JP2021154329A - Forging material, forging component and method for production of forging component - Google Patents

Forging material, forging component and method for production of forging component Download PDF

Info

Publication number
JP2021154329A
JP2021154329A JP2020056055A JP2020056055A JP2021154329A JP 2021154329 A JP2021154329 A JP 2021154329A JP 2020056055 A JP2020056055 A JP 2020056055A JP 2020056055 A JP2020056055 A JP 2020056055A JP 2021154329 A JP2021154329 A JP 2021154329A
Authority
JP
Japan
Prior art keywords
steel material
forging
outer steel
protrusion
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020056055A
Other languages
Japanese (ja)
Other versions
JP7356036B2 (en
Inventor
敦 鈴木
Atsushi Suzuki
敦 鈴木
修 加田
Osamu Kada
修 加田
洋輝 成宮
Hiroki Narumiya
洋輝 成宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020056055A priority Critical patent/JP7356036B2/en
Publication of JP2021154329A publication Critical patent/JP2021154329A/en
Application granted granted Critical
Publication of JP7356036B2 publication Critical patent/JP7356036B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a forging material and forging component having excellent forgeability and capable of exerting superior wear resistance after the forging process and carburized quenching/tempering treatment, and to provide a method for production of the forging component.SOLUTION: A forging material in one embodiment of this invention is the material by lateral extrusion and comprises outside and inside steel materials having a prescribed chemical composition. In the place at which the forging material is laterally extruded, the areas S1 and S2 of the outside and inside steel materials in a face perpendicular to the axial direction of the forging material satisfy 0.90≥S2/(S1+S2). In the deformation resistance obtained at a strain rate 10 s-1 in an edge face binding compression test, the deformation resistances σ'1 and σ'2 of the outside and inside steel materials in an equivalent plastic strain of 1.5 satisfy σ'1×S1/(S1+S2)+σ'2×S2/(S1+S2)≤750[MPa].SELECTED DRAWING: Figure 1

Description

本発明は、鍛造用材料、鍛造部材、および鍛造部材の製造方法に関するものである。 The present invention relates to a forging material, a forged member, and a method for manufacturing the forged member.

機械、自動車等に使用される鋼製の鍛造部材のうち、軸受、歯車など、特に高い耐摩耗性を必要とされるものは、例えば、JIS G4053規定のクロム鋼を素材として、浸炭焼入焼戻し処理を行ってから使用されている。また、JIS G4805規定の高炭素クロム鋼を素材として、焼戻し処理をして使用されている鍛造部材もある。これらの鍛造部材は、鋼材をオーステナイト単相域、あるいは、オーステナイトとセメンタイトの二相域となる高温に加熱した後に焼入れ・焼戻し処理を行い、表層を550HV以上の高硬度にすることで高い耐摩耗性を得ている。このような鍛造部材は、高い面圧で他部材と接触・摺動することで起きる摩耗に強いことが要求される。 Of the steel forged members used in machines, automobiles, etc., bearings, gears, etc. that require particularly high wear resistance are, for example, carburized, hardened, and tempered using chrome steel specified in JIS G4053 as a material. It is used after processing. In addition, some forged members are made of high carbon chrome steel specified by JIS G4805 and tempered. These forged members are subjected to quenching and tempering treatment after heating the steel material to a high temperature in which the steel material has a single-phase region of austenite or a two-phase region of austenite and cementite, and the surface layer has a high hardness of 550 HV or more to achieve high wear resistance. I'm getting sex. Such forged members are required to be resistant to wear caused by contact and sliding with other members at a high surface pressure.

鍛造部材の耐摩耗性を向上させる手段として、浸炭焼入焼戻し処理により表層部のC濃度を上げる方法、又は鍛造部材の素材(鍛造用材料)として高炭素鋼を用いる方法がある。また、合金工具鋼、高速度工具鋼のように、鍛造用材料にCr、Mo、V、Wを添加し、セメンタイトよりも硬い合金炭化物(MoC、WCなど)を鋼中に分散させる方法が知られている。 As a means for improving the wear resistance of the forged member, there is a method of increasing the C concentration of the surface layer portion by carburizing, quenching and tempering treatment, or a method of using high carbon steel as a material (forging material) of the forged member. Further, alloy tool steel, the method as high-speed tool steel, the Cr, Mo, V, and W was added to the forging material, the hard alloy carbides than cementite (Mo 2 C, WC, etc.) dispersed in the steel It has been known.

たとえば、特許文献1には、C、Cr、Mo、V、W、Coを多量に添加した鋼に浸炭焼入焼戻し処理を施し、耐摩耗性、特に300℃〜400℃の高温における耐摩耗性を向上させる発明が記載されている。 For example, in Patent Document 1, steel to which a large amount of C, Cr, Mo, V, W, and Co is added is subjected to charcoal-burning and tempering treatment, and wear resistance, particularly wear resistance at a high temperature of 300 ° C to 400 ° C. Inventions for improving the above are described.

特許文献2には、Cr、Mo、Vを多く添加した鋼に浸炭焼入焼戻し処理を施し、表面から深さ50μm位置までの領域に存在する炭化物の面積率を6〜25%とすることで、耐摩耗性を向上させる発明が記載されている。 According to Patent Document 2, steel containing a large amount of Cr, Mo, and V is subjected to charcoal-burning and tempering treatment to set the area ratio of carbides existing in the region from the surface to a depth of 50 μm to 6 to 25%. , Inventions for improving abrasion resistance have been described.

特開平7−019252号公報Japanese Unexamined Patent Publication No. 7-019252 特開2015−105419号公報Japanese Unexamined Patent Publication No. 2015-105419

しかしながら、特許文献1および特許文献2に記載された従来技術は、鍛造用材料における合金成分の含有量が高いので、鍛造時の成形荷重が高く、金型寿命が低いという欠点があった。 However, the prior art described in Patent Document 1 and Patent Document 2 has a drawback that the molding load at the time of forging is high and the die life is short because the content of the alloy component in the forging material is high.

本発明は、上述の実情に鑑みてなされたものであり、優れた鍛造性を有し、鍛造加工及び浸炭焼入焼戻し処理後に優れた耐摩耗性を発揮可能な鍛造用材料及び鍛造部材、並びにこの鍛造部材の製造方法を提供するものである。 The present invention has been made in view of the above circumstances, and is a forging material and a forging member having excellent forging property and capable of exhibiting excellent wear resistance after forging and charcoal-burning and tempering. It provides a method of manufacturing this forged member.

本発明の要旨は以下の通りである。
(1)本発明の一態様に係る鍛造用材料は、外側鋼材と内側鋼材とを備える、側方押出しによる鍛造用材料であって、前記外側鋼材の組成が、質量%で、C:0.15〜0.40%、Si:0.05〜0.50%、Mn:0.20〜1.50%、Cr:0.05〜1.50%、P:0.001〜0.030%、S:0.005〜0.025%、Al:0.005〜0.100%、N:0.001〜0.025%、V:0.50〜3.00%、及びMo:0.80〜6.00%を含有し、残部がFeおよび不純物より成り、前記内側鋼材の組成が、質量%で、C:0.05〜0.30%、Si:0.05〜0.35%、Mn:0.20〜1.00%、Cr:0.01〜1.50%、P:0.001〜0.030%、S:0.005〜0.025%、Al:0.005〜0.100%、及びN:0.001〜0.025%、を含有し、残部がFeおよび不純物より成り、前記鍛造用材料が、側方押出しされる箇所において、前記鍛造用材料の軸方向と垂直な面における前記外側鋼材の面積S1と前記内側鋼材の面積S2とが式1を満たし、端面拘束圧縮試験にてひずみ速度10s−1で得られた変形抵抗で、相当塑性ひずみ1.5における前記外側鋼材の変形抵抗σ’1と前記内側鋼材の変形抵抗σ’2とが、式2を満たす。
0.90≧S2/(S1+S2)<式1>
σ’1×S1/(S1+S2)+σ’2×S2/(S1+S2)≦750[MPa]<式2>
(2)上記(1)に記載の鍛造用材料では、前記外側鋼材の組成が質量%で、B:0〜0.0050%、Nb:0〜0.100%、Ti:0〜0.100%、及びREM:0〜0.020%、からなる群から選択される1種以上をさらに含有してもよい。
(3)上記(1)又は(2)に記載の鍛造用材料では、前記外側鋼材と前記内側鋼材との間のクリアランスが0.1mm〜2mmであってもよい。
(4)上記(1)〜(3)のいずれか一項に記載の鍛造用材料では、前記外側鋼材が、ボンデリューベ処理皮膜を有してもよい。
(5)本発明の別の態様に係る鍛造部材は、上記(1)または(2)に記載の組成を備える前記外側鋼材と前記内側鋼材とで形成された基部と、前記基部から外方に突出した突出部とを備え、前記突出部が、前記基部における前記外側鋼材の部分から突設させた外側突部と、前記基部における前記内側鋼材の部分から突設され、且つ前記外側突部内の少なくとも一部の空間に充填された内側突部とを備え、前記外側突部の厚さが0.5mm以上である。
(6)上記(5)に記載の鍛造部材では、前記突出部の根元における前記外側鋼材の面積S1と前記内側鋼材の面積S2との比率Rと、前記基部における、前記突出部近傍における前記外側鋼材の面積S1と前記内側鋼材の面積S2との比率Rとが、下記式3〜式5を満たしてもよい。
=S2/(S1+S2)<式3>
=S2/(S1+S2)<式4>
|(R−R)/R|≦5%<式5>
(7)上記(5)又は(6)に記載の鍛造部材では、前記外側突部のビッカース硬さが740HV以上であってもよい。
(8)本発明の別の態様に係る鍛造部材の製造方法は、上記(5)〜(7)のいずれか一項に記載の鍛造部材の製造方法であって、上記(1)〜(4)のいずれか一項に記載の鍛造用材料を鍛造加工する工程と、鍛造された前記鍛造用材料に浸炭焼入焼戻し処理をする工程と、を備え、前記鍛造を、前記鍛造用材料に対する側方押出しとし、前記側方押出しによって、前記基部および前記突出部を成形し、前記突出部は、前記側方押出しに際して、前記内側突部が前記外側突部内に入り込んだ状態とし、前記突出部を、0.90≧S2/(S1+S2)が満たされる箇所に設ける。
The gist of the present invention is as follows.
(1) The forging material according to one aspect of the present invention is a forging material by lateral extrusion, which comprises an outer steel material and an inner steel material, and the composition of the outer steel material is mass%, and C: 0. 15 to 0.40%, Si: 0.05 to 0.50%, Mn: 0.25 to 1.50%, Cr: 0.05 to 1.50%, P: 0.001 to 0.030% , S: 0.005 to 0.025%, Al: 0.005 to 0.100%, N: 0.001 to 0.025%, V: 0.50 to 3.00%, and Mo: 0. It contains 80 to 6.00%, the balance is composed of Fe and impurities, and the composition of the inner steel material is, in terms of mass%, C: 0.05 to 0.30%, Si: 0.05 to 0.35%. , Mn: 0.25 to 1.00%, Cr: 0.01 to 1.50%, P: 0.001 to 0.030%, S: 0.005 to 0.025%, Al: 0.005 The shaft of the forging material where the forging material is laterally extruded, containing ~ 0.100% and N: 0.001 to 0.025%, the balance consisting of Fe and impurities. The area S1 of the outer steel material and the area S2 of the inner steel material on the plane perpendicular to the direction satisfy Equation 1, and the deformation resistance obtained at the strain rate 10s -1 in the end face restraint compression test. The deformation resistance σ'1 of the outer steel material and the deformation resistance σ'2 of the inner steel material in No. 5 satisfy Equation 2.
0.90 ≧ S2 / (S1 + S2) <Equation 1>
σ'1 x S1 / (S1 + S2) + σ'2 x S2 / (S1 + S2) ≤750 [MPa] <Equation 2>
(2) In the forging material according to (1) above, the composition of the outer steel material is mass%, B: 0 to 0.0050%, Nb: 0 to 0.100%, Ti: 0 to 0.100. %, And one or more selected from the group consisting of REM: 0 to 0.020% may be further contained.
(3) In the forging material according to (1) or (2) above, the clearance between the outer steel material and the inner steel material may be 0.1 mm to 2 mm.
(4) In the forging material according to any one of (1) to (3) above, the outer steel material may have a bonderube-treated film.
(5) The forged member according to another aspect of the present invention has a base formed by the outer steel material and the inner steel material having the composition according to the above (1) or (2), and outward from the base. It is provided with a protruding portion, and the protruding portion is projected from a portion of the outer steel material in the base portion and protrudes from the portion of the inner steel material in the base portion, and is in the outer protrusion portion. It is provided with an inner protrusion that fills at least a part of the space, and the thickness of the outer protrusion is 0.5 mm or more.
(6) In the forging member according to the above (5), the ratio R P of the outer area S P 1 and the area S P 2 of the inner steel steel at the root of the protruding portion, in said base portion, said protrusion wherein the section near the ratio R B of the outer surface area S B 1 of the steel product and the area S B 2 of the inner steel may fulfill the following equation 3 to equation 5.
RP = SP 2 / ( SP 1 + SP 2) <Equation 3>
R B = S B 2 / ( S B 1 + S B 2) < Formula 4>
| (R P -R B) / R P | ≦ 5% < Formula 5>
(7) In the forged member according to (5) or (6) above, the Vickers hardness of the outer protrusion may be 740 HV or more.
(8) The method for manufacturing a forged member according to another aspect of the present invention is the method for manufacturing a forged member according to any one of (5) to (7) above, and is described in (1) to (4) above. ), The forging material is provided with a step of forging the forging material and a step of carburizing, quenching and tempering the forged material, and the forging is performed on the side of the forging material with respect to the forging material. The base portion and the projecting portion are formed by the side extrusion, and the projecting portion is in a state where the inner protrusion is inserted into the outer protrusion at the time of the side extrusion, and the protrusion is formed. , 0.90 ≧ S2 / (S1 + S2) is satisfied.

本発明によれば、優れた鍛造性を有し、鍛造加工及び浸炭焼入焼戻し処理後に優れた耐摩耗性を発揮可能な鍛造用材料及び鍛造部材、並びにこの鍛造部材の製造方法を提供することができる。 According to the present invention, there is provided a forging material and a forging member having excellent forging property and capable of exhibiting excellent wear resistance after forging and carburizing, quenching and tempering, and a method for manufacturing the forged member. Can be done.

本発明の鍛造用材料の一例の斜視図である。It is a perspective view of an example of the forging material of this invention. 本発明の鍛造用材料の一例の断面図である。It is sectional drawing of an example of the forging material of this invention. 本発明の鍛造用材料の一例の断面図である。It is sectional drawing of an example of the forging material of this invention. 本発明の鍛造用材料の一例の断面図である。It is sectional drawing of an example of the forging material of this invention. 本発明の鍛造部材の一例の模式図である。It is a schematic diagram of an example of the forged member of this invention. 実施例の鍛造用材料及びその鍛造用材料を鍛造して成形された鍛造部材の形状を説明する図である。ただし、(a)鍛造前の鍛造用材料の正面図、(b)鍛造により成形された鍛造部材の正面図、(c)同平面図をそれぞれ示す。It is a figure explaining the shape of the forging material of an Example and the forging member formed by forging the forging material. However, (a) a front view of the forging material before forging, (b) a front view of the forged member formed by forging, and (c) the same plan view are shown. (a)端面拘束圧縮試験に用いる試験片の形状、及び(b)使用する治具の形状をそれぞれ説明する図である。It is a figure explaining (a) the shape of the test piece used for the end face restraint compression test, and (b) the shape of the jig used. 西原式摩耗試験片の形状を説明する図である。It is a figure explaining the shape of the Nishihara type wear test piece.

従来技術によれば、鍛造部材の耐摩耗性を高めるためには、鋼を強化する効果を有する合金元素の量を増大させる必要がある。一方、鍛造部材の製造段階での加工性を高めるためには、鍛造部材の素材(鍛造用材料)の硬さを低くする必要があり、そのためには、合金元素の量を減少させる必要がある。従来技術によれば、これら2つの要求を同時に満たすことが困難であった。 According to the prior art, in order to increase the wear resistance of the forged member, it is necessary to increase the amount of alloying elements having the effect of strengthening the steel. On the other hand, in order to improve the workability at the manufacturing stage of the forged member, it is necessary to reduce the hardness of the material (forging material) of the forged member, and for that purpose, it is necessary to reduce the amount of alloying elements. .. According to the prior art, it has been difficult to satisfy these two requirements at the same time.

本発明では、以下の4点を、詳述の課題の解決手段として採用することとした。
1.鍛造用材料を、外側鋼材と内側鋼材とから構成される複合材料とした。
2.鍛造用材料の外側鋼材においては、Mo、V等の合金炭化物生成元素を含有させる成分設計とした。鍛造用材料の外側鋼材は、鍛造後に鍛造部材の表層部を構成することとなる。従って、鍛造用材料の外側部材の成分を上述のように制御することで、鍛造部材の耐摩耗性を確保することができる。
3.鍛造用材料の内側鋼材においては、外側鋼材と比較して、Mo及びV等の合金元素の含有量を低いものとした。これにより、鍛造用材料の鍛造時に成形荷重を低減できる。
4.外側鋼材と内側鋼材とから構成される複合材料に大きな塑性変形を生じさせると、外側鋼材の破断などが生じる場合がある。そこで、外側鋼材の断面積S1と内側鋼材の断面積S2との比率を所定範囲内とした。さらに、外側鋼材の変形抵抗と内側鋼材の変形抵抗とが所定の関係を満たすこととした。これにより、例えば側方押出しのような複雑形状を形成する鍛造加工を、複合材料に適用することが可能となった。
In the present invention, the following four points are adopted as means for solving the problems described in detail.
1. 1. The forging material was a composite material composed of an outer steel material and an inner steel material.
2. In the outer steel material of the forging material, the composition was designed to contain alloy carbide-forming elements such as Mo and V. The outer steel material of the forging material constitutes the surface layer portion of the forging member after forging. Therefore, by controlling the components of the outer member of the forging material as described above, the wear resistance of the forging member can be ensured.
3. 3. In the inner steel material of the forging material, the content of alloying elements such as Mo and V was lower than that of the outer steel material. As a result, the forming load can be reduced when the forging material is forged.
4. If a large plastic deformation is caused in the composite material composed of the outer steel material and the inner steel material, the outer steel material may be broken. Therefore, the ratio of the cross-sectional area S1 of the outer steel material to the cross-sectional area S2 of the inner steel material is set within a predetermined range. Further, it was decided that the deformation resistance of the outer steel material and the deformation resistance of the inner steel material satisfy a predetermined relationship. This makes it possible to apply forging processes that form complex shapes, such as lateral extrusion, to composite materials.

上述の知見によって得られた、本発明の一態様に係る鍛造用材料1は、側方押出しによる鍛造用材料であって、外側鋼材11と内側鋼材12とを備え、外側鋼材11の組成が、質量%で、C:0.15〜0.40%、Si:0.05〜0.50%、Mn:0.20〜1.50%、Cr:0.05〜1.50%、P:0.001〜0.030%、S:0.005〜0.025%、Al:0.005〜0.100%、N:0.001〜0.025%、V:0.50〜3.00%、及びMo:0.80〜6.00%を含有し、残部がFeおよび不純物より成り、内側鋼材12の組成が、質量%で、C:0.05〜0.30%、Si:0.05〜0.35%、Mn:0.20〜1.00%、Cr:0.01〜1.50%、P:0.001〜0.030%、S:0.005〜0.025%、Al:0.005〜0.100%、及びN:0.001〜0.025%、を含有し、残部がFeおよび不純物より成り、鍛造用材料1が、側方押出しされる箇所において、鍛造用材料1の軸方向と垂直な面における外側鋼材11の面積S1と内側鋼材12の面積S2とが式1を満たし、端面拘束圧縮試験にてひずみ速度10s−1で得られた変形抵抗で、相当塑性ひずみ1.5における外側鋼材11の変形抵抗σ’1と内側鋼材12の変形抵抗σ’2とが、式2を満たす。
0.90≧S2/(S1+S2) <式1>
σ’1×S1/(S1+S2)+σ’2×S2/(S1+S2)≦750[MPa] <式2>
以下に、まず、本実施形態に係る鍛造用材料について詳細に述べる。
The forging material 1 according to one aspect of the present invention obtained by the above findings is a forging material by lateral extrusion, and includes an outer steel material 11 and an inner steel material 12, and the composition of the outer steel material 11 is as follows. By mass%, C: 0.15 to 0.40%, Si: 0.05 to 0.50%, Mn: 0.25 to 1.50%, Cr: 0.05 to 1.50%, P: 0.001 to 0.030%, S: 0.005 to 0.025%, Al: 0.005 to 0.100%, N: 0.001 to 0.025%, V: 0.50 to 3. It contains 00% and Mo: 0.80 to 6.00%, the balance is composed of Fe and impurities, and the composition of the inner steel material 12 is by mass%, C: 0.05 to 0.30%, Si: 0.05 to 0.35%, Mn: 0.25 to 1.00%, Cr: 0.01 to 1.50%, P: 0.001 to 0.030%, S: 0.005 to 0. A location where 025%, Al: 0.005 to 0.100%, and N: 0.001 to 0.025% are contained, the balance is composed of Fe and impurities, and the forging material 1 is laterally extruded. In the above, the area S1 of the outer steel material 11 and the area S2 of the inner steel material 12 on the plane perpendicular to the axial direction of the forging material 1 satisfy Equation 1, and the deformation obtained at the strain rate 10s -1 in the end face restraint compression test. In terms of resistance, the deformation resistance σ'1 of the outer steel material 11 and the deformation resistance σ'2 of the inner steel material 12 at the equivalent plastic strain of 1.5 satisfy Equation 2.
0.90 ≧ S2 / (S1 + S2) <Equation 1>
σ'1 x S1 / (S1 + S2) + σ'2 x S2 / (S1 + S2) ≤750 [MPa] <Equation 2>
First, the forging material according to the present embodiment will be described in detail below.

(鋼材成分)
本実施形態に係る鍛造用材料1を構成する外側鋼材11と内側鋼材12の化学成分について説明する。以下に示す各元素の割合(%)は全て質量%を意味する。外側鋼材及び内側鋼材それぞれの化学成分においては、同じ数値範囲の元素もあるし、異なる数値範囲の元素もある。以下の説明では、化学成分毎にその含有量の限定理由を説明する。
(Steel component)
The chemical components of the outer steel material 11 and the inner steel material 12 constituting the forging material 1 according to the present embodiment will be described. The proportions (%) of each element shown below mean mass%. In the chemical composition of the outer steel material and the inner steel material, some elements have the same numerical range, and some elements have different numerical ranges. In the following description, the reasons for limiting the content of each chemical component will be described.

C(外側鋼材):0.15〜0.40%
C(内側鋼材):0.05〜0.30%
炭素(C)は鋼材の強度を確保する上で必須の元素である。鍛造後に鍛造部材の表層部を構成することとなる、鍛造用材料の外側鋼材は、高い耐摩耗性を実現するために、浸炭焼入焼戻し後の硬さが740HV以上である必要がある。外側鋼材のC含有量が0.15%未満では、必要な強度が得られない。一方、外側鋼材のC含有量が0.40%を超えると、外側鋼材の鍛造性が劣化する。そのため、外側鋼材のC含有量を0.15〜0.40%とする。外側鋼材のC含有量を0.18%以上、0.20%以上、又は0.25%以上としてもよい。外側鋼材のC含有量を0.38%以下、0.35%以下、又は0.30%以下としてもよい。
C (outer steel material): 0.15 to 0.40%
C (inner steel material): 0.05 to 0.30%
Carbon (C) is an essential element for ensuring the strength of steel materials. The outer steel material of the forging material, which constitutes the surface layer portion of the forged member after forging, needs to have a hardness of 740 HV or more after charcoal-burning and tempering in order to realize high wear resistance. If the C content of the outer steel material is less than 0.15%, the required strength cannot be obtained. On the other hand, if the C content of the outer steel material exceeds 0.40%, the forgeability of the outer steel material deteriorates. Therefore, the C content of the outer steel material is set to 0.15 to 0.40%. The C content of the outer steel material may be 0.18% or more, 0.20% or more, or 0.25% or more. The C content of the outer steel material may be 0.38% or less, 0.35% or less, or 0.30% or less.

一方、鍛造部材の基材部には高い耐摩耗性は必要ない。従って、鍛造後に鍛造部材の基材部を構成することとなる、鍛造用材料の内側鋼材においては、鍛造用材料に求められる鍛造性が優先される。そのため、内側鋼材のC含有量は0.05〜0.30%とする。内側鋼材のC含有量を0.08%以上、0.10%以上、又は0.15%以上としてもよい。内側鋼材のC含有量を0.28%以下、0.25%以下、又は0.20%以下としてもよい。 On the other hand, the base material of the forged member does not need to have high wear resistance. Therefore, in the inner steel material of the forging material, which constitutes the base material portion of the forging member after forging, the forging property required for the forging material is prioritized. Therefore, the C content of the inner steel material is set to 0.05 to 0.30%. The C content of the inner steel material may be 0.08% or more, 0.10% or more, or 0.15% or more. The C content of the inner steel material may be 0.28% or less, 0.25% or less, or 0.20% or less.

Si(外側鋼材):0.05〜0.50%
Si(内側鋼材):0.05〜0.35%
シリコン(Si)は、焼戻し時に析出するε炭化物が粗大なセメンタイトへと遷移することを抑制し、低温焼戻しマルテンサイト鋼の焼戻し軟化抵抗を顕著に増加させるための元素である。外側鋼材において、Si含有量が0.05%未満では前記作用が発揮できない。一方、外側鋼材においてSi含有量が0.50%を超えると、浸炭焼入焼戻し処理時に表層に酸化層が形成され、表面起点の剥離寿命が低下する。そのため、鍛造後に鍛造部材の表層部を構成することとなる、鍛造用材料の外側鋼材のSi含有量を0.05〜0.50%とする。外側鋼材のSi含有量を0.08%以上、0.10%以上、又は0.20%以上としてもよい。外側鋼材のSi含有量を0.45%以下、0.40%以下、又は0.30%以下としてもよい。
Si (outer steel material): 0.05 to 0.50%
Si (inner steel material): 0.05 to 0.35%
Silicon (Si) is an element for suppressing the transition of ε-carbide precipitated during tempering to coarse cementite and significantly increasing the temper softening resistance of low-temperature tempered martensitic steel. In the outer steel material, if the Si content is less than 0.05%, the above effect cannot be exhibited. On the other hand, if the Si content of the outer steel material exceeds 0.50%, an oxide layer is formed on the surface layer during the carburizing, quenching and tempering treatment, and the peeling life of the surface starting point is shortened. Therefore, the Si content of the outer steel material of the forging material, which constitutes the surface layer portion of the forging member after forging, is set to 0.05 to 0.50%. The Si content of the outer steel material may be 0.08% or more, 0.10% or more, or 0.20% or more. The Si content of the outer steel material may be 0.45% or less, 0.40% or less, or 0.30% or less.

一方、鍛造用材料の内側鋼材には高い焼戻し軟化抵抗は必要なく、鍛造性および機械加工時の被削性が優先される。そのため、内側鋼材のSi含有量を0.05〜0.35%とする。内側鋼材のSi含有量を0.08%以上、0.10%以上、又は0.15%以上としてもよい。内側鋼材のSi含有量を0.32%以下、0.30%以下、又は0.25%以下としてもよい。 On the other hand, the inner steel material for forging does not require high temper softening resistance, and forging property and machinability during machining are prioritized. Therefore, the Si content of the inner steel material is set to 0.05 to 0.35%. The Si content of the inner steel material may be 0.08% or more, 0.10% or more, or 0.15% or more. The Si content of the inner steel material may be 0.32% or less, 0.30% or less, or 0.25% or less.

Mn(外側鋼材):0.20〜1.50%
Mn(内側鋼材):0.20〜1.00%
マンガン(Mn)は焼入性を高めると同時に、赤熱脆性を抑制し、熱間延性を向上させる元素である。外側鋼材のMn含有量が0.20%未満では前記作用が発揮できない。一方、外側鋼材のMn含有量が1.50%を超えると、含有量に見合う効果が期待できない。そのため、外側鋼材のMn含有量を0.20〜1.50%とする。外側鋼材のMn含有量を0.25%以上、0.30%以上、又は0.40%以上としてもよい。外側鋼材のMn含有量を1.40%以下、1.30%以下、又は1.20%以下としてもよい。
Mn (outer steel material): 0.25 to 1.50%
Mn (inner steel material): 0.25 to 1.00%
Manganese (Mn) is an element that enhances hardenability, suppresses red-hot brittleness, and improves hot ductility. If the Mn content of the outer steel material is less than 0.20%, the above effect cannot be exhibited. On the other hand, if the Mn content of the outer steel material exceeds 1.50%, an effect commensurate with the content cannot be expected. Therefore, the Mn content of the outer steel material is set to 0.25 to 1.50%. The Mn content of the outer steel material may be 0.25% or more, 0.30% or more, or 0.40% or more. The Mn content of the outer steel material may be 1.40% or less, 1.30% or less, or 1.20% or less.

一方、鍛造用材料の内側鋼材には高い焼入性は必要なく、鍛造性および機械加工時の被削性が優先して求められる。内側鋼材のMn含有量が1.00%を超えると鍛造性が悪化する。そのため、内側鋼材のMn含有量を0.20〜1.00%とする。内側鋼材のMn含有量を0.25%以上、0.30%以上、又は0.40%以上としてもよい。内側鋼材のMn含有量を0.90%以下、0.80%以下、又は0.70%以下としてもよい。 On the other hand, the inner steel material for forging does not need to have high hardenability, and forging property and machinability during machining are prioritized. If the Mn content of the inner steel material exceeds 1.00%, the forgeability deteriorates. Therefore, the Mn content of the inner steel material is set to 0.25 to 1.00%. The Mn content of the inner steel material may be 0.25% or more, 0.30% or more, or 0.40% or more. The Mn content of the inner steel material may be 0.90% or less, 0.80% or less, or 0.70% or less.

Cr(外側鋼材):0.05〜1.50%
Cr(内側鋼材):0.01〜1.50%
クロム(Cr)は鋼材の焼入性を高めると同時に、硬い炭化物を形成し耐摩耗性を向上させる有用な元素である。外側鋼材のCr含有量が0.05%未満では、焼入性向上の効果が得られない。一方、外側鋼材のCr含有量が1.50%を超えると、鍛造性および被削性が劣化するだけでなく、浸炭焼入焼戻し処理時にオーステナイト粒界に粗大な炭化物が形成する。したがって、外側鋼材のCr含有量を0.05〜1.50%とする。外側鋼材のCr含有量を0.10%以上、0.20%以上、又は0.30%以上としてもよい。外側鋼材のCr含有量を1.30%以下、1.10%以下、又は1.00%以下としてもよい。
Cr (outer steel material): 0.05 to 1.50%
Cr (inner steel material): 0.01 to 1.50%
Chromium (Cr) is a useful element that enhances the hardenability of steel materials and at the same time forms hard carbides to improve wear resistance. If the Cr content of the outer steel material is less than 0.05%, the effect of improving hardenability cannot be obtained. On the other hand, when the Cr content of the outer steel material exceeds 1.50%, not only the forgeability and machinability deteriorate, but also coarse carbides are formed at the austenite grain boundaries during the carburizing, quenching and tempering treatment. Therefore, the Cr content of the outer steel material is set to 0.05 to 1.50%. The Cr content of the outer steel material may be 0.10% or more, 0.20% or more, or 0.30% or more. The Cr content of the outer steel material may be 1.30% or less, 1.10% or less, or 1.00% or less.

一方、内側鋼材には高い焼入性及び耐摩耗性は必要なく、部品加工時の鍛造性および被削性が優先される。また、Crはセメンタイトを安定化させる元素でもあり、球状化焼鈍時に球状セメンタイト生成に必要な核をわずかに残すために、微量添加する。内側鋼材のCr含有量が0.01%未満だとその効果が小さい。一方、内側鋼材のCr含有量が1.50%を超えると、鍛造性及び被削性が劣化する。そのため、内側鋼材のCr含有量を0.01〜1.50%とする。内側鋼材のCr含有量を0.10%以上、0.15%以上、又は0.20%以上としてもよい。内側鋼材のCr含有量を1.20%以下、1.00%以下、又は0.80%以下としてもよい。 On the other hand, the inner steel material does not need high hardenability and abrasion resistance, and forgeability and machinability at the time of processing parts are prioritized. Cr is also an element that stabilizes cementite, and is added in a small amount in order to leave a small amount of nuclei necessary for the formation of spheroidal cementite during spheroidizing annealing. If the Cr content of the inner steel material is less than 0.01%, the effect is small. On the other hand, if the Cr content of the inner steel material exceeds 1.50%, the forgeability and machinability deteriorate. Therefore, the Cr content of the inner steel material is set to 0.01 to 1.50%. The Cr content of the inner steel material may be 0.10% or more, 0.15% or more, or 0.20% or more. The Cr content of the inner steel material may be 1.20% or less, 1.00% or less, or 0.80% or less.

P(外側鋼材および内側鋼材):0.001〜0.030%
リン(P)は不純物として含まれる元素である。Pは粒界に偏析して粒界強度を下げる。そのため、P含有量はなるべく低い方が良い。そのため、外側鋼材および内側鋼材の両方におけるP含有量の上限を0.030%以下とする。P含有量の好ましい上限は0.020%以下である。外側鋼材および内側鋼材の両方におけるP含有量の好ましい上限は0.018%、0.015%、又は0.010%である。一方、Pは製鋼工程において低減することができるものの、0.001%未満とするには製造コストがかかり、また0.001%未満としても粒界強度が顕著に向上することはない。そのため、外側鋼材および内側鋼材の両方におけるP含有量の下限を0.001%以上、0.002%以上、又は0.005%以上としてもよい。外側鋼材及び内側鋼材においてP含有量の数値範囲を異ならせてもよい。
P (outer steel material and inner steel material): 0.001 to 0.030%
Phosphorus (P) is an element contained as an impurity. P segregates at the grain boundaries and lowers the grain boundary strength. Therefore, the P content should be as low as possible. Therefore, the upper limit of the P content in both the outer steel material and the inner steel material is set to 0.030% or less. The preferable upper limit of the P content is 0.020% or less. The preferred upper limit of the P content in both the outer and inner steels is 0.018%, 0.015%, or 0.010%. On the other hand, although P can be reduced in the steelmaking process, if it is less than 0.001%, the manufacturing cost is high, and if it is less than 0.001%, the grain boundary strength is not significantly improved. Therefore, the lower limit of the P content in both the outer steel material and the inner steel material may be 0.001% or more, 0.002% or more, or 0.005% or more. The numerical range of the P content may be different between the outer steel material and the inner steel material.

S(外側鋼材および内側鋼材):0.005〜0.025%
硫黄(S)は鍛造用材料の被削性を向上させる。そのため、外側鋼材および内側鋼材の両方において、0.005%以上のSを含有させる。しかし、S含有量が多すぎると、Mnによって固定されなかったSがFeSとして粒界に生成することで、熱間延性が低下する。また、大量に生成したMnSによって、耐摩耗性が低下する。そのため、外側鋼材および内側鋼材の両方におけるS含有量の上限を0.025%以下とする。したがって、外側鋼材および内側鋼材のS含有量をともに0.005〜0.025%とする。外側鋼材および内側鋼材のS含有量を0.008%以上、0.010%以上、又は0.015%以上としてもよい。外側鋼材および内側鋼材のS含有量を0.022%以下、0.020%以下、又は0.018%以下としてもよい。外側鋼材及び内側鋼材においてS含有量の数値範囲を異ならせてもよい。
S (outer steel and inner steel): 0.005 to 0.025%
Sulfur (S) improves the machinability of the forging material. Therefore, 0.005% or more of S is contained in both the outer steel material and the inner steel material. However, if the S content is too large, S that is not fixed by Mn is generated as FeS at the grain boundaries, so that the hot ductility is lowered. In addition, the wear resistance is lowered due to the large amount of MnS produced. Therefore, the upper limit of the S content in both the outer steel material and the inner steel material is set to 0.025% or less. Therefore, the S content of both the outer steel material and the inner steel material is set to 0.005 to 0.025%. The S content of the outer steel material and the inner steel material may be 0.008% or more, 0.010% or more, or 0.015% or more. The S content of the outer steel material and the inner steel material may be 0.022% or less, 0.020% or less, or 0.018% or less. The numerical range of the S content may be different between the outer steel material and the inner steel material.

Al(外側鋼材および内側鋼材):0.005〜0.100%
アルミニウム(Al)は脱酸作用を有するとともに、熱処理の際、Nと結合してAlNを形成することによりオーステナイト粒の粗大化を防止し、靭性を高める効果を持つ。外側鋼材および内側鋼材のAl含有量が0.005%未満ではこれらの効果が発揮されない。一方、外側鋼材および内側鋼材のAl含有量が0.100%を超えると上記効果が飽和する。そのため、外側鋼材および内側鋼材のAl含有量をともに0.005〜0.100%とする。外側鋼材および内側鋼材のAl含有量を0.008%以上、0.010%以上、又は0.015%以上としてもよい。外側鋼材および内側鋼材のAl含有量を0.080%以下、0.060%以下、又は0.050%以下としてもよい。外側鋼材及び内側鋼材においてAl含有量の数値範囲を異ならせてもよい。
Al (outer steel material and inner steel material): 0.005 to 0.100%
Aluminum (Al) has a deoxidizing effect, and at the time of heat treatment, it combines with N to form AlN, thereby preventing coarsening of austenite grains and increasing toughness. If the Al content of the outer steel material and the inner steel material is less than 0.005%, these effects are not exhibited. On the other hand, when the Al content of the outer steel material and the inner steel material exceeds 0.100%, the above effect is saturated. Therefore, the Al content of both the outer steel material and the inner steel material is set to 0.005 to 0.100%. The Al content of the outer steel material and the inner steel material may be 0.008% or more, 0.010% or more, or 0.015% or more. The Al content of the outer steel material and the inner steel material may be 0.080% or less, 0.060% or less, or 0.050% or less. The numerical range of the Al content may be different between the outer steel material and the inner steel material.

N(外側鋼材および内側鋼材):0.001〜0.025%
窒素(N)はAl、Vと結合して窒化物を形成することによりオーステナイト粒の粗大化を防止し、靭性を高める効果を有する。外側鋼材および内側鋼材のN含有量が0.001%未満ではその効果が小さい。一方、外側鋼材および内側鋼材のN含有量が0.025%を超えると上記効果が飽和する。そのため、外側鋼材および内側鋼材のN含有量をともに0.001〜0.025%とする。外側鋼材および内側鋼材のN含有量を0.002%以上、0.005%以上、又は0.010%以上としてもよい。外側鋼材および内側鋼材のN含有量を0.022%以下、0.020%以下、又は0.018%以下としてもよい。外側鋼材及び内側鋼材においてN含有量の数値範囲を異ならせてもよい。
N (outer steel material and inner steel material): 0.001 to 0.025%
Nitrogen (N) has the effect of preventing coarsening of austenite grains and increasing toughness by combining with Al and V to form a nitride. If the N content of the outer steel material and the inner steel material is less than 0.001%, the effect is small. On the other hand, when the N content of the outer steel material and the inner steel material exceeds 0.025%, the above effect is saturated. Therefore, the N content of both the outer steel material and the inner steel material is set to 0.001 to 0.025%. The N content of the outer steel material and the inner steel material may be 0.002% or more, 0.005% or more, or 0.010% or more. The N content of the outer steel material and the inner steel material may be 0.022% or less, 0.020% or less, or 0.018% or less. The numerical range of the N content may be different between the outer steel material and the inner steel material.

V(外側鋼材):0.50〜3.00%
バナジウム(V)はMn、Crと同様に、鋼の焼入性を高める。Vはさらに、Cと結合して硬く微細な炭化物を形成して耐摩耗性を向上させるとともに、結晶粒を微細化して靭性を向上させる有用な元素である。外側鋼材のV含有量が0.50%未満では、耐摩耗性向上効果が発揮できない。一方、外側鋼材のV含有量が3.00%を超えると、鍛造性および被削性が低下する。そのため、外側鋼材のV含有量を0.50〜3.00%とする。外側鋼材のV含有量を0.60%以上、0.80%以上、又は1.00%以上としてもよい。外側鋼材のV含有量を2.50%以下、2.00%以下、又は1.50%以下としてもよい。
V (outer steel material): 0.50 to 3.00%
Vanadium (V), like Mn and Cr, enhances the hardenability of steel. V is a useful element that further combines with C to form hard and fine carbides to improve wear resistance, and to refine crystal grains to improve toughness. If the V content of the outer steel material is less than 0.50%, the effect of improving wear resistance cannot be exhibited. On the other hand, when the V content of the outer steel material exceeds 3.00%, the forgeability and machinability deteriorate. Therefore, the V content of the outer steel material is set to 0.50 to 3.00%. The V content of the outer steel material may be 0.60% or more, 0.80% or more, or 1.00% or more. The V content of the outer steel material may be 2.50% or less, 2.00% or less, or 1.50% or less.

Mo(外側鋼材):0.80〜6.00%
モリブデン(Mo)は鋼材の焼入性を高めると同時に、硬い炭化物を形成して耐摩耗性を向上させる有用な元素である。外側鋼材のMo含有量が0.80%未満では上記作用が発揮できない。一方、外側鋼材のMo含有量が6.00%を超えると、鍛造性および被削性が低下する。そのため、外側鋼材のMo含有量を0.80〜6.00%とする。外側鋼材のMo含有量を1.00%以上、1.20%以上、又は1.50%以上としてもよい。外側鋼材のMo含有量を5.00%以下、4.00%以下、又は3.00%以下としてもよい。
Mo (outer steel material): 0.80 to 6.00%
Molybdenum (Mo) is a useful element that enhances the hardenability of steel materials and at the same time forms hard carbides to improve wear resistance. If the Mo content of the outer steel material is less than 0.80%, the above effect cannot be exhibited. On the other hand, when the Mo content of the outer steel material exceeds 6.00%, the forgeability and machinability deteriorate. Therefore, the Mo content of the outer steel material is set to 0.80 to 6.00%. The Mo content of the outer steel material may be 1.00% or more, 1.20% or more, or 1.50% or more. The Mo content of the outer steel material may be 5.00% or less, 4.00% or less, or 3.00% or less.

外側鋼材及び内側鋼材における化学組成の残部は鉄(Fe)及び不純物である。不純物とは、鋼の原料として利用される鉱石やスクラップ、又は、製造工程の環境等から混入する成分であって、本実施形態に係る鍛造用材料の特性を損なわない範囲で許容される成分を意味する。また、外側鋼材が、以下に説明する任意選択的元素をさらに含有してもよい。ただし、これらの任意選択的元素を含有することなく、本実施形態に係る鍛造用材料はその課題を解決することができる。そのため、任意選択的元素の含有量の下限値は0%である。 The rest of the chemical composition of the outer and inner steels is iron (Fe) and impurities. Impurities are ores and scraps used as raw materials for steel, or components mixed from the environment of the manufacturing process, etc., and are permitted components within a range that does not impair the characteristics of the forging material according to the present embodiment. means. Further, the outer steel material may further contain an optional element described below. However, the forging material according to the present embodiment can solve the problem without containing these optional elements. Therefore, the lower limit of the content of the optional element is 0%.

(外側鋼材の任意選択的元素)
B(外側鋼材):0〜0.0050%
ホウ素(B)はオーステナイト中に僅かに固溶させただけで鋼の焼入性を高める。そのため、浸炭焼入焼戻し時にマルテンサイト組織を効率的に得るために、外側鋼材に含有させてもよい。一方、Bを、0.0050%を超えて外側鋼材に含有させると、多量のBNを形成してNを消費するため、オーステナイト粒の粗大化を招来するおそれがある。そのため、外側鋼材のB含有量を0〜0.0050%としてもよい。外側鋼材のB含有量を0.0005%以上、0.0010%以上、又は0.0015%以上としてもよい。外側鋼材のB含有量を0.0045%以下、0.0040%以下、又は0.0030%以下としてもよい。
(Arbitrary selective element of outer steel material)
B (outer steel material): 0 to 0.0050%
Boron (B) enhances the hardenability of steel with only a slight solid solution in austenite. Therefore, it may be contained in the outer steel material in order to efficiently obtain the martensite structure during charcoal-burning and tempering. On the other hand, if B is contained in the outer steel material in an amount of more than 0.0050%, a large amount of BN is formed and N is consumed, which may lead to coarsening of austenite grains. Therefore, the B content of the outer steel material may be 0 to 0.0050%. The B content of the outer steel material may be 0.0005% or more, 0.0010% or more, or 0.0015% or more. The B content of the outer steel material may be 0.0045% or less, 0.0040% or less, or 0.0030% or less.

Nb(外側鋼材):0〜0.100%
ニオブ(Nb)は、鋼中でN、Cと結合して炭窒化物を形成する元素である。この炭窒化物はオーステナイト結晶粒界をピンニングし、ひいては粒成長を抑制して組織の粗大化を防止する。この組織の粗大化の防止効果を得るために、外側鋼材に、Nbを0.100%以下含有させてもよい。一方、Nbを、0.100%を超えて外側鋼材に含有させると、素材硬さの上昇に起因して鍛造性が顕著に劣化するおそれがある。そのため、外側鋼材のNb含有量を0〜0.100%としてもよい。外側鋼材のNb含有量を0.005%以上、0.010%以上、又は0.020%以上としてもよい。外側鋼材のNb含有量を0.090%以下、0.080%以下、又は0.070%以下としてもよい。
Nb (outer steel material): 0 to 0.100%
Niobium (Nb) is an element that combines with N and C in steel to form a carbonitride. This carbonitride pins the austenite grain boundaries, which in turn suppresses grain growth and prevents texture coarsening. In order to obtain the effect of preventing the coarsening of the structure, the outer steel material may contain 0.100% or less of Nb. On the other hand, if Nb is contained in the outer steel material in an amount of more than 0.100%, the forgeability may be significantly deteriorated due to the increase in the hardness of the material. Therefore, the Nb content of the outer steel material may be 0 to 0.100%. The Nb content of the outer steel material may be 0.005% or more, 0.010% or more, or 0.020% or more. The Nb content of the outer steel material may be 0.090% or less, 0.080% or less, or 0.070% or less.

Ti(外側鋼材):0〜0.100%
チタン(Ti)は、鋼中でN、Cと結合して炭窒化物を形成する元素である。この炭窒化物はオーステナイト結晶粒界をピンニングし、ひいては粒成長を抑制して組織の粗大化を防止する。この組織の粗大化の防止効果を得るために、外側鋼材に、Tiを0.100%以下含有させてもよい。一方、Tiを、0.100%を超えて外側鋼材に含有させると、素材硬さの上昇に起因して鍛造性が顕著に劣化するおそれがある。そのため、外側鋼材のTi含有量を0〜0.100%としてもよい。外側鋼材のTi含有量を0.005%以上、0.010%以上、又は0.020%以上としてもよい。外側鋼材のTi含有量を0.090%以下、0.080%以下、又は0.070%以下としてもよい。
Ti (outer steel material): 0 to 0.100%
Titanium (Ti) is an element that combines with N and C in steel to form a carbonitride. This carbonitride pins the austenite grain boundaries, which in turn suppresses grain growth and prevents texture coarsening. In order to obtain the effect of preventing the coarsening of the structure, the outer steel material may contain 0.100% or less of Ti. On the other hand, if Ti is contained in the outer steel material in an amount of more than 0.100%, the forgeability may be significantly deteriorated due to the increase in the hardness of the material. Therefore, the Ti content of the outer steel material may be 0 to 0.100%. The Ti content of the outer steel material may be 0.005% or more, 0.010% or more, or 0.020% or more. The Ti content of the outer steel material may be 0.090% or less, 0.080% or less, or 0.070% or less.

REM(外側鋼材):0〜0.020%
希土類元素(REM)とは、原子番号57のランタンから原子番号71ルテチウムまでの15元素と、原子番号21のスカンジウム及び原子番号39のイットリウムと、の合計17元素の総称である。REMの含有量とは、これら元素の含有量の合計値である。外側鋼材にREMが含有されると、圧延時にMnS粒子の伸延が抑制される。但し、REM含有量が0.020%を超えると、REMを含む硫化物が大量に生成され、鋼の被削性が劣化するおそれがある。そのため、外側鋼材のREM含有量は0〜0.020%としてもよい。外側鋼材のREM含有量を0.002%以上、0.005%以上、又は0.008%以上としてもよい。外側鋼材のREM含有量を0.018%以下、0.015%以下、又は0.010%以下としてもよい。
REM (outer steel material): 0 to 0.020%
Rare earth element (REM) is a general term for a total of 17 elements, including 15 elements from lanthanum with atomic number 57 to lutetium with atomic number 71, scandium with atomic number 21 and yttrium with atomic number 39. The REM content is the total value of the contents of these elements. When REM is contained in the outer steel material, the elongation of MnS particles is suppressed during rolling. However, if the REM content exceeds 0.020%, a large amount of sulfide containing REM may be generated, and the machinability of the steel may deteriorate. Therefore, the REM content of the outer steel material may be 0 to 0.020%. The REM content of the outer steel material may be 0.002% or more, 0.005% or more, or 0.008% or more. The REM content of the outer steel material may be 0.018% or less, 0.015% or less, or 0.010% or less.

次に、外側鋼材及び内側鋼材の化学成分以外の構成について説明する。
外側鋼材11は中空状の鋼材であり、内側鋼材12は外側鋼材11の内部に配置されている。本実施形態に係る鍛造用材料1を側方押出しに供する場合、図1に示されるように、内側鋼材12を例えば棒鋼とし、外側鋼材11をパイプ状形状とすることが好ましい。図1に示される鍛造用材料1を側方押出しすることによって、図5に示される鍛造部材2を得ることができる。
Next, the configurations of the outer steel material and the inner steel material other than the chemical components will be described.
The outer steel material 11 is a hollow steel material, and the inner steel material 12 is arranged inside the outer steel material 11. When the forging material 1 according to the present embodiment is subjected to lateral extrusion, it is preferable that the inner steel material 12 is, for example, a steel bar and the outer steel material 11 is a pipe-shaped material, as shown in FIG. By laterally extruding the forging material 1 shown in FIG. 1, the forging member 2 shown in FIG. 5 can be obtained.

(外側鋼材)
外側鋼材11は、本実施形態に係る鍛造用材料1を加工して得られる鍛造部材2において、他の鋼部材と接触して摺動する部位である表層部を構成する。よって、本実施形態に係る鍛造用材料1の外側鋼材11は、鍛造部材の表面のうち、摺動を受ける部分を覆ったものでなければならない。外側鋼材11には、浸炭焼入焼戻し後に高い耐摩耗性が必要となる。そのため、外側鋼材11は、前述のようにCr、Mo等の硬質な合金炭化物生成元素と、高濃度のCとを含有させ、所定条件の浸炭焼入焼戻し後にビッカース硬さを740HV以上とする。鍛造用材料の表層部にあたる外側鋼材11の、所定条件の浸炭焼入焼戻し後にビッカース硬さが740HV未満であると、表層部の耐摩耗性を確保できなくなる。ただし、浸炭焼入焼戻し前の段階における外側鋼材11の硬さは特に規定されない。鍛造加工前の段階では、加工性を考慮すると、外側鋼材11の硬さが低いほうが好ましい。
(Outer steel material)
The outer steel material 11 constitutes a surface layer portion that is a portion that slides in contact with another steel member in the forging member 2 obtained by processing the forging material 1 according to the present embodiment. Therefore, the outer steel material 11 of the forging material 1 according to the present embodiment must cover the sliding portion of the surface of the forging member. The outer steel material 11 is required to have high wear resistance after charcoal-burning and tempering. Therefore, as described above, the outer steel material 11 contains a hard alloy carbide-forming element such as Cr and Mo and a high concentration of C, and has a Vickers hardness of 740 HV or more after charcoal-burning and tempering under predetermined conditions. If the Vickers hardness of the outer steel material 11, which corresponds to the surface layer portion of the forging material, is less than 740 HV after charcoal-burning and tempering under predetermined conditions, the wear resistance of the surface layer portion cannot be ensured. However, the hardness of the outer steel material 11 at the stage before charcoal-burning and tempering is not particularly specified. At the stage before forging, the hardness of the outer steel material 11 is preferably low in consideration of workability.

さらに、外側鋼材11の断面積割合も重要である。外側鋼材11の面積割合が10%未満である肉厚の薄い箇所において側方押出しが行われると、鍛造時に外側鋼材11が破壊されてしまう。よって、側方押出しされる箇所において、鍛造用材料1の軸方向と垂直な面における外側鋼材の面積S1と前記内側鋼材の面積S2が、式1を満たさなければならない。
0.90≧S2/(S1+S2) <式1>
なお、鍛造用材料1の全域にわたり式1が満たされる必要はない。少なくとも鍛造によって大きな変形を受ける箇所、即ち側方押出しされる箇所において式1が満たされていればよい。例えば、図2に示されるように、外側鋼材11の面積S1と内側鋼材12の面積S2との割合が一様であってもよい。一方、鍛造用材料1が側方押出しによる鍛造加工用である場合、少なくとも側方押出しされる箇所において式1が満たされていれば足りる。従って、例えば図3に示されるように、鍛造用材料1の一部に外側鋼材11が配されていてもよい。図3の鍛造用材料1では、その両端において式1が満たされないこととなるが、側方押出しされる箇所に外側鋼材11が配されており、この箇所において式1が満たされていればよい。また、例えば図4に示されるように、外側鋼材11の両端がテーパー形状を有することも妨げられない。図4の鍛造用材料1でも、その両端において式1が満たされないこととなるが、側方押出しされる箇所に外側鋼材11が配されており、この箇所において式1が満たされていればよい。
Further, the cross-sectional area ratio of the outer steel material 11 is also important. If lateral extrusion is performed in a thin portion where the area ratio of the outer steel material 11 is less than 10%, the outer steel material 11 is destroyed during forging. Therefore, at the laterally extruded portion, the area S1 of the outer steel material and the area S2 of the inner steel material on the plane perpendicular to the axial direction of the forging material 1 must satisfy the formula 1.
0.90 ≧ S2 / (S1 + S2) <Equation 1>
It is not necessary that the equation 1 is satisfied over the entire area of the forging material 1. It suffices that Equation 1 is satisfied at least at a portion that is greatly deformed by forging, that is, a portion that is laterally extruded. For example, as shown in FIG. 2, the ratio of the area S1 of the outer steel material 11 to the area S2 of the inner steel material 12 may be uniform. On the other hand, when the forging material 1 is for forging by lateral extrusion, it is sufficient that the formula 1 is satisfied at least at the position where the forging material 1 is laterally extruded. Therefore, for example, as shown in FIG. 3, the outer steel material 11 may be arranged as a part of the forging material 1. In the forging material 1 of FIG. 3, the formula 1 is not satisfied at both ends thereof, but the outer steel material 11 is arranged at the side-extruded portion, and the formula 1 may be satisfied at this portion. .. Further, as shown in FIG. 4, for example, it is not hindered that both ends of the outer steel material 11 have a tapered shape. Even in the forging material 1 of FIG. 4, the formula 1 is not satisfied at both ends thereof, but it is sufficient that the outer steel material 11 is arranged at the side-extruded portion and the formula 1 is satisfied at this portion. ..

S2/(S1+S2)の上限を、鍛造部材の形状に応じて変更してもよい。例えば、S2/(S1+S2)を0.88未満、0.85未満、又は0.80未満としてもよい。例えば鍛造用材料1から自動車のスパイダーを製造する場合、外側突部241の厚さを確保する観点から、S2/(S1+S2)を0.90未満としておくことが好ましいと考えられる。 The upper limit of S2 / (S1 + S2) may be changed according to the shape of the forged member. For example, S2 / (S1 + S2) may be less than 0.88, less than 0.85, or less than 0.80. For example, when manufacturing an automobile spider from the forging material 1, it is considered preferable to set S2 / (S1 + S2) to less than 0.90 from the viewpoint of ensuring the thickness of the outer protrusion 241.

一方、外側鋼材の断面積割合が多すぎると、変形抵抗が高い外側鋼材11が鍛造用材料1に占める割合が過剰となる。そのため、鍛造用材料1の鍛造性が悪化し金型負荷が増大する。金型負荷は外側鋼材11の断面積S1及び内側鋼材12の断面積S2に加え、外側鋼材11及び内側鋼材12それぞれの変形抵抗に大きく影響される。十字軸継手のように、側方押出し加工により成形された鍛造部材2の、側方押出し軸表層に発生するひずみは1.2〜1.7である。この範囲における鍛造用材料の変形抵抗が750[MPa]を超えると、成形荷重が高くなり、金型寿命の低下が顕著になる。よって、外側鋼材11の断面積S1、外側鋼材11の相当塑性ひずみ量が1.5となる変形抵抗σ’1、内側鋼材12の面積S2、及び内側鋼材12の相当塑性ひずみ量が1.5となる変形抵抗σ’2が式2を満たすことが必要である。
σ’1×S1/(S1+S2)+σ’2×S2/(S1+S2)≦750[MPa] <式2>
ここで、上記変形抵抗はひずみ速度10s−1で端面拘束圧縮試験を行った際の結果である。
On the other hand, if the cross-sectional area ratio of the outer steel material is too large, the ratio of the outer steel material 11 having a high deformation resistance to the forging material 1 becomes excessive. Therefore, the forging property of the forging material 1 deteriorates and the die load increases. The mold load is greatly affected by the deformation resistance of each of the outer steel material 11 and the inner steel material 12 in addition to the cross-sectional area S1 of the outer steel material 11 and the cross-sectional area S2 of the inner steel material 12. The strain generated on the surface layer of the laterally extruded shaft of the forged member 2 formed by the lateral extruding process like the cross shaft joint is 1.2 to 1.7. If the deformation resistance of the forging material in this range exceeds 750 [MPa], the molding load becomes high and the die life is significantly shortened. Therefore, the cross-sectional area S1 of the outer steel material 11, the deformation resistance σ'1 at which the equivalent plastic strain amount of the outer steel material 11 is 1.5, the area S2 of the inner steel material 12, and the equivalent plastic strain amount of the inner steel material 12 are 1.5. It is necessary that the deformation resistance σ'2 to be satisfied satisfies Equation 2.
σ'1 x S1 / (S1 + S2) + σ'2 x S2 / (S1 + S2) ≤750 [MPa] <Equation 2>
Here, the deformation resistance is the result when the end face restraint compression test is performed at a strain rate of 10s -1.

外側鋼材11が、表面処理されていてもよい。例えば、外側鋼材11がボンデリューベ処理皮膜を有していてもよい。ボンデリューベ処理皮膜とは、リン酸亜鉛系化成皮膜と石けん系潤滑剤を用いた処理によって得られる潤滑皮膜である。通常、ボンデリューベ皮膜はリン酸塩皮膜と、未反応石けん(例えばステアリン酸ナトリウム)と、これらの間に形成された金属石けんとの三層構造を有する(「冷間鍛造用潤滑技術」清水秋雄、素形材、素形材センター、2010年、Vol.51、No.10、第24〜25頁等参照)。ボンデリューベ処理皮膜によって、型離れを良くし、冷間鍛造時に生じる熱や接触圧力による金型の破損が防止される。 The outer steel material 11 may be surface-treated. For example, the outer steel material 11 may have a bonderube-treated film. The bonderube-treated film is a lubricating film obtained by treatment with a zinc phosphate-based chemical conversion film and a soap-based lubricant. Usually, the bonderube film has a three-layer structure of a phosphate film, unreacted soap (for example, sodium stearate), and a metal soap formed between them ("Lubrication Technology for Cold Forging" Akio Shimizu, See Shaped Materials, Shaped Material Center, 2010, Vol.51, No.10, pp. 24-25, etc.). The bonderube treatment film improves mold release and prevents damage to the mold due to heat and contact pressure generated during cold forging.

なお、上述の断面積要件を満たす限り、外側鋼材11の厚さは特に規定されないが、例えば、側方押出しされる箇所において0.5mm以上、1.0mm以上、又は1.5mm以上としてもよい。換言すると、外側鋼材11が、厚さ0.5mm以上、1.0mm以上、又は1.5mm以上となる箇所をその一部に備える、と規定してもよい。また、外側鋼材11の厚さは、周方向に沿って一様であっても、一様でなくてもよい。外側鋼材11の厚さが周方向に沿って一様ではない場合、外側鋼材11の側方押出しされる箇所において、周方向に沿って最も薄い箇所の厚さを0.5mm以上、1.0mm以上、又は1.5mm以上としてもよい。 The thickness of the outer steel material 11 is not particularly specified as long as the above-mentioned cross-sectional area requirement is satisfied, but may be, for example, 0.5 mm or more, 1.0 mm or more, or 1.5 mm or more at the laterally extruded portion. .. In other words, it may be specified that the outer steel material 11 is provided with a portion having a thickness of 0.5 mm or more, 1.0 mm or more, or 1.5 mm or more. Further, the thickness of the outer steel material 11 may or may not be uniform along the circumferential direction. If the thickness of the outer steel 11 is not uniform along the circumferential direction, the thickness of the thinnest portion along the circumferential is 0.5 mm or more, 1.0 mm at the laterally extruded portion of the outer steel 11. It may be more than or equal to 1.5 mm or more.

(内側鋼材)
本実施形態の鍛造用材料1における内側鋼材12は、必ずしもその全面が外側鋼材11に覆われていなくともよい。他の部品と接触しない表面に内側鋼材12が露出していてもよい(図3参照)。例えば、本実施形態の鍛造用材料1からなる十字軸継手における中心軸方向には内側鋼材12が露出する場合があるが、この部分には耐摩耗性が要求されないため、内側鋼材12が露出していてもよい。また、内側鋼材12の内部に空洞が設けられてもよい。このような鍛造用材料を側方押出しに供した場合、内側鋼材12の内部の空洞は、側方押出し軸が形成される前に内側鋼材12によって充填され、消失すると考えられる。従って、上述した鍛造用材料1の軸方向と垂直な面における内側鋼材12の面積S2に、空洞部の面積は算入しない。
(Inner steel)
The entire surface of the inner steel material 12 in the forging material 1 of the present embodiment does not necessarily have to be covered with the outer steel material 11. The inner steel material 12 may be exposed on a surface that does not come into contact with other parts (see FIG. 3). For example, the inner steel material 12 may be exposed in the direction of the central axis in the cross shaft joint made of the forging material 1 of the present embodiment, but since wear resistance is not required for this portion, the inner steel material 12 is exposed. You may be. Further, a cavity may be provided inside the inner steel material 12. When such a forging material is subjected to lateral extrusion, it is considered that the inner cavity of the inner steel 12 is filled with the inner steel 12 and disappears before the lateral extrusion shaft is formed. Therefore, the area of the cavity is not included in the area S2 of the inner steel material 12 on the plane perpendicular to the axial direction of the forging material 1 described above.

外側鋼材11と、内側鋼材12との間にクリアランスが設けられていてもよい。クリアランスを設けることにより、外側鋼材11を内側鋼材12の内部に配置する工程の実施が容易となり、鍛造用材料1の製造効率が改善される。また、側方押出しの際には、外側鋼材11及び内側鋼材12によってクリアランスが充填されるので、クリアランスが鍛造部材2の製造を妨げることもない。クリアランスの大きさは特に限定されず、外側鋼材11及び内側鋼材12の形状に応じて適宜定めることができる。例えば、クリアランスを0.1mm〜2.0mmとしてもよい。 A clearance may be provided between the outer steel material 11 and the inner steel material 12. By providing the clearance, it becomes easy to carry out the step of arranging the outer steel material 11 inside the inner steel material 12, and the manufacturing efficiency of the forging material 1 is improved. Further, during lateral extrusion, the clearance is filled with the outer steel material 11 and the inner steel material 12, so that the clearance does not interfere with the production of the forged member 2. The size of the clearance is not particularly limited, and can be appropriately determined according to the shapes of the outer steel material 11 and the inner steel material 12. For example, the clearance may be 0.1 mm to 2.0 mm.

鍛造用材料1の大きさ(具体的には、鍛造によって大きな変形を受ける箇所である、側方押出しされる箇所の外径)は特に限定されない。例えば、鍛造用材料1を冷間鍛造に供する場合、加工性を考慮すると、鍛造用材料1の外径をφ20mm〜φ55mmの範囲内とすることが望ましい。一方、鍛造用材料1を熱間鍛造に供するのであれば、鍛造用材料1のサイズを上述の範囲を超えるものとしても、鍛造設備に負荷をかけることがないと考えられる。 The size of the forging material 1 (specifically, the outer diameter of the side-extruded portion, which is a portion subject to large deformation due to forging) is not particularly limited. For example, when the forging material 1 is subjected to cold forging, it is desirable that the outer diameter of the forging material 1 is within the range of φ20 mm to φ55 mm in consideration of workability. On the other hand, if the forging material 1 is subjected to hot forging, it is considered that even if the size of the forging material 1 exceeds the above range, the forging equipment will not be loaded.

鍛造用材料1の形状も、目的に応じて適宜選択することができる。図1において、鍛造用材料1、及び内側鋼材12は丸棒形状であるが、鍛造用材料1、及び/又は内側鋼材12が角棒形状であってもよい。この場合、鍛造用材料1、外側鋼材11、及び内側鋼材12の「径」(内径及び外径の両方を含む)とは、円相当径を意味する。 The shape of the forging material 1 can also be appropriately selected depending on the intended purpose. In FIG. 1, the forging material 1 and the inner steel material 12 have a round bar shape, but the forging material 1 and / or the inner steel material 12 may have a square bar shape. In this case, the "diameter" (including both the inner diameter and the outer diameter) of the forging material 1, the outer steel material 11, and the inner steel material 12 means a circle-equivalent diameter.

次に、本発明の別の態様に係る鍛造部材2について説明する。図5に示されるように、本実施形態に係る鍛造部材2は、外側鋼材21と内側鋼材22とで形成された基部23と、該基部23から外方に突出した突出部24とを備え、突出部24が、基部23における外側鋼材21の部分から突設させた外側突部241と、基部23における内側鋼材22の部分から突設され、且つ外側突部241内の少なくとも一部の空間に充填された内側突部242とで一体に成形されており、外側突部241の厚さが0.5mm以上である。 Next, the forged member 2 according to another aspect of the present invention will be described. As shown in FIG. 5, the forged member 2 according to the present embodiment includes a base portion 23 formed of an outer steel material 21 and an inner steel material 22, and a protruding portion 24 protruding outward from the base portion 23. The protrusion 24 is projected from the outer protrusion 241 protruding from the outer steel 21 portion in the base 23 and the inner steel 22 portion in the base 23, and is formed in at least a part of the space in the outer protrusion 241. It is integrally molded with the filled inner protrusion 242, and the thickness of the outer protrusion 241 is 0.5 mm or more.

(鍛造部材)
本実施形態の鍛造用材料1を鍛造加工することにより鍛造部材2が成形される。本実施形態の鍛造部材は、外側鋼材21と内側鋼材22とで形成された基部23と、基部23から外方に突出した突出部24とを備えている。鍛造部材2の外側鋼材21及び内側鋼材22の成分は、上述された鍛造用材料1の外側鋼材21及び内側鋼材22の成分と同じである。また、突出部24は、基部23を形成する外側鋼材21の所定の部分から突設させた外側突部241と、基部23を形成する内側鋼材22の部分から突設され、且つ外側突部241内の少なくとも一部の空間に充填された内側突部242とで一体に成形されている。ここで、突出部24を形成する内側突部242は、外側突部241内の全空間に充填されていてもよいが、必ずしも外側突部241内の全空間に充填されている必要はなく、外側突部241内の一部に入り込んだ状態、すなわち、外側突部241と内側突部242との間に空間が形成された状態であってもよい。
(Forged member)
The forging member 2 is formed by forging the forging material 1 of the present embodiment. The forged member of the present embodiment includes a base portion 23 formed of an outer steel material 21 and an inner steel material 22, and a protruding portion 24 protruding outward from the base portion 23. The components of the outer steel material 21 and the inner steel material 22 of the forging member 2 are the same as the components of the outer steel material 21 and the inner steel material 22 of the forging material 1 described above. Further, the protruding portion 24 is projected from a portion of the outer protruding portion 241 projecting from a predetermined portion of the outer steel material 21 forming the base portion 23 and a portion of the inner steel material 22 forming the base portion 23, and is projected from the portion of the outer protruding portion 241. It is integrally molded with the inner protrusion 242 filled in at least a part of the space inside. Here, the inner protrusion 242 forming the protrusion 24 may be filled in the entire space in the outer protrusion 241 but does not necessarily have to be filled in the entire space in the outer protrusion 241. It may be a state in which a part of the outer protrusion 241 is inserted, that is, a space is formed between the outer protrusion 241 and the inner protrusion 242.

また、外側突部241の厚さは、0.5mm以上とされる。これにより、十分な耐摩耗性を得ることができる。外側突部241の厚さを0.6mm以上、0.8mm以上、又は1.0mm以上としてもよい。外側突部241の厚さの上限を規定する必要はないが、例えば厚さを5.0mm以下、4.0mm以下、又は3.0mm以下と規定してもよい。 The thickness of the outer protrusion 241 is 0.5 mm or more. Thereby, sufficient wear resistance can be obtained. The thickness of the outer protrusion 241 may be 0.6 mm or more, 0.8 mm or more, or 1.0 mm or more. It is not necessary to specify the upper limit of the thickness of the outer protrusion 241, but for example, the thickness may be specified as 5.0 mm or less, 4.0 mm or less, or 3.0 mm or less.

また、鍛造部材2において、下記式3〜5が満たされることがさらに好ましい。
=S2/(S1+S2) <式3>
=S2/(S1+S2) <式4>
|(R−R)/R|≦5% <式5>
ここで、式3〜5における記号は、以下の事項を示す。
1:突出部24の根元における外側鋼材21の面積
2:突出部24の根元における内側鋼材22の面積
:S1及びS2の比率
1:基部23における、突出部24の近傍における外側鋼材21の面積
2:基部23における、突出部24の近傍における内側鋼材22の面積
:S1及びS2の比率
Further, it is more preferable that the forged member 2 satisfies the following formulas 3 to 5.
RP = SP 2 / ( SP 1 + SP 2) <Equation 3>
R B = S B 2 / ( S B 1 + S B 2) < Formula 4>
| (R P -R B) / R P | ≦ 5% < Formula 5>
Here, the symbols in the formulas 3 to 5 indicate the following items.
At the base 23,: S P 1: the area S P 2 of the outer steel 21 at the root of the protruding portions 24: the area R P of the inner steel 22 at the root of the protrusion 24: S P 1 and S ratio of P 2 S B 1 area of the outer steel 21 in the vicinity of the projecting portion 24 S B 2: at the base 23, the area R B of the inner steel 22 in the vicinity of the projecting portion 24: ratio of S B 1 and S B 2

式3〜式5が満たされる鍛造部材2では、比率RとRが、実質的に等しい。このような鍛造部材2は、鍛造部材2における外側鋼材21の破断が抑制されるように鍛造がなされていると考えられる。 In forging 2 Formula 3 Formula 5 is satisfied, the ratio R P and R B are substantially equal. It is considered that such a forged member 2 is forged so as to suppress the breakage of the outer steel material 21 in the forged member 2.

さらに、外側突部241において、外側鋼材21の面積と内側鋼材22の面積との割合は、上述した鍛造用材料1における割合を引き継いでいると推定される。従って、鍛造用材料1と同様に、0.90≧Rと規定してもよい。0.88>R、0.85>R、又は0.80>Rとしてもよい。 Further, in the outer protrusion 241 it is estimated that the ratio between the area of the outer steel material 21 and the area of the inner steel material 22 inherits the ratio in the above-mentioned forging material 1. Therefore, similarly to the forging material 1, it may be defined as 0.90 ≧ R P. 0.88> R P, 0.85> R P, or 0.80> may be R P.

鍛造部材2において、外側鋼材21のビッカース硬さが740Hv以上であることが好ましい。これにより、鍛造部材2の耐摩耗性が一層高められることとなる。なお、外側鋼材21のビッカース硬さとは、外側鋼材21の表面から50μm深さの位置におけるビッカース硬さのことである。外側鋼材21のビッカース硬さを測定する際の荷重は2.94Nとする。 In the forged member 2, the Vickers hardness of the outer steel material 21 is preferably 740 Hv or more. As a result, the wear resistance of the forged member 2 is further enhanced. The Vickers hardness of the outer steel material 21 is the Vickers hardness at a position at a depth of 50 μm from the surface of the outer steel material 21. The load for measuring the Vickers hardness of the outer steel material 21 is 2.94 N.

鍛造部材の種類には、例えば自動車用部品のスパイダー、その他インナーレース、トリポード、あるいは歯車等が含まれる。図5は、本実施形態に係る鍛造用材料1を側方押出しすることで成形したスパイダーを示す。中央部分が基部23に該当し、この基部23の周面から外方に突出している軸受部分が突出部24に相当する。 Types of forged members include, for example, spiders for automobile parts, other inner races, tripods, gears, and the like. FIG. 5 shows a spider formed by laterally extruding the forging material 1 according to the present embodiment. The central portion corresponds to the base portion 23, and the bearing portion protruding outward from the peripheral surface of the base portion 23 corresponds to the protruding portion 24.

(鍛造部材の製造方法)
以下、本実施形態の鍛造用材料を用いた鍛造部材の製造方法を説明する。本実施形態に係る鍛造部材の製造方法は、本実施形態に係る鍛造用材料1を鍛造加工する工程と、鍛造された鍛造用材料1に浸炭焼入焼戻し処理をする工程と、を備え、鍛造加工を、鍛造用材料1に対する側方押出しとし、側方押出しによって基部23および突出部24を成形し、突出部24は、側方押出しに際して、内側突部242が外側突部241内に入り込んだ状態とし、突出部24を、0.90≧S2/(S1+S2)が満たされる箇所に設ける。以下、この製造方法について詳細に説明する。
(Manufacturing method of forged parts)
Hereinafter, a method for manufacturing a forged member using the forging material of the present embodiment will be described. The method for manufacturing the forged member according to the present embodiment includes a step of forging the forging material 1 according to the present embodiment and a step of carburizing, quenching and tempering the forged material 1 for forging. The processing was lateral extrusion with respect to the forging material 1, and the base 23 and the protrusion 24 were formed by the lateral extrusion. In the protrusion 24, the inner protrusion 242 entered the outer protrusion 241 during the lateral extrusion. In this state, the protruding portion 24 is provided at a position where 0.90 ≧ S2 / (S1 + S2) is satisfied. Hereinafter, this manufacturing method will be described in detail.

上述したように、本実施形態の鍛造用材料1は、外側鋼材11の化学成分を有する鋼材の内側に、内側鋼材12の化学成分を有する鋼材を挿入したものである。例えば図1及び図2に示される実施形態の場合、内側鋼材12は例えば円柱状であり、外側鋼材11は内側鋼材の外径とほぼ同径の内径と、ほぼ同じ軸線方向長さ(高さ)を有する円筒状である。なお、図1及び図2に示される鍛造用材料1においては、その全長にわたり0.90≧S2/(S1+S2)の関係が満たされている。 As described above, the forging material 1 of the present embodiment is obtained by inserting the steel material having the chemical composition of the inner steel material 12 inside the steel material having the chemical composition of the outer steel material 11. For example, in the case of the embodiment shown in FIGS. 1 and 2, the inner steel material 12 is, for example, a cylinder, and the outer steel material 11 has an inner diameter substantially the same as the outer diameter of the inner steel material and a length (height) substantially the same in the axial direction. ) Is cylindrical. In the forging material 1 shown in FIGS. 1 and 2, the relationship of 0.90 ≧ S2 / (S1 + S2) is satisfied over the entire length thereof.

そして、この鍛造用材料1の軸線方向の両端(上下端)を挟圧して、側方押出しによる鍛造加工を行うことにより、基部23および突出部24を成形する。側方押出しを行うことにより、外側鋼材11(21)および内側鋼材12(22)の所定の部分が軸線と交差する方向に押出される。そのため、外側鋼材11(21)には外側突部241が成形され、内側鋼材12(22)には内側突部242が成形される。このとき、内側鋼材12(22)は外側突部241内に押出され、外側突部241内の空間には内側突部242が入り込んだ状態となる。そのため、突出部24は、外側突部241と内側突部242とが一体に成形されたものとなる。 Then, both ends (upper and lower ends) of the forging material 1 in the axial direction are sandwiched and forged by lateral extrusion to form the base portion 23 and the protruding portion 24. By performing lateral extrusion, predetermined portions of the outer steel material 11 (21) and the inner steel material 12 (22) are extruded in a direction intersecting the axis. Therefore, the outer protrusion 241 is formed on the outer steel 11 (21), and the inner protrusion 242 is formed on the inner steel 12 (22). At this time, the inner steel material 12 (22) is extruded into the outer protrusion 241, and the inner protrusion 242 is in the space inside the outer protrusion 241. Therefore, the protruding portion 24 is formed by integrally molding the outer protruding portion 241 and the inner protruding portion 242.

上述したように、鍛造用材料1の形状は図1及び図2に例示されたものに限られず、図3又は図4に例示されるような、その他の形状を有する鍛造用材料1に対しても、適宜側方押出しを実施することができる。この際は、突出部を、0.90≧S2/(S1+S2)が満たされる箇所に設けることが必要である。例えば、図3に示される鍛造用材料1を、側方押出しによって鍛造する場合、突出部24を設ける箇所が、外側鋼材11が配された箇所と一致するように金型を設計する必要がある。これにより、突出部24における外側鋼材21の破断を防ぎ、突出部24の外側突部241の厚さを0.5mm以上とすることができる。 As described above, the shape of the forging material 1 is not limited to that exemplified in FIGS. 1 and 2, but with respect to the forging material 1 having other shapes as exemplified in FIG. 3 or FIG. Also, lateral extrusion can be carried out as appropriate. In this case, it is necessary to provide the protruding portion at a position where 0.90 ≧ S2 / (S1 + S2) is satisfied. For example, when the forging material 1 shown in FIG. 3 is forged by lateral extrusion, it is necessary to design the die so that the portion where the protrusion 24 is provided coincides with the portion where the outer steel material 11 is arranged. .. As a result, the outer steel material 21 can be prevented from breaking at the protruding portion 24, and the thickness of the outer protruding portion 241 of the protruding portion 24 can be set to 0.5 mm or more.

また、鍛造加工の後は、鍛造部材に浸炭焼入焼戻しを施す。これにより、外側鋼材21の硬さを高め、鍛造部材2の耐摩耗性を確保することができる。 In addition, after the forging process, the forged member is charcoal-burned and tempered. As a result, the hardness of the outer steel material 21 can be increased, and the wear resistance of the forged member 2 can be ensured.

(浸炭処理工程)
鍛造加工後、鍛造部材に対して850〜1100℃で浸炭処理を施す。浸炭処理は炭素の拡散現象を利用する処理であり、例えば、ガス浸炭を行う場合には、アセチレン、プロパン及びエチレン等の炭化水素ガスを用いる。浸炭温度が850℃未満では、鍛造部材に十分な炭素を拡散させるために長時間の加熱処理を要し、コストが嵩む。一方、浸炭温度が1100℃を超えると、著しい粗粒化や混粒化を招来する。そのため、浸炭は850〜1100℃の温度域で行う。コストの低廉化や粗粒化の抑制及び混粒化の抑制をさらに高いレベルで実現させるためには、浸炭温度を900〜1050℃の温度域で行うことが好ましい。なお、浸炭処理は、真空浸炭、又はプラズマ浸炭であってもよい。
(Carburizing process)
After the forging process, the forged member is carburized at 850 to 1100 ° C. The carburizing treatment is a treatment utilizing the diffusion phenomenon of carbon. For example, when gas carburizing is performed, a hydrocarbon gas such as acetylene, propane and ethylene is used. If the carburizing temperature is less than 850 ° C., a long time heat treatment is required to diffuse sufficient carbon into the forged member, which increases the cost. On the other hand, if the carburizing temperature exceeds 1100 ° C., significant coarse graining and grain mixing will occur. Therefore, carburizing is carried out in a temperature range of 850 to 1100 ° C. In order to reduce the cost, suppress coarse graining, and suppress grain mixing at a higher level, it is preferable to carry out the carburizing temperature in the temperature range of 900 to 1050 ° C. The carburizing treatment may be vacuum carburizing or plasma carburizing.

(保持工程)
浸炭終了後焼入れ前に、所定の温度で一定時間保持してもよい。浸炭終了後、一定時間保持する目的は、焼入れ時の焼割れの防止やひずみの低減にある。保定温度はCを効率よく拡散させるため850℃以上で10分以上とする。一方、900℃超で60分超保定しても、焼入れ時の焼割れ防止、ひずみ低減の効果は飽和する。従って、保定温度の上限を900℃としてもよい。また、保定時間の上限を60分としてもよい。
(Holding process)
After the carburizing and before quenching, it may be held at a predetermined temperature for a certain period of time. The purpose of holding for a certain period of time after carburizing is to prevent quench cracking and reduce strain during quenching. The retention temperature is 850 ° C. or higher for 10 minutes or longer in order to diffuse C efficiently. On the other hand, even if it is retained at a temperature higher than 900 ° C. for more than 60 minutes, the effects of preventing quench cracking and reducing strain during quenching are saturated. Therefore, the upper limit of the retention temperature may be 900 ° C. Further, the upper limit of the retention time may be 60 minutes.

(焼入れ工程)
浸炭処理終了後、850〜1100℃の温度域から焼入れを行う。浸炭処理後に焼入れを行うのは、表層の組織をマルテンサイトとして、硬さを向上させるためである。焼入れ温度850℃未満であれば、フェライト相など、軟質相の割合が増加する可能性があり、十分なマルテンサイト面積率を確保できないため、鋼の硬さが低下する。
(Quenching process)
After the carburizing treatment is completed, quenching is performed from a temperature range of 850 to 1100 ° C. Quenching is performed after the carburizing treatment in order to improve the hardness by using the surface structure as martensite. If the quenching temperature is less than 850 ° C., the proportion of the soft phase such as the ferrite phase may increase, and a sufficient martensite area ratio cannot be secured, so that the hardness of the steel decreases.

一方、焼入れ温度が1100℃より高い場合、著しい粗粒化や混粒化が生じる。従って、焼入れ温度は850℃〜1100℃であることが好ましい。また、焼入れ方法としては、冷却特性に優れる油焼入れが好ましいが、水による焼入れも可能であり、小さな歯車であれば高圧の不活性ガスによる焼入れも可能である。 On the other hand, when the quenching temperature is higher than 1100 ° C., significant coarse graining and grain mixing occur. Therefore, the quenching temperature is preferably 850 ° C to 1100 ° C. Further, as a quenching method, oil quenching having excellent cooling characteristics is preferable, but quenching with water is also possible, and if it is a small gear, quenching with a high-pressure inert gas is also possible.

(焼戻し工程)
焼入れ終了後、130〜200℃で焼戻しを行う。焼戻し温度を130℃以上とした場合には、靱性の高い焼戻しマルテンサイトを得ることができる。また、焼戻し温度を200℃以下とすることで、焼戻しによる硬さ低下を防止することができる。なお、これらの効果をそれぞれさらに高いレベルで奏するにためには、焼戻し温度を150〜180℃とすることが好ましい。この焼戻し工程を経ることで、本実施形態に係る鍛造部材を得ることができる。
(Tempering process)
After quenching, tempering is performed at 130 to 200 ° C. When the tempering temperature is 130 ° C. or higher, tempered martensite having high toughness can be obtained. Further, by setting the tempering temperature to 200 ° C. or lower, it is possible to prevent a decrease in hardness due to tempering. In order to achieve each of these effects at a higher level, it is preferable that the tempering temperature is 150 to 180 ° C. By going through this tempering step, the forged member according to the present embodiment can be obtained.

なお、本実施形態の鍛造部材は、表層部を構成する外側鋼材と基材部を構成する内側鋼材との境界で成分、硬さが急激に変化するため、表層部の厚さや使用条件によっては、当該境界が破壊起点となることが考えられる。そのような場合、鍛造部材において、外側鋼材と内側鋼材との中間の成分を有する層を間に挟んで成分を段階的に変化させる、あるいは、高温で拡散処理を施して成分を連続的に変化させるなどの対策を講じることができる。 In the forged member of the present embodiment, the composition and hardness change rapidly at the boundary between the outer steel material constituting the surface layer portion and the inner steel material constituting the base material portion, and therefore, depending on the thickness of the surface layer portion and the usage conditions. , It is conceivable that the boundary will be the starting point of destruction. In such a case, in the forged member, the component is changed stepwise by sandwiching a layer having an intermediate component between the outer steel material and the inner steel material, or the component is continuously changed by performing diffusion treatment at a high temperature. It is possible to take measures such as forging.

本発明の効果を確認するため、本発明に係る鍛造用材料、及び本発明の範囲外となる鍛造用材料から鍛造部材を製造し、所定の性能について評価を行った。 In order to confirm the effect of the present invention, a forging member was manufactured from the forging material according to the present invention and the forging material outside the scope of the present invention, and the predetermined performance was evaluated.

まず、表1の「外側鋼材」と「内側鋼材」に示す化学成分を有する鋼を溶製し、連続鋳造によりビレットを作製した。表1において、下線が付された値は、本発明の発明範囲外である。また、表1において、意図的に添加されていない元素の含有量は、記号「−」で示した。 First, steels having the chemical components shown in "outer steel material" and "inner steel material" in Table 1 were melted and billets were produced by continuous casting. In Table 1, the underlined values are outside the scope of the present invention. Further, in Table 1, the content of the element not intentionally added is indicated by the symbol “−”.

次に、このビレットに熱間圧延を施して直径55mmの丸棒を製造した。さらに、丸棒を球状化焼鈍(SA:Spherodizing Annealing)に供した。 Next, the billet was hot-rolled to produce a round bar having a diameter of 55 mm. Further, the round bar was subjected to spheroidizing annealing (SA).

表1の「外側鋼材」に示す化学成分を有し、球状化焼鈍後(SA工程後)の丸棒から外径50mm、内径44.7mmの中空筒上の外側鋼材を作製した。また、表1の「内側鋼材」に示す化学成分を有し、球状化焼鈍後(SA工程後)の丸棒から外径44.7mmの棒状の内側鋼材を作製した。 An outer steel material having the chemical components shown in "outer steel material" in Table 1 and having an outer diameter of 50 mm and an inner diameter of 44.7 mm was produced from a round bar after spheroidizing annealing (after the SA step). Further, a rod-shaped inner steel material having the chemical composition shown in "inner steel material" in Table 1 and having an outer diameter of 44.7 mm was produced from a round bar after spheroidizing annealing (after the SA step).

ただし、表1の本発明例1は、外側鋼材の内径と内側鋼材の外径を47.5mmとし、比較例10は外側鋼材の内径と内側鋼材の外径を48mmとすることで、内側鋼材の割合を増加させた。また、本発明例8は、外側鋼材の内径と内側鋼材の外径を41mmとし、比較例9は外側鋼材の内径と内側鋼材の外径を31.6mmとすることで、内側鋼材の割合を減少させた。さらに、単一鋼材からなる比較例18も作成した。これらの例の製造方法などについては後述する。 However, in Example 1 of the present invention in Table 1, the inner diameter of the outer steel material and the outer diameter of the inner steel material are 47.5 mm, and in Comparative Example 10, the inner diameter of the outer steel material and the outer diameter of the inner steel material are 48 mm. Increased the proportion of. Further, in Example 8 of the present invention, the inner diameter of the outer steel material and the outer diameter of the inner steel material are set to 41 mm, and in Comparative Example 9, the inner diameter of the outer steel material and the outer diameter of the inner steel material are set to 31.6 mm, so that the ratio of the inner steel material is increased. Reduced. Further, Comparative Example 18 made of a single steel material was also prepared. The manufacturing methods of these examples will be described later.

次に、外側鋼材の内側に内側鋼材を挿入した状態で(比較例18に関しては、単一鋼材に対して)側方押出し加工を行い、図6(B)及び図6(C)に示す十字軸形状の鍛造部材を成形した。成形時の最大荷重が324kN以下の場合を、鍛造性に優れるとして合格と判定した。また、成形時の最大荷重が324kN超の場合を、鍛造性に劣るとして不合格と判定した。 Next, with the inner steel material inserted inside the outer steel material, lateral extrusion is performed (for a single steel material in Comparative Example 18), and the crosses shown in FIGS. 6 (B) and 6 (C) are cross-shaped. A shaft-shaped forged member was formed. When the maximum load at the time of molding was 324 kN or less, it was judged to be acceptable as having excellent forgeability. Further, when the maximum load at the time of molding exceeds 324 kN, it is judged to be inferior in forgeability and rejected.

また、上記球状化焼鈍後(SA工程後)の丸棒のr/2位置(丸棒の半径rの1/2の深さの位置)から、図7の端面拘束溝付き圧縮試験片を作製した。端面拘束溝付き圧縮試験片は、直径R/2位置を中心とした直径8mm、長さ12mmの試験片であり、丸棒試験片の長手方向は、直径55mmの丸棒の鍛伸軸と平行であった。切欠き形状は、「冷間据込み試験方法」冷間鍛造材料強度班、塑性と加工、vol.22.no.241、p139に記載の1号試験片の切欠きに準じた。 Further, from the r / 2 position of the round bar (position at a depth of 1/2 of the radius r of the round bar) after the spheroidizing annealing (after the SA step), the compression test piece with the end face restraint groove of FIG. 7 is prepared. bottom. The compression test piece with end face restraint groove is a test piece having a diameter of 8 mm and a length of 12 mm centered on the diameter R / 2 position, and the longitudinal direction of the round bar test piece is parallel to the forging and stretching axis of the round bar having a diameter of 55 mm. Met. The notch shape is described in "Cold Installation Test Method", Cold Forging Material Strength Group, Plasticity and Machining, vol. 22. no. According to the notch of the No. 1 test piece described on page 241, p139.

各鋼について、図7(a)に示す端面拘束溝付き圧縮試験片を3個作製した。冷間圧縮試験には、富士電波工機(株)製、サーメックマスターZ(登録商標)を使用した。使用した治具はJIS SKH51製で、φ40mm×L50mmの端面拘束溝付き治具である(図7(b)参照)。試験片を圧縮させるときのひずみ速度は、10s−1として、75%以上の圧縮率で冷間圧縮を行い、その後、相当塑性ひずみ量が1.5となる変形抵抗を求めた。 For each steel, three compression test pieces with end face restraint grooves shown in FIG. 7A were prepared. For the cold compression test, Thermec Master Z (registered trademark) manufactured by Fuji Radio Industrial Co., Ltd. was used. The jig used was made by JIS SKH51 and has an end face restraint groove of φ40 mm × L50 mm (see FIG. 7 (b)). The strain rate when the test piece was compressed was 10 s- 1 , and cold compression was performed at a compressibility of 75% or more, and then the deformation resistance at which the equivalent plastic strain amount was 1.5 was determined.

外側鋼材の面積S1および相当塑性ひずみ量が1.5となる変形抵抗σ’1と、内側鋼材の面積S2と相当塑性ひずみ量が1.5となる変形抵抗σ’2が以下の関係
σ’1×S1/(S1+S2)+σ’2×S2/(S1+S2)≦750[MPa]
を満たす場合を、本発明の範囲内であるとして合格と判定した。
The relationship between the deformation resistance σ'1 where the area S1 of the outer steel material and the equivalent plastic strain amount is 1.5 and the deformation resistance σ'2 where the area S2 of the inner steel material and the equivalent plastic strain amount is 1.5 is as follows σ' 1 × S1 / (S1 + S2) + σ'2 × S2 / (S1 + S2) ≦ 750 [MPa]
When the condition is satisfied, it is judged to be acceptable as being within the scope of the present invention.

耐摩耗性は、西原式摩耗試験によって評価した。ただし、この摩耗試験を、作製した上記鍛造部材に対して実施することはできない。図8に示す西原式摩耗試験片を上記鍛造部材から製造した場合、外側鋼材が空転するので、試験片を回転させて摺動を生じさせることができない。そこで、上記鍛造部材の外側鋼材を模擬するために、外側鋼材と同一の化学成分を有する鋼材から、図8に示す西原式摩耗試験片(評価材)を機械加工にて作製した。これら試験片には、表2に示す条件の浸炭焼入焼戻し処理を行った。 The wear resistance was evaluated by the Nishihara type wear test. However, this wear test cannot be performed on the manufactured forged member. When the Nishihara-type wear test piece shown in FIG. 8 is manufactured from the forged member, the outer steel material slips, so that the test piece cannot be rotated to cause sliding. Therefore, in order to simulate the outer steel material of the forged member, the Nishihara type wear test piece (evaluation material) shown in FIG. 8 was manufactured by machining from the steel material having the same chemical composition as the outer steel material. These test pieces were subjected to charcoal-burning and tempering treatment under the conditions shown in Table 2.

次に、上記西原式摩耗試験片について摩耗試験前の重量を測定し、すべり率9.1%、油潤滑2cc/min、面圧1.5MPa、回転数100rpm、相手材JIS G4805 SUJ2の条件で、摩耗試験を4時間行った。その後、西原式摩耗試験片の重量を再測定し、試験前後の西原式摩耗試験片の重量を算出した。上記西原式摩耗試験を同一水準で3回実施し、摩耗重量の平均値を求めた。摩耗重量の平均値が9mg未満の場合を、耐摩耗性に優れるとして合格と判定した。また、摩耗重量の平均値が9mg以上の場合を、耐摩耗に劣るとして不合格と判定した。摩耗重量の平均値が9mg未満である場合、損耗領域の厚さは、上記鍛造部材の外側鋼材の厚さよりも十分に小さいはずである。従って、上述の判断基準で合格となる鋼材と同一成分の外側鋼材を備える鍛造部材は、耐摩耗性に優れるとみなすことができる。 Next, the weight of the Nishihara-type wear test piece before the wear test was measured, and under the conditions of slip rate 9.1%, oil lubrication 2 cc / min, surface pressure 1.5 MPa, rotation speed 100 rpm, and mating material JIS G4805 SUJ2. , The wear test was carried out for 4 hours. Then, the weight of the Nishihara-type wear test piece was remeasured, and the weight of the Nishihara-type wear test piece before and after the test was calculated. The Nishihara-type wear test was carried out three times at the same level, and the average value of the wear weight was calculated. When the average value of the wear weight was less than 9 mg, it was judged to be acceptable as having excellent wear resistance. Further, when the average value of the wear weight was 9 mg or more, it was judged to be inferior in wear resistance and rejected. If the average value of the wear weight is less than 9 mg, the thickness of the wear area should be sufficiently smaller than the thickness of the outer steel material of the forged member. Therefore, it can be considered that the forged member provided with the outer steel material having the same composition as the steel material that passes the above-mentioned judgment criteria is excellent in wear resistance.

比較例18は、単一鋼材から構成されたものである。その外径は、上述の例1〜17の外側鋼材の外径と同一とした。その製造方法は、上述の例1〜17の内側鋼材の製造方法と同一とした。これに、例1〜17と同じ条件で側方押出しをした。そして、例1〜17と同じ方法で耐摩耗性評価と硬さ測定を行った。 Comparative Example 18 is composed of a single steel material. The outer diameter was the same as the outer diameter of the outer steel materials of Examples 1 to 17 described above. The manufacturing method was the same as the manufacturing method of the inner steel materials of Examples 1 to 17 described above. This was laterally extruded under the same conditions as in Examples 1-17. Then, the abrasion resistance was evaluated and the hardness was measured by the same method as in Examples 1 to 17.

また、上記鍛造部材にも表2に示す条件の浸炭焼入焼戻し処理を行い、その側方押出し軸の、長手方向に対して垂直な面において、半径方向外側の表面50μm深さの位置で、JIS Z 2244に準拠して、試験力を2.94Nとしてビッカース硬さを測定した。表層部のビッカース硬さが740HV以上の場合を、本発明の範囲内であるとして合格と判定した。 Further, the forged member is also subjected to charcoal-burning and tempering treatment under the conditions shown in Table 2, and the lateral extrusion shaft is formed at a depth of 50 μm on the outer surface in the radial direction on the plane perpendicular to the longitudinal direction. The Vickers hardness was measured with a test force of 2.94 N in accordance with JIS Z 2244. When the Vickers hardness of the surface layer portion was 740 HV or more, it was judged to be acceptable as being within the range of the present invention.

表1のNo.1〜8が本発明例で、その他(No.9〜18)は比較例である。これら発明例及び比較例の内側鋼材面積割合、σ、最大成形荷重、摩耗重量、及び外側鋼材の浸炭焼入れ焼戻し後硬さを表3に記載した。表3において、発明範囲外の値、及び合否基準に満たない値には下線を付した。なお、表3中の「σ」とは、σ’1×S1/(S1+S2)+σ’2×S2/(S1+S2)によって得られる値である。 No. in Table 1 1 to 8 are examples of the present invention, and others (No. 9 to 18) are comparative examples. Table 3 shows the area ratio of the inner steel material, σ, maximum forming load, wear weight, and hardness after carburizing, quenching, and tempering of the outer steel material in these invention examples and comparative examples. In Table 3, values outside the scope of the invention and values that do not meet the pass / fail criteria are underlined. In addition, "σ" in Table 3 is a value obtained by σ'1 × S1 / (S1 + S2) + σ'2 × S2 / (S1 + S2).

Figure 2021154329
Figure 2021154329

Figure 2021154329
Figure 2021154329

Figure 2021154329
Figure 2021154329

本発明例1〜8の鍛造用材料は、化学成分が本発明の範囲内であり、S2/(S1+S2)が90%以下であり、さらにσが750MPa以下であった。そのため、本発明例1〜8の鍛造用材料は側方押出しの際の成形荷重が抑制された。さらに、本発明例1〜8の鍛造用材料から得られた鍛造部材は、摩耗重量が小さく、耐摩耗性に優れていた。従って、本発明例1〜8の鍛造用材料からは、優れた鍛造性を有し、鍛造加工及び浸炭焼入焼戻し処理後に優れた耐摩耗性を発揮する鍛造部材を得ることができた。 In the forging materials of Examples 1 to 8 of the present invention, the chemical composition was within the range of the present invention, S2 / (S1 + S2) was 90% or less, and σ was 750 MPa or less. Therefore, in the forging materials of Examples 1 to 8 of the present invention, the forming load at the time of lateral extrusion was suppressed. Further, the forged members obtained from the forging materials of Examples 1 to 8 of the present invention had a small wear weight and were excellent in wear resistance. Therefore, from the forging materials of Examples 1 to 8 of the present invention, it was possible to obtain a forged member having excellent forging property and exhibiting excellent wear resistance after forging and charcoal-burning and tempering.

一方、比較例9の鍛造用材料は、外側部材が占める面積率が大きすぎ、σが750MPaを上回ったので、側方押出しの際の成形荷重が過剰となった。
比較例10の鍛造用材料は、外側部材の厚さが小さすぎたので、側方押出しの際に外側部材が割れてしまった。このため、比較例10の鍛造用材料からは、鍛造部材を製造することができなかった。
比較例11の鍛造用材料は、その外側鋼材の炭素量が過剰であった。そのため、比較例11ではσが750MPaを上回り、側方押出しの際の成形荷重が過剰となった。
比較例12の鍛造用材料は、その内側鋼材の炭素量が過剰であった。そのため、比較例12ではσが750MPaを上回り、側方押出しの際には、成形荷重が過剰となった。
比較例13の鍛造用材料は、その外側鋼材においてSi含有量が不足していた。そのため、比較例13の鍛造用材料から得られた鍛造部材は、耐摩耗性が不足した。
比較例14の鍛造用材料は、その外側鋼材においてMn含有量が不足していた。そのため、比較例14の鍛造用材料から得られた鍛造部材は、耐摩耗性が不足した。
比較例15の鍛造用材料は、その外側鋼材においてCr含有量が不足していた。そのため、比較例15の鍛造用材料から得られた鍛造部材は、耐摩耗性が不足した。
比較例16の鍛造用材料は、その外側鋼材においてV含有量が不足していた。そのため、比較例16の鍛造用材料から得られた鍛造部材は、耐摩耗性が不足した。
比較例17の鍛造用材料は、その外側鋼材においてMo含有量が不足していた。そのため、比較例17の鍛造用材料から得られた鍛造部材は、耐摩耗性が不足した。
比較例18の鍛造用材料は、単一鋼材からなるものであり、その化学成分は本発明の外側鋼材の化学成分と近い。ただし、V量が本発明の外側鋼材よりも少なくされている。この比較例18の側方押出の際には、成形荷重は過剰とならなかったが、比較例18の鍛造用材料から得られた鍛造部材は、耐摩耗性が不足した。
On the other hand, in the forging material of Comparative Example 9, the area ratio occupied by the outer member was too large, and σ exceeded 750 MPa, so that the forming load at the time of lateral extrusion became excessive.
In the forging material of Comparative Example 10, the thickness of the outer member was too small, so that the outer member cracked during lateral extrusion. Therefore, the forging member could not be manufactured from the forging material of Comparative Example 10.
In the forging material of Comparative Example 11, the carbon content of the outer steel material was excessive. Therefore, in Comparative Example 11, σ exceeded 750 MPa, and the molding load at the time of lateral extrusion became excessive.
The forging material of Comparative Example 12 had an excess of carbon content in the inner steel material. Therefore, in Comparative Example 12, σ exceeded 750 MPa, and the molding load became excessive at the time of lateral extrusion.
The forging material of Comparative Example 13 had a insufficient Si content in its outer steel material. Therefore, the forged member obtained from the forging material of Comparative Example 13 lacked wear resistance.
The forging material of Comparative Example 14 had a insufficient Mn content in the outer steel material. Therefore, the forged member obtained from the forging material of Comparative Example 14 lacked wear resistance.
The forging material of Comparative Example 15 had a insufficient Cr content in the outer steel material. Therefore, the forged member obtained from the forging material of Comparative Example 15 lacked wear resistance.
The forging material of Comparative Example 16 had a insufficient V content in its outer steel material. Therefore, the forged member obtained from the forging material of Comparative Example 16 lacked wear resistance.
The forging material of Comparative Example 17 had a insufficient Mo content in its outer steel material. Therefore, the forged member obtained from the forging material of Comparative Example 17 lacked wear resistance.
The forging material of Comparative Example 18 is made of a single steel material, and its chemical composition is close to that of the outer steel material of the present invention. However, the amount of V is smaller than that of the outer steel material of the present invention. During the lateral extrusion of Comparative Example 18, the forming load was not excessive, but the forged member obtained from the forging material of Comparative Example 18 lacked wear resistance.

本発明によれば、優れた鍛造性を有し、鍛造加工及び浸炭焼入焼戻し処理後に優れた耐摩耗性を発揮可能な鍛造用材料及び鍛造部材、並びにこの鍛造部材の製造方法を提供することができる。これにより、鍛造時の成形荷重の抑制による金型の長寿命化などの効果が得られる。従って、本発明は高い産業上の利用可能性を有する。 According to the present invention, there is provided a forging material and a forging member having excellent forging property and capable of exhibiting excellent wear resistance after forging and carburizing, quenching and tempering, and a method for manufacturing the forged member. Can be done. As a result, the effect of extending the life of the die by suppressing the forming load during forging can be obtained. Therefore, the present invention has high industrial applicability.

1 鍛造用材料
11 外側鋼材
12 内側鋼材
2 鍛造部材
21 外側鋼材
22 内側鋼材
23 基部
24 突出部
241 外側突部
242 内側突部
1 Forging material 11 Outer steel 12 Inner steel 2 Forged member 21 Outer steel 22 Inner steel 23 Base 24 Protruding part 241 Outer protrusion 242 Inner protrusion 242

Claims (8)

外側鋼材と内側鋼材とを備える、側方押出しによる鍛造用材料であって、
前記外側鋼材の組成が、質量%で、
C:0.15〜0.40%、
Si:0.05〜0.50%、
Mn:0.20〜1.50%、
Cr:0.05〜1.50%、
P:0.001〜0.030%、
S:0.005〜0.025%、
Al:0.005〜0.100%、
N:0.001〜0.025%、
V:0.50〜3.00%、及び
Mo:0.80〜6.00%
を含有し、残部がFeおよび不純物より成り、
前記内側鋼材の組成が、質量%で、
C:0.05〜0.30%、
Si:0.05〜0.35%、
Mn:0.20〜1.00%、
Cr:0.01〜1.50%、
P:0.001〜0.030%、
S:0.005〜0.025%、
Al:0.005〜0.100%、及び
N:0.001〜0.025%、
を含有し、残部がFeおよび不純物より成り、
前記鍛造用材料が、側方押出しされる箇所において、前記鍛造用材料の軸方向と垂直な面における前記外側鋼材の面積S1と前記内側鋼材の面積S2とが式1を満たし、
端面拘束圧縮試験にてひずみ速度10s−1で得られた変形抵抗で、相当塑性ひずみ1.5における前記外側鋼材の変形抵抗σ’1と前記内側鋼材の変形抵抗σ’2とが、式2を満たす
鍛造用材料。
0.90≧S2/(S1+S2) <式1>
σ’1×S1/(S1+S2)+σ’2×S2/(S1+S2)≦750[MPa] <式2>
A material for forging by side extrusion, which includes an outer steel material and an inner steel material.
The composition of the outer steel material is mass%,
C: 0.15 to 0.40%,
Si: 0.05 to 0.50%,
Mn: 0.25 to 1.50%,
Cr: 0.05 to 1.50%,
P: 0.001 to 0.030%,
S: 0.005 to 0.025%,
Al: 0.005 to 0.100%,
N: 0.001 to 0.025%,
V: 0.50 to 3.00%, and Mo: 0.80 to 6.00%
Containing, the balance consists of Fe and impurities,
The composition of the inner steel material is mass%.
C: 0.05 to 0.30%,
Si: 0.05 to 0.35%,
Mn: 0.25 to 1.00%,
Cr: 0.01 to 1.50%,
P: 0.001 to 0.030%,
S: 0.005 to 0.025%,
Al: 0.005 to 0.100%, and N: 0.001 to 0.025%,
Containing, the balance consists of Fe and impurities,
At the location where the forging material is laterally extruded, the area S1 of the outer steel material and the area S2 of the inner steel material on the plane perpendicular to the axial direction of the forging material satisfy Equation 1.
In the deformation resistance obtained at a strain rate of 10s -1 in the end face restraint compression test, the deformation resistance σ'1 of the outer steel material and the deformation resistance σ'2 of the inner steel material at an equivalent plastic strain of 1.5 are given by Equation 2. Forging material that meets the requirements.
0.90 ≧ S2 / (S1 + S2) <Equation 1>
σ'1 x S1 / (S1 + S2) + σ'2 x S2 / (S1 + S2) ≤750 [MPa] <Equation 2>
前記外側鋼材の組成が質量%で、
B:0〜0.0050%、
Nb:0〜0.100%、
Ti:0〜0.100%、及び
REM:0〜0.020%、
からなる群から選択される1種以上をさらに含有する
ことを特徴とする請求項1に記載の鍛造用材料。
The composition of the outer steel material is mass%,
B: 0 to 0.0050%,
Nb: 0 to 0.100%,
Ti: 0 to 0.100%, and REM: 0 to 0.020%,
The forging material according to claim 1, further containing one or more selected from the group consisting of.
前記外側鋼材と前記内側鋼材との間のクリアランスが0.1mm〜2mmであることを特徴とする請求項1又は2に記載の鍛造用材料。 The forging material according to claim 1 or 2, wherein the clearance between the outer steel material and the inner steel material is 0.1 mm to 2 mm. 前記外側鋼材が、ボンデリューベ処理皮膜を有することを特徴とする請求項1〜3のいずれか一項に記載の鍛造用材料。 The forging material according to any one of claims 1 to 3, wherein the outer steel material has a bonderube-treated film. 請求項1または2に記載の組成を備える前記外側鋼材と前記内側鋼材とで形成された基部と、前記基部から外方に突出した突出部とを備え、
前記突出部が、前記基部における前記外側鋼材の部分から突設させた外側突部と、前記基部における前記内側鋼材の部分から突設され、且つ前記外側突部内の少なくとも一部の空間に充填された内側突部とを備え、
前記外側突部の厚さが0.5mm以上である
ことを特徴とする鍛造部材。
A base portion formed of the outer steel material and the inner steel material having the composition according to claim 1 or 2, and a protruding portion protruding outward from the base portion are provided.
The projecting portion is projected from the outer protrusion portion protruding from the outer steel material portion in the base portion and from the inner steel material portion in the base portion, and is filled in at least a part of the space in the outer protrusion portion. With an inner protrusion,
A forged member characterized in that the thickness of the outer protrusion is 0.5 mm or more.
前記突出部の根元における前記外側鋼材の面積S1と前記内側鋼材の面積S2との比率Rと、
前記基部における、前記突出部近傍における前記外側鋼材の面積S1と前記内側鋼材の面積S2との比率Rとが、下記式3〜式5を満たすことを特徴とする請求項5に記載の鍛造部材。
=S2/(S1+S2) <式3>
=S2/(S1+S2) <式4>
|(R−R)/R|≦5% <式5>
The ratio R P between the area S P 2 of the inner steel and an area S P 1 of the outer steel at the root of the protrusion,
In the base, and the ratio R B of the area of the outer steel S B 1 and the area S B 2 of the inner steel in the protrusions vicinity, claim 5, characterized in that satisfies the following formula 3 Formula 5 Forged member described in.
RP = SP 2 / ( SP 1 + SP 2) <Equation 3>
R B = S B 2 / ( S B 1 + S B 2) < Formula 4>
| (R P -R B) / R P | ≦ 5% < Formula 5>
前記外側突部のビッカース硬さが740HV以上であることを特徴とする請求項5又は6に記載の鍛造部材。 The forged member according to claim 5 or 6, wherein the Vickers hardness of the outer protrusion is 740 HV or more. 請求項5〜7のいずれか一項に記載の鍛造部材の製造方法であって、
請求項1〜4のいずれか一項に記載の鍛造用材料を鍛造加工する工程と、
鍛造された前記鍛造用材料に浸炭焼入焼戻し処理をする工程と、
を備え、
前記鍛造を、前記鍛造用材料に対する側方押出しとし、
前記側方押出しによって、前記基部および前記突出部を成形し、
前記突出部は、前記側方押出しに際して、前記内側突部が前記外側突部内に入り込んだ状態とし、
前記突出部を、0.90≧S2/(S1+S2)が満たされる箇所に設ける
ことを特徴とする鍛造部材の製造方法。
The method for manufacturing a forged member according to any one of claims 5 to 7.
The step of forging the forging material according to any one of claims 1 to 4 and
The process of charcoal-burning and tempering the forged material and
With
The forging is lateral extrusion with respect to the forging material.
The base and the protrusion are formed by the lateral extrusion.
The protruding portion is in a state in which the inner protrusion is inserted into the outer protrusion at the time of lateral extrusion.
A method for manufacturing a forged member, wherein the protruding portion is provided at a position where 0.90 ≧ S2 / (S1 + S2) is satisfied.
JP2020056055A 2020-03-26 2020-03-26 Forging materials, forged parts, and methods for producing forged parts Active JP7356036B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020056055A JP7356036B2 (en) 2020-03-26 2020-03-26 Forging materials, forged parts, and methods for producing forged parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020056055A JP7356036B2 (en) 2020-03-26 2020-03-26 Forging materials, forged parts, and methods for producing forged parts

Publications (2)

Publication Number Publication Date
JP2021154329A true JP2021154329A (en) 2021-10-07
JP7356036B2 JP7356036B2 (en) 2023-10-04

Family

ID=77919492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020056055A Active JP7356036B2 (en) 2020-03-26 2020-03-26 Forging materials, forged parts, and methods for producing forged parts

Country Status (1)

Country Link
JP (1) JP7356036B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102239337B (en) 2008-12-02 2014-02-19 Skf公司 Bearing unit
WO2014175293A1 (en) 2013-04-22 2014-10-30 日本精工株式会社 Method for manufacturing bearing ring member
JP6094653B2 (en) 2015-10-28 2017-03-15 日本精工株式会社 Rolling bearing unit for wheel support

Also Published As

Publication number Publication date
JP7356036B2 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
US10202677B2 (en) Production method of carburized steel component and carburized steel component
CN111032899B (en) Steel material for carburized bearing component
JP6722511B2 (en) Carburized Sintered Steel, Carburized Sintered Member and Manufacturing Methods Thereof
CN101903539A (en) Steel wire rod for bearing steel, manufacturing method of steel wire rod for bearing steel, heat treatment method of steel bearing, steel bearing and soaking method of bearing steel
JP4502929B2 (en) Case hardening steel with excellent rolling fatigue characteristics and grain coarsening prevention characteristics
JP2008001943A (en) Rolling and/or sliding parts and manufacturing method thereof
JP7013833B2 (en) Carburized parts
JP2006307270A (en) Case hardening steel having excellent crystal grain coarsening resistance and cold workability, and method for producing the same
JP2021154329A (en) Forging material, forging component and method for production of forging component
JPH11229032A (en) Production of steel for soft-nitriding and soft-nitrided parts using the steel
JP2019026881A (en) Steel member
JP7263796B2 (en) RING GEAR FOR AUTOMOBILE TRANSMISSION AND MANUFACTURING METHOD THEREOF
JP7436779B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP2022170056A (en) steel
WO2020138432A1 (en) Steel material
JP3236883B2 (en) Case hardening steel and method for manufacturing steel pipe using the same
JP3849296B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized component using the steel
JP3855418B2 (en) Method of manufacturing nitrocarburizing steel material and nitrocarburized component using the steel material
JP7356035B2 (en) Forging materials, forged parts and manufacturing methods thereof
JP7323850B2 (en) Steel and carburized steel parts
JP2019183211A (en) Carburization component
JP3353698B2 (en) Method of manufacturing steel for nitrocarburizing and nitrocarburized parts using the steel
JP7460884B2 (en) bearing steel
JP7368697B2 (en) Steel for carburized gears, carburized gears, and method for manufacturing carburized gears
JP7417093B2 (en) steel material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230904

R151 Written notification of patent or utility model registration

Ref document number: 7356036

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151