157214JP 2001-157214 特開2003−344166Japanese Patent Application Laid-Open No. 2003-344166 特許公報 4378003Patent Gazette 4378003

従来の測定方法では、
(1)点・センサーの計測点またはライン・センサーの計測ライン周辺からの放射光の影響を受け、計測精度が低下する。
(2)ラインセンサー方式では、モザイク方式のセンサーによる二色法が採用できない為、精度が低かった。また1画素毎に波長の異なるフィルターを装着しても、精度が期待できない。
(3)ラインセンサー方式では計測ラインの被加熱材料の移動速度の安定が条件である。従って、軽微な速度変化に対しても、安定した温度計測の画像取得が影響を受けやすく、結果正確な画像構築が容易ではない。
という課題があった。
With conventional measurement methods,
(1) The measurement accuracy is reduced due to the influence of synchrotron radiation from the measurement point of the point / sensor or the measurement line of the line sensor.
(2) In the line sensor method, the accuracy was low because the two-color method using the mosaic type sensor could not be adopted. Even if filters with different wavelengths are attached to each pixel, accuracy cannot be expected.
(3) In the line sensor method, the condition is that the moving speed of the material to be heated on the measurement line is stable. Therefore, even a slight change in speed is easily affected by stable temperature measurement image acquisition, and as a result, accurate image construction is not easy.
There was a problem.

本願の発明の概略を説明すれば、以下の通りである。すなわち本発明は、CCDまたはC-MOSセンサーの各画素に2波長のフィルターをモザイク状に設置したカメラを有し、流動発熱体の計測対象部分の上部に、流れと直角方向を長辺とする矩形短冊状に発熱体が露出するように遮光物有し、露出部分を前記カメラで連続撮影した各短冊状画像を非加熱材料の形状または付加された位置マーカーからその位置を認識し、複数の短冊画像を処理して合成したものを連続または単一画像として得、その画像を二色温度法で処理して温度分布を得ることで、連続的に移動させる発熱体の温度分布を非接触で高精度に計測することを実現する。また本発明における、流動発熱体は連続的流動でも、間歇的流動に対してでも対応が可能である。 The outline of the invention of the present application will be described as follows. That is, the present invention has a camera in which filters of two wavelengths are installed in a mosaic pattern on each pixel of a CCD or C-MOS sensor, and has a long side in a direction perpendicular to the flow above the measurement target portion of the flow heating element. A light-shielding object is provided so that the heating element is exposed in a rectangular strip shape, and each strip-shaped image in which the exposed portion is continuously photographed by the camera recognizes the position from the shape of the non-heated material or the added position marker, and a plurality of strips are recognized. A strip image is processed and combined to obtain a continuous or single image, and the image is processed by the two-color temperature method to obtain a temperature distribution, so that the temperature distribution of the heating element that is continuously moved is non-contact. Achieves high-precision measurement. Further, the flowing heating element in the present invention can cope with both continuous flow and intermittent flow.

本発明によれば、CCDまたはC-MOSセンサーの各画素に2波長のフィルターをモザイク状に設置したカメラ等と流動発熱体の計測対象部分の上部に、流れと直角方向を長辺とする矩形短冊状に発熱体が露出するような遮光物によって二色温度法で処理して高精度な温度分布が得られる。 According to the present invention, a rectangle having a long side perpendicular to the flow is placed above a measurement target portion of a flow heating element and a camera or the like in which a filter having two wavelengths is installed in a mosaic pattern on each pixel of a CCD or C-MOS sensor. A highly accurate temperature distribution can be obtained by processing with a two-color temperature method using a light-shielding object that exposes the heating element in a strip shape.

連続的に移動する発熱体に対する従来の計測方法Conventional measurement method for continuously moving heating elements 連続的に移動させる発熱体の温度分布を非接触で高精度に計測する方法の概念図Conceptual diagram of a method for measuring the temperature distribution of a continuously moving heating element with high accuracy without contact モザイクフィルターの例Mosaic filter example 2分岐光学系の概念図Conceptual diagram of 2-branch optical system 2センサー方式の光学系例2-sensor optical system example 遮光物を設置し2波長における画像を同時でかつ同一光軸で間歇撮影した撮影画像A photographed image in which a light-shielding object is installed and images at two wavelengths are taken at the same time and intermittently on the same optical axis. 図6の短冊状画像からの合成した画像A composite image from the strip-shaped image of FIG. 画像の特徴の一致点同士を合わせることで合成する方法例Example of a method of synthesizing by matching the coincidence points of image features 画像内にマーカーを記録し、そのマーカーを基準として合成する例An example of recording a marker in an image and synthesizing it based on that marker

以下、本発明の実施の形態を図面に基づいて詳細に説明する。ただし、本発明は多くの異なる態様で実施することが可能であり、本実施の形態の記載内容に限定して解釈すべきではない。なお、実施の形態の全体を通して同じ要素には同じ番号を付するものとする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different embodiments and should not be construed as limited to the description of the embodiments. The same elements shall be numbered the same throughout the embodiment.

以下の実施の形態では、主に方法について説明するが、当業者であれば明らかなとおり、本発明は、CCDまたはC-MOSセンサーの各画素に2波長のフィルターをモザイク状に設置したカメラと流れと直角方向を設置する矩形短冊形状やそれ以外の形状の遮光物によって組合せの実施形態をとることができる。また複数の画像から1枚の画像を合成する方法は、画像の特徴点を基準に造成する方法の他、何れの方法を採用することで実施形態をとることができる。 In the following embodiments, the method will be mainly described, but as will be apparent to those skilled in the art, the present invention includes a camera in which a two-wavelength filter is arranged in a mosaic pattern on each pixel of a CCD or C-MOS sensor. The embodiment of the combination can be taken by a rectangular strip shape in which the direction perpendicular to the flow is installed or a light-shielding object having a shape other than that. Further, the method of synthesizing one image from a plurality of images can be an embodiment by adopting any method in addition to the method of creating the image based on the feature points of the images.

図2は、本発明の概念図である。CCDまたはC-MOSセンサーの各画素に2波長のフィルターをモザイク状に設置したカメラを用意する。流動発熱体の計測対象部分の上部に、流れと直角方向を長辺とする矩形短冊状に発熱体が露出するように遮光物を設置する。この露出部分を前記カメラで連続撮影した各短冊状画像を被加熱材料の形状の特徴やマーカーなどからその位置を認識し、複数の短冊画像を処理して合成したものを連続または単一画像として得、これを二色温度法で処理して温度分布を得る。流動発熱体は連続的流動でも、間歇的流動に対してでも対応が可能である。 FIG. 2 is a conceptual diagram of the present invention. Prepare a camera in which a two-wavelength filter is installed in a mosaic pattern on each pixel of the CCD or C-MOS sensor. A light-shielding object is installed above the measurement target portion of the flow heating element so that the heating element is exposed in the shape of a rectangular strip whose long side is perpendicular to the flow. Each strip-shaped image of this exposed portion continuously photographed by the camera is recognized as its position from the shape features and markers of the material to be heated, and a plurality of strip images are processed and combined to form a continuous or single image. Obtained and processed by the two-color temperature method to obtain a temperature distribution. The flowing heating element can handle both continuous flow and intermittent flow.

300℃以上の高温加工物の温度を非接触で計測するためには計測対象から発する電磁放射を計測し、その強さから温度を算出する。それを製品化したものとして、可視光または赤外光から温度を得る放射温度計があり、温度分布を計測するものとしてサーモグラフィーがある。
一般の計測対象は非黒体であり、放射温度計から真温度を、サーモグラフィーから真温度を知るには黒体との放射量の比である放射率で補正をしなければならない。しかし非黒体の放射率は、一般的にその材質、形状、温度によって異なるため、正確な温度を得ることは困難である。
In order to measure the temperature of a high-temperature workpiece of 300 ° C. or higher in a non-contact manner, the electromagnetic radiation emitted from the measurement target is measured, and the temperature is calculated from the intensity. As a commercial product, there is a radiation thermometer that obtains the temperature from visible light or infrared light, and there is thermography that measures the temperature distribution.
A general measurement target is a non-blackbody, and in order to know the true temperature from a radiation thermometer and the true temperature from thermography, it is necessary to correct it with the emissivity, which is the ratio of the amount of radiation to the blackbody. However, since the emissivity of a non-blackbody generally differs depending on its material, shape, and temperature, it is difficult to obtain an accurate temperature.

そこで二色温度法を用いる。
二色温度法は近接した2波長の放射の放射率が同一であることに着目し、2波長の放射量の比が真温度と関数関係にあることから、2波長における放射量を計測し真温度を算出する。
波長λにおける放射利用はPlanckの放射式で得られる。

Figure 2021162526
Therefore, the two-color temperature method is used.
The two-color temperature method pays attention to the fact that the emissivity of the radiation of two adjacent wavelengths is the same, and since the ratio of the radiation amount of the two wavelengths has a functional relationship with the true temperature, the radiation amount at the two wavelengths is measured and true. Calculate the temperature.
Radiation utilization at wavelength λ is obtained by Planck's radiation equation.
Figure 2021162526

物体の放射率をε、物体から測定システムまでの透過率をτとした場合は以下に示される。

Figure 2021162526
When the emissivity of the object is ε and the transmittance from the object to the measurement system is τ, it is shown below.
Figure 2021162526

ウーンの近似式を適用し、2波λ1、λ2長における放射エネルギーをM1、M2、放射率ε1、ε2、透過率をτ1、τ2、センサー等の変換効率β1、β2とすると、波長λ1およびλ2におけるすると2波長比Rは、

Figure 2021162526
Figure 2021162526
Applying Woon's approximation formula, assuming that the radiant energy at the lengths of two waves λ1 and λ2 is M1, M2, the emissivity ε1, ε2, the transmittance is τ1, τ2, and the conversion efficiency β1 and β2 of the sensor, etc., the wavelengths λ1 and λ2 Then the 2 wavelength ratio R is
Figure 2021162526
Figure 2021162526

放射取得の2波長を近接することにより放射率ε1=ε2、τ1=τ2、β1=β2ととなり、放射率ε、透過率τ、変換効率βは消却され、放射量の比が温度と関数関係にあることが知られる。

Figure 2021162526
By bringing the two wavelengths of radiation acquisition close to each other, the emissivity ε1 = ε2, τ1 = τ2, β1 = β2, the emissivity ε, transmittance τ, and conversion efficiency β are canceled, and the ratio of radiation amount is functionally related to temperature. It is known to be in.
Figure 2021162526

2波長における放射率や介在物の透過率が異なる場合であっても、その比が温度によって変化しない場合は、黒体との比を補正することにより、温度が変化する物体の真温度を知ることができる。 Even if the emissivity and transmittance of inclusions at two wavelengths are different, if the ratio does not change with temperature, the true temperature of the object whose temperature changes can be known by correcting the ratio with the blackbody. be able to.

二色温度計測を画像で実行する利点を述べると、
従来、フォトダイオードにバンドパス・フィルターを添付する等をして、異なる特定波長を受光する受光センサーを2組用意し、その出力を数1から数5の演算により二色温度計測実施されている。しかしながら製品等の温度分布を得るためには複数組のセンサーが必要となり、制御が煩雑であると同時にコストアップの要因となっていた。 CCD、C-MOS等のカメラセンサーがフォトダイオードを複眼的に配置したものであることに着目し、これを二色温度計測に応用することを考案された(特許公報4378003号)。一般的なカメラは光入射に対する電気出力を故意に非直線としているが、ここではその直線性を重視したカメラを使用する必要がある。
The advantages of performing two-color temperature measurements on images are:
Conventionally, two sets of light receiving sensors that receive different specific wavelengths are prepared by attaching a bandpass filter to the photodiode, and the output of the light receiving sensor is measured by the calculation of the number 1 to the number 5 to measure the two-color temperature. .. However, in order to obtain the temperature distribution of a product or the like, a plurality of sets of sensors are required, which is complicated to control and at the same time causes an increase in cost. Focusing on the fact that camera sensors such as CCD and C-MOS have photodiodes arranged in a compound eye, it was devised to apply this to two-color temperature measurement (Patent Publication No. 4378003). A general camera intentionally makes the electric output with respect to light incident non-linear, but here it is necessary to use a camera that emphasizes the linearity.

二色温度法に用いる放射量の取得用カメラについてモザイクフィルター付きセンサーを用いたカメラについて説明するならば、
2波長における放射量の分布画像を得る方法として、センサー前面または対物レンズ前面にバンドパス・フィルターを装着したカメラを2台用意する方法、センサー前面にλ1およびλ2のフィルターを画素毎に交互にモザイク状に貼り付けたカメラを使用する方法がある。センサーに赤、緑、青をモザイク状に貼り付けた単板式カラーカメラは、民生用、工業用として多用されており、これを用いた二色温度計測装置は、特許第4378003号として公開されている。比較的低温度計測用として近赤外の2波長のフィルターをモザイク状に貼り付けた、センサーも考案済みである。(特願2018-165055)
図3は、モザイクフィルター付センサーの構造として、モザイクフィルター付きセンサーの例を示す。各画素には第1波長または第2波長のみの通過光が受信される。ある画素が受信できない他波長の信号は、周囲の他波長の信号の値を計算処理して出力する。図3の例では、左から2番目上から2番目の画素は第2波長の信号を受信できないので、自己の左右および上下の第2波長の4信号の値を加算して4で除した値を自己の第2信号の値とする。これにより2波長の放射量を取得したことになる。これにより、放射受信関連のハードウェアが1台でよく、色(波長)分解能は1/2になるが大幅なコスト削減が可能となる。民生用のカラーカメラではこの利点で幅広く採用されている。
Regarding the camera for acquiring the amount of radiation used in the two-color temperature method, if we explain a camera using a sensor with a mosaic filter,
As a method of obtaining a distribution image of the amount of radiation at two wavelengths, a method of preparing two cameras equipped with a bandpass filter on the front surface of the sensor or the front surface of the objective lens, and a mosaic of λ1 and λ2 filters alternately for each pixel on the front surface of the sensor. There is a method of using a camera pasted in a shape. Single-plate color cameras with red, green, and blue pasted on the sensor in a mosaic pattern are widely used for consumer and industrial purposes, and a two-color temperature measuring device using this has been published as Patent No. 4378003. There is. A sensor has also been devised, in which a near-infrared two-wavelength filter is attached in a mosaic pattern for relatively low temperature measurement. (Special application 2018-165055)
FIG. 3 shows an example of a sensor with a mosaic filter as a structure of the sensor with a mosaic filter. Each pixel receives light passing through only the first wavelength or the second wavelength. For signals of other wavelengths that cannot be received by a certain pixel, the values of signals of other wavelengths in the vicinity are calculated and output. In the example of FIG. 3, since the second pixel from the top to the second from the left cannot receive the signal of the second wavelength, the value of the four signals of the second wavelength on the left, right, top and bottom of the self is added and divided by 4. Is the value of its own second signal. As a result, the amount of radiation of two wavelengths is acquired. As a result, only one piece of hardware related to radiation reception is required, and the color (wavelength) resolution is halved, but a significant cost reduction is possible. It is widely used in consumer color cameras because of this advantage.

二色温度法におけるモザイクフィルター方式の利点を示すならば、
CCD、C-MOS等の画像センサーはシリコンまたはインジューム・ガリューム・砒素の母材の上にフォトダイオードをマトリックス状に配置することで構成される。これ等のフォトダイオードは周囲温度の影響を受け、大きくドリフトする。二色温度計測で2波長の放射量を2台のカメラで受信しようとする場合は、2台のカメラの比が周囲温度変化でドリフトしないように制御するために煩雑な制御が要求され、複雑な構成となる。これに対してモザイクフィルター方式のカメラで構成した場合は、両波長における放射量出力の温度ドリフトが同一値となり、比を算出した場合ドリフト値が消去されるため複雑なドリフト制御構成が不要となる大きなメリットがある。
To show the advantages of the mosaic filter method in the two-color temperature method,
Image sensors such as CCD and C-MOS are configured by arranging photodiodes in a matrix on a base material of silicon or injume, galium, and arsenic. These photodiodes are affected by the ambient temperature and drift significantly. When trying to receive radiation of two wavelengths with two cameras in two-color temperature measurement, complicated control is required to control the ratio of the two cameras so that they do not drift due to changes in ambient temperature, which is complicated. The configuration is as follows. On the other hand, when a mosaic filter type camera is used, the temperature drift of the radiation output at both wavelengths becomes the same value, and when the ratio is calculated, the drift value is erased, eliminating the need for a complicated drift control configuration. There is a big merit.

二色温度法における2分岐光学系カメラと二色温度法における2センサーカメラについて説明する。 A two-branch optical system camera in the two-color temperature method and a two-sensor camera in the two-color temperature method will be described.

二色温度法における2分岐光学系カメラ
図4に2分岐光学系の概念図を示す。単一センサーの領域を分けて第1の波長と第2の波長を受光せしめる光学系を有するカメラである。実際に当光学系を構成するにはリレーレンズ等の追加構造物が必要となる。
この光学系では2波長の画像を単一センサー上に受光するもので、両波長における放射の出力比は周囲温度等環境の変化を受けない。センサー及び付帯電気回路1個で構成されるので低コストである。またセンサー面を2波長に分け受光するので画像が短冊状になるが、当用途では不都合ではない。ただし光学系が複雑となり光ロスが増加するので低温度の計測には適さないというディメリットがある。
Two-branch optical system camera in the two-color temperature method Fig. 4 shows a conceptual diagram of the two-branch optical system. It is a camera having an optical system that divides the area of a single sensor and receives the first wavelength and the second wavelength. An additional structure such as a relay lens is required to actually configure this optical system.
In this optical system, an image of two wavelengths is received on a single sensor, and the output ratio of radiation at both wavelengths is not affected by changes in the environment such as ambient temperature. The cost is low because it consists of a sensor and one incidental electric circuit. In addition, since the sensor surface is divided into two wavelengths to receive light, the image becomes strip-shaped, but this is not inconvenient for this application. However, there is a demerit that it is not suitable for low temperature measurement because the optical system becomes complicated and the optical loss increases.

二色温度法における2センサーカメラ
1筐体内に2個のセンサーを内蔵し、半透過反射鏡(ビームスプリッター)または波長選択反射鏡(ダイクロイック・ミラー)で入射光の光路を2分岐し、それぞれ光路に波長選択フィルターを配置した後、各々の画像センサーに入力せしめる。両センサーの出力値の比から二色温度法により真温度を得るが、両センサーが環境温度の変化等の影響を受けないように、センサーの温度管理等を実行する必要があるので、コスト増となるディメリットがあるが、光学ロスが発生しないので、モザイクフィルター付きセンサーを用いたカメラや2分岐光学系カメラに比べて感度が高く、より低温度の計測に適している。
図5に基本的な2センサー方式の例を示すが、半透過ミラーを対物レンズの前に置くこともでき、半透過ミラーの後とセンサーの間にリレーレンズを置く場合もある。
Two-sensor camera in two-color temperature method
After incorporating two sensors in one housing, splitting the optical path of incident light into two with a semi-transmissive reflector (beam splitter) or a wavelength selective reflector (dichroic mirror), and placing a wavelength selection filter in each optical path. , Input to each image sensor. The true temperature is obtained by the two-color temperature method from the ratio of the output values of both sensors, but the cost increases because it is necessary to control the temperature of the sensors so that both sensors are not affected by changes in the environmental temperature. However, since no optical loss occurs, the sensitivity is higher than that of a sensor using a sensor with a mosaic filter or a two-branch optical system camera, and it is suitable for lower temperature measurement.
Although an example of the basic two-sensor system is shown in FIG. 5, a semitransmissive mirror may be placed in front of the objective lens, and a relay lens may be placed after the semitransmissive mirror and between the sensors.

従来の方法の問題点である
(1)計測点または計測ライン周辺からの放射光の影響を受け、計測精度が低下
(2)ラインセンサー方式では、モザイク方式のセンサーによる二色法が採用できない。1画素毎に波長の異なるフィルターを装着しても、精度が低い
(3)ラインセンサー方式ではラインの微妙な速度変化に対して、画像構築が難しい
に対して、本発明においては、計測対象の流れ方向に対して、直角方向が長辺となるよう、遮光物を設置し2波長における画像を同時でかつ同一光軸で間歇撮影することで従来の問題点を解決できる。
The problems of the conventional method are (1) the measurement accuracy is lowered due to the influence of the synchrotron radiation from the measurement point or the periphery of the measurement line (2) the line sensor method cannot adopt the two-color method using the mosaic type sensor. Even if filters with different wavelengths are attached to each pixel, the accuracy is low. (3) With the line sensor method, it is difficult to construct an image due to subtle speed changes in the line. The conventional problem can be solved by installing a light-shielding object so that the long side is perpendicular to the flow direction and taking images at two wavelengths simultaneously and intermittently on the same optical axis.

撮影画像を例に合成方法を例に挙げると、
図6は、矩形短冊状に取得した撮影画像の例である
間歇撮影によって得られた短冊画像内の特徴部分を抽出し、複数画像を連結合成することにより、連続的な画像、または図7に示すような個別画像を合成し2波長の放射量比から二色温度を算出する
Taking the captured image as an example, taking the composition method as an example,
FIG. 6 shows a continuous image or FIG. 7 by extracting a feature portion in the strip image obtained by intermittent photography, which is an example of the captured image acquired in the shape of a rectangular strip, and connecting and synthesizing a plurality of images. Combine the individual images as shown and calculate the two-color temperature from the emission ratio of the two wavelengths.

ここで複数の短冊状画像から1枚の画像を作成するには二種類の方法がある。一つは画像内の特徴が一致する点を合わせる方法(図8)、他は画像内にマークを記録してそのマークを基準に画像を合成する方法である。(図9) 後者の方法がより容易である。いずれの方法によってもソフトウェア処理により、重複部分の切り捨てや、回転等位置のずれを補正することができる。 Here, there are two methods for creating one image from a plurality of strip-shaped images. One is a method of matching points where the features in the image match (FIG. 8), and the other is a method of recording a mark in the image and synthesizing the image based on the mark. (Fig. 9) The latter method is easier. With either method, it is possible to correct the truncation of the overlapping portion and the displacement of the position such as rotation by software processing.

本発明の利点としては、
(1)点ではなく2次元の温度分布を二色温度法で実施できる。
(2)モザイク式2波長センサーカメラや2分岐光学系カメラ、を採用した二色温度処理が可能となり、周囲温度の影響を回避できる。
(3)ベルトコンベアーの速度変化の影響を受けない。
(4)加算平均や画像認識を高速に処理できる。
(5)遮光物の設置により周囲からの迷光の影響を避けられる。
があげられる。
The advantage of the present invention is
(1) A two-dimensional temperature distribution instead of a point can be carried out by the two-color temperature method.
(2) Two-color temperature processing using a mosaic-type two-wavelength sensor camera or a two-branch optical system camera is possible, and the influence of ambient temperature can be avoided.
(3) Not affected by speed changes on the belt conveyor.
(4) Additive averaging and image recognition can be processed at high speed.
(5) The influence of stray light from the surroundings can be avoided by installing a light-shielding object.
Can be given.

Claims (6)

流動加工される発熱被加工品を流動方向と直角方向を長辺とする矩形状に覆う装置を有し、これを画像として撮影する温度計測装置 A temperature measuring device that has a device that covers the heat-generating workpiece to be flow-processed in a rectangular shape with a long side in the direction perpendicular to the flow direction, and captures this as an image. 請求項1の装置であって、画像内の特徴点を認識して複数の画像から1枚の画像または連続画像を画像合成処理で再構築する装置 The device according to claim 1, which recognizes feature points in an image and reconstructs one image or a continuous image from a plurality of images by image composition processing. 請求項2の装置であって、再構築した画像から二色温度法で温度分布を演算する装置 The device of claim 2, which calculates the temperature distribution from the reconstructed image by the two-color temperature method. 請求項3の装置であってモザイク式センサーを有する装置 The device of claim 3 which has a mosaic sensor. 請求項3の装置であって2分岐光学系を経由して同一軸画像を2波長に分光し、これを単一センサーの分けたエリアに受光し、その出力から二色温度法で温度を計測する装置 In the apparatus of claim 3, the same-axis image is separated into two wavelengths via a two-branch optical system, this is received in a divided area of a single sensor, and the temperature is measured from the output by the two-color temperature method. Equipment to 請求項3の装置であって、時間同期した2センサーを内蔵するカメラまたは2台のカメラで2波長の放射を受光し、その出力から二色温度法で温度を計測する装置 The device according to claim 3, wherein a camera having two time-synchronized sensors or two cameras receives radiation of two wavelengths and measures the temperature from the output by the two-color temperature method.
JP2020066658A 2020-04-02 2020-04-02 Highly precise temperature measurement method of heating element traveling continuously Pending JP2021162526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020066658A JP2021162526A (en) 2020-04-02 2020-04-02 Highly precise temperature measurement method of heating element traveling continuously

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020066658A JP2021162526A (en) 2020-04-02 2020-04-02 Highly precise temperature measurement method of heating element traveling continuously

Publications (1)

Publication Number Publication Date
JP2021162526A true JP2021162526A (en) 2021-10-11

Family

ID=78003148

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020066658A Pending JP2021162526A (en) 2020-04-02 2020-04-02 Highly precise temperature measurement method of heating element traveling continuously

Country Status (1)

Country Link
JP (1) JP2021162526A (en)

Similar Documents

Publication Publication Date Title
US9089926B2 (en) Process monitoring the processing of a material
CN202471261U (en) CCD temperature measuring device
CN101476939B (en) Double-CCD temperature field measuring apparatus and method
CN101487740A (en) Three-CCD temperature field measuring apparatus and method
US5963311A (en) Surface and particle imaging pyrometer and method of use
US11422026B2 (en) Information processing device, information processing method, and program to perform calibration with respect to environment light
US20190154512A1 (en) Method for Determining a Temperature without Contact, and Infrared Measuring System
CN105806491A (en) Three-wavelength two-dimensional temperature field measuring device and method
JP2021162526A (en) Highly precise temperature measurement method of heating element traveling continuously
WO2022023748A1 (en) A thermal imaging system and method
US6817758B2 (en) Temperature distribution measuring method and apparatus
JP2008268106A (en) Method of measuring temperature information
US20200271790A1 (en) Method and device for detecting incident laser radiation on a spacecraft
JP2002214047A (en) Measuring method and device for temperature distribution
CN201464047U (en) Three-CCD integration-based temperature field measurement device
KR20040010172A (en) Emissivity distribution measuring method and apparatus
CN105115908B (en) The optimal spectral band of metal rust spots chooses vision inspection apparatus and method
JP2007147507A (en) Spectrometry and optical spectrometer
US4600830A (en) Focus detecting device
CN207515908U (en) A kind of multi-pass self calibration polarization detecting device and system
JPH07301569A (en) Method and apparatus for processing infrared temperature image using two filters
RO131286B1 (en) Process for measuring emissivity specific to infrared camera
JP2003166880A (en) Imaging device having temperature measuring means
JP3376237B2 (en) Measuring device and measuring method
CN204422067U (en) Infrared temperature measurement apparatus in a kind of measured surface situation out of focus