JP2021155818A5 - - Google Patents

Download PDF

Info

Publication number
JP2021155818A5
JP2021155818A5 JP2020058508A JP2020058508A JP2021155818A5 JP 2021155818 A5 JP2021155818 A5 JP 2021155818A5 JP 2020058508 A JP2020058508 A JP 2020058508A JP 2020058508 A JP2020058508 A JP 2020058508A JP 2021155818 A5 JP2021155818 A5 JP 2021155818A5
Authority
JP
Japan
Prior art keywords
electrode
hydrogen peroxide
water
nickel salt
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020058508A
Other languages
Japanese (ja)
Other versions
JP7466182B2 (en
JP2021155818A (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2020058508A priority Critical patent/JP7466182B2/en
Priority claimed from JP2020058508A external-priority patent/JP7466182B2/en
Publication of JP2021155818A publication Critical patent/JP2021155818A/en
Publication of JP2021155818A5 publication Critical patent/JP2021155818A5/ja
Application granted granted Critical
Publication of JP7466182B2 publication Critical patent/JP7466182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

過酸化水素は、消毒、殺菌、漂白、洗浄、または酸化等に用いられており、工業的には2-アルキルアントラキノンの水素化と空気酸化を利用するアントラキノン法で製造されている(非特許文献1)。しかしながら、アントラキノン法は、アントラキノン誘導体および有機溶媒等の有機物を用いるため環境負荷が大きい。また、アントラキノン法による過酸化水素の製造は、分離操作等が必要となり高コストである。このため、他の工業的な過酸化水素の製造方法が検討されてきた。 Hydrogen peroxide is used for disinfection, sterilization, bleaching, cleaning, oxidation, etc., and is industrially produced by an anthraquinone method using hydrogenation of 2-alkylanthraquinone and air oxidation (non-patent literature 1). However, the anthraquinone method uses an anthraquinone derivative and an organic substance such as an organic solvent, which imposes a large burden on the environment. In addition, the production of hydrogen peroxide by the anthraquinone method requires a separation operation, etc., and is costly. Therefore, other industrial methods for producing hydrogen peroxide have been investigated.

さらに、炭酸塩を含む電解液を用いたアノード電極での水の酸化では、アノード電極として光電極を用いて光照射下で電極反応を行うことで、太陽光等の光エネルギーが利用できる。このため、外部電圧を印加せず、または低く抑えた外部電圧を印加して、低コストで過酸化水素を製造する方法も提案されている(非特許文献3および特許文献6)。また、酸化処理した導電性炭素材料を電極材料として用いたカソード電極と、光電極を用いたアノード電極を組み合わせることにより、カソード電極における酸素の還元と、炭酸塩を含む電解液を用いたアノード電極における光照射下で水の酸化を同時に行って、高い電流効率で効率的に、過酸化水素を両極で製造する方法が提案されている(特許文献7)。 Furthermore, in the oxidation of water at an anode electrode using an electrolytic solution containing a carbonate, light energy such as sunlight can be used by using a photoelectrode as the anode electrode and performing an electrode reaction under light irradiation. Therefore, a method for producing hydrogen peroxide at low cost without applying an external voltage or applying a low external voltage has been proposed ( Non-Patent Document 3 and Patent Document 6). Further, by combining a cathode electrode using an oxidized conductive carbon material as an electrode material and an anode electrode using a photoelectrode, reduction of oxygen in the cathode electrode and anode electrode using an electrolytic solution containing a carbonate can be achieved. A method has been proposed in which water is simultaneously oxidized under light irradiation in , and hydrogen peroxide is efficiently produced at both electrodes with high current efficiency (Patent Document 7).

本願発明者らは、従来技術を検討し、カソード電極のさらなる性能向上を目指して様々な条件で実験を進めた。その結果、カソード電極の材料として用いられていた導電性炭素材料に新たにニッケル塩を添加することで、過酸化水素の製造における性能が向上することを見出した。また、本願のニッケル塩を含有する導電性炭素材料は、炭酸塩を含む液体に浸漬することにより性能が向上することを見出した。 The inventors of the present application have studied conventional techniques and conducted experiments under various conditions with the aim of further improving the performance of the cathode electrode. As a result, it was found that the addition of a nickel salt to the conductive carbon material used as the cathode electrode material improved the performance in the production of hydrogen peroxide. Moreover, it was found that the performance of the conductive carbon material containing the nickel salt of the present application is improved by immersing it in a liquid containing a carbonate.

(実施例2~実施例4)
表1に示す硝酸ニッケルの含有量変更した点を除き、実施例1と同様にして実施例2~実施例4のカソード電極を作製した。カーボンペーパー基材上のニッケルの保持量をXRFから見積もった。その結果、実施例2では2.6μg/cm、実施例4では24.5μg/cmであった。硝酸ニッケルの含有量におおむね比例してカーボンペーパー基材上にニッケル塩が保持されていた。また、実施例1と同様にして、実施例2~実施例4のカソード電極を用いて過酸化水素を製造した。過酸化水素生成時の電流効率と電流密度を表1に示す。
(Examples 2 to 4)
Cathode electrodes of Examples 2 to 4 were produced in the same manner as in Example 1, except that the content of nickel nitrate shown in Table 1 was changed. The nickel retention on the carbon paper substrate was estimated from XRF. As a result, it was 2.6 μg/cm 2 in Example 2 and 24.5 μg/cm 2 in Example 4. The nickel salt was retained on the carbon paper substrate roughly proportional to the nickel nitrate content. Further, in the same manner as in Example 1, using the cathode electrodes of Examples 2 to 4, hydrogen peroxide was produced. Table 1 shows the current efficiency and current density during hydrogen peroxide production.

(実施例5~実施例10)
表2に示すニッケル塩を用いた点を除き、実施例2と同様にして実施例5~実施例1のカソード電極を作製した。また、実施例1と同様にして、実施例5~実施例1のカソード電極を用いて過酸化水素を製造した。過酸化水素生成時の電流効率と電流密度を表2に示す。
(Examples 5 to 10)
Cathode electrodes of Examples 5 to 10 were produced in the same manner as in Example 2, except that the nickel salts shown in Table 2 were used. Further, in the same manner as in Example 1 , using the cathode electrodes of Examples 5 to 10, hydrogen peroxide was produced. Table 2 shows the current efficiency and current density during hydrogen peroxide production.

表2の実施例11に示すように、導電性炭素材料と水溶性の硝酸ニッケルを含有する複合体を、炭酸イオンを含む溶液に浸漬することにより、その後に水で洗浄してもニッケル成分が複合体からあまり除去されず、電流効率82%、電流密度7.9mA/cmとなり、実施例2と同様に好ましい結果が得られた。また、実施例12では、83%の高い電流効率に加え、12.0mA/cmの大きな電流密度が得られた。 As shown in Example 11 in Table 2, by immersing a composite containing a conductive carbon material and water-soluble nickel nitrate in a solution containing carbonate ions, the nickel component was removed even after washing with water. Not much was removed from the composite, and the current efficiency was 82% and the current density was 7.9 mA/cm 2 . In Example 12, a high current density of 12.0 mA/cm 2 was obtained in addition to a high current efficiency of 83%.

Claims (2)

請求項8または9において、
前記ニッケル塩が水溶性であり、
前記混合粉砕工程では、前記導電性炭素粒子と前記ニッケル塩を水中で混合し、
前記混合粉砕工程の後、前記複合体を炭酸塩の水溶液に浸漬する浸漬工程をさらに有する電極の製造方法。
In claim 8 or 9,
the nickel salt is water-soluble,
In the mixing pulverization step, the conductive carbon particles and the nickel salt are mixed in water,
A method for manufacturing an electrode, further comprising an immersion step of immersing the composite in an aqueous carbonate solution after the mixing and pulverizing step.
請求項1からのいずれかの電極または請求項8から10のいずれかの製造方法で製造された電極をカソード電極として、電解液中の酸素を還元する過酸化水素の製造方法。 A method for producing hydrogen peroxide by reducing oxygen in an electrolytic solution using the electrode according to any one of claims 1 to 7 or the electrode manufactured by the manufacturing method according to any one of claims 8 to 10 as a cathode electrode.
JP2020058508A 2020-03-27 2020-03-27 Electrode and method for producing hydrogen peroxide using said electrode Active JP7466182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020058508A JP7466182B2 (en) 2020-03-27 2020-03-27 Electrode and method for producing hydrogen peroxide using said electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020058508A JP7466182B2 (en) 2020-03-27 2020-03-27 Electrode and method for producing hydrogen peroxide using said electrode

Publications (3)

Publication Number Publication Date
JP2021155818A JP2021155818A (en) 2021-10-07
JP2021155818A5 true JP2021155818A5 (en) 2023-01-30
JP7466182B2 JP7466182B2 (en) 2024-04-12

Family

ID=77916969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020058508A Active JP7466182B2 (en) 2020-03-27 2020-03-27 Electrode and method for producing hydrogen peroxide using said electrode

Country Status (1)

Country Link
JP (1) JP7466182B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114249391A (en) * 2021-12-15 2022-03-29 盐城工学院 Preparation method of activated carbon column loaded nickel phosphate particle electrode

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4368166B2 (en) 2003-08-28 2009-11-18 旭化成ケミカルズ株式会社 Fuel cell reactor
JP4919941B2 (en) 2006-12-28 2012-04-18 トヨタ自動車株式会社 Inspection method for polymer electrolyte membrane
JP2009068080A (en) 2007-09-14 2009-04-02 Tokyo Institute Of Technology Fuel cell type reaction apparatus and method of manufacturing compound using the same
JP5510181B2 (en) 2010-08-18 2014-06-04 凸版印刷株式会社 Electrocatalyst layer production method and polymer electrolyte fuel cell
JP2019157223A (en) 2018-03-14 2019-09-19 国立研究開発法人産業技術総合研究所 Production method of hydrogen peroxide using photoelectrode

Similar Documents

Publication Publication Date Title
Stucki et al. In situ production of ozone in water using a membrel electrolyzer
CN109589979A (en) A kind of metal oxide/carbon material compound and its preparation method and application
JP5259889B1 (en) How to reduce carbon dioxide
Li et al. Photoelectrochemical degradation of Methylene Blue with β-PbO2 electrodes driven by visible light irradiation
US9567677B2 (en) Electrochemical method of producing hydrogen peroxide using a titanium oxide nanotube catalyst
JP2004349050A (en) Polymer electrolyte fuel cell activating method
Zhao et al. Photoelectrocatalytic properties and mechanism of rhodamine B degradation using a graphene oxide/Ag 3 PO 4/Ni film electrode
JP2021155818A5 (en)
CN110512259B (en) Electrochemical preparation method of hydrated tungsten trioxide nanoflower
Yamamoto et al. Photoelectrochemical reduction of CO2 in methanol with TiO2 photoanode and metal cathode
JP2019157223A (en) Production method of hydrogen peroxide using photoelectrode
CN108439546A (en) Auto-dope TiO2Nanotube electrode, preparation method and applications
JP2017125242A (en) Electrode for reductive reaction and reaction device prepared therewith
CN106045003A (en) Method for treating organic dyestuff wastewater with heterogeneous electric Fenton system
JP6686590B2 (en) Carbon dioxide reduction electrode and carbon dioxide reduction device
JP7466182B2 (en) Electrode and method for producing hydrogen peroxide using said electrode
JP6694646B2 (en) Method and apparatus for producing hydrogen peroxide
CN109972149B (en) Bi2Te3/Bi2O3/TiO2Preparation method of ternary heterojunction film
KR101816528B1 (en) Photoelectrode and method for manufacturing oh radical using the same
JP2010194535A (en) Electrodialysis method for refining silicate-containing potassium-hydroxide etching liquid
JP7109069B2 (en) battery system
Lai et al. TiO2 nanotubes arrays: Improved photoelectrochemical water splitting by adding optimum amount of ethylene glycol in KOH electrolyte
JP2007273903A (en) Method for fabricating electrode foil for electrolytic capacitor
Chrzescijanska et al. Application of TiO2–RuO2/Ti electrodes modified with transition metal oxides in photoelectrochemical degradation of H-acid-synergetic effect
KR101676699B1 (en) Method of manufacturing tungsten oxide