CN204422067U - Infrared temperature measurement apparatus in a kind of measured surface situation out of focus - Google Patents

Infrared temperature measurement apparatus in a kind of measured surface situation out of focus Download PDF

Info

Publication number
CN204422067U
CN204422067U CN201420564728.2U CN201420564728U CN204422067U CN 204422067 U CN204422067 U CN 204422067U CN 201420564728 U CN201420564728 U CN 201420564728U CN 204422067 U CN204422067 U CN 204422067U
Authority
CN
China
Prior art keywords
infrared
ccd camera
lens
measured surface
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201420564728.2U
Other languages
Chinese (zh)
Inventor
钟万里
王伟
李慎兰
许传龙
张彪
丁辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Original Assignee
Southeast University
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University, Electric Power Research Institute of Guangdong Power Grid Co Ltd filed Critical Southeast University
Priority to CN201420564728.2U priority Critical patent/CN204422067U/en
Application granted granted Critical
Publication of CN204422067U publication Critical patent/CN204422067U/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

An infrared temperature measurement apparatus in measured surface situation out of focus, comprising: an infrared lens (1), for collecting the infrared ray in visual field, has high permeability in the spectral response range of its lens materials infrared CCD camera (3) below; One infrared CCD camera (3), for gathering the image of infrared lens imaging; One filter plate (2), between the photosensitive device being located at infrared lens (1) and infrared CCD camera (3), for filtering the veiling glare of its all band, its centre wavelength is in the spectral response range of infrared CCD camera (3); One computer (4), connects infrared CCD camera (3) by data line, obtains temperature field for the treatment of view data.Adopt device of the present utility model, even if occur that measured surface is not orthogonal to the main shaft of camera lens, cause the situation that on measured surface, a lot of or whole position is out of focus, also effectively can carry out temperature survey.

Description

Infrared temperature measurement apparatus in a kind of measured surface situation out of focus
Technical field
The utility model relates to a kind of infrared temperature measurement apparatus, especially relates to the infrared temperature measurement apparatus in a kind of measured surface situation out of focus.
Background technology
The detection and control of temperature is subject to the attention of height in the industries such as electric system, petrochemical industry, metallurgy, and it is related to the efficiency of the safety of system, the quality of product and production.Infrared temperature-test technology due to temperature-measuring range in theory without bound, do not change the advantages such as testee temperature, thermometric the response time short and Temperature Distribution that material surface can be measured, all play an important role in production run monitoring, production quality control, equipment on-line fault diagnosis and economize energy etc.Along with the raising of the manufacture level of instrument, modern infrared measurement of temperature has higher measuring accuracy, meets the industries such as current power system, petrochemical industry, metallurgy to the requirement of temperature monitoring.
CCD is as a kind of novel semi-conductor integrated optoelectronic device, and since early 1970s is born, oneself is particularly more rapid in the development in image sensing and non-cpntact measurement field through obtaining very fast development.CCD camera has, low-voltage little, lightweight compared with wide spectral response range, high resolving power, volume, low-power consumption, shock-resistant, electromagnetism interference, it is little in rugged surroundings, pattern distortion to work long hours, imaging at a high speed, can well with the advantage such as the subject such as electronic technology, image processing techniques, computer technology combines, be used widely in industrial diagnostic and process monitoring, become one of research field active, the most fruitful in modern optoelectronics and measuring technology.
Thermometry based on ccd image sensor is the Novel temperature measuring technology of comprehensive utilization image detecting technique, digital image processing techniques and radiant thermometric technology.But under a lot of measuring conditions, measured surface is not orthogonal to the main shaft of camera lens, cause a lot of or whole position on measured surface out of focus, for this situation, existing common survey method cannot carry out the measurement of temperature.
Utility model content
Technical problem to be solved in the utility model, just be to provide the infrared temperature measurement apparatus in a kind of measured surface situation out of focus, adopt device of the present utility model, even if occur that measured surface is not orthogonal to the main shaft of camera lens, cause the situation that on measured surface, a lot of or whole position is out of focus, also effectively can carry out temperature survey.
Solve the problems of the technologies described above, the technical solution adopted in the utility model is:
An infrared temperature measurement apparatus in measured surface situation out of focus, is characterized in that comprising:
One infrared lens (1), for collecting the infrared ray in visual field, has high permeability in the spectral response range of its lens materials infrared CCD camera (3) below;
One infrared CCD camera (3), for gathering the image of infrared lens imaging;
One filter plate (2), between the photosensitive device being located at infrared lens (1) and infrared CCD camera (3), for filtering the veiling glare of its all band, its centre wavelength is in the spectral response range of infrared CCD camera (3);
One computer (4), connects infrared CCD camera (3) by data line, obtains temperature field for the treatment of view data.
Adopt the infrared measurement of temperature method of said apparatus in measured surface situation out of focus, comprise the following steps:
S1: obtain in filter plate (2) central wavelength lambda by inquiry physical property handbook or by the measurement means of specialty cunder, the slin emissivity ε (λ of different temperatures T c, T);
S2: select 10 temperature in temperature-measuring range, utilize standard blackbody in filter plate (2) central wavelength lambda csystem spectrum response function value corresponding to lower acquisition different temperatures, obtains continuous print system response function K (λ by the method for segmentation difference c, T);
S3: infrared lens (1) is aimed at searching surface, allow measured surface in the field range of infrared CCD camera (3), the gray matrix of the energy distribution of the measured surface utilizing infrared CCD camera photosensitive part to collect, by data line transfer in computer (4), utilize the analysis software of self-programming to calculate the thermo parameters method of measured surface, the Computing Principle of described analysis software is:
According to Planck law, the pass between the spectral radiant energy of black matrix and temperature is:
E bλ = c 1 λ - 5 exp [ c 2 / λT ] - 1 - - - ( 1 ) ;
In formula: E b λrepresent blackbody spectrum emittance, c 1represent Planck law first radiation constant, c 1=3.7418 × 10 8w μm 4/ m 2, λ represents spectral wavelength, c 2represent Planck law second radiation constant, c 2=1.4388 × 10 4μm K, T represent temperature;
For non-black-body, at specific wavelength λ cunder, the hemisphere emitted energy on surface itself is expressed from the next:
E = ϵ ( λ c , T ) · ∫ λ 1 λ 2 E bλ dλ ≈ ϵ ( λ c , T ) · c 1 λ c - 5 ( λ 2 - λ 1 ) exp [ c 2 / λ c T ] - 1 - - - ( 2 ) ;
In formula: the hemisphere emitted energy of E presentation surface itself, λ crepresent the centre wavelength of filter plate, ε (λ c, T) and represent at wavelength to be λ c, the slin emissivity of temperature when being T, obtained by inquiry physical property handbook or professional measurement means, λ 1, λ 2represent the lower limit through scope and the upper limit of filter plate respectively;
For the situation that measured surface is out of focus, need to know the distance between angle theta between actual object plane and ideal object plane and their centers from geometrical optics, certain pixel A of CCD ' on the energy that obtains be the energy projected by stationary lens by an infinitesimal face A corresponding in ideal object plane;
If pixel A ' centre coordinate be P ' (x ', y ', z '), then in corresponding ideal object plane, the centre coordinate of infinitesimal face A is P (x, y, z), infinitesimal face on corresponding actual object plane centre coordinate be their expression is:
P point: x=-u; Y=-uy '/v; Z=-uz '/v
point: x ~ = - ( u + u ~ ) · v tan θ · y ′ 2 + z ′ 2 + v ; y=x′y′/v;z=x′z′/v;
In formula: u represents ideal object distance; V represents apart; represent the distance of actual object plane and ideal object planar central; θ represents the angle between actual object plane and ideal object plane;
The distance r of actual object plane and ideal object planar central is:
r = ( x - x ~ ) 2 + ( y - y ~ ) 2 + ( z - z ~ ) 2 - - - ( 3 ) ;
According to the principle of pinhole imaging system, with infinitesimal face on the actual object plane of pixel A ' corresponding area be:
A ~ = π a 2 · ( x ~ - u u ) 2 - - - ( 4 ) ;
In formula: represent pixel area, a represents camera lens diaphragm radius size;
Then when not considering that eyeglass is decayed, by the infinitesimal face of actual object plane send at filter plate by wavelength coverage (λ 1, λ 2) in energy through lens arrive CCD pixel A ' size be:
In formula: Q represent arrive CCD pixel A ' energy, A represents the area of pixel A in ideal object plane, and t is the aperture time of camera, for ray and the angle between ideal object plane, as shown in Figure 3, is calculated by following formula:
Due to the photoelectric transformation efficiency of camera, eyeglass and air along journey attenuation factor, these factors are summed up as a system response function K (λ c, T), then there is following relation before CCD camera being measured the energy distribution obtained on intensity profile and actual object plane:
H=K(λ c,T)·Q (7);
In formula: H represent pixel A in CCD camera ' gray scale;
Further obtain the corresponding relation between gray scale and temperature:
Principle of Process of the present utility model: tight shot is aimed at searching surface, under an iris setting and time shutter, utilize the energy distribution that infrared CCD cameras record receives, by the spectral response functions of system under standard blackbody demarcation different temperatures, calculate the Temperature Distribution of measured surface according to energy distribution, system response function, measured surface emissivity, geometric position and lens parameters.
Beneficial effect: adopt apparatus and method of the present utility model, even if occur that measured surface is not orthogonal to the main shaft of camera lens, cause the situation that on measured surface, a lot of or whole position is out of focus, also effectively temperature survey can be carried out, rate of accuracy reached 2%, the utility model can be used for safety and the quality monitoring of the process industrials such as station boiler, electrical network heat generating components, photovoltaic module, petrochemical complex, metallurgy, cement, glass.
Accompanying drawing explanation
Fig. 1: the composition of infrared temperature measurement apparatus and annexation schematic diagram in measured surface situation out of focus;
Fig. 2: the overall light path schematic diagram in situation out of focus;
Fig. 3: actual object plane and ideal object interplanar local light path schematic diagram.
Embodiment
See the infrared temperature measurement apparatus embodiment in Fig. 1 measured surface of the present utility model situation out of focus, it comprises:
One infrared lens (1), for collecting the infrared ray in visual field, has higher transmitance in the spectral response range of its lens materials infrared CCD camera (3) below;
One infrared CCD camera (3), for gathering the image of infrared lens imaging;
One filter plate (2), between the photosensitive device being located at infrared lens (1) and infrared CCD camera (3), for filtering the veiling glare of its all band, its centre wavelength is in the spectral response range of infrared CCD camera (3);
One computer (4), connects infrared CCD camera (3) by data line, obtains temperature field for the treatment of view data.
See Fig. 2 and Fig. 3, for adopting the infrared measurement of temperature method of said apparatus in measured surface situation out of focus, infrared lens (1) is aimed at searching surface, under an iris setting and time shutter, the infrared energy of wave plate (2) is distributed on infrared CCD camera (3) and forms gray level image after filtration, gray level image is collected by data line in the analysis software of computer (4), according to the gray matrix of energy distribution, system response function, measured surface emissivity, the centre wavelength of filter plate (2) and bound, geometric position and camera lens and camera parameter calculate the Temperature Distribution of measured surface.
Specifically comprise the following steps:
S1: obtain in filter plate (2) central wavelength lambda by inquiry physical property handbook or by the measurement means of specialty cunder, the slin emissivity ε (λ of different temperatures T c, T);
S2: select 10 temperature in temperature-measuring range, utilize standard blackbody in filter plate (2) central wavelength lambda csystem spectrum response function value corresponding to lower acquisition different temperatures, obtains continuous print system response function K (λ by the method for segmentation difference c, T);
The gray matrix of described energy distribution collected by infrared CCD camera (3), wherein m × n represents pixel; Described filter plate (2) central wavelength lambda cand bound λ 1and λ 2thered is provided by product vendor; Described system response function K (λ c, T) and pass through the temperature selecting about 10 in temperature-measuring range, utilize standard blackbody in filter plate (2) central wavelength lambda csystem spectrum response function value corresponding to lower acquisition different temperatures, is obtained by the method for segmentation difference, described measured surface emissivity ε (λ c, T) obtained by inquiry physical property handbook or the measurement means of specialty, described geometric position comprises: the physical dimension of CCD, the angle theta between actual object plane and ideal object plane, at a distance of v, distance between actual object plane and ideal object plane these parameters all obtain by simply calculating, and described camera lens and camera parameter comprise: the equivalent focal length f of camera lens, diaphragm radius size a, camera shutter time t, and they can be provided by supplier or oneself arrange and obtain.
S3: infrared lens (1) is aimed at searching surface, allow measured surface in the field range of infrared CCD camera (3), the gray matrix of the energy distribution of the measured surface utilizing infrared CCD camera photosensitive part to collect, by data line transfer in computer (4), utilize the analysis software of self-programming to calculate the thermo parameters method of measured surface, the Computing Principle of described analysis software is:
According to Planck law, the pass between the spectral radiant energy of black matrix and temperature is:
E bλ = c 1 λ - 5 exp [ c 2 / λT ] - 1 - - - ( 1 )
In formula: E b λrepresent blackbody spectrum emittance, c 1represent Planck law first radiation constant, c 1=3.7418 × 10 8w μm 4/ m 2, λ represents spectral wavelength, c 2represent Planck law second radiation constant, c 2=1.4388 × 10 4μm K, T represent temperature.
For non-black-body, at specific wavelength λ cunder, the hemisphere emitted energy on surface itself can be expressed from the next:
E = ϵ ( λ c , T ) · ∫ λ 1 λ 2 E bλ dλ ≈ ϵ ( λ c , T ) · c 1 λ c - 5 ( λ 2 - λ 1 ) exp [ c 2 / λ c T ] - 1 - - - ( 2 ) ;
In formula: the hemisphere emitted energy of E presentation surface itself, λ crepresent the centre wavelength of filter plate, ε (λ c, T) and represent at wavelength to be λ c, the slin emissivity of temperature when being T, it can be obtained by inquiry physical property handbook or professional measurement means, λ 1, λ 2represent the lower limit through scope and the upper limit of filter plate respectively.
For the situation that measured surface is out of focus, as shown in Figure 2, the distance between angle theta between actual object plane and ideal object plane and their centers is needed to know from geometrical optics, certain pixel A of CCD ' on the energy that obtains be the energy projected by stationary lens by an infinitesimal face A corresponding in ideal object plane.
If pixel A ' centre coordinate be P ' (x ', y ', z '), then in corresponding ideal object plane, the centre coordinate of infinitesimal face A is P (x, y, z), infinitesimal face on corresponding actual object plane centre coordinate be their expression is:
P point: x=-u; Y=-uy '/v; Z=-uz '/v
point: x ~ = - ( u + u ~ ) · v tan θ · y ′ 2 + z ′ 2 + v ; y=x′y′/v;z=x′z′/v
In formula: u represents ideal object distance; V represents apart; represent the distance of actual object plane and ideal object planar central; θ represents the angle between actual object plane and ideal object plane.
The distance r of actual object plane and ideal object planar central is:
r = ( x - x ~ ) 2 + ( y - y ~ ) 2 + ( z - z ~ ) 2 - - - ( 3 ) ;
According to the principle of pinhole imaging system, with infinitesimal face on the actual object plane of pixel A ' corresponding area be:
A ~ = π a 2 · ( x ~ - u u ) 2 - - - ( 4 ) ;
In formula: represent pixel area, a represents camera lens diaphragm radius size.
Then when not considering that eyeglass is decayed, by the infinitesimal face of actual object plane send at filter plate by wavelength coverage (λ 1, λ 2) in energy through lens arrive CCD pixel A ' size be:
In formula: Q represent arrive CCD pixel A ' energy, A represents the area of pixel A in ideal object plane, and t is the aperture time of camera, for ray and the angle between ideal object plane, as shown in Figure 3, it can be calculated by following formula:
Due to the photoelectric transformation efficiency of camera, eyeglass and air along factors such as journey decay, these factors are summed up as a system response function K (λ c, T), then there is following relation before CCD camera being measured the energy distribution obtained on intensity profile and actual object plane:
H=K(λ c,T)·Q (7)
In formula: H represent pixel A in CCD camera ' gray scale;
Further obtain the corresponding relation between gray scale and temperature:

Claims (1)

1. the infrared temperature measurement apparatus in measured surface situation out of focus, is characterized in that comprising:
One infrared lens (1), for collecting the infrared ray in visual field, has high permeability in the spectral response range of its lens materials infrared CCD camera (3) below;
One infrared CCD camera (3), for gathering the image of infrared lens imaging;
One filter plate (2), between the photosensitive device being located at infrared lens (1) and infrared CCD camera (3), for filtering the veiling glare of its all band, its centre wavelength is in the spectral response range of infrared CCD camera (3);
One computer (4), connects infrared CCD camera (3) by data line, obtains temperature field for the treatment of view data.
CN201420564728.2U 2014-09-28 2014-09-28 Infrared temperature measurement apparatus in a kind of measured surface situation out of focus Expired - Fee Related CN204422067U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201420564728.2U CN204422067U (en) 2014-09-28 2014-09-28 Infrared temperature measurement apparatus in a kind of measured surface situation out of focus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201420564728.2U CN204422067U (en) 2014-09-28 2014-09-28 Infrared temperature measurement apparatus in a kind of measured surface situation out of focus

Publications (1)

Publication Number Publication Date
CN204422067U true CN204422067U (en) 2015-06-24

Family

ID=53472424

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201420564728.2U Expired - Fee Related CN204422067U (en) 2014-09-28 2014-09-28 Infrared temperature measurement apparatus in a kind of measured surface situation out of focus

Country Status (1)

Country Link
CN (1) CN204422067U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280127A (en) * 2014-09-28 2015-01-14 广东电网有限责任公司电力科学研究院 Infrared temperature measurement device and method under defocus condition of measured surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104280127A (en) * 2014-09-28 2015-01-14 广东电网有限责任公司电力科学研究院 Infrared temperature measurement device and method under defocus condition of measured surface
CN104280127B (en) * 2014-09-28 2017-11-14 广东电网有限责任公司电力科学研究院 Infrared temperature measurement apparatus and method in the case of measured surface is out of focus

Similar Documents

Publication Publication Date Title
CN100587428C (en) Metal powder laser forming process temperature field detection method and its systematic device
CN108072459A (en) A kind of method for measuring steel billet temperature field and calculating its radiation intensity
US10422705B2 (en) Apparatus and method for measuring body temperature of a human body
Sarawade et al. Infrared thermography and its applications: A review
CN101825516A (en) Device and method for testing infrared focal plane array device
CN107843348B (en) Device and method for measuring energy flow density of heat absorber
CN206146624U (en) Blind first detection device of thermal infrared hyperspectral imager appearance
CN108279071A (en) Full filed temperature field of molten pool detecting system based on two-color thermometry
CN107907222B (en) A kind of thermal infrared imaging electric power facility fault locator and detection method
CN101936771A (en) Infrared imaging temperature measurement-type energy-flux density measuring device
CN103335717B (en) A kind of thermal infrared imager high precision temperature resistance drift temp measuring method based on becoming integral mode
CN106979822A (en) A kind of infrared imaging crosses consumption malfunction detector
CN102795627A (en) Multi-parameter online monitoring and optimizing control device and method of polycrystalline silicon reduction furnace
CN110182811A (en) A kind of reduction furnace auxiliary imaging system and autocontrol method
CN110186566A (en) Two-dimentional true temperature field imaging method and system based on the multispectral thermometric of light-field camera
CN103148935B (en) A kind of industrial laser beam parameter measuring apparatus
CN105371947B (en) A kind of heat dump surface irradiation degree test device and method
CN200996876Y (en) Temperature-field inspecter during metal powder laser formation process
CN102607708A (en) Infrared measurement device for collected solar flow distribution of solar collector and obtaining method for solar flow distribution graph
CN103644973A (en) Method, device and system for monitoring pavement temperature information of steel structure bridge
CN204422067U (en) Infrared temperature measurement apparatus in a kind of measured surface situation out of focus
CN104748866A (en) Two-color thermometer and industrial camera fused temperature measurement method
CN113706478A (en) Visual measurement method for forging temperature of nuclear forging
CN104181614B (en) A kind of ground infrared cloud detection instrument field based on external pair of black matrix real-time calibration method and device
Zhao et al. Progress in Active Infrared Imaging for Defect Detection in the Renewable and Electronic Industries

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20150624