JP2021161281A - Anisotropic conductive resin composition and micro-led display device - Google Patents

Anisotropic conductive resin composition and micro-led display device Download PDF

Info

Publication number
JP2021161281A
JP2021161281A JP2020065092A JP2020065092A JP2021161281A JP 2021161281 A JP2021161281 A JP 2021161281A JP 2020065092 A JP2020065092 A JP 2020065092A JP 2020065092 A JP2020065092 A JP 2020065092A JP 2021161281 A JP2021161281 A JP 2021161281A
Authority
JP
Japan
Prior art keywords
resin composition
anisotropic conductive
conductive resin
group
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020065092A
Other languages
Japanese (ja)
Other versions
JP7390236B2 (en
Inventor
正和 藤原
Masakazu Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2020065092A priority Critical patent/JP7390236B2/en
Priority to CN202110304086.7A priority patent/CN113462333A/en
Publication of JP2021161281A publication Critical patent/JP2021161281A/en
Application granted granted Critical
Publication of JP7390236B2 publication Critical patent/JP7390236B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body
    • H01L23/4827Materials
    • H01L23/4828Conductive organic material or pastes, e.g. conductive adhesives, inks
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Insulated Conductors (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)
  • Led Device Packages (AREA)
  • Conductive Materials (AREA)

Abstract

To provide an anisotropic conductive resin composition excellent in optical transparency.SOLUTION: An anisotropic conductive resin composition comprises (A) a silicone-modified epoxy resin, (B) a curative, and (C) conductive particles, where the (A) silicone-modified epoxy resin has a structure represented by the general formula (1) in the figure, where R1, R2, Y, a, b and n are as defined in the specification.SELECTED DRAWING: None

Description

本発明は、異方導電性樹脂組成物、及びマイクロLEDディスプレイ装置に関する。 The present invention relates to an anisotropic conductive resin composition and a micro LED display device.

近年、液晶表示素子、有機エレクトロルミネッセンス素子に次ぐ表示素子として、小型のLED(Light Emitting Diode)を用いた、いわゆるマイクロLEDが注目されている。マイクロLEDは有機エレクトロルミネッセンス素子と同様、発光素子であり、当該発光素子を用いたアクティブマトリクス型表示装置が知られている(特許文献1及び特許文献2)。
また、従来から、表示素子に駆動回路を実装する方法として、異方性導電膜(ACF:Anisotropic Conductive Film)(以下、「異方導電性接着剤」ということがある。)を介して、表示素子の取り出し電極部と駆動回路基板上の接続端子とを電気的に接続することが行われている(特許文献3)。
In recent years, so-called micro LEDs using small LEDs (Light Emitting Diodes) have been attracting attention as display elements next to liquid crystal display elements and organic electroluminescence elements. Similar to the organic electroluminescence element, the micro LED is a light emitting element, and an active matrix type display device using the light emitting element is known (Patent Document 1 and Patent Document 2).
In addition, conventionally, as a method of mounting a drive circuit on a display element, a display is performed via an anisotropic conductive film (ACF) (hereinafter, may be referred to as an "alien conductive adhesive"). The extraction electrode portion of the element and the connection terminal on the drive circuit board are electrically connected (Patent Document 3).

WO2019/220267号公報WO2019 / 220267A 特開2007−123861号公報Japanese Unexamined Patent Publication No. 2007-123861 特開2010−192802号公報Japanese Unexamined Patent Publication No. 2010-192802

しかしながら、マイクロLEDに用いる小型のLEDチップの実装やそれらのリペアの際に、位置出し用のアライメントマークを照合する場合がある。例えば、異方導電性接着剤を介して、実装基板に小型のLEDチップを実装する際に、実装基板の所定の位置に精度良く実装するために、実装基板上に形成された位置出し用のアライメントマークを、撮像素子を含むカメラ等により認識する必要がある。このような場合、認識エラーを回避するために、光学的に透過度が高く、耐変色性に優れた異方導電性樹脂組成物からなる異方導電性接着剤が求められることがある。 However, when mounting small LED chips used for micro LEDs or repairing them, alignment marks for positioning may be collated. For example, when mounting a small LED chip on a mounting board via an anisotropic conductive adhesive, the positioning is formed on the mounting board in order to mount the small LED chip at a predetermined position on the mounting board with high accuracy. It is necessary to recognize the alignment mark by a camera or the like including an image pickup element. In such a case, in order to avoid recognition errors, an anisotropic conductive adhesive made of an anisotropic conductive resin composition having high optical transmittance and excellent discoloration resistance may be required.

本発明は、このような実情に鑑みなされたものであり、光透過性に優れた異方導電性樹脂組成物を提供することを課題とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide an anisotropic conductive resin composition having excellent light transmission.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、特定の構造を有するシリコーン変性エポキシ樹脂、硬化剤及び導電性粒子を含む異方導電性樹脂組成物が、例えば、表示素子等を有する基板上の電極等と駆動回路基板の接続端子等との電気的接続、また、小型のLEDチップ等の実装時の電気的接続を、容易に精度良く行う接着剤に適した硬化物を与えることを見出し、本発明を完成した。
すなわち、本発明は、以下の(1)〜(8)を提供するものである。
(1)(A)シリコーン変性エポキシ樹脂と、(B)硬化剤と、(C)導電性粒子と、を含む異方導電性樹脂組成物であって、前記(A)シリコーン変性エポキシ樹脂が、下記一般式(1)で表される構造を有する、異方導電性樹脂組成物。

Figure 2021161281

[式(1)中、Rはそれぞれ独立に1価の有機基を示し、Rはそれぞれ独立に炭素数1〜10の鎖状の脂肪族炭化水素基、炭素数3〜10の環状の脂肪族炭化水素基及びフェニル基から選ばれる基を示し、Yは環状エーテル基を含有する有機基を示す。Xはそれぞれ同一であっても異なってもよい。aとbは正の数であってa+b=1かつ0.3≦a<1であり、nは1〜25である。]
(2)前記(C)導電性粒子が、金属被覆樹脂粒子を含む、上記(1)に記載の異方導電性樹脂組成物。
(3)前記金属被覆樹脂粒子の平均粒径が0.5〜10μmである、上記(2)に記載の異方導電性樹脂組成物。
(4)前記金属被覆樹脂粒子が、前記異方導電性樹脂組成物100質量部に対して、0.1〜50質量部含有する、上記(2)又は(3)に記載の異方導電性樹脂組成物。
(5)さらに、(D)無機充填剤を含む、上記(1)〜(4)のいずれかに記載の異方導電性樹脂組成物。
(6)前記(D)無機充填剤の平均粒径が1〜500nmである、上記(5)に記載の異方導電性樹脂組成物。
(7)前記(D)無機充填剤が、前記異方導電性樹脂組成物100質量部に対して、0.3〜2.5質量部含有する、上記(5)又は(6)に記載の異方導電性樹脂組成物。
(8)上記(1)〜(7)のいずれかに記載の異方導電性樹脂組成物を用いて、基板上にマイクロLEDをアレイ状に並べて実装してなる、マイクロLEDディスプレイ装置。 As a result of diligent studies to solve the above problems, the present inventors have found, for example, an anisotropic conductive resin composition containing a silicone-modified epoxy resin having a specific structure, a curing agent, and conductive particles, for example, a display element. A cured product suitable for an adhesive that easily and accurately connects the electrodes on the substrate and the connection terminals of the drive circuit board, and the electrical connection when mounting a small LED chip or the like. The present invention was completed by finding that
That is, the present invention provides the following (1) to (8).
An anisotropic conductive resin composition containing (1) (A) a silicone-modified epoxy resin, (B) a curing agent, and (C) conductive particles, wherein the (A) silicone-modified epoxy resin is An anisotropic conductive resin composition having a structure represented by the following general formula (1).
Figure 2021161281

[In the formula (1), R 1 independently represents a monovalent organic group, and R 2 is a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms and a cyclic cyclic group having 3 to 10 carbon atoms, respectively. It represents a group selected from an aliphatic hydrocarbon group and a phenyl group, and Y represents an organic group containing a cyclic ether group. X may be the same or different. a and b are positive numbers, a + b = 1 and 0.3 ≦ a <1, and n is 1 to 25. ]
(2) The anisotropic conductive resin composition according to (1) above, wherein the conductive particles (C) contain metal-coated resin particles.
(3) The anisotropic conductive resin composition according to (2) above, wherein the metal-coated resin particles have an average particle size of 0.5 to 10 μm.
(4) The anisotropic conductivity according to (2) or (3) above, wherein the metal-coated resin particles are contained in an amount of 0.1 to 50 parts by mass with respect to 100 parts by mass of the anisotropic conductive resin composition. Resin composition.
(5) The anisotropic conductive resin composition according to any one of (1) to (4) above, further comprising (D) an inorganic filler.
(6) The anisotropic conductive resin composition according to (5) above, wherein the average particle size of the inorganic filler (D) is 1 to 500 nm.
(7) The above-mentioned (5) or (6), wherein the inorganic filler (D) is contained in an amount of 0.3 to 2.5 parts by mass with respect to 100 parts by mass of the anisotropic conductive resin composition. An anisotropic conductive resin composition.
(8) A micro LED display device in which micro LEDs are arranged and mounted on a substrate in an array using the anisotropic conductive resin composition according to any one of (1) to (7) above.

本発明によれば、光透過性に優れた異方導電性樹脂組成物を提供することができる。 According to the present invention, it is possible to provide an anisotropic conductive resin composition having excellent light transmission.

[異方導電性樹脂組成物]
本発明の異方導電性樹脂組成物は、(A)シリコーン変性エポキシ樹脂と、(B)硬化剤と、(C)導電性粒子と、を含む異方導電性樹脂組成物であって、前記(A)シリコーン変性エポキシ樹脂が、下記一般式(1)で表される構造を有することを特徴とする。

Figure 2021161281
[式(1)中、Rはそれぞれ独立に1価の有機基を示し、Rはそれぞれ独立に炭素数1〜10の鎖状の脂肪族炭化水素基、炭素数3〜10の環状の脂肪族炭化水素基及びフェニル基から選ばれる基を示し、Yは環状エーテル基を含有する有機基を示す。Xはそれぞれ同一であっても異なってもよい。aとbは正の数であってa+b=1かつ0.3≦a<1であり、nは1〜25である。] [Anteroconductive resin composition]
The anisotropic conductive resin composition of the present invention is an anisotropic conductive resin composition containing (A) a silicone-modified epoxy resin, (B) a curing agent, and (C) conductive particles. The silicone-modified epoxy resin (A) is characterized by having a structure represented by the following general formula (1).
Figure 2021161281
[In the formula (1), R 1 independently represents a monovalent organic group, and R 2 is a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms and a cyclic cyclic group having 3 to 10 carbon atoms, respectively. It represents a group selected from an aliphatic hydrocarbon group and a phenyl group, and Y represents an organic group containing a cyclic ether group. X may be the same or different. a and b are positive numbers, a + b = 1 and 0.3 ≦ a <1, and n is 1 to 25. ]

[(A)シリコーン変性エポキシ樹脂]
本発明の異方導電性樹脂組成物には、下記一般式(1)で表される構造を有するシリコーン変性エポキシ樹脂を必須成分として含む。
[(A) Silicone modified epoxy resin]
The anisotropic conductive resin composition of the present invention contains a silicone-modified epoxy resin having a structure represented by the following general formula (1) as an essential component.

Figure 2021161281
Figure 2021161281

式(1)中、Rはそれぞれ独立に1価の有機基を示し、Rはそれぞれ独立に炭素数1〜10の鎖状の脂肪族炭化水素基、炭素数3〜10の環状の脂肪族炭化水素基及びフェニル基から選ばれる基を示し、Yは環状エーテル基を含有する有機基を示す。Xはそれぞれ同一であっても異なってもよい。aとbは正の数であってa+b=1かつ0.3≦a<1であり、nは1〜25である。
の1価の有機基として、ヒドロキシ基を有する1価の有機基、直鎖または分岐のアルキル基、アルコキシ基、アリール基等が挙げられる。
の炭素数1〜10の鎖状の脂肪族炭化水素基として、メチル基、エチル基、プロピル基、n−ブチル基、n−ペンチル基、又はn−へキシル基等が挙げられる。
の炭素数3〜10の環状の脂肪族炭化水素基として、シクロプロピル基、シクロプチル基、シクロペンチル基、シクロヘキシル基、又はシクロオクチル基等が挙げられる。
Yの環状エーテル基を含有する有機基として、3〜6員環の構造を有する環状エーテル基が挙げられ、特に環歪みエネルギーが大きく、反応性の高い3員環又は4員環の環状エーテル基が好ましく、3員環のエーテル基がより好ましい。β−グリシドキシエチル基、γ−グリシドキシプロピル基、β−(3,4−エポキシシクロヘキシル)エチル基等の炭素数1〜3のアルキル基にオキシグリシジル基が結合したグリシドキシアルキル基、オキシラン基を持った炭素数5〜8のシクロアルキル基で置換された炭素数3以下のアルキル基が好ましい。
In the formula (1), R 1 independently represents a monovalent organic group, and R 2 is a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms and a cyclic fat having 3 to 10 carbon atoms, respectively. A group selected from a group hydrocarbon group and a phenyl group is shown, and Y represents an organic group containing a cyclic ether group. X may be the same or different. a and b are positive numbers, a + b = 1 and 0.3 ≦ a <1, and n is 1 to 25.
Examples of the monovalent organic group of R 1 include a monovalent organic group having a hydroxy group, a linear or branched alkyl group, an alkoxy group, an aryl group and the like.
As the chain aliphatic hydrocarbon group having 1 to 10 carbon atoms R 2, a methyl group, an ethyl group, a propyl group, n- butyl group, n- pentyl group, or n- hexyl group and the like to.
The cyclic aliphatic hydrocarbon group of carbon number 3 to 10 R 2, cyclopropyl group, Shikuropuchiru group, a cyclopentyl group, a cyclohexyl group, or cyclooctyl group, and the like.
Examples of the organic group containing a cyclic ether group of Y include a cyclic ether group having a structure of a 3- to 6-membered ring, and a 3-membered or 4-membered ring cyclic ether group having a particularly large ring strain energy and high reactivity. Is preferable, and a 3-membered ring ether group is more preferable. A glycidoxyalkyl group in which an oxyglycidyl group is bonded to an alkyl group having 1 to 3 carbon atoms such as a β-glycidoxyethyl group, a γ-glycidoxypropyl group, and a β- (3,4-epoxycyclohexyl) ethyl group. , An alkyl group having 3 or less carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms having an oxylane group is preferable.

本実施形態において、シリコーン変性エポキシ樹脂は、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは30〜80質量部であり、より好ましくは40〜70質量部であり、45〜60質量部であることがさらに好ましい。
シリコーン変性エポキシ樹脂の質量部がこの範囲にあると、耐熱性、耐光性、及び耐マイグレーション性を有しやすくなる。
なお、前記シリコーン変性エポキシ樹脂は、例えば、特開2012−241136号公報に記載されている。
In the present embodiment, the silicone-modified epoxy resin is preferably 30 to 80 parts by mass, more preferably 40 to 70 parts by mass, and 45 parts by mass with respect to 100 parts by mass of the total mass of the anisotropic conductive resin composition. It is more preferably ~ 60 parts by mass.
When the mass portion of the silicone-modified epoxy resin is in this range, it becomes easy to have heat resistance, light resistance, and migration resistance.
The silicone-modified epoxy resin is described in, for example, Japanese Patent Application Laid-Open No. 2012-241136.

[(B)硬化剤]
本発明の異方導電性樹脂組成物には、(B)硬化剤を必須成分として含む。
(B)硬化剤としては、前記(A)シリコーン変性エポキシ樹脂がエポキシ基を有するため、例えば、熱硬化では、一般的に使用されるアミン系硬化剤、酸無水物硬化剤が挙げられる。この中で、光透過性、耐熱性等の観点から、酸無水物硬化剤を用いることが好ましい。
酸無水物硬化剤としては、例えば、無水コハク酸、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチル−テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、ノルボルナン−2,3−ジカルボン酸無水物、メチルノルボルナン−2,3−ジカルボン酸無水物及びメチルシクロヘキセンジカルボン酸無水物等が挙げられる。これらの中で、光透過性の観点から、4−メチル−ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水ナジック酸、又はメチルシクロヘキセンジカルボン酸無水物が好ましい。
これらは単独、もしくは2種類以上混合して使用することができる。
[(B) Hardener]
The anisotropic conductive resin composition of the present invention contains (B) a curing agent as an essential component.
As the curing agent (B), since the silicone-modified epoxy resin (A) has an epoxy group, for example, an amine-based curing agent and an acid anhydride curing agent that are generally used in thermosetting can be mentioned. Among these, it is preferable to use an acid anhydride curing agent from the viewpoint of light transmission, heat resistance and the like.
Examples of the acid anhydride curing agent include succinic anhydride, phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, and 4-methyl-. Hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl-tetrahydrophthalic anhydride, nadicic anhydride, methylnadic anhydride, norbornan-2,3-dicarboxylic acid anhydride, methylnorbornan-2,3-dicarboxylic acid anhydride and methyl Cyclohexendicarboxylic acid anhydride and the like can be mentioned. Among these, 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadicic anhydride, or methylcyclohexene dicarboxylic acid anhydride are preferable from the viewpoint of light transmission.
These can be used alone or in combination of two or more.

本実施形態において、硬化剤は、良好な硬化性や硬化物特性が得られるという観点から、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは4〜70質量部であり、より好ましくは10〜50質量部であり、15〜35質量部であることがさらに好ましい。 In the present embodiment, the curing agent is preferably 4 to 70 parts by mass with respect to 100 parts by mass of the total mass of the anisotropic conductive resin composition from the viewpoint of obtaining good curability and cured product properties. , More preferably 10 to 50 parts by mass, and even more preferably 15 to 35 parts by mass.

さらに、前記硬化剤との反応に有効な硬化促進剤、硬化触媒を併用して使用することができる。
前記硬化促進剤としては、例えば、トリフェニルホスフィン、トリブチルホスフィン等の有機リン化合物;エチルトリフェニルホスフォニウムブロマイド、メチルトリフェニルホスホニウムリン酸ジエチル、テトラ−n−ブチルホスホニウム−O,O’−ジエチルホスホロジチオネート等の第4級ホスフォニウム塩;1,8−ジアザビシクロ(5,4,0)ウンデカン−7−エン、1,8−ジアザビシクロ(5,4,0)ウンデカン−7−エンとオクチル酸の塩、オクチル酸亜鉛、テトラブチルアンモニウムブロミド等の第4級アンモニウム塩が挙げられる。これらの中で、密着性の観点から、テトラ−n−ブチルホスホニウム−O,O’−ジエチルホスホロジチオネート、4ヒドロキシ2(トリフェニルホスホニウム)フェノラトが好ましい。
これらは単独、もしくは2種類以上混合して使用することができる。
Further, a curing accelerator and a curing catalyst effective for the reaction with the curing agent can be used in combination.
Examples of the curing accelerator include organic phosphorus compounds such as triphenylphosphine and tributylphosphine; ethyltriphenylphosphine bromide, diethyl methyltriphenylphosphonium phosphate, tetra-n-butylphosphonium-O, O'-diethyl. Tertiary phosphineium salts such as phosphorodithionates; 1,8-diazabicyclo (5,4,0) undecane-7-ene, 1,8-diazabicyclo (5,4,0) undecane-7-ene and octylic acid. Salts, quaternary ammonium salts such as zinc octylate, tetrabutylammonium bromide and the like. Of these, tetra-n-butylphosphonium-O, O'-diethylphosphologithionate, and 4-hydroxy2 (triphenylphosphonium) phenolato are preferable from the viewpoint of adhesion.
These can be used alone or in combination of two or more.

前記硬化触媒としては、例えば、トリフェニルフォスフィン及びジフェニルフォスフィン等の有機フォスフィン系硬化触媒;1,8−ジアザビシクロ(5,4,0)ウンデセン−7、トリエタノールアミン及びベンジルジメチルアミン等の三級アミン系硬化触媒;2−メチルイミダゾール及び2−フェニル−4−メチルイミダゾール等のイミダゾール類等が挙げられる。
これらは単独、もしくは2種類以上混合して使用することができる。
Examples of the curing catalyst include organic phosphine-based curing catalysts such as triphenylphosphine and diphenylphosphine; 1,8-diazabicyclo (5,4,0) undecene-7, triethanolamine, benzyldimethylamine and the like. Secondary amine-based curing catalysts; imidazoles such as 2-methylimidazole and 2-phenyl-4-methylimidazole can be mentioned.
These can be used alone or in combination of two or more.

また、熱カチオン硬化触媒や光カチオン硬化触媒を添加して熱硬化、光硬化とすることができる。
前記熱カチオン硬化触媒として、例えば、ベンジルスルホニウム塩、チオフェニウム塩、チオラニウム塩、ベンジルアンモニウム、ピリジニウム塩、ヒドラジニウム塩、カルボン酸エステル、スルホン酸エステル及びアミンイミド等が挙げられる。
これらは単独、もしくは2種類以上混合して使用することができる。
前記光カチオン硬化触媒としては、例えば、スルホニウム塩系やヨウドニウム塩系が挙げられる。スルホニウム塩系の例としては、例えば、トリフェニルスルホニウムヘキサフルオロホスフェート及びトリフェニルスルホニウムヘキサフルオロアンチモネート等が挙げられ、ヨードニウム塩系の例として、例えば、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート及びジフェニルヨードニウムヘキサフルオロホスフェート等が挙げられる。
これらは単独、もしくは2種類以上混合して使用することができる。
Further, a thermocation curing catalyst or a photocationic curing catalyst can be added to perform thermosetting and photocuring.
Examples of the thermal cation curing catalyst include benzylsulfonium salt, thiophenium salt, thiolanium salt, benzylammonium, pyridinium salt, hydrazinium salt, carboxylic acid ester, sulfonic acid ester and amineimide.
These can be used alone or in combination of two or more.
Examples of the photocationic curing catalyst include a sulfonium salt type and an iodonium salt type. Examples of the sulfonium salt system include, for example, triphenylsulfonium hexafluorophosphate and triphenylsulfonium hexafluoroantimonate, and examples of the iodonium salt system include, for example, diphenyliodonium tetrakis (pentafluorophenyl) borate and diphenyliodonium. Hexafluorophosphate and the like can be mentioned.
These can be used alone or in combination of two or more.

[(C)導電性粒子]
本発明の異方導電性樹脂組成物には、(C)導電性粒子を必須成分として含む。
(C)導電性粒子としては、例えば、金属及びカーボンが挙げられる。前記金属としては、例えば、ニッケル(Ni)、銅(Cu)等の遷移金属;金(Au)、銀(Ag)、白金族金属等の貴金属;及びはんだ等の合金が挙げられる。
導電性粒子は、核となる粒子を上記金属又はカーボンで被覆した被覆粒子であることが好ましい。
導電性粒子の最外層は、充分なポットライフが得られ易い観点から、Au、Ag、白金族金属等の貴金属を含むことが好ましく、Auを含むことがより好ましい。
導電性粒子は、例えば、Ni等の遷移金属を核として、その表面をAu等の貴金属で被覆したものであってもよく、非導電性のガラス、セラミック、プラスチック等を核として、その表面に前記金属等の導通層を被覆等により形成したものであってもよい。前記導通層は、単一の層であってもよく、複数の層であってもよいが、最外層は貴金属層であることが好ましい。
[(C) Conductive particles]
The anisotropic conductive resin composition of the present invention contains (C) conductive particles as an essential component.
Examples of the conductive particles (C) include metals and carbon. Examples of the metal include transition metals such as nickel (Ni) and copper (Cu); precious metals such as gold (Au), silver (Ag) and platinum group metals; and alloys such as solder.
The conductive particles are preferably coated particles in which core particles are coated with the above metal or carbon.
The outermost layer of the conductive particles preferably contains a noble metal such as Au, Ag, or a platinum group metal, and more preferably Au, from the viewpoint that a sufficient pot life can be easily obtained.
The conductive particles may be, for example, those in which a transition metal such as Ni is used as a core and the surface thereof is coated with a noble metal such as Au. The conductive layer of the metal or the like may be formed by coating or the like. The conductive layer may be a single layer or a plurality of layers, but the outermost layer is preferably a noble metal layer.

被覆粒子(例えば、プラスチックを核とする導電性粒子)又は熱溶融金属粒子は、加熱及び加圧による変形性を付与し得ることから、接続時に回路電極等の高さのばらつきを解消すること及び回路電極等との接触面積を増大させることが容易であり、これにより信頼性がさらに向上すると考えられる。 Since the coated particles (for example, conductive particles having a plastic as a core) or the heat-melted metal particles can impart deformability due to heating and pressurization, it is possible to eliminate variations in the height of circuit electrodes and the like at the time of connection. It is easy to increase the contact area with the circuit electrodes and the like, which is considered to further improve the reliability.

導電性粒子の最外層が貴金属層である場合、該貴金属層の厚みは、接続される回路間の抵抗を充分に低減し易い観点から、通常、10nm以上である。ただし、貴金属層が、Ni等の遷移金属の上に設けられる場合、例えば、導電性粒子の混合分散時に、貴金属層が欠損すること等により、Ni等の遷移金属が異方導電性樹脂組成物中に露出し、当該遷移金属による酸化還元作用により遊離ラジカルが発生することがあり、該遊離ラジカルは、異方導電性樹脂組成物の保存安定性を低下させるおそれがある。このため、前記貴金属層の厚みは、好ましくは30nm以上であり、より好ましくは60nm以上であり、100nm以上がさらに好ましい。
前記貴金属層の厚みの上限は、特に制限はないが、製造コストの観点から、通常、1μm以下である。
When the outermost layer of the conductive particles is a noble metal layer, the thickness of the noble metal layer is usually 10 nm or more from the viewpoint of easily sufficiently reducing the resistance between the connected circuits. However, when the noble metal layer is provided on the transition metal such as Ni, for example, the transition metal such as Ni is an heterogeneous conductive resin composition due to the loss of the noble metal layer at the time of mixing and dispersing the conductive particles. Free radicals may be generated due to the oxidation-reduction action of the transition metal, which may reduce the storage stability of the heteroconductive resin composition. Therefore, the thickness of the noble metal layer is preferably 30 nm or more, more preferably 60 nm or more, and further preferably 100 nm or more.
The upper limit of the thickness of the noble metal layer is not particularly limited, but is usually 1 μm or less from the viewpoint of manufacturing cost.

導電性粒子の平均粒径は、回路電極の高さのばらつきに対応し易く、回路電極間の導電性が低下し難い観点から、好ましくは0.5μm以上、より好ましくは1μm以上である。導電性粒子の平均粒径は、隣接する回路電極間の絶縁性が低下し難い観点から、好ましくは10μm以下、より好ましくは5μm以下である。これらの観点から、導電性粒子の平均粒径は、好ましくは0.5〜10μmであり、より好ましくは1〜5μmであり、1.5〜4.5μmであることがさらに好ましい。
前記導電性粒子の平均粒子径は、任意の100個の導電性粒子を顕微鏡で観察することにより測定することができる。
The average particle size of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, from the viewpoint that it is easy to cope with variations in the height of the circuit electrodes and the conductivity between the circuit electrodes is unlikely to decrease. The average particle size of the conductive particles is preferably 10 μm or less, more preferably 5 μm or less, from the viewpoint that the insulation between adjacent circuit electrodes is unlikely to decrease. From these viewpoints, the average particle size of the conductive particles is preferably 0.5 to 10 μm, more preferably 1 to 5 μm, and even more preferably 1.5 to 4.5 μm.
The average particle size of the conductive particles can be measured by observing any 100 conductive particles with a microscope.

導電性粒子の含有量は、導電性に優れる観点から、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは0.1質量部以上である。導電性粒子の含有量は、隣接回路の短絡等を抑制し易い観点から、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは50質量部以下、より好ましくは40質量部以下である。これらの観点から、導電性粒子の含有量は、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは0.1〜50質量部であり、より好ましくは0.1〜40質量部であり、0.1〜30質量部であることがさらに好ましい。
導電性粒子は、異方導電性樹脂組成物が加圧加熱された後に異方導電性接着剤としての機能を発揮することができるような密度で、異方導電性組成物中に分散されている。具体的には、水平投影面積当たり導電性粒子が好ましくは15〜60%、より好ましくは25〜60%を占める。また、単位面積当たりの個数は、平均粒子径に大きく依存するが、導電性の観点から、好ましくは10,000〜100,000個/mm2であり、より好ましくは20,000〜70,000個/mm2であり、30,000〜60,000個/mm2であることがさらに好ましい。
The content of the conductive particles is preferably 0.1 part by mass or more with respect to 100 parts by mass of the total mass of the anisotropic conductive resin composition from the viewpoint of excellent conductivity. The content of the conductive particles is preferably 50 parts by mass or less, more preferably 40 parts by mass, based on 100 parts by mass of the total mass of the anisotropic conductive resin composition from the viewpoint of easily suppressing a short circuit of an adjacent circuit. It is as follows. From these viewpoints, the content of the conductive particles is preferably 0.1 to 50 parts by mass, more preferably 0.1 to 40 parts by mass, based on 100 parts by mass of the total mass of the anisotropic conductive resin composition. It is by mass, more preferably 0.1 to 30 parts by mass.
The conductive particles are dispersed in the anisotropic conductive composition at a density capable of exerting a function as an anisotropic conductive adhesive after the anisotropic conductive resin composition is pressurized and heated. There is. Specifically, the conductive particles occupy preferably 15 to 60%, more preferably 25 to 60% per horizontal projected area. The number of particles per unit area largely depends on the average particle size, but from the viewpoint of conductivity, it is preferably 10,000 to 100,000 particles / mm 2 , and more preferably 20,000 to 70,000. The number is 2 mm / mm 2, and more preferably 30,000 to 60,000 pieces / mm 2.

[(D)無機充填剤]
本発明の異方導電性樹脂組成物には、さらに(D)無機充填剤を含むことが好ましい。
(D)無機充填剤としては、例えば、金属炭化物、金属酸化物、シリカ粒子、炭素粒子、金属炭酸塩粒子、金属窒化物粒子、金属水酸化物粒子、金属硫酸塩粒子、チタン酸バリウム粒子、等が挙げられる。これらの中で、光透過性の低下の抑制、熱膨張係数の低下の観点から、シリカ粒子が好ましい。シリカ粒子としては、非晶質シリカ、結晶性シリカ、溶融シリカ、非晶質溶融シリカ、粉砕シリカ、ナノシリカ等、当該技術分野で使用される各種シリカが挙げられ、非晶質溶融シリカが好ましい。
これらは単独、もしくは2種類以上混合して使用することができる。
[(D) Inorganic filler]
The anisotropic conductive resin composition of the present invention preferably further contains (D) an inorganic filler.
Examples of the inorganic filler include metal carbides, metal oxides, silica particles, carbon particles, metal carbonate particles, metal nitride particles, metal hydroxide particles, metal sulfate particles, barium titanate particles, and the like. And so on. Among these, silica particles are preferable from the viewpoint of suppressing a decrease in light transmission and a decrease in a coefficient of thermal expansion. Examples of the silica particles include various types of silica used in the art such as amorphous silica, crystalline silica, molten silica, amorphous fused silica, pulverized silica, and nanosilica, and amorphous fused silica is preferable.
These can be used alone or in combination of two or more.

(D)無機充填剤の平均粒径は、光透過性を低下させない観点から、好ましくは1〜500nmであり、より好ましくは5〜300nmであり、10〜200nmであることがさらに好ましい。
(D)無機充填剤の含有量は、異方導電性樹脂組成物の形状保持の観点から、異方導電性樹脂組成物100質量部に対し、好ましくは0.3〜2.5質量部であり、より好ましくは0.5〜2.0質量部であり、0.7〜1.7質量部であることがさらに好ましい。
前記無機充填剤の平均粒径は、特に限定しない限り、レーザ回折・光散乱法に基く体積基準の粒度分布において、粒径が小さい側からの累積頻度50体積%に相当する粒径(D50、メジアン径ともいう。)をいう。
The average particle size of the inorganic filler (D) is preferably 1 to 500 nm, more preferably 5 to 300 nm, and even more preferably 10 to 200 nm from the viewpoint of not reducing the light transmittance.
The content of the inorganic filler (D) is preferably 0.3 to 2.5 parts by mass with respect to 100 parts by mass of the anisotropic conductive resin composition from the viewpoint of maintaining the shape of the anisotropic conductive resin composition. Yes, more preferably 0.5 to 2.0 parts by mass, and even more preferably 0.7 to 1.7 parts by mass.
Unless otherwise specified, the average particle size of the inorganic filler is a particle size corresponding to a cumulative frequency of 50% by volume from the smaller particle size side in the volume-based particle size distribution based on the laser diffraction / light scattering method (D50, Also called the median diameter).

(その他成分)
本発明の異方導電性樹脂組成物には、カップリング剤を添加してもよい。カップリング剤としては、この種の樹脂組成物に配合される公知のカップリング剤であれば特に限定されないが、例えば、シランカップリング剤およびチタネート系カップリング剤が挙げられる。シランカップリング剤としては、通常、エポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系、及びこれらの複合系が挙げられ、任意の添加量で用いることができる。また、チタネート系カップリング剤としては、通常、少なくとも炭素数1〜60のアルキレート基を有するチタネート系カップリング剤、アルキルホスファイト基を有するチタネート系カップリング剤、アルキルホスフェート基を有するチタネート系カップリング剤もしくはアルキルパイロホスフェート基を有するチタネート系カップリング剤、及びこれらの複合系カップリング剤が挙げられ、任意の添加量で用いることができる。
なお、カップリング剤の配合量は、典型的には異方導電性樹脂組成物100質量%に対して5質量%以下である。
(Other ingredients)
A coupling agent may be added to the anisotropic conductive resin composition of the present invention. The coupling agent is not particularly limited as long as it is a known coupling agent blended in this type of resin composition, and examples thereof include a silane coupling agent and a titanate-based coupling agent. Examples of the silane coupling agent usually include epoxysilane-based, aminosilane-based, cationicsilane-based, vinylsilane-based, acrylicsilane-based, mercaptosilane-based, and composite systems thereof, and can be used in any addition amount. .. Further, as the titanate-based coupling agent, usually, a titanate-based coupling agent having an alkylate group having at least 1 to 60 carbon atoms, a titanate-based coupling agent having an alkylphosphite group, and a titanate-based cup having an alkylphosphate group. Examples thereof include a ring agent or a titanate-based coupling agent having an alkylpyrophosphate group, and a composite coupling agent thereof, which can be used in any addition amount.
The blending amount of the coupling agent is typically 5% by mass or less with respect to 100% by mass of the anisotropic conductive resin composition.

また、本発明の異方導電性樹脂組成物には、必要に応じて、酸化防止剤、離型剤、イオン捕捉剤等の添加剤を添加してもよい。 Further, additives such as an antioxidant, a mold release agent, and an ion scavenger may be added to the anisotropic conductive resin composition of the present invention, if necessary.

[異方導電性樹脂組成物の製造方法]
本発明の異方導電性樹脂組成物は、公知の方法を適用して製造することができる。
例えば、前記(A)〜(C)成分、及び、必要に応じて任意に配合される各種成分を、ポットミル、ボールミル、ビーズミル、ロールミル、ホモジナイザー、スーパーミル、ライカイ機等の公知の混練機を用いて、室温あるいは加熱下において混練した後、必要に応じて溶剤を希釈して、異方導電性樹脂組成物を得ることにより製造することができる。
[Manufacturing method of anisotropic conductive resin composition]
The anisotropic conductive resin composition of the present invention can be produced by applying a known method.
For example, a known kneader such as a pot mill, a ball mill, a bead mill, a roll mill, a homogenizer, a super mill, or a raikai machine is used to mix the components (A) to (C) and various components arbitrarily blended as needed. After kneading at room temperature or under heating, the solvent can be diluted if necessary to obtain an anisotropic conductive resin composition.

[マイクロLEDアレイディスプレイ装置の製造方法]
本発明のマイクロLEDアレイディスプレイ装置の製造方法は、印刷法またはディスペンス法等公知の手段で、前記異方導電性樹脂組成物を基板上に塗布した後、マイクロLEDを所定の間隔で実装し、150〜200℃、1〜10MPaの条件下で、0.1〜2時間、加熱硬化することにより、マイクロLEDをアレイ状に並べて基板に接合することで得られる。
アレイ状とは、特に限定されないが、例えば、マイクロLEDをM行N列に配置することを意味する。ただし、ここでM及びNは整数であり、MとNとの少なくともいずれかは2以上である。
[Manufacturing method of micro LED array display device]
The method for manufacturing the micro LED array display device of the present invention is to apply the anisotropic conductive resin composition on a substrate by a known means such as a printing method or a dispensing method, and then mount the micro LEDs at predetermined intervals. It is obtained by arranging micro LEDs in an array and bonding them to a substrate by heat curing for 0.1 to 2 hours under the conditions of 150 to 200 ° C. and 1 to 10 MPa.
The array shape means, for example, arranging the micro LEDs in M rows and N columns, although not particularly limited. However, here, M and N are integers, and at least one of M and N is 2 or more.

次に実施例により、本発明を具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Next, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these examples.

[合成例1]
(A1)シリコーン変性エポキシ樹脂の合成
温度計、冷却管、窒素導入管、撹拌翼のついた500mlの4つ口セパラブルフラスコに、ハイドロジェンポリジメチルシロキサン〔商品名:DMS−H03、Gelest,Inc.社製〕を85.0質量部、トルエンを100質量部投入し、常温で撹拌した。そこへ白金ジビニルテトラメチルジシロキサン錯体キシレン溶液〔商品名:SIP6831.2、Gelest,Inc.社製〕を0.075質量部添加し、マントルヒーターを用いて60℃に加温した。そこへモノアリルグリシジルイソシアヌル酸〔商品名:MADGIC、四国化成工業株式会社製〕を53.1質量部投入し、溶解させた。その後、110℃まで上昇し、そのまま4時間撹拌した。
次いで、トルエン50質量部に溶解させた液状ポリブタジエン〔商品名:NISSO PB G−1000、日本曹達株式会社製〕11.9質量部を30分かけて反応溶液中に滴下し、さらに110℃で4時間撹拌した。得られた反応混合物の溶剤を減圧下で留去することにより、シリコーン変性エポキシ樹脂を得た。
[Synthesis Example 1]
(A1) Synthesis of silicone-modified epoxy resin Hydrogen polydimethylsiloxane [trade name: DMS-H03, Gelest, Inc.] in a 500 ml 4-port separable flask equipped with a thermometer, a cooling tube, a nitrogen introduction tube, and a stirring blade. .. 85.0 parts by mass and 100 parts by mass of toluene were added, and the mixture was stirred at room temperature. Platinum divinyltetramethyldisiloxane complex xylene solution [trade name: SIP6831.2, Gelest, Inc. ] Was added in an amount of 0.075 parts by mass and heated to 60 ° C. using a mantle heater. 53.1 parts by mass of monoallyl glycidyl isocyanuric acid [trade name: MADGIC, manufactured by Shikoku Chemicals Corporation] was added thereto and dissolved. Then, the temperature was raised to 110 ° C., and the mixture was stirred as it was for 4 hours.
Next, 11.9 parts by mass of liquid polybutadiene [trade name: NISSO PB G-1000, manufactured by Nippon Soda Corporation] dissolved in 50 parts by mass of toluene was added dropwise to the reaction solution over 30 minutes, and further at 110 ° C. 4 Stirred for hours. The solvent of the obtained reaction mixture was distilled off under reduced pressure to obtain a silicone-modified epoxy resin.

[合成例2]
(A2)シリコーン変性エポキシ樹脂の合成
合成例1で用いたものと同様のフラスコに、エポキシ化ポリブタジエン〔エポキシ当量203g/eq、二重結合当量83g/eq、数平均分子量1000〕を123質量部、トルエンを200質量部入れてエポキシ化ポリブタジエンを溶解させた。そこへ白金ジビニルテトラメチルジシロキサン錯体キシレン溶液〔商品名:SIP6831.2、Gelest,Inc.社製〕を0.033質量部添加し、マントルヒーターを用いて60℃に加温した。そこへトルエン70質量部に溶解させたハイドロジェンポリジメチルシロキサン〔商品名:DMS−H03、Gelest,Inc.社製〕6質量部を30分かけて反応溶液中に滴下し、さらに110℃で4時間撹拌した。得られた反応混合物の溶剤を減圧下で留去することにより、シリコーン変性エポキシ樹脂を得た。
[Synthesis Example 2]
(A2) Synthesis of Silicone Modified Epoxy Resin In a flask similar to that used in Synthesis Example 1, 123 parts by mass of epoxidized polybutadiene [epoxy equivalent 203 g / eq, double bond equivalent 83 g / eq, number average molecular weight 1000], 200 parts by mass of toluene was added to dissolve the epoxidized polybutadiene. Platinum divinyltetramethyldisiloxane complex xylene solution [trade name: SIP6831.2, Gelest, Inc. ] Was added in an amount of 0.033 parts by mass and heated to 60 ° C. using a mantle heater. Hydrogenpolydimethylsiloxane dissolved therein in 70 parts by mass of toluene [trade name: DMS-H03, Gelest, Inc. 6 parts by mass was added dropwise to the reaction solution over 30 minutes, and the mixture was further stirred at 110 ° C. for 4 hours. The solvent of the obtained reaction mixture was distilled off under reduced pressure to obtain a silicone-modified epoxy resin.

(実施例1、2、比較例1〜4)
表1に示した配合比で各成分を混合し、異方導電性樹脂組成物を得た。得られた異方導電性樹脂組成物を後述の方法で評価した。その結果を表1に併せて示す。なお、実施例及び比較例で用いた材料は、下記の特性を有するものを使用した。
(Examples 1 and 2, Comparative Examples 1 to 4)
Each component was mixed at the compounding ratio shown in Table 1 to obtain an anisotropic conductive resin composition. The obtained anisotropic conductive resin composition was evaluated by the method described later. The results are also shown in Table 1. The materials used in Examples and Comparative Examples had the following characteristics.

(A1)シリコーン変性エポキシ樹脂:合成例1
(A2)シリコーン変性エポキシ樹脂:合成例2
その他の樹脂
・シリコーン樹脂(信越化学工業社製、商品名:KER−3000−M2)
・イソシアヌル酸構造を有するエポキシ樹脂(日産化学社製、商品名:TEPIC−FL)
(A1) Silicone-modified epoxy resin: Synthesis Example 1
(A2) Silicone-modified epoxy resin: Synthesis Example 2
Other resins / silicone resins (manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KER-3000-M2)
-Epoxy resin with isocyanuric acid structure (manufactured by Nissan Chemical Industries, Ltd., trade name: TEPIC-FL)

(B)硬化剤
・(B1)4−メチル−ヘキサヒドロ無水フタル酸(新日本理化社製、商品名:リカシッドMH)
・(B2)イソシアネート系硬化剤(東ソー社製、商品名:コロネートHX)
(B) Hardener (B1) 4-Methyl-Hexahydrophthalic anhydride (manufactured by Shin Nihon Rika Co., Ltd., trade name: Ricacid MH)
・ (B2) Isocyanate-based curing agent (manufactured by Tosoh, trade name: Coronate HX)

・硬化促進剤:テトラ−n−ブチルホスホニウム−O,O’−ジエチルホスホロジチオネート(日本化学工業社製、商品名:PX−4ET) -Curing accelerator: tetra-n-butylphosphonium-O, O'-diethylphosphologithionate (manufactured by Nippon Chemical Industrial Co., Ltd., trade name: PX-4ET)

(C)導電性粒子
・金メッキ樹脂粒子(積水化学社製、商品名:ミクロパールAU、平均粒子径:5μm)
(C) Conductive particles / gold-plated resin particles (manufactured by Sekisui Chemical Co., Ltd., trade name: Micropearl AU, average particle size: 5 μm)

(D)無機充填剤
・非晶質溶融シリカ(日本アエロジル社製、商品名:R972、平均粒子径:15nm)
前記(D)無機充填剤の平均粒子径は、レーザ回折/散乱式粒度分布測定装置(堀場製作所製、製品名:LA−920)を用いて、レーザ回折散乱方式によりメジアン径を測定し、これを平均粒子径とした。
(D) Inorganic filler / amorphous fused silica (manufactured by Nippon Aerosil Co., Ltd., trade name: R972, average particle size: 15 nm)
For the average particle size of the (D) inorganic filler, the median size was measured by a laser diffraction / scattering method using a laser diffraction / scattering type particle size distribution measuring device (manufactured by HORIBA, Ltd., product name: LA-920). Was taken as the average particle size.

その他成分
・シランカップリング剤(信越シリコーン社製、商品名:KBM−303)
Other ingredients ・ Silane coupling agent (manufactured by Shinetsu Silicone Co., Ltd., trade name: KBM-303)

<評価方法>
(1)密着性
異方導電性樹脂組成物を印刷評価基板に塗布し、さらに50μm×50μmのLEDを実装し、200℃で1時間加熱して接合した後、接着強度測定装置(西進商事社製、型名:SS−30WD)を用いて25℃及び260℃の環境下での接着強度を測定し、25℃での接着強度に対する260℃の接着強度の変化率(低下率)を算出した。評価基準は次の通りである。
[評価基準]
○:10%未満
△:10%以上20%未満
×:20%以上
<Evaluation method>
(1) Adhesiveness An anisotropic conductive resin composition is applied to a print evaluation substrate, an LED of 50 μm × 50 μm is further mounted, and after heating at 200 ° C. for 1 hour to join, an adhesive strength measuring device (Nishishin Shoji Co., Ltd.) The adhesive strength in the environment of 25 ° C. and 260 ° C. was measured using the product, model name: SS-30WD), and the rate of change (decrease rate) of the adhesive strength at 260 ° C. with respect to the adhesive strength at 25 ° C. was calculated. .. The evaluation criteria are as follows.
[Evaluation criteria]
◯: Less than 10% Δ: 10% or more and less than 20% ×: 20% or more

(2)初期透過率
対向した厚さ1mmの2枚のガラス板(松波硝子社製、製品名:S1112)の間に、厚さ0.5mmのシリコーンゴムシートをスペーサーとして挟み込みことにより作製したセルに、異方導電性樹脂組成物を流し込み、120℃で2時間加熱し、次いで150℃まで加熱した後、さらに5時間の加熱を行い樹脂組成物を硬化させることにより、厚さ0.5mmの板状硬化物を作製した。
紫外可視分光光度計(日本分光社製、製品名:V−570)を用いて、加熱硬化後の板状硬化物の波長460nmにおける光透過率を測定した。評価基準は次の通りである。
[評価基準]
○:90%以上
△:80%以上90%未満
×:80%未満
(2) Initial transmission rate A cell produced by sandwiching a 0.5 mm thick silicone rubber sheet as a spacer between two 1 mm thick glass plates (manufactured by Matsunami Glass Co., Ltd., product name: S1112) facing each other. The heteroconductive resin composition is poured into the glass, heated at 120 ° C. for 2 hours, then heated to 150 ° C., and then further heated for 5 hours to cure the resin composition to a thickness of 0.5 mm. A plate-shaped cured product was prepared.
Using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name: V-570), the light transmittance of the plate-shaped cured product after heat curing was measured at a wavelength of 460 nm. The evaluation criteria are as follows.
[Evaluation criteria]
◯: 90% or more Δ: 80% or more and less than 90% ×: less than 80%

(3)耐熱性試験(1)
前記(2)で得られた加熱硬化後の板状硬化物に対し、150℃の大気オーブンにて24時間加熱処理した。また、この加熱処理後の板状硬化物の460nmにおける光透過率を測定し、その変化率を算出した。評価基準は次の通りである。
[評価基準]
○:90%以上
△:80%以上90%未満
×:80%未満
(3) Heat resistance test (1)
The heat-cured plate-shaped cured product obtained in (2) above was heat-treated in an air oven at 150 ° C. for 24 hours. In addition, the light transmittance of the plate-shaped cured product after this heat treatment at 460 nm was measured, and the rate of change was calculated. The evaluation criteria are as follows.
[Evaluation criteria]
◯: 90% or more Δ: 80% or more and less than 90% ×: less than 80%

(4)耐熱性試験(2)
前記(2)で得られた加熱硬化後の板状硬化物に対し、150℃の大気オーブンにて1000時間加熱処理した。また、この加熱処理後の板状硬化物の460nmにおける光透過率を測定し、その変化率を算出した。評価基準は次の通りである。
[評価基準]
○:90%以上
△:80%以上90%未満
×:80%未満
(4) Heat resistance test (2)
The heat-cured plate-shaped cured product obtained in (2) above was heat-treated in an air oven at 150 ° C. for 1000 hours. In addition, the light transmittance of the plate-shaped cured product after this heat treatment at 460 nm was measured, and the rate of change was calculated. The evaluation criteria are as follows.
[Evaluation criteria]
◯: 90% or more Δ: 80% or more and less than 90% ×: less than 80%

(5)耐光性試験(1)
前記(2)で得られた加熱硬化後の板状硬化物に対し、UV照射装置(オーク製作所製、製品名:UV−300、高圧水銀灯、400nm以下の波長カットフィルター使用)を用い、24時間UV照射処理した。また、この照射処理後の板状硬化物の460nmにおける光透過率を測定し、その変化率を算出した。評価基準は次の通りである。
[評価基準]
○:90%以上
△:80%以上90%未満
×:80%未満
(5) Light resistance test (1)
For the plate-shaped cured product obtained in (2) above, a UV irradiation device (manufactured by ORC Manufacturing Co., Ltd., product name: UV-300, high-pressure mercury lamp, wavelength cut filter of 400 nm or less is used) for 24 hours. UV irradiation treatment was performed. In addition, the light transmittance of the plate-shaped cured product after this irradiation treatment at 460 nm was measured, and the rate of change was calculated. The evaluation criteria are as follows.
[Evaluation criteria]
◯: 90% or more Δ: 80% or more and less than 90% ×: less than 80%

(6)耐光性試験(2)
前記(2)で得られた加熱硬化後の板状硬化物に対し、UV照射装置(オーク製作所製、製品名:UV−300、高圧水銀灯、400nm以下の波長カットフィルター使用)を用い、1000時間UV照射処理した。次いで、照射処理後の板状硬化物の460nmにおける光透過率を測定し、その変化率を算出した。評価基準は次の通りである。
[評価基準]
○:90%以上
△:80%以上90%未満
×:80%未満
(6) Light resistance test (2)
The plate-shaped cured product obtained in (2) above was subjected to a UV irradiation device (manufactured by ORC Manufacturing Co., Ltd., product name: UV-300, high-pressure mercury lamp, wavelength cut filter of 400 nm or less) for 1000 hours. UV irradiation treatment was performed. Next, the light transmittance of the plate-shaped cured product after the irradiation treatment at 460 nm was measured, and the rate of change was calculated. The evaluation criteria are as follows.
[Evaluation criteria]
◯: 90% or more Δ: 80% or more and less than 90% ×: less than 80%

(7)耐マイグレーション性
くし型パターン基板(基板材料:窒化アルミ、電極材料:Cu、0.1mm間隔で5本)に実施例で得られた異方導電性樹脂組成物を塗布し、200℃、1MPaで60分間、熱硬化したサンプル(50×50mm、厚さ:0.1mm)に対し、85℃、湿度85%RHの環境下で電極に100Vの電圧を1000時間印加しマイグレーション性試験を行うことにより、耐マイグレーション性を評価した。評価基準は次の通りである。
[評価基準]
○:マイグレーション発生なし
×:マイグレーション発生
(7) Migration resistance The anisotropic conductive resin composition obtained in the example was applied to a comb-shaped pattern substrate (board material: aluminum nitride, electrode material: Cu, 5 pieces at 0.1 mm intervals), and the temperature was 200 ° C. A migration test was performed on a sample (50 x 50 mm, thickness: 0.1 mm) thermoset at 1 MPa for 60 minutes by applying a voltage of 100 V to the electrodes for 1000 hours in an environment of 85 ° C. and 85% humidity RH. By doing so, the migration resistance was evaluated. The evaluation criteria are as follows.
[Evaluation criteria]
○: No migration occurred ×: Migration occurred

Figure 2021161281
Figure 2021161281

主成分である樹脂として、シリコーン変成エポキシ樹脂を用いた実施例1、2は、シリコーン樹脂を用いた比較例1、3(密着性、耐マイグレーション性が悪い)、エポキシ樹脂を用いた比較例2、4(耐光性が悪い)に比べ、密着性、光透過性、耐熱性、耐光性及び耐マイグレーション性のすべてが同時に満たされていることがわかる。 Examples 1 and 2 using a silicone modified epoxy resin as the main component resin are Comparative Examples 1 and 3 using a silicone resin (poor adhesion and migration resistance) and Comparative Example 2 using an epoxy resin. It can be seen that, as compared with 4 (poor light resistance), all of adhesion, light transmission, heat resistance, light resistance and migration resistance are satisfied at the same time.

Claims (8)

(A)シリコーン変性エポキシ樹脂と、(B)硬化剤と、(C)導電性粒子と、を含む異方導電性樹脂組成物であって、
前記(A)シリコーン変性エポキシ樹脂が、下記一般式(1)で表される構造を有する、異方導電性樹脂組成物。
Figure 2021161281

[式(1)中、Rはそれぞれ独立に1価の有機基を示し、Rはそれぞれ独立に炭素数1〜10の鎖状の脂肪族炭化水素基、炭素数3〜10の環状の脂肪族炭化水素基及びフェニル基から選ばれる基を示し、Yは環状エーテル基を含有する有機基を示す。Xはそれぞれ同一であっても異なってもよい。aとbは正の数であってa+b=1かつ0.3≦a<1であり、nは1〜25である。]
An anisotropic conductive resin composition containing (A) a silicone-modified epoxy resin, (B) a curing agent, and (C) conductive particles.
An anisotropic conductive resin composition in which the silicone-modified epoxy resin (A) has a structure represented by the following general formula (1).
Figure 2021161281

[In the formula (1), R 1 independently represents a monovalent organic group, and R 2 is a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms and a cyclic cyclic group having 3 to 10 carbon atoms, respectively. It represents a group selected from an aliphatic hydrocarbon group and a phenyl group, and Y represents an organic group containing a cyclic ether group. X may be the same or different. a and b are positive numbers, a + b = 1 and 0.3 ≦ a <1, and n is 1 to 25. ]
前記(C)導電性粒子が、金属被覆樹脂粒子を含む、請求項1に記載の異方導電性樹脂組成物。 The anisotropic conductive resin composition according to claim 1, wherein the conductive particles (C) include metal-coated resin particles. 前記金属被覆樹脂粒子の平均粒径が0.5〜10μmである、請求項2に記載の異方導電性樹脂組成物。 The anisotropic conductive resin composition according to claim 2, wherein the metal-coated resin particles have an average particle size of 0.5 to 10 μm. 前記金属被覆樹脂粒子が、前記異方導電性樹脂組成物100質量部に対して、0.1〜50質量部含有する、請求項2又は3に記載の異方導電性樹脂組成物。 The anisotropic conductive resin composition according to claim 2 or 3, wherein the metal-coated resin particles are contained in an amount of 0.1 to 50 parts by mass with respect to 100 parts by mass of the anisotropic conductive resin composition. さらに、(D)無機充填剤を含む、請求項1〜4のいずれか1項に記載の異方導電性樹脂組成物。 The anisotropic conductive resin composition according to any one of claims 1 to 4, further comprising (D) an inorganic filler. 前記(D)無機充填剤の平均粒径が1〜500nmである、請求項5に記載の異方導電性樹脂組成物。 The anisotropic conductive resin composition according to claim 5, wherein the inorganic filler (D) has an average particle size of 1 to 500 nm. 前記(D)無機充填剤が、前記異方導電性樹脂組成物100質量部に対して、0.3〜2.5質量部含有する、請求項5又は6に記載の異方導電性樹脂組成物。 The anisotropic conductive resin composition according to claim 5 or 6, wherein the inorganic filler (D) is contained in an amount of 0.3 to 2.5 parts by mass with respect to 100 parts by mass of the anisotropic conductive resin composition. thing. 請求項1〜7のいずれか1項に記載の異方導電性樹脂組成物を用いて、基板上にマイクロLEDをアレイ状に並べて実装してなる、マイクロLEDディスプレイ装置。 A micro LED display device in which micro LEDs are arranged and mounted on a substrate in an array using the anisotropic conductive resin composition according to any one of claims 1 to 7.
JP2020065092A 2020-03-31 2020-03-31 Anisotropic conductive resin composition and micro LED display device Active JP7390236B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020065092A JP7390236B2 (en) 2020-03-31 2020-03-31 Anisotropic conductive resin composition and micro LED display device
CN202110304086.7A CN113462333A (en) 2020-03-31 2021-03-22 Anisotropic conductive resin composition and micro LED display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020065092A JP7390236B2 (en) 2020-03-31 2020-03-31 Anisotropic conductive resin composition and micro LED display device

Publications (2)

Publication Number Publication Date
JP2021161281A true JP2021161281A (en) 2021-10-11
JP7390236B2 JP7390236B2 (en) 2023-12-01

Family

ID=77868320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020065092A Active JP7390236B2 (en) 2020-03-31 2020-03-31 Anisotropic conductive resin composition and micro LED display device

Country Status (2)

Country Link
JP (1) JP7390236B2 (en)
CN (1) CN113462333A (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124771A (en) * 1995-10-30 1997-05-13 Sumitomo Bakelite Co Ltd Anisotropically conductive film
JP2000021236A (en) * 1998-06-30 2000-01-21 Mitsui Chemicals Inc Anisotropic conductive resin composition
JP2000345010A (en) * 1999-04-01 2000-12-12 Mitsui Chemicals Inc Anisotropically conductive paste
JP2002324920A (en) * 2001-02-23 2002-11-08 Kanegafuchi Chem Ind Co Ltd Light emitting diode and method of manufacturing the same
JP2012241136A (en) * 2011-05-20 2012-12-10 Kyocera Chemical Corp Silicone-modified epoxy resin composition, photosemiconductor sealing composition and photosemiconductor element adhesive containing the resin composition
JP2014067705A (en) * 2012-09-05 2014-04-17 Sekisui Chem Co Ltd Anisotropic conductive material, connection structure, and manufacturing method of connection structure
JP2015137338A (en) * 2014-01-23 2015-07-30 株式会社ダイセル Curable composition containing conductive fiber coated particle
JP2017186478A (en) * 2016-04-08 2017-10-12 日本化薬株式会社 Epoxy resin, epoxy resin composition containing the same and cured article thereof
JP2019140101A (en) * 2018-02-07 2019-08-22 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282988A (en) * 2005-03-08 2006-10-19 Sanyo Chem Ind Ltd Epoxy resin composition for sealing optical semiconductor element
WO2007046399A1 (en) * 2005-10-18 2007-04-26 Asahi Kasei Kabushiki Kaisha Thermosetting resin composition and photosemiconductor encapsulation material
WO2010047374A1 (en) * 2008-10-22 2010-04-29 日立化成工業株式会社 Adhesive film
WO2012124724A1 (en) * 2011-03-16 2012-09-20 ソニーケミカル&インフォメーションデバイス株式会社 Light-reflecting anisotropically conductive adhesive and light emitting device
JP5958107B2 (en) * 2012-06-15 2016-07-27 デクセリアルズ株式会社 Light-reflective anisotropic conductive adhesive and light-emitting device
CN105873976B (en) * 2013-09-20 2018-07-03 信越化学工业株式会社 Modifying epoxy resin by organosilicon and combinations thereof and solidfied material
KR20160125359A (en) * 2014-02-25 2016-10-31 나믹스 코포레이션 Electroconductive adhesive and semiconductor device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09124771A (en) * 1995-10-30 1997-05-13 Sumitomo Bakelite Co Ltd Anisotropically conductive film
JP2000021236A (en) * 1998-06-30 2000-01-21 Mitsui Chemicals Inc Anisotropic conductive resin composition
JP2000345010A (en) * 1999-04-01 2000-12-12 Mitsui Chemicals Inc Anisotropically conductive paste
JP2002324920A (en) * 2001-02-23 2002-11-08 Kanegafuchi Chem Ind Co Ltd Light emitting diode and method of manufacturing the same
JP2012241136A (en) * 2011-05-20 2012-12-10 Kyocera Chemical Corp Silicone-modified epoxy resin composition, photosemiconductor sealing composition and photosemiconductor element adhesive containing the resin composition
JP2014067705A (en) * 2012-09-05 2014-04-17 Sekisui Chem Co Ltd Anisotropic conductive material, connection structure, and manufacturing method of connection structure
JP2015137338A (en) * 2014-01-23 2015-07-30 株式会社ダイセル Curable composition containing conductive fiber coated particle
JP2017186478A (en) * 2016-04-08 2017-10-12 日本化薬株式会社 Epoxy resin, epoxy resin composition containing the same and cured article thereof
JP2019140101A (en) * 2018-02-07 2019-08-22 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure

Also Published As

Publication number Publication date
JP7390236B2 (en) 2023-12-01
CN113462333A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
WO2016029666A1 (en) Dielectric composite material for fingerprint sensor induction layer and preparation method therefor
KR102224210B1 (en) Semiconductor device, and semiconductor element protection material
CN102568656B (en) Double-deck anisotropic conductive film and the device comprising this conducting film
TW200849506A (en) Connection structure for flip-chip semiconductor package, build-up layer material, sealing resin composition, and circuit substrate
TWI682958B (en) Curable composition, method for producing curable composition, and semiconductor device
JP6672837B2 (en) Anisotropic conductive adhesive composition, film adhesive, connection structure, and semiconductor device
KR102313846B1 (en) Material for semiconductor element protection and semiconductor device
JP2018039992A (en) Resin composition and three-dimensional laminated type semiconductor device using the resin composition
JP6413249B2 (en) Thermally conductive sheet and semiconductor device
US11884782B2 (en) Resin particles, conductive particles, conductive material and connection structure
KR102114802B1 (en) Anisotropic conductive film, connection method, and connected body
JP7390236B2 (en) Anisotropic conductive resin composition and micro LED display device
JP2007201387A (en) Semiconductor device and method of manufacturing same
TW201217482A (en) Adhesive film, and connection structure and connecting method for circuit member
JP7308028B2 (en) Anisotropic conductive film, cured product thereof, and method for producing anisotropic conductive film
JP6894221B2 (en) Anisotropic conductive films, laminated films containing them, and methods for manufacturing them.
JP6388228B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device using the same
JP2021161282A (en) Anisotropic conductive resin composition, anisotropic conductive adhesive film, and micro-led display device
JP6472702B2 (en) Anisotropic conductive film, connection method, and joined body
JP6357413B2 (en) Conductive material and connection structure
WO2016059980A1 (en) Liquid epoxy resin composition
WO2022113946A1 (en) Adhesive film for circuit connection, and circuit connection structure and production method therefor
JP6398416B2 (en) Connection structure manufacturing method and connection structure
KR20230092943A (en) Adhesive film for circuit connection, connection structure, and manufacturing method of connection structure
CN117659667A (en) Thermosetting resin composition, anisotropic conductive film, and connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7390236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150