JP2021154237A - Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method - Google Patents

Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method Download PDF

Info

Publication number
JP2021154237A
JP2021154237A JP2020058690A JP2020058690A JP2021154237A JP 2021154237 A JP2021154237 A JP 2021154237A JP 2020058690 A JP2020058690 A JP 2020058690A JP 2020058690 A JP2020058690 A JP 2020058690A JP 2021154237 A JP2021154237 A JP 2021154237A
Authority
JP
Japan
Prior art keywords
carbon dioxide
amine
absorption
absorbing
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020058690A
Other languages
Japanese (ja)
Inventor
光央 金久保
Mitsuhisa Kanakubo
光央 金久保
貴至 牧野
Takashi Makino
貴至 牧野
雄樹 河野
Takeki Kono
雄樹 河野
健一 宍田
Kenichi Shishida
健一 宍田
弘樹 藤平
Hiroki Fujihira
弘樹 藤平
宗治 藤川
Muneharu Fujikawa
宗治 藤川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Takuma Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Takuma Co Ltd
Priority to JP2020058690A priority Critical patent/JP2021154237A/en
Publication of JP2021154237A publication Critical patent/JP2021154237A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Abstract

To provide a carbon dioxide absorption liquid which is excellent in the separation and recovery performance of carbon dioxide in the continuous steps of the absorption and diffusion of carbon dioxide and suitable for biogas treatment separating methane gas and carbon dioxide in biogas, concentrating methane gas and recovering carbon dioxide.SOLUTION: A non-aqueous carbon dioxide absorption liquid contains: a carbon dioxide chemical absorption amine having a nitrogen-hydrogen bond; and a tertiary multidentate amine having an oxygen atom and/or a nitrogen atom through a hydrocarbon group having a main chain carbon number of two or more and having hydrogen bond acceptability where the total amount of oxygen atom and nitrogen atom is two or more. The carbon dioxide chemical absorption amine having the nitrogen-hydrogen bond is a secondary amine having a hydrocarbon group with a hydroxy group, has high polarity, has low volatility and contains a non-aqueous diluent reducing viscosity in both of before absorption of carbon dioxide and after absorption of carbon dioxide in the carbon dioxide absorption liquid.SELECTED DRAWING: Figure 5

Description

本発明は、二酸化炭素吸収液、二酸化炭素分離回収方法、及びバイオガス処理方法に関する。 The present invention relates to a carbon dioxide absorbing liquid, a carbon dioxide separation and recovery method, and a biogas treatment method.

二酸化炭素を分離回収する技術は、天然ガスやバイオガスを原料とするメタンの製造、宇宙空間や海中などの閉鎖状態にある住環境の維持等に必要であり、また、温暖化ガス排出量の削減の観点から火力発電所や製鉄所などの大量排出源を対象とするもの、大気中から農業分野における二酸化炭素の施肥を対象とするもの等、様々な濃度の二酸化炭素源について、盛んに研究されている。
その中で、アミン化合物の水溶液を二酸化炭素の吸収液として用いた化学吸収法が実用化されている。この化学吸収法のプロセスでは、吸収塔において室温近傍で、二酸化炭素を含む気体を吸収液に接触させて、二酸化炭素を選択的に吸収液に化学吸収させ、二酸化炭素濃度の低下した気体と二酸化炭素を吸収した吸収液を気液分離し、再生塔において、二酸化炭素を吸収した吸収液を加熱して、二酸化炭素を放散させて回収し、同時に吸収液を再生し、再生した吸収液を吸収塔に循環している。
Technology for separating and recovering carbon dioxide is necessary for the production of methane from natural gas and biogas, the maintenance of closed living environments such as in space and underwater, and the emission of greenhouse gases. From the viewpoint of reduction, we are actively researching various concentrations of carbon dioxide sources, such as those targeting large-scale emission sources such as thermal power plants and steel mills, and those targeting carbon dioxide fertilization from the atmosphere to the agricultural field. Has been done.
Among them, a chemical absorption method using an aqueous solution of an amine compound as an absorption liquid for carbon dioxide has been put into practical use. In the process of this chemical absorption method, a gas containing carbon dioxide is brought into contact with the absorption liquid in the absorption tower near room temperature to selectively chemically absorb carbon dioxide into the absorption liquid, and the gas and dioxide having a reduced carbon dioxide concentration are used. The absorption liquid that has absorbed carbon is separated into gas and liquid, and in the regeneration tower, the absorption liquid that has absorbed carbon dioxide is heated to dissipate and recover the carbon dioxide, and at the same time, the absorption liquid is regenerated and the regenerated absorption liquid is absorbed. It circulates in the tower.

しかし、このようなアミン水溶液を用いた二酸化炭素分離回収方法では、吸収液を加熱する再生過程で溶媒の水が多量に蒸発するため、その蒸発潜熱分を過剰に再生エネルギーとして投入しなければならない。また、水溶液は比熱が大きく、有機溶剤と比べて2倍以上の顕熱が掛かる。さらに、溶媒の水の蒸発は反応基質であるアミンの同伴を助長するため、分離回収プロセスを管理する上で、物質収支の制御に注意が必要となる。よって、吸収塔や再生塔にアミン回収用の凝縮器を装備するなど、余分の冷却エネルギーを要し、プロセスの複雑化を招く要因となる。さらに、高温での加熱再生プロセスでアミンの劣化が進むため、反応基質の消失に伴う吸収液の定期的な補充が必要となり、ランニングコストの増加が懸念される。
このような問題を解決するために、アミン化合物の非水系溶液の検討が行われている。
However, in such a carbon dioxide separation and recovery method using an aqueous amine solution, a large amount of water as a solvent evaporates in the regeneration process of heating the absorption liquid, so that latent heat of vaporization must be excessively input as regeneration energy. .. In addition, the aqueous solution has a large specific heat, and sensible heat is more than twice that of the organic solvent. Furthermore, since the evaporation of water as a solvent promotes the inclusion of amine, which is a reaction substrate, care must be taken in controlling the mass balance in controlling the separation and recovery process. Therefore, extra cooling energy is required, such as equipping the absorption tower and the regeneration tower with a condenser for recovering amines, which is a factor that complicates the process. Further, since the deterioration of amine progresses in the heat regeneration process at high temperature, it is necessary to periodically replenish the absorption liquid due to the disappearance of the reaction substrate, and there is a concern that the running cost will increase.
In order to solve such a problem, a non-aqueous solution of an amine compound is being studied.

例えば、特許文献1には、窒素−水素結合を有する二酸化炭素化学吸収性アミンと、イオン液体、又は電子吸引基としてカルボニル基若しくはホスフィニル基を有するアミド化合物である水素結合受容体溶媒とを含む二酸化炭素吸収液が記載されている(請求項1)。 For example, Patent Document 1 describes dioxide containing a carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and a hydrogen bond acceptor solvent which is an ionic liquid or an amide compound having a carbonyl group or a phosphinyl group as an electron attracting group. A carbon absorbent is described (claim 1).

特許文献2には、窒素−水素結合を有する二酸化炭素化学吸収性アミンと、水素結合受容性に富み、窒素−水素結合を有しない3級多座アミン溶媒とを含む二酸化炭素吸収液が記載されている(請求項1)。 Patent Document 2 describes a carbon dioxide absorbing solution containing a carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and a tertiary polydentate amine solvent having a high hydrogen bond acceptability and no nitrogen-hydrogen bond. (Claim 1).

特許文献3には、圧力P1・温度T1の条件下で二酸化炭素を吸収させる吸収部と、圧力P2(P1<P2)・温度T2(T1<T2)の条件下で二酸化炭素を放出させる放出部と、放出部で得た二酸化炭素を分離する回収部を有する二酸化炭素吸収放出装置に用いるアミン含有吸収液であって、吸収液は、粘度の調整のため、更に低粘度、低蒸気圧(高沸点)の溶媒を含んでよいことが記載されている(請求項1、段落[0033])。 Patent Document 3 describes an absorption unit that absorbs carbon dioxide under the conditions of pressure P1 and temperature T1 and a discharge unit that releases carbon dioxide under the conditions of pressure P2 (P1 <P2) and temperature T2 (T1 <T2). It is an amine-containing absorption liquid used in a carbon dioxide absorption / release device having a recovery unit for separating carbon dioxide obtained in the release unit, and the absorption liquid has a lower viscosity and a lower vapor pressure (higher) for adjusting the viscosity. It is stated that a solvent of (both boiling point) may be included (claim 1, paragraph [0033]).

非特許文献1には、非水溶媒中におけるアミン類化合物のCO吸収に対する溶媒効果について、有機溶媒はCO溶解度が大きく、かつ、CO溶解度の温度依存性が大きく、中〜高温域でCO放散が促進されることが記載されている。 Non-Patent Document 1, the solvent effect on CO 2 absorption amines compounds in non-aqueous solvent, an organic solvent is CO 2 solubility increases, and the temperature dependency of the CO 2 solubility increases at medium to high temperature range It is stated that CO 2 emission is promoted.

特開2017−104775号公報JP-A-2017-104775 特開2017−104776号公報JP-A-2017-1047776 特開2019−181401号公報Japanese Unexamined Patent Publication No. 2019-181401

金久保光央ら、「非水溶媒中におけるアミン類化合物のCO2吸収性に対する溶媒効果」、第40回溶液化学シンポジウム、2017年10月18日Mitsuo Kanakubo et al., "Solvent Effects of Amines Compounds on CO2 Absorption in Non-Aqueous Solvents", 40th Solution Chemistry Symposium, October 18, 2017

従来のアミン水溶液を用いた二酸化炭素分離回収方法におけるエネルギーロスや装置の複雑さを避けるためには、室温近傍の二酸化炭素吸収温度と、吸収された二酸化炭素の放散温度との温度差が小さく、吸収液の揮発や損失が少ない温度条件下で二酸化炭素を分離回収することが求められる。
特に、バイオガス中のメタンガスを二酸化炭素と分離して濃縮処理する技術は、廃棄物からエネルギーや有用物を取り出す点で環境親和性に優れており、より省エネルギーでメタンを濃縮することで、後段のメタン燃焼による発電効率の向上が期待されている。
In order to avoid energy loss and equipment complexity in the conventional carbon dioxide separation and recovery method using an amine aqueous solution, the temperature difference between the carbon dioxide absorption temperature near room temperature and the emission temperature of the absorbed carbon dioxide is small. It is required to separate and recover carbon dioxide under temperature conditions where there is little volatilization or loss of the absorption liquid.
In particular, the technology that separates methane gas in biogas from carbon dioxide and concentrates it is excellent in environmental friendliness in terms of extracting energy and useful substances from waste, and by concentrating methane with more energy saving, the latter stage. It is expected that the power generation efficiency will be improved by the combustion of methane.

吸収と放散の温度差が小さい条件では、吸収量に比べて放散量が小さいことが多く、放散量の大きさが、二酸化炭素分離回収性能を左右する一因となる。大きな放散量を有する非水系の二酸化炭素吸収液は、例えば特許文献1〜3、及び非特許文献1に記載されたアミン化合物を含む従来の吸収液の中から選択することができる。
一方、吸収温度での吸収速度は、一般に放散温度での放散速度に比べて遅いため、吸収速度が二酸化炭素分離回収工程での律速過程となる。実際の二酸化炭素分離回収工程では、吸収塔で吸収液と処理ガスを所定時間接触させて二酸化炭素を吸収させる。そのため、二酸化炭素の吸収速度が遅いと、飽和吸収量まで二酸化炭素を吸収できず、二酸化炭素分離回収効率が低下する。
二酸化炭素の吸収速度は、アミン化合物と二酸化炭素の化学反応の速度、二酸化炭素の吸収液への溶解速度、及び、吸収液中における二酸化炭素やアミン化合物との反応物の物質輸送などに依存する。二酸化炭素の吸収液への溶解速度や吸収液中の二酸化炭素やアミン化合物との反応物の物質輸送は、吸収液の粘度に強く依存する。従来の非水系の吸収液は、水系の吸収液と比べて粘度が高く、吸収液中の物質輸送が妨げとなり吸収速度を十分に上げることができなかった。
Under the condition that the temperature difference between absorption and emission is small, the emission amount is often smaller than the absorption amount, and the magnitude of the emission amount contributes to the carbon dioxide separation and recovery performance. The non-aqueous carbon dioxide absorbing solution having a large emission amount can be selected from, for example, conventional absorbing solutions containing amine compounds described in Patent Documents 1 to 3 and Non-Patent Document 1.
On the other hand, since the absorption rate at the absorption temperature is generally slower than the emission rate at the emission temperature, the absorption rate is a rate-determining process in the carbon dioxide separation and recovery step. In the actual carbon dioxide separation and recovery step, the absorption liquid and the processing gas are brought into contact with each other for a predetermined time in the absorption tower to absorb carbon dioxide. Therefore, if the absorption rate of carbon dioxide is slow, carbon dioxide cannot be absorbed up to the saturated absorption amount, and the carbon dioxide separation and recovery efficiency is lowered.
The absorption rate of carbon dioxide depends on the rate of chemical reaction between the amine compound and carbon dioxide, the rate of dissolution of carbon dioxide in the absorption solution, and the substance transport of the reaction product of carbon dioxide and the amine compound in the absorption solution. .. The dissolution rate of carbon dioxide in the absorption liquid and the substance transport of the reaction product with carbon dioxide and amine compounds in the absorption liquid strongly depend on the viscosity of the absorption liquid. The conventional non-aqueous absorption liquid has a higher viscosity than the water-based absorption liquid, and the transport of substances in the absorption liquid is hindered, so that the absorption rate cannot be sufficiently increased.

そこで、本発明は、二酸化炭素分離回収工程において、吸収及び放散を効率よく行うことができる二酸化炭素吸収液を提供することを課題とする。
本発明は、さらに、吸収と放散の温度差が少ない条件で、バイオガス中のメタンガスと二酸化炭素を分離し、メタンガスを濃縮するとともに、二酸化炭素を回収するバイオガス処理に適した二酸化炭素吸収液を提供することを課題とする。
Therefore, an object of the present invention is to provide a carbon dioxide absorbing liquid capable of efficiently absorbing and dissipating in the carbon dioxide separation and recovery step.
Further, the present invention is a carbon dioxide absorbing liquid suitable for biogas treatment that separates methane gas and carbon dioxide in biogas, concentrates methane gas, and recovers carbon dioxide under the condition that the temperature difference between absorption and emission is small. The challenge is to provide.

本発明は、上記課題を解決するために、以下の手段を採用するものである。
[1]窒素−水素結合を有する二酸化炭素化学吸収性アミンと、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の水素結合受容性を有する3級多座アミンとを含む非水系の二酸化炭素吸収液であって、前記窒素−水素結合を有する二酸化炭素化学吸収性アミンは、水酸基を有する炭化水素基を有する2級アミンであり、さらに、極性が高く、揮発性が低く、かつ、前記二酸化炭素吸収液の二酸化炭素吸収前及び二酸化炭素吸収後のいずれにおいても、粘度を減少させる非水系の希釈剤を含むことを特徴とする二酸化炭素吸収液。
[2]前記二酸化炭素化学吸収性アミンは、ジアルカノールアミン又はN−アルキルモノアルカノールアミンのいずれか1以上である、前記[1]の二酸化炭素吸収液。
[3]前記二酸化炭素吸収性アミンは、ジエタノールアミン、ジプロパノールアミン、ジブタノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミン、3−メチルアミノ−1−プロパノ―ル、N−ブチルエタノールアミン、N−プロピルエタノールアミンのいずれか1以上である、前記[2]の二酸化炭素吸収液。
[4]前記二酸化炭素化学吸収性アミンは、ジエタノールアミンである、前記[3]の二酸化炭素吸収液。
[5]前記希釈剤は、ジメチルスルホキシド、ヘキサメチルリン酸トリアミド、1,3−ジメチル−2−イミダゾリジノン、N,N’−ジメチルプロピレン尿素、テトラメチル尿素、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルホルムアミド、N−メチルアセトアミド、N−メチル−2−ピロリドン、スルホランである、前記[1]〜[4]のいずれかの二酸化炭素吸収液。
[6]前記3級多座アミンは、1つの窒素原子に、水酸基を有する炭化水素基が2つと、水酸基を有しない炭化水素基が1つ結合した3級多座アミンである、前記[1]〜[5]のいずれかの二酸化炭素吸収液。
[7]前記3級多座アミンは、N−メチルジエタノールアミン、N−エチルジエタノールアミン、又はN−ブチルジエタノールアミンのいずれか1以上である、前記[1]〜[6]のいずれかの二酸化炭素吸収液。
[8]前記二酸化炭素化学吸収性アミンの割合は、前記二酸化炭素化学吸収性アミン/(前記二酸化炭素化学吸収性アミン+前記3級アミン溶媒+前記希釈剤)(質量比)で1/100〜50/100である、前記[1]〜[7]のいずれかの二酸化炭素吸収液。
[9]前記希釈剤の含有割合は、前記希釈剤/(前記二酸化炭素化学吸収性アミン+前記3級アミン溶媒+前記希釈剤)(質量比)で1/100〜50/100である、前記[1]〜[8]のいずれかの二酸化炭素吸収液。
[10]前記[1]〜[9]のいずれかの二酸化炭素吸収液を二酸化炭素を含む混合ガスと10℃以上40℃以下で接触させることによって、二酸化炭素を前記二酸化炭素吸収液に吸収させて、前記混合ガスから二酸化炭素を選択的に分離する吸収工程、及び、前記の二酸化炭素を吸収した二酸化炭素吸収液を前記吸収温度より高温に加熱することで吸収した二酸化炭素を放散させて回収し、前記二酸化炭素吸収液を再生する加熱再生工程、を含む二酸化炭素分離回収方法。
[11]前記[1]〜[9]のいずれか1項に記載の二酸化炭素吸収液を二酸化炭素を含む混合ガスと10℃以上40℃以下で接触させることによって、二酸化炭素を前記二酸化炭素吸収液に吸収させて、前記混合ガスから二酸化炭素を選択的に分離する吸収工程、及び、前記の二酸化炭素を吸収した二酸化炭素吸収液を60℃以上100℃以下に加熱することで吸収した二酸化炭素を放散させて回収し、前記二酸化炭素吸収液を再生する加熱再生工程、を含む二酸化炭素分離回収方法。
[12]前記[10]又は[11]の二酸化炭素分離回収方法を用いてバイオガス中のメタンガスを濃縮処理するバイオガス処理方法。
The present invention employs the following means in order to solve the above problems.
[1] A carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and an oxygen atom and / or a nitrogen atom via a hydrocarbon group having two or more carbon atoms in the main chain, and the sum of the oxygen atom and the nitrogen atom. Is a non-aqueous carbon dioxide absorbing solution containing a tertiary polydentate amine having two or more hydrogen bond accepting properties, and the carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond is a hydrocarbon group having a hydroxyl group. A secondary amine having a high polarity, low volatility, and a non-aqueous diluent that reduces the viscosity of the carbon dioxide absorbing solution both before and after carbon dioxide absorption. A carbon dioxide absorber characterized by containing.
[2] The carbon dioxide absorbing solution according to [1], wherein the carbon dioxide chemically absorbing amine is at least one of dialkanolamine and N-alkylmonoalkanolamine.
[3] The carbon dioxide-absorbing amines include diethanolamine, dipropanolamine, dibutanolamine, N-methylethanolamine, N-ethylethanolamine, 3-methylamino-1-propanol, and N-butylethanolamine. The carbon dioxide absorbing solution according to the above [2], which is at least one of N-propylethanolamine.
[4] The carbon dioxide absorbing solution according to the above [3], wherein the carbon dioxide chemically absorbing amine is diethanolamine.
[5] The diluent used is dimethyl sulfoxide, hexamethylphosphoric acid triamide, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, tetramethylurea, N, N-dimethylformamide, N. , N-Dimethylacetamide, N-methylformamide, N-methylacetamide, N-methyl-2-pyrrolidone, sulfolane, the carbon dioxide absorbing solution according to any one of the above [1] to [4].
[6] The tertiary polydentate amine is a tertiary polydentate amine in which two hydrocarbon groups having a hydroxyl group and one hydrocarbon group having no hydroxyl group are bonded to one nitrogen atom. ] To [5].
[7] The carbon dioxide absorbing solution according to any one of [1] to [6] above, wherein the tertiary polydentate amine is at least one of N-methyldiethanolamine, N-ethyldiethanolamine, and N-butyldiethanolamine. ..
[8] The ratio of the carbon dioxide chemically absorbing amine is 1/100 to the above carbon dioxide chemically absorbing amine / (the carbon dioxide chemically absorbing amine + the tertiary amine solvent + the diluent) (mass ratio). The carbon dioxide absorbing solution according to any one of the above [1] to [7], which is 50/100.
[9] The content ratio of the diluent is 1/100 to 50/100 in terms of the diluent / (the carbon dioxide chemically absorbing amine + the tertiary amine solvent + the diluent) (mass ratio). The carbon dioxide absorbent according to any one of [1] to [8].
[10] By contacting the carbon dioxide absorbing solution according to any one of [1] to [9] with a mixed gas containing carbon dioxide at 10 ° C. or higher and 40 ° C. or lower, carbon dioxide is absorbed by the carbon dioxide absorbing solution. Then, an absorption step of selectively separating carbon dioxide from the mixed gas and a carbon dioxide absorbing liquid that has absorbed the carbon dioxide are heated to a temperature higher than the absorption temperature to dissipate and recover the absorbed carbon dioxide. A method for separating and recovering carbon dioxide, which comprises a heating and regeneration step of regenerating the carbon dioxide absorbing solution.
[11] By bringing the carbon dioxide absorbing solution according to any one of [1] to [9] into contact with a mixed gas containing carbon dioxide at 10 ° C. or higher and 40 ° C. or lower, carbon dioxide is absorbed. An absorption step of absorbing carbon dioxide in a liquid to selectively separate carbon dioxide from the mixed gas, and carbon dioxide absorbed by heating the carbon dioxide absorbing liquid that has absorbed the carbon dioxide to 60 ° C. or higher and 100 ° C. or lower. A method for separating and recovering carbon dioxide, which comprises a heating and regenerating step of dissipating and recovering the carbon dioxide and regenerating the carbon dioxide absorbing liquid.
[12] A biogas treatment method for concentrating methane gas in biogas using the carbon dioxide separation and recovery method according to the above [10] or [11].

本発明によれば、二酸化炭素分離回収工程において、吸収及び放散を連続的に効率よく行うことができる二酸化炭素吸収液を提供することができ、吸収と放散の温度差が少ない条件で、様々な濃度の二酸化炭素発生源を対象として省エネルギーの二酸化炭素分離回収方法を提供することができる。特に、バイオガス中のメタンガスと二酸化炭素を分離し、メタンガスを濃縮するとともに、二酸化炭素を回収するバイオガス処理に適した二酸化炭素吸収液を提供することができる。 According to the present invention, in the carbon dioxide separation and recovery step, it is possible to provide a carbon dioxide absorbing solution capable of continuously and efficiently performing absorption and emission, and various conditions are such that the temperature difference between absorption and emission is small. It is possible to provide an energy-saving carbon dioxide separation and recovery method for a carbon dioxide source having a concentration. In particular, it is possible to provide a carbon dioxide absorbing liquid suitable for biogas treatment that separates methane gas and carbon dioxide in biogas, concentrates methane gas, and recovers carbon dioxide.

二酸化炭素吸収放散試験装置を示す図The figure which shows the carbon dioxide absorption and emission test apparatus 本発明の実施例に係る吸収液の二酸化炭素吸収試験(吸収:30℃、再生:60℃)の1〜4サイクルにおける二酸化炭素吸収量の時間変化を示す図The figure which shows the time change of the carbon dioxide absorption amount in 1 to 4 cycles of the carbon dioxide absorption test (absorption: 30 degreeC, regeneration: 60 degreeC) of the absorption liquid which concerns on Example of this invention. 本発明の比較例に係る吸収液の二酸化炭素吸収試験(吸収:30℃、再生:60℃)の1〜4サイクルにおける二酸化炭素吸収量の時間変化を示す図The figure which shows the time change of the carbon dioxide absorption amount in 1 to 4 cycles of the carbon dioxide absorption test (absorption: 30 degreeC, regeneration: 60 degreeC) of the absorption liquid which concerns on the comparative example of this invention. 各吸収液の二酸化炭素吸収試験(吸収:30℃、再生:60℃)の1サイクル目と2サイクル目以降の二酸化炭素吸収量の時間変化を示す図The figure which shows the time change of the carbon dioxide absorption amount from the 1st cycle and the 2nd cycle of the carbon dioxide absorption test (absorption: 30 degreeC, regeneration: 60 degreeC) of each absorption liquid. 各吸収液の二酸化炭素吸収試験(吸収:30℃、再生:60℃)の2サイクル目以降の二酸化炭素吸収量の時間変化を示す図(図4の一部拡大図)The figure which shows the time change of the carbon dioxide absorption amount after the 2nd cycle of the carbon dioxide absorption test (absorption: 30 degreeC, regeneration: 60 degreeC) of each absorption liquid (partially enlarged view of FIG. 4).

二酸化炭素分離回収効率を向上するためには、室温近傍の吸収温度で所定時間当たりの二酸化炭素吸収量、すなわち、二酸化炭素吸収速度が大きく、吸収温度より高い、比較的温和な放散温度で所定時間当たりの二酸化炭素放散量、すなわち、二酸化炭素放散速度が大きいことが求められる。そこで、本発明者らは、二酸化炭素吸収速度の支配因子の一つである吸収液中の物質輸送に着目した。そして、窒素−水素結合を有する二酸化炭素化学吸収性アミンと、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の水素結合受容性を有する3級多座アミンとを含む非水系の二酸化炭素吸収液に、極性が高く、揮発性が低く、かつ、二酸化炭素吸収前後のいずれにおいても粘度の増加を抑制する希釈剤を添加することを着想し、本発明に至った。
すなわち、前記希釈剤の添加により、二酸化炭素吸収前後の粘度増加を抑制することで、吸収及び放散速度を向上することが可能である。また、前記希釈剤の極性が高いことによって、アミン化合物やアミン化合物と二酸化炭素の反応生成物の溶解性を向上し、吸収液中での固体成分の析出や液液相分離を避けることができる。さらに、前記希釈剤は、揮発性が低いことによって、二酸化炭素の吸収や放散、特に再生加熱に際しての蒸発による潜熱を抑えられ、昇温に掛かるエネルギーを低減することが可能である。くわえて、前記希釈剤はアミン化合物と二酸化炭素との化学反応を阻害せず、化学吸収性アミンの二酸化炭素の吸収量や放散量に悪影響を及ぼさない。
In order to improve the carbon dioxide separation and recovery efficiency, the amount of carbon dioxide absorbed per predetermined time at an absorption temperature near room temperature, that is, the carbon dioxide absorption rate is large and higher than the absorption temperature, and the emission temperature is relatively mild for a predetermined time. The amount of carbon dioxide emitted per unit, that is, the rate of carbon dioxide emission is required to be large. Therefore, the present inventors focused on the transport of substances in the absorption liquid, which is one of the controlling factors of the carbon dioxide absorption rate. Then, it has a carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and an oxygen atom and / or a nitrogen atom via a hydrocarbon group having two or more carbon atoms in the main chain, and the total of the oxygen atom and the nitrogen atom is A non-aqueous carbon dioxide absorbing solution containing a tertiary polydentate amine having two or more hydrogen bond accepting properties has high polarity, low volatility, and suppresses an increase in viscosity both before and after absorption of carbon dioxide. We came up with the idea of adding a diluent to be used, and came up with the present invention.
That is, by adding the diluent, it is possible to improve the absorption and emission rates by suppressing the increase in viscosity before and after the absorption of carbon dioxide. Further, since the polarity of the diluent is high, the solubility of the amine compound or the reaction product of the amine compound and carbon dioxide can be improved, and the precipitation of solid components and the liquid-liquid phase separation in the absorption liquid can be avoided. .. Further, since the diluent has low volatility, it is possible to suppress the latent heat due to absorption and emission of carbon dioxide, particularly evaporation during regeneration heating, and to reduce the energy required for raising the temperature. In addition, the diluent does not inhibit the chemical reaction between the amine compound and carbon dioxide, and does not adversely affect the amount of carbon dioxide absorbed or emitted by the chemically absorptive amine.

以下、本発明の実施形態について説明するが、これらの実施形態は、この発明を説明するためのものであって、本発明の範囲を限定するものではない。
本発明は、様々な実施の形態及びその変形を含むものであり、本発明の範囲は、特許請求の範囲によって示され、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
Hereinafter, embodiments of the present invention will be described, but these embodiments are for explaining the present invention and do not limit the scope of the present invention.
The present invention includes various embodiments and modifications thereof, and the scope of the present invention is indicated by the scope of claims, and is applied within the scope of claims and the equivalent meaning of the invention. Various modifications are considered to be within the scope of the present invention.

本発明の一実施形態は、窒素−水素結合を有する二酸化炭素化学吸収性アミンと、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の水素結合受容性を有する3級多座アミンとを含む非水系の二酸化炭素吸収液であって、前記窒素−水素結合を有する二酸化炭素化学吸収性アミンは、水酸基を有する炭化水素基を有する2級アミンであり、さらに、極性が高く、揮発性が低く、かつ、前記二酸化炭素吸収液の二酸化炭素吸収前及び二酸化炭素吸収後のいずれにおいても、粘度を減少させる非水系の希釈剤を含むことを特徴とする二酸化炭素吸収液に係る。 One embodiment of the present invention has a carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and an oxygen atom and / or a nitrogen atom via a hydrocarbon group having two or more carbon atoms in the main chain. A non-aqueous carbon dioxide absorbing solution containing, and a tertiary polydentate amine having a total of 2 or more hydrogen bond acceptors, the carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond is a hydroxyl group. It is a secondary amine having a hydrocarbon group having, and further has high polarity and low volatility, and reduces the viscosity of the carbon dioxide absorbing solution both before and after absorbing carbon dioxide. The present invention relates to a carbon dioxide absorber characterized by containing a non-aqueous diluent.

本発明の他の実施形態は、前記の二酸化炭素吸収液を二酸化炭素を含む混合ガスと10℃以上40℃以下で接触させることによって、二酸化炭素を前記二酸化炭素吸収液に吸収させて、前記混合ガスから二酸化炭素を選択的に分離する吸収工程、及び、前記の二酸化炭素を吸収した二酸化炭素吸収液を前記吸収温度より高温に加熱することで吸収した二酸化炭素を放散させて回収し、前記二酸化炭素吸収液を再生する加熱再生工程、を含む二酸化炭素分離回収方法である。 In another embodiment of the present invention, carbon dioxide is absorbed by the carbon dioxide absorbing liquid by contacting the carbon dioxide absorbing liquid with a mixed gas containing carbon dioxide at 10 ° C. or higher and 40 ° C. or lower, and the mixing is performed. The absorption step of selectively separating carbon dioxide from the gas and the carbon dioxide absorbing liquid that has absorbed the carbon dioxide are heated to a temperature higher than the absorption temperature to dissipate and recover the absorbed carbon dioxide, and the carbon dioxide is recovered. It is a carbon dioxide separation and recovery method including a heating and regeneration step of regenerating a carbon absorption liquid.

本発明のさらに他の実施形態は、前記の二酸化炭素分離回収方法を用いてバイオガス中のメタンガスを濃縮処理するバイオガス処理方法である。 Yet another embodiment of the present invention is a biogas treatment method for concentrating methane gas in biogas using the carbon dioxide separation and recovery method described above.

以下、本発明の実施形態(以下、「本実施形態」という。)に係る各要素について、その詳細を順に記載する。 Hereinafter, the details of each element according to the embodiment of the present invention (hereinafter referred to as "the present embodiment") will be described in order.

[二酸化炭素化学吸収性アミン]
本実施形態に係る窒素−水素結合を有する二酸化炭素化学吸収性アミンは、水酸基を有する炭化水素基を有する2級アミンである。
[Carbon dioxide chemically absorbent amine]
The carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond according to the present embodiment is a secondary amine having a hydrocarbon group having a hydroxyl group.

窒素−水素結合を有する二酸化炭素化学吸収性アミン(以下、「吸収性アミン」ということがある。)は、室温近傍で二酸化炭素を化学的に吸収し、加熱によって、吸収した二酸化炭素を放出し、繰り返し再生することができる。また、吸収性アミンが有する水酸基は、吸収性アミンの塩基性を制御し、二酸化炭素分離回収効率の向上をもたらすとともに、揮発性を下げて、放散時の蒸発による損失を防ぐことができる。吸収性アミンの塩基性を制御し、揮発性を低減し、高沸点とするためには、吸収性アミンの主鎖の炭素数は、2以上であることが好ましい。 A carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond (hereinafter, may be referred to as "absorbable amine") chemically absorbs carbon dioxide near room temperature and releases the absorbed carbon dioxide by heating. , Can be played repeatedly. Further, the hydroxyl group contained in the absorbent amine can control the basicity of the absorbent amine, improve the carbon dioxide separation and recovery efficiency, reduce the volatility, and prevent the loss due to evaporation at the time of dissipation. In order to control the basicity of the absorptive amine, reduce the volatility, and have a high boiling point, the number of carbon atoms in the main chain of the absorptive amine is preferably 2 or more.

本実施形態に係る二酸化炭素化学吸収性アミンは、[式1]、又は[式2]で表されるアミンのいずれか1以上であることが好ましい。

Figure 2021154237
([式1]中、R7は、無置換若しくは置換基(水酸基を除く)を有していてもよい炭化水素基、n7は、2以上の整数である。括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。)
Figure 2021154237

([式2]中、n8及びn9は、2以上の整数である。括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。) The carbon dioxide chemically absorbing amine according to the present embodiment is preferably any one or more of the amines represented by [Formula 1] or [Formula 2].
Figure 2021154237
(In [Formula 1], R7 is a hydrocarbon group which may have an unsubstituted or substituent (excluding a hydroxyl group), and n7 is an integer of 2 or more. The carbon atom in parentheses is a substituent. It may have, and a part of the carbon atom may be replaced with a hetero atom.)
Figure 2021154237

(In [Equation 2], n8 and n9 are integers of 2 or more. The carbon atom in parentheses may have a substituent, or a part of the carbon atom may be substituted with a heteroatom. .)

ここで、本明細書において、炭化水素基は、特に断りのない限り、例えば、無置換又はハロゲン基、水酸基などの置換基を有するアルキル基、アルケニル基、アルキニル基が挙げられ、環状であっても非環状であってもよく、骨格にヘテロ原子を有していてもよい。中でも、水酸基を有する炭化水素基は、水酸基を有するアルキル基が好ましい。また、水酸基を有さない炭化水素基は、アルキル基が好ましい。 Here, in the present specification, unless otherwise specified, examples of the hydrocarbon group include an alkyl group having no substituent or a substituent such as a halogen group and a hydroxyl group, an alkenyl group, and an alkynyl group, which are cyclic. May also be acyclic and may have a heteroatom in the skeleton. Among them, the hydrocarbon group having a hydroxyl group is preferably an alkyl group having a hydroxyl group. Further, the hydrocarbon group having no hydroxyl group is preferably an alkyl group.

式1で表されるアミンとしては、3−メチルアミノ−1−プロパノ―ル、N−ブチルエタノールアミン、N−プロピルエタノールアミン等のN−アルキルモノアルカノールアミンのいずれか1以上であることが好ましい。 The amine represented by the formula 1 is preferably any one or more of N-alkylmonoalkanolamines such as 3-methylamino-1-propanol, N-butylethanolamine, and N-propylethanolamine. ..

また、式2で表されるアミンとしては、ジエタノールアミン、ジプロパノールアミン、ジブタノールアミン等のジアルカノールアミンのいずれか1以上であることが好ましく、特にジエタノールアミンであることが好ましい。 Further, the amine represented by the formula 2 is preferably any one or more of dialkanolamines such as diethanolamine, dipropanolamine and dibutanolamine, and particularly preferably diethanolamine.

[3級多座アミン]
本実施形態に係る3級多座アミンは、窒素−水素結合を有さず、水素結合受容性に富み、立体構造的にも安定化し、二酸化炭素化学吸収性アミンと二酸化炭素との反応を促進するように、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の3級多座アミンであり、吸収性アミンの溶媒として機能する。ここで、「水素結合受容性に富み、立体構造的にも安定化し、二酸化炭素化学吸収性アミンと二酸化炭素との反応を促進」とは、例えば[式3])で示されるように、3級多座アミンの窒素原子や酸素原子が、二酸化炭素化学吸収性アミンの水素と多座で相互作用して、二酸化炭素との反応生成物を安定化することである。

Figure 2021154237
[Level 3 polydentate amine]
The tertiary polydentate amine according to the present embodiment does not have a nitrogen-hydrogen bond, is rich in hydrogen bond acceptability, stabilizes the three-dimensional structure, and promotes the reaction between the carbon dioxide chemically absorbing amine and carbon dioxide. As such, it is a tertiary polydentate amine having an oxygen atom and / or a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain and having a total of 2 or more oxygen atoms and nitrogen atoms, and is absorbed. Functions as a solvent for sex amines. Here, as shown in, for example, [Equation 3]), "rich in hydrogen bond acceptability, stable in three-dimensional structure, and promoted reaction between carbon dioxide chemically absorbing amine and carbon dioxide" is 3 The nitrogen and oxygen atoms of the class polydentate amine interact with the hydrogen of the carbon dioxide chemically absorbing amine at the polydentate to stabilize the reaction product with carbon dioxide.
Figure 2021154237

[式3]中、H−N(R)Rで表される化合物は、本実施形態に係る二酸化炭素化学吸収性アミンを表し、式1中、XN(R)Rで表される化合物は、本発明に係る3級多座アミンを表し、R及びRは、無置換若しくは置換基を有していてもよい炭化水素基、Rは、無置換若しくは置換基を有していてもよい、主鎖の炭素数が2以上の炭化水素基であり、Xは、窒素原子又は酸素原子及びそれらに結合する水素又は無置換若しくは置換基を有していてもよい炭化水素基である。なお、本明細書で、主鎖の炭素数が2以上の炭化水素基とは、三級アミンの窒素原子と、窒素原子又は酸素原子との間の最短の基本骨格が、エチレン基やプロピレン基、ブチレン基などのように炭素数2以上のことをいう。したがって、例えば、HO−C(H)(CH)N(R)Rといった主鎖の炭化水素が1であるアミンは、本願発明に係る3級多座アミンには含まれない。主鎖の炭素数が2以上の炭化水素基としては、自由度の高い、非環状骨格を構成するエチレン基、プロピレン基、又はブチレン基が好ましく、エチレン基がより好ましい。 In [Formula 3], the compound represented by HN (R 1 ) R 2 represents a carbon dioxide chemically absorbing amine according to the present embodiment, and in Formula 1, X 1 R 5 N (R 3 ) R. the compound represented by the 4 represents a tertiary polydentate amine according to the present invention, R 3 and R 4 are unsubstituted or substituted optionally may hydrocarbon group having a, R 5 is an unsubstituted or It is a hydrocarbon group having 2 or more carbon atoms in the main chain, which may have a substituent, and X 1 has a nitrogen atom or an oxygen atom and hydrogen or an unsubstituted or substituent bonded to them. It is a hydrocarbon group which may be used. In the present specification, the hydrocarbon group having two or more carbon atoms in the main chain means that the shortest basic skeleton between the nitrogen atom of the tertiary amine and the nitrogen atom or oxygen atom is an ethylene group or a propylene group. , Butylene group, etc., which has 2 or more carbon atoms. Therefore, for example, amines having a main chain hydrocarbon of 1 such as HO-C (H) (CH 3 ) N (R 3 ) R 4 are not included in the tertiary polydentate amine according to the present invention. As the hydrocarbon group having 2 or more carbon atoms in the main chain, an ethylene group, a propylene group, or a butylene group constituting an acyclic skeleton having a high degree of freedom is preferable, and an ethylene group is more preferable.

電子供与性の酸素原子や窒素原子は水素結合受容性が高く、二酸化炭素化学吸収性アミンの水素と相互作用して、二酸化炭素との反応生成物を安定化し得る。そして、式1中にRと曲線で表される主鎖の炭素数が2以上の炭化水素基は、自由度が高いため、その両端に結合する窒素原子及び/又は窒素原子が、二酸化炭素化学吸収性アミンの水素と水素結合を形成し得る。このような3級多座アミンは、二酸化炭素を吸収する室温近傍などの比較的低温側では、二酸化炭素化学吸収性アミンの水素と水素結合を形成して安定化することによって、二酸化炭素との反応を促進する。また、Xに結合した水素は二酸化炭素化学吸収性アミンと反応した二酸化炭素と水素結合を形成でき、反応生成物をさらに安定化して、二酸化炭素との反応を促進可能である。一方、二酸化炭素を放散する高温側では、この水素結合の度合いが低下するので、二酸化炭素の放散を促進し得る。 The electron-donating oxygen atom and nitrogen atom have high hydrogen bond acceptability and can interact with hydrogen of carbon dioxide chemically absorbing amine to stabilize the reaction product with carbon dioxide. Then, two or more hydrocarbon groups having a carbon number of main chain represented by R 5 and curve wherein 1 has a high degree of freedom, a nitrogen atom and / or nitrogen atoms bonded to both ends thereof, the carbon dioxide It can form hydrogen bonds with the hydrogen of chemically absorptive amines. Such a tertiary polydentate amine can be stabilized with carbon dioxide by forming a hydrogen bond with hydrogen of the carbon dioxide chemically absorbing amine on a relatively low temperature side such as near room temperature where carbon dioxide is absorbed. Promote the reaction. In addition, hydrogen bonded to X 1 can form a hydrogen bond with carbon dioxide that has reacted with carbon dioxide chemically absorptive amine, further stabilize the reaction product, and promote the reaction with carbon dioxide. On the other hand, on the high temperature side where carbon dioxide is emitted, the degree of this hydrogen bond decreases, so that the emission of carbon dioxide can be promoted.

本明細書では、一分子内に複数の窒素原子が存在し、それらの窒素原子が異なる級数であるときには、アミンの級数は、高い方の級数とする。例えば、一分子内に3級窒素原子(窒素原子に炭化水素基が3つ結合している)と2級窒素原子(窒素原子に炭化水素基が2つ結合し、水素原子が一つ結合している)を有する場合には、そのアミンは3級アミンである。したがって、この例の場合には、水素−窒素結合を有する3級アミンであり、3級アミン溶媒ではなく、二酸化炭素化学吸収性アミンに分類される。窒素炭素二重結合は、炭化水素基が窒素原子に2つ結合しているとして級数を定める。 In the present specification, when a plurality of nitrogen atoms exist in one molecule and the nitrogen atoms have different series, the series of amine is the higher series. For example, a tertiary nitrogen atom (three hydrocarbon groups are bonded to a nitrogen atom) and a secondary nitrogen atom (two hydrocarbon groups are bonded to a nitrogen atom, and one hydrogen atom is bonded) in one molecule. If), the amine is a tertiary amine. Therefore, in the case of this example, it is a tertiary amine having a hydrogen-nitrogen bond, and is classified as a carbon dioxide chemically absorbing amine rather than a tertiary amine solvent. The nitrogen-carbon double bond is classified as having two hydrocarbon groups bonded to the nitrogen atom.

本実施形態に係る3級多座アミンとしては、水素結合受容性に富み、立体構造的にも安定化し、二酸化炭素化学吸収性アミンと二酸化炭素との反応を促進するように、主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の3級アミンであれば特に限定されないが、例えば、[式4]で表される、1つの窒素原子に、1つの窒素原子に、水酸基を有する炭化水素基が2つと、水酸基を有さない炭化水素基が1つ結合した3級多座アミンであるか、又は[式5]で表される、水酸基を有する炭化水素基が1つと、水酸基を有さない炭化水素基が2つ結合した3級多座アミンであることが好ましい。;

Figure 2021154237
([式4]中、R及びRは、無置換又は置換基(水酸基を除く)を有していてもよい炭化水素基、n1は、2以上の整数であり、括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。)
Figure 2021154237
([式5]中、Rは、無置換又は置換基(水酸基を除く)を有していてもよい炭化水素基、n1及びn2は、2以上の整数であり、括弧内の炭素原子は置換基を有していてもよく、炭素原子の一部がヘテロ原子で置換されていてもよい。) As the tertiary polydentate amine according to the present embodiment, the carbon of the main chain is rich in hydrogen bond acceptability, is structurally stable, and promotes the reaction between the carbon dioxide chemically absorbing amine and carbon dioxide. It is not particularly limited as long as it has an oxygen atom and / or a nitrogen atom via a hydrocarbon group having 2 or more, and the total of the oxygen atom and the nitrogen atom is 2 or more, and is not particularly limited. For example, [Equation 4]. It is a tertiary polydentate amine in which two hydrocarbon groups having a hydroxyl group and one hydrocarbon group having no hydroxyl group are bonded to one nitrogen atom represented by. It is preferably a tertiary polydentate amine in which one hydrocarbon group having a hydroxyl group and two hydrocarbon groups having no hydroxyl group are bonded, which are represented by [Formula 5]. ;
Figure 2021154237
(In [Formula 4], R 3 and R 4 are hydrocarbon groups which may have an unsubstituted or substituent (excluding a hydroxyl group), n1 is an integer of 2 or more, and a carbon atom in parentheses. May have a substituent, and a part of the carbon atom may be substituted with a heteroatom.)
Figure 2021154237
(In Expression 5], R 3 is an unsubstituted or substituted group (excluding a hydroxyl group) may have a hydrocarbon group, n1 and n2 is an integer of 2 or more, carbon atoms in parentheses It may have a substituent, and a part of the carbon atom may be substituted with a heteroatom.)

[式4]で表される3級多座アミンとしては、例えば、2−ジメチルアミノエタノール((Me)2N(EtOH))、2−(ジエチルアミノ)エタノール((Et)2N(EtOH))、2−(ジイソプロピルアミノ)エタノール((i−Pr)2N(EtOH))、2−(ジブチルアミノ)エタノール((n−Bu)2N(EtOH))、3−ジメチルアミノ−1−プロパノール((Me)2N(n−PrOH))、及び4−(ジメチルアミノ)−1−ブタノール((Me)2N(n−BuOH))などが挙げられる。 Examples of the tertiary polydentate amine represented by [Formula 4] include 2-dimethylaminoethanol ((Me) 2N (EtOH)) and 2- (diethylamino) ethanol ((Et) 2N (EtOH)), 2 -(Diisopropylamino) ethanol ((i-Pr) 2N (EtOH)), 2- (dibutylamino) ethanol ((n-Bu) 2N (EtOH)), 3-dimethylamino-1-propanol ((Me) 2N) (N-PrOH)), 4- (dimethylamino) -1-butanol ((Me) 2N (n-BuOH)) and the like.

中でも、[式4]において、R及びRが、炭素数が2以上の炭化水素基である3級アミン、すなわち、1つの窒素原子に、水酸基を有する主鎖の炭素数が2以上の炭化水素基が1つと、炭素数2以上の炭化水素基が2つ結合した3級アミン、又は式2において、n1が3以上の整数である3級アミン、すなわち、1つの窒素原子に、水酸基を有する主鎖の炭素数が3以上の炭化水素基が1つと、無置換の炭化水素基が2つ結合した3級アミンが好ましい。具体的には、2−(ジエチルアミノ)エタノール、2−(ジイソプロピルアミノ)エタノール、及び2−(ジブチルアミノ)エタノール、並びに3−ジメチルアミノ−1−プロパノール及び4−(ジメチルアミノ)−1−ブタノールなどが挙げられる。 Among them, in [Formula 4], R 3 and R 4 are tertiary amines which are hydrocarbon groups having 2 or more carbon atoms, that is, the main chain having a hydroxyl group in one nitrogen atom has 2 or more carbon atoms. A tertiary amine in which one hydrocarbon group and two hydrocarbon groups having 2 or more carbon atoms are bonded, or a tertiary amine in which n1 is an integer of 3 or more in Formula 2, that is, a hydroxyl group is added to one nitrogen atom. A tertiary amine in which one hydrocarbon group having 3 or more carbon atoms and two unsubstituted hydrocarbon groups are bonded is preferable. Specifically, 2- (diethylamino) ethanol, 2- (diisopropylamino) ethanol, and 2- (dibutylamino) ethanol, and 3-dimethylamino-1-propanol and 4- (dimethylamino) -1-butanol, etc. Can be mentioned.

[式5]で表される3級多座アミンとしては、例えば、N−メチルジエタノールアミン(MDEA)、N−エチルジエタノールアミン((Et)N(EtOH)2)、N−ブチルジエタノールアミン((n−Bu)N(EtOH)2)が挙げられる。 Examples of the tertiary polydentate amine represented by [Formula 5] include N-methyldiethanolamine (MDEA), N-ethyldiethanolamine ((Et) N (EtOH) 2), and N-butyldiethanolamine ((n-Bu). ) N (EtOH) 2).

[希釈剤]
本実施形態に係る希釈剤は、極性が高く、揮発性が低く、かつ、前記二酸化炭素吸収液の二酸化炭素吸収前及び二酸化炭素吸収後のいずれにおいても、粘度を減少させる非水溶媒である。
従来知られた非水系の吸収液は、本実施形態に係る吸収性アミンと3級多座アミンとを混合したものであったが、この吸収液は、二酸化炭素の吸収量が増加するに従って、溶液の粘度が増加し、吸収速度を低下させていた。
[Diluent]
The diluent according to the present embodiment is a non-aqueous solvent having high polarity and low volatility, and which reduces the viscosity of the carbon dioxide absorbing liquid both before and after carbon dioxide absorption.
The conventionally known non-aqueous absorption solution is a mixture of the absorbable amine and the tertiary polydentate amine according to the present embodiment, but this absorption solution increases the amount of carbon dioxide absorbed. The viscosity of the solution increased and the absorption rate decreased.

本発明実施形態に係る希釈剤は、吸収性アミンと3級多座アミンを含む溶液中に加えられることにより、二酸化炭素吸収前の粘度を低減することはもちろん、二酸化炭素吸収後の吸収液の粘度の増加を抑えることができる。したがって、二酸化炭素吸収速度を向上し、所定時間当たりの吸収量を増大でき、二酸化炭素放散速度を向上し、所定時間当たりの放散量を増大することができる。 By adding the diluent according to the embodiment of the present invention to a solution containing an absorbable amine and a tertiary polydentate amine, it is possible to reduce the viscosity before carbon dioxide absorption and of course to reduce the viscosity of the absorption liquid after carbon dioxide absorption. The increase in viscosity can be suppressed. Therefore, the carbon dioxide absorption rate can be improved, the absorption amount per predetermined time can be increased, the carbon dioxide emission rate can be improved, and the emission amount per predetermined time can be increased.

また、本実施形態に係る希釈剤は、高極性であることから、吸収性アミン、3級多座アミン、及び[式3]で表される3級多座アミンによって安定化された吸収性アミンと二酸化炭素の反応生成物に対する高い溶解性を有し、室温近傍での二酸化炭素吸収速度を速めることができるとともに、吸収と放散の温度差が小さい温度条件でも二酸化炭素の放散を促進し、吸収性アミンの再生効率を向上することができる。すなわち、本実施形態に係る希釈剤は、吸収性アミンと二酸化炭素との化学反応を阻害せず、吸収性アミンの二酸化炭素の吸収量や放散量に悪影響を及ぼさない。 Further, since the diluent according to the present embodiment is highly polar, it is an absorbable amine stabilized by an absorbable amine, a tertiary polydentate amine, and a tertiary polydentate amine represented by [Formula 3]. It has high solubility in reaction products of carbon dioxide and carbon dioxide, can accelerate the absorption rate of carbon dioxide near room temperature, and promotes the emission of carbon dioxide even under temperature conditions where the temperature difference between absorption and emission is small. The regeneration efficiency of the sex amine can be improved. That is, the diluent according to the present embodiment does not inhibit the chemical reaction between the absorbent amine and carbon dioxide, and does not adversely affect the amount of carbon dioxide absorbed or emitted by the absorbent amine.

さらに、本実施形態に係る希釈剤は、揮発性が低いことにより、二酸化炭素の吸収や放散、特に、吸収液の再生工程において揮発による損失を抑制することができる。
本実施形態に係る希釈剤を加えた吸収液は、従来の非水系の吸収液に比べて低粘度であり、室温近傍での二酸化炭素の吸収による粘度の増加を抑制できるので、吸収速度および放散速度が大きい。吸収速度ならびに放散速度の増加により、単位時間当たりのガス処理量を向上できる。また、吸収と放散の温度差が小さい温度条件でも二酸化炭素分離回収を効率よく行うことができる。したがって、本実施形態に係る吸収液は、様々な濃度の二酸化炭素発生源を対象として省エネルギーの二酸化炭素分離回収方法を提供することができる。特に、温和な温度条件で吸収と放散を連続して行うバイオガスからの二酸化炭素分離回収に適している。
Further, since the diluent according to the present embodiment has low volatility, it is possible to suppress the absorption and emission of carbon dioxide, particularly the loss due to volatility in the step of regenerating the absorbing liquid.
The absorption liquid to which the diluent according to the present embodiment has been added has a lower viscosity than the conventional non-aqueous absorption liquid, and can suppress an increase in viscosity due to absorption of carbon dioxide near room temperature, so that the absorption rate and emission can be suppressed. The speed is high. By increasing the absorption rate and the emission rate, the amount of gas processed per unit time can be improved. In addition, carbon dioxide separation and recovery can be efficiently performed even under temperature conditions where the temperature difference between absorption and emission is small. Therefore, the absorption liquid according to the present embodiment can provide an energy-saving carbon dioxide separation and recovery method for carbon dioxide generation sources having various concentrations. In particular, it is suitable for carbon dioxide separation and recovery from biogas, which continuously absorbs and dissipates under mild temperature conditions.

上記の条件を満たす希釈剤として、ジメチルスルホキシド、ヘキサメチルリン酸トリアミド、1,3−ジメチル−2−イミダゾリジノン、N,N’−ジメチルプロピレン尿素、テトラメチル尿素、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルホルムアミド、N−メチルアセトアミド、N−メチル−2−ピロリドン、スルホラン等が好適に挙げられるが、特に、極性が高いジメチルスルホキシド、ヘキサメチルリン酸トリアミド、1,3−ジメチル−2−イミダゾリジノン、N,N’−ジメチルプロピレン尿素、及びテトラメチル尿素が好ましい。 Diluting agents that satisfy the above conditions include dimethylsulfoxide, hexamethylphosphoric acid triamide, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, tetramethylurea, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, N-methylacetamide, N-methyl-2-pyrrolidone, sulfolane and the like are preferable, and in particular, highly polar dimethylsulfoxide, hexamethylphosphoric acid triamide, 1, 3-Dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, and tetramethylurea are preferred.

[二酸化炭素吸収液]
本実施形態に係る二酸化炭素吸収液は、前述の窒素−水素結合を有する二酸化炭素化学吸収性アミンと、前述の窒素−水素結合を有さない3級多座アミンを含み、さらに、前述の希釈剤を含む。本実施形態に係る二酸化炭素化学吸収性アミン、3級多座アミン、及び希釈剤は、通常、室温で液体であり、本実施形態に係る二酸化炭素吸収液は、二酸化炭素化学吸収性アミン、及び3級多座アミンを混合し、希釈剤を加えることによって得られる。
[Carbon dioxide absorbent]
The carbon dioxide absorbing solution according to the present embodiment contains the above-mentioned carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond and the above-mentioned tertiary polydentate amine having no nitrogen-hydrogen bond, and further, the above-mentioned dilution. Contains agents. The carbon dioxide chemically absorbing amine according to the present embodiment, the tertiary polydentate amine, and the diluent are usually liquids at room temperature, and the carbon dioxide absorbing liquid according to the present embodiment is a carbon dioxide chemically absorbing amine and. It is obtained by mixing a tertiary polydentate amine and adding a diluent.

二酸化炭素化学吸収性アミン、3級多座アミン、及び希釈剤の組み合わせは、特に限定されないが、例えば、二酸化炭素化学吸収性アミンとして、ジエタノールアミン、ジプロパノールアミン、ジブタノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミン、3−メチルアミノ−1−プロパノ―ル、N−ブチルエタノールアミン、又はN−プロピルエタノールアミンのいずれか1以上、3級多座アミンとして、N−メチルジエタノールアミン、N−エチルジエタノールアミン、又はN−ブチルジエタノールアミンのいすれか1以上、及び希釈剤として、ジメチルスルホキシド、ヘキサメチルリン酸トリアミド、1,3−ジメチル−2−イミダゾリジノン、N,N’−ジメチルプロピレン尿素、又はテトラメチル尿素の組合せが好ましい。 The combination of the carbon dioxide chemically absorbing amine, the tertiary polydentate amine, and the diluent is not particularly limited. For example, the carbon dioxide chemically absorbing amine includes diethanolamine, dipropanolamine, dibutanolamine, and N-methylethanolamine. , N-ethylethanolamine, 3-methylamino-1-propanol, N-butylethanolamine, or N-propylethanolamine, as one or more tertiary polydentate amines, N-methyldiethanolamine, N- One or more of ethyldiethanolamine or N-butyldiethanolamine, and as diluents, dimethylsulfoxide, hexamethylphosphate triamide, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, Alternatively, a combination of tetramethylurea is preferable.

二酸化炭素吸収液中の二酸化炭素化学吸収性アミンの割合は特に限定されず、二酸化炭素化学吸収性アミン、3級多座アミン、及び希釈剤の種類によって適宜選択されるが、二酸化炭素化学吸収性アミン/(二酸化炭素化学吸収性アミン+3級多座アミン+希釈剤)(質量比)で、1/100〜50/100が好ましく、10/100〜40/100であることがより好ましい。二酸化炭素化学吸収性アミンの比率がこの範囲にあると、室温近傍での二酸化炭素吸収量や二酸化炭素吸収速度を上げ、かつ再生温度が温和な条件で二酸化炭素易脱性を達成することができる。 The ratio of the carbon dioxide chemically absorbing amine in the carbon dioxide absorbing solution is not particularly limited, and is appropriately selected depending on the carbon dioxide chemically absorbing amine, the tertiary polydentate amine, and the type of the diluent, but the carbon dioxide chemically absorbing amine. The amine / (carbon dioxide chemically absorbing amine + tertiary polydentate amine + diluent) (mass ratio) is preferably 1/100 to 50/100, more preferably 10/100 to 40/100. When the ratio of carbon dioxide chemically absorptive amine is in this range, the amount of carbon dioxide absorbed near room temperature and the rate of carbon dioxide absorption can be increased, and carbon dioxide easiness can be achieved under conditions where the regeneration temperature is mild. ..

二酸化炭素吸収液中の希釈剤の割合は特に限定されず、二酸化炭素化学吸収性アミン、3級多座アミン、及び希釈剤の種類によって適宜選択されるが、希釈剤/(二酸化炭素化学吸収性アミン+3級多座アミン+希釈剤)(質量比)で、1/100〜50/100が好ましく、10/100〜40/100であることがより好ましい。希釈剤の比率がこの範囲にあると、室温近傍での二酸化炭素吸収量や二酸化炭素吸収速度を上げ、かつ再生温度が温和な条件で二酸化炭素易脱性を達成することができる。 The ratio of the diluent in the carbon dioxide absorbing solution is not particularly limited, and is appropriately selected depending on the carbon dioxide chemically absorbing amine, the tertiary polydentate amine, and the type of the diluent. The amine + tertiary polydentate amine + diluent) (mass ratio) is preferably 1/100 to 50/100, more preferably 10/100 to 40/100. When the ratio of the diluent is in this range, the carbon dioxide absorption amount and the carbon dioxide absorption rate near room temperature can be increased, and carbon dioxide easiness can be achieved under the condition that the regeneration temperature is mild.

本実施形態に係る二酸化炭素吸収液は、非水系の二酸化炭素吸収液であり、実質的に水を含まない。具体的には、本発明の二酸化炭素吸収液の水含有量は、好ましくは、10質量%未満、より好ましくは5質量%未満、特に好ましくは3質量%未満である。 The carbon dioxide absorbing liquid according to the present embodiment is a non-aqueous carbon dioxide absorbing liquid and does not substantially contain water. Specifically, the water content of the carbon dioxide absorbing liquid of the present invention is preferably less than 10% by mass, more preferably less than 5% by mass, and particularly preferably less than 3% by mass.

本実施形態に係る二酸化炭素吸収液は、二酸化炭素を含む混合ガスから、二酸化炭素ガスを分離回収する方法に適用できる。混合ガスは、二酸化炭素を含むガス状の混合物であれば、特に限定されず、その他の成分を含むことができる。その他の成分としては、炭化水素ガス、二酸化炭素以外の酸性ガス、窒素ガス、酸素ガス、水、ばいじんなどが挙げられるが、本実施形態に係る二酸化炭素吸収液は、特にバイオガスに含まれるメタンガスと二酸化炭素とを分離回収する方法に適している。二酸化炭素以外の酸性ガスの例としては、硫化水素;一酸化硫黄、二酸化硫黄(亜硫酸ガス)、三酸化硫黄などの硫黄酸化物;一酸化窒素、二酸化窒素、亜酸化窒素(一酸化二窒素)、三酸化二窒素、四酸化二窒素、五酸化二窒素などの窒素酸化物;塩酸、硝酸、リン酸、硫酸などの無機酸類;カルボン酸、スルホン酸、炭酸などの有機酸類、が挙げられる。本発明の二酸化炭素吸収液は、混合ガスにその他の成分としての水が飽和量含まれていても二酸化炭素の回収性に影響が少ない。また、本発明の二酸化炭素吸収液は、混合ガスにその他の成分としてばいじんが含まれていても二酸化炭素の回収性に影響が少ない。 The carbon dioxide absorbing liquid according to the present embodiment can be applied to a method for separating and recovering carbon dioxide gas from a mixed gas containing carbon dioxide. The mixed gas is not particularly limited as long as it is a gaseous mixture containing carbon dioxide, and may contain other components. Examples of other components include hydrocarbon gas, acid gas other than carbon dioxide, nitrogen gas, oxygen gas, water, soot and dust, and the carbon dioxide absorbing liquid according to the present embodiment is particularly methane gas contained in biogas. Suitable for the method of separating and recovering carbon dioxide and carbon dioxide. Examples of acidic gases other than carbon dioxide include hydrogen sulfide; sulfur oxides such as sulfur monoxide, sulfur dioxide (sulfur dioxide gas), and sulfur trioxide; nitric oxide, nitrogen dioxide, and nitric oxide (dinitrogen monoxide). , Nitric oxides such as dinitrogen trioxide, dinitrogen tetroxide, dinitrogen pentoxide; inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid; organic acids such as carboxylic acid, sulfonic acid and carbonic acid. The carbon dioxide absorbing liquid of the present invention has little effect on carbon dioxide recovery even if the mixed gas contains a saturated amount of water as another component. Further, the carbon dioxide absorbing liquid of the present invention has little effect on the recovery of carbon dioxide even if the mixed gas contains dust as another component.

[二酸化炭素分離回収方法]
次に、本実施形態に係る二酸化炭素吸収液を用いた二酸化炭素分離回収方法について説明する。
本発明の二酸化炭素分離回収方法は、前述の二酸化炭素吸収液を、二酸化炭素を含む混合ガスと接触させることによって、二酸化炭素を前記二酸化炭素吸収液に吸収させて、前記混合ガスから二酸化炭素を選択的に分離する吸収工程、及び前記の二酸化炭素を吸収した二酸化炭素吸収液を吸収工程より高温に加熱することで吸収した二酸化炭素を放散させて回収し、前記二酸化炭素吸収液を再生する加熱再生工程、を含む。前記二酸化炭素吸収液と二酸化炭素を含む混合ガスとの接触方法は、例えば吸収塔方式やスクラバー方式が用いられるが、それらの実施形態に限定されるものではなく、気液の接触効率を高めて二酸化炭素の吸収速度が向上できれば良い。また、前記二酸化炭素を吸収した二酸化炭素吸収液を加熱再生する方法は、例えば再生塔方式やフラッシュドラム方式が用いられるが、それらの実施形態に限定されるものではなく、加熱の伝熱効率や気液の接触効率を高めて二酸化炭素の放散速度が向上できれば良い。
[Carbon dioxide separation and recovery method]
Next, a carbon dioxide separation and recovery method using the carbon dioxide absorbing liquid according to the present embodiment will be described.
In the carbon dioxide separation and recovery method of the present invention, carbon dioxide is absorbed by the carbon dioxide absorbing liquid by contacting the above-mentioned carbon dioxide absorbing liquid with a mixed gas containing carbon dioxide, and carbon dioxide is separated from the mixed gas. Heating that selectively separates the absorption step and heats the carbon dioxide absorbing solution that has absorbed the carbon dioxide to a higher temperature than the absorption step to dissipate and recover the absorbed carbon dioxide and regenerate the carbon dioxide absorbing solution. Including the regeneration process. As the contact method between the carbon dioxide absorbing liquid and the mixed gas containing carbon dioxide, for example, an absorption tower method or a scrubber method is used, but the method is not limited to these embodiments, and the contact efficiency of gas and liquid is increased. It would be good if the absorption rate of carbon dioxide could be improved. Further, as a method for heating and regenerating the carbon dioxide absorbing liquid that has absorbed carbon dioxide, for example, a regeneration tower method or a flash drum method is used, but the method is not limited to these embodiments, and the heat transfer efficiency of heating and air are not limited. It suffices if the contact efficiency of the liquid can be increased and the emission rate of carbon dioxide can be improved.

本実施形態に係る二酸化炭素分離回収方法は、室温近傍での吸収速度が速く、小さな温度上昇で二酸化炭素の放散が容易に起こり、しかも、吸収液の蒸発損失が少なく、低比熱で、反応熱が小さいので、回収する二酸化炭素当たりの、二酸化炭素吸収液の再生に要するエネルギーを削減でき、ひいては二酸化炭素の分離回収効率を向上することができる。したがって、本実施形態に係る二酸化炭素分離回収方法は、様々な濃度の二酸化炭素発生源を対象として省エネルギーで二酸化炭素を分離回収することができ、特に、バイオガスからメタンガスと二酸化炭素を分離回収し、メタンガスを濃縮処理するバイオガス処理方法に用いられる。 In the carbon dioxide separation and recovery method according to the present embodiment, the absorption rate is high near room temperature, carbon dioxide is easily dissipated with a small temperature rise, the evaporation loss of the absorption liquid is small, the specific heat is low, and the heat of reaction is high. Is small, so that the energy required for regeneration of the carbon dioxide absorbing liquid per carbon dioxide to be recovered can be reduced, and the separation and recovery efficiency of carbon dioxide can be improved. Therefore, the carbon dioxide separation and recovery method according to the present embodiment can separate and recover carbon dioxide with energy saving targeting carbon dioxide sources of various concentrations, and in particular, separate and recover methane gas and carbon dioxide from biogas. , Used in a biogas treatment method for concentrating methane gas.

吸収工程の温度は、室温近傍(25℃±15℃)の10℃以上40℃以下が好ましい。室温近傍であれば、二酸化炭素吸収液や対象とする処理ガスを過剰に冷却する必要が無く、二酸化炭素の吸収量や吸収速度を向上でき、省エネルギー化を達成できる。
本発明の二酸化炭素分離回収方法では、吸収工程の圧力は特に限定されない。常圧近傍の処理ガスを対象とする場合は、そのまま常圧近傍で吸収工程を行えば、余分に処理ガスの圧縮エネルギーが掛からず、省エネルギーの観点からが好ましい。一方、二酸化炭素の二酸化炭素吸収液への吸収量や吸収速度を向上させるため、常圧以上の、例えば1MPaG〜6MPaGなどの高圧条件を利用することもできる。
The temperature of the absorption step is preferably 10 ° C. or higher and 40 ° C. or lower near room temperature (25 ° C. ± 15 ° C.). If it is near room temperature, it is not necessary to excessively cool the carbon dioxide absorbing liquid or the target processing gas, the amount of carbon dioxide absorbed and the absorption rate can be improved, and energy saving can be achieved.
In the carbon dioxide separation and recovery method of the present invention, the pressure in the absorption step is not particularly limited. When the processing gas in the vicinity of normal pressure is targeted, if the absorption step is performed in the vicinity of normal pressure as it is, no extra compression energy of the processing gas is applied, which is preferable from the viewpoint of energy saving. On the other hand, in order to improve the amount of carbon dioxide absorbed into the carbon dioxide absorbing liquid and the absorption rate, high pressure conditions of normal pressure or higher, for example, 1 MPaG to 6 MPaG, can be used.

加熱再生工程の温度は、吸収工程の温度より高いが特に限定されない。ただし、再生工程の温度を著しく上げると、二酸化炭素吸収液の放散量は高くなるものの、加熱に要するエネルギーが多大となり、二酸化炭素分離回収効率が低下する。よって、温和な温度条件で再生工程を行うことが好まく、100℃以下が好ましく、80℃以下がより好ましく、60℃以下が特に好ましい。
加熱再生工程の圧力は、吸収工程の圧力と同等又は低圧にすることが好ましいが、特に限定されない。本発明の二酸化炭素吸収液は蒸気圧が低く、揮発を抑制できるため、減圧下で処理することができる。減圧に要するエネルギーが多大とならない条件で、適度に減圧処理することで、二酸化炭素吸収液から二酸化炭素の放散量の向上が期待できる。一方、再生工程で二酸化炭素吸収液から放散される二酸化炭素を高圧で回収することもできる。高圧で二酸化炭素を回収することにより、後段で高圧の二酸化炭素が必要な場合、圧縮エネルギーを低減することができる。
The temperature of the heat regeneration step is higher than the temperature of the absorption step, but is not particularly limited. However, if the temperature of the regeneration step is remarkably raised, the amount of carbon dioxide absorbing liquid emitted increases, but the energy required for heating becomes large, and the carbon dioxide separation and recovery efficiency decreases. Therefore, it is preferable to carry out the regeneration step under mild temperature conditions, preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and particularly preferably 60 ° C. or lower.
The pressure in the heat regeneration step is preferably equal to or lower than the pressure in the absorption step, but is not particularly limited. Since the carbon dioxide absorbing liquid of the present invention has a low vapor pressure and can suppress volatilization, it can be treated under reduced pressure. It is expected that the amount of carbon dioxide emitted from the carbon dioxide absorbing liquid can be improved by appropriately reducing the pressure under the condition that the energy required for depressurization does not become large. On the other hand, carbon dioxide emitted from the carbon dioxide absorbing liquid in the regeneration process can be recovered at high pressure. By recovering carbon dioxide at high pressure, compression energy can be reduced when high pressure carbon dioxide is required in the subsequent stage.

本実施形態に係る二酸化炭素分離回収方法において、吸収工程と加熱再生工程とを連続的に行う場合、加熱再生工程で吸収された二酸化炭素が残存すると、すなわち、吸収液の再生が不十分であると、一般に、1サイクル目の二酸化炭素の吸収量及び吸収速度より2サイクル目の吸収量及び吸収速度が減少する。一方、加熱再生工程で所定量の二酸化炭素が常に残存すると、すなわち、吸収液の再生率が一定であると、3サイクル目以降の吸収量及び吸収速度は、2サイクル目とほぼ同様で安定する(図2参照)。 In the carbon dioxide separation and recovery method according to the present embodiment, when the absorption step and the heat regeneration step are continuously performed, if the carbon dioxide absorbed in the heat regeneration step remains, that is, the regeneration of the absorbing liquid is insufficient. In general, the absorption amount and absorption rate of carbon dioxide in the second cycle are smaller than the absorption amount and absorption rate of carbon dioxide in the first cycle. On the other hand, if a predetermined amount of carbon dioxide always remains in the heating regeneration step, that is, if the regeneration rate of the absorbing liquid is constant, the absorption amount and absorption rate after the third cycle are almost the same as those in the second cycle and are stable. (See FIG. 2).

1サイクル目の二酸化炭素回収率(吸収工程で吸収した二酸化炭素を加熱再生工程で放散により回収する割合)が低いほど、2サイクル目以降の二酸化炭素の吸収量と吸収速度は減少し、二酸化炭素回収率も低下する。1サイクル目の二酸化炭素回収率は大きい方が、二酸化炭素の分離回収効率は高くなるが、一般に二酸化炭素回収率を上げるためには、吸収工程に対して加熱再生工程の温度差を大きくしなければならず、加熱に要するエネルギーが多大となる。吸収工程と加熱再生工程との温度差が50℃の場合、50%以上であることが好ましく、前記温度差が30℃の場合、30%以上であることが好ましい。温度差が小さいほど回収率は低くなるが、温度差が小さいほど、二酸化炭素回収ならびに吸収液再生のための加熱エネルギーを小さくすることができる。 The lower the carbon dioxide recovery rate in the first cycle (the rate at which carbon dioxide absorbed in the absorption step is recovered by emission in the heating and regeneration step), the more the amount and rate of carbon dioxide absorbed in the second and subsequent cycles decrease, and the carbon dioxide The recovery rate also decreases. The higher the carbon dioxide recovery rate in the first cycle, the higher the carbon dioxide separation and recovery efficiency. Therefore, the energy required for heating becomes large. When the temperature difference between the absorption step and the heat regeneration step is 50 ° C., it is preferably 50% or more, and when the temperature difference is 30 ° C., it is preferably 30% or more. The smaller the temperature difference, the lower the recovery rate, but the smaller the temperature difference, the smaller the heating energy for carbon dioxide recovery and absorption liquid regeneration.

本実施形態に係る二酸化炭素吸収液は、従来の非水系の吸収液に比べて低粘度であり、吸収工程における二酸化炭素の吸収による粘度増加を抑制でき、吸収速度および放散速度が大きい。吸収速度ならびに放散速度の増加により、単位時間当たりのガス処理量を向上できる。また、吸収工程に対して加熱再生工程の温度差が小さくても、二酸化炭素放散量および二酸化炭素回収率が高く、かつ、吸収液の揮発による損失を低減することができる。 The carbon dioxide absorbing liquid according to the present embodiment has a lower viscosity than the conventional non-aqueous absorption liquid, can suppress an increase in viscosity due to absorption of carbon dioxide in the absorption step, and has a high absorption rate and emission rate. By increasing the absorption rate and the emission rate, the amount of gas processed per unit time can be improved. Further, even if the temperature difference in the heat regeneration step is smaller than that in the absorption step, the amount of carbon dioxide emitted and the carbon dioxide recovery rate are high, and the loss due to the volatilization of the absorption liquid can be reduced.

本発明の二酸化炭素吸収液およびそれを用いた二酸化炭素分離回収方法は、様々な濃度の二酸化炭素発生源を対象として省エネルギーで二酸化炭素を分離回収することができ、特に、バイオガス中のメタンガスを濃縮処理するバイオガス処理方法に適している。 The carbon dioxide absorbing solution of the present invention and the carbon dioxide separation and recovery method using the same can separate and recover carbon dioxide with energy saving targeting carbon dioxide sources of various concentrations, and in particular, methane gas in biogas. Suitable for biogas treatment methods for concentration treatment.

以下、本発明を実施例に基づき説明するが、本発明は、これら実施例に限定されない。測定は、以下の二酸化炭素吸収放散試験により行った。 Hereinafter, the present invention will be described based on examples, but the present invention is not limited to these examples. The measurement was carried out by the following carbon dioxide absorption and emission test.

[二酸化炭素吸収放散試験]
図1に示す二酸化炭素吸収放散試験装置を用いて、常圧で二酸化炭素吸収放散試験を行った。二酸化炭素吸収放散試験装置は、ステンレス製の反応容器115、反応容器の温度を制御するためのコントローラー110、二酸化炭素とメタンからなる混合ガスの導入部、吸収液の二酸化炭素の吸放出を分析するための二酸化炭素濃度計124とガス流量計125からなる。
二酸化炭素とメタンからなる混合ガスは、二酸化炭素ボンベ101とメタンボンベ102から、それぞれバルブA(105)、バルブB(106)を介してマスフローコントローラー(103、104)により流量を制御したガスを混合し、ガス導入管116から反応容器115内の吸収液121へと吹き込んだ。
反応容器115を恒温槽117に設置して、温度計113で吸収液121の温度を測定しながら、冷却水循環装置118およびヒーター114によりコントローラー110で制御した。実験中、反応容器115内の吸収液相およびガス相はモーター111により撹拌翼112で攪拌した。また、反応容器内の圧力を圧力計122で測定した。反応容器出口には冷却水循環装置119により所定の温度に冷却された冷却塔123を設けた。
[Carbon dioxide absorption and emission test]
Using the carbon dioxide absorption / emission test apparatus shown in FIG. 1, a carbon dioxide absorption / emission test was conducted at normal pressure. The carbon dioxide absorption / emission test apparatus analyzes the reaction vessel 115 made of stainless steel, the controller 110 for controlling the temperature of the reaction vessel, the introduction part of the mixed gas consisting of carbon dioxide and methane, and the absorption / release of carbon dioxide in the absorption liquid. It consists of a carbon dioxide concentration meter 124 and a gas flow meter 125 for the purpose.
The mixed gas composed of carbon dioxide and methane is a mixture of gases whose flow rates are controlled by mass flow controllers (103 and 104) from carbon dioxide cylinders 101 and methane cylinders 102 via valves A (105) and valves B (106), respectively. , It was blown from the gas introduction pipe 116 into the absorption liquid 121 in the reaction vessel 115.
The reaction vessel 115 was installed in the constant temperature bath 117, and the temperature of the absorbing liquid 121 was measured by the thermometer 113, and controlled by the controller 110 by the cooling water circulation device 118 and the heater 114. During the experiment, the absorption liquid phase and the gas phase in the reaction vessel 115 were stirred by the motor 111 by the stirring blade 112. Moreover, the pressure in the reaction vessel was measured with a pressure gauge 122. A cooling tower 123 cooled to a predetermined temperature by a cooling water circulation device 119 was provided at the outlet of the reaction vessel.

以下に、この二酸化炭素吸収放散試験装置を用いた、二酸化炭素吸収量測定手順を記載する。
1)反応容器115内をメタンガスで置換し、系内から二酸化炭素を追い出した。
2)あらかじめ窒素雰囲気下で調製した吸収液100mlを、バルブD(108)を介してシリンジ120から反応容器115に導入した。
3)吸収液121の温度を温度計113で測定し、冷却水循環装置118およびヒーター114によりコントローラー110で30℃に制御して安定するのを待った。その際、反応器中の気相および液相に設置した撹拌翼112をモーター111により800rpmで回転させ、循環水冷却装置119により冷却塔123を5℃に冷却した。
4)三方バルブ(107と109)をバイパス126側として、二酸化炭素ボンベ101とメタンボンベ102から供給されるガスを、それぞれバルブA(105)、バルブB(106)を介してマスフローコントローラー(103、104)で制御し、二酸化炭素濃度計124の指示が46%となるように調節した。その際、混合ガスの総流量は400ml/分となるように調節した。なお、ガス流量は温度および圧力に依存するため、ガス流量計125に温度計と圧力計を設置してガス流量の補正を行った。
5)混合ガスを30分程度流して、二酸化炭素濃度が46%で安定したことを確認した。
6)三方バルブ(107と109)を反応容器115側として、30℃における1サイクル目の二酸化炭素吸収試験を開始した。三方バルブの切り替え時を0分として、二酸化炭素濃度計124とガス流量計125で反応容器115から排出されるガスの二酸化炭素濃度と流量の時間変化を連続的に記録した。
7)30℃で二酸化炭素の吸収試験を1時間行った後、冷却水循環装置118を停止し、ヒーター114で吸収液の温度を60℃に昇温した。30℃から60℃への昇温は5分未満で行った。
8)60℃で二酸化炭素の放散試験を30分間行い、吸収試験と同様に、60℃に設置した時を0分として、二酸化炭素濃度計124とガス流量計125で反応容器115から排出されるガスの二酸化炭素濃度と流量の時間変化を連続的に記録した。
9)60℃で二酸化炭素の放散試験を30分間行った後、三方バルブ(107と109)をバイパス126側として、冷却水循環装置118を稼働させてコントローラーにより吸収液121の温度を30℃に戻した。
10)吸収液121の温度が30℃に戻り、安定したことを確認した後、2サイクル目の吸収試験を開始した。手順は5)以降と同様である。
11)以上の吸収および放散試験を4サイクル繰り返し行った。
12)反応容器115出口で測定した二酸化炭素の濃度とガス流量から、各時間で反応容器から排出された二酸化炭素の物質量を計算し、導入した二酸化炭素の物質量から差し引き、吸収液に吸収された二酸化炭素の吸収量を求めた。吸収液の仕込量100ml当たりの二酸化炭素吸収量を1000ml当たり(=1dm当たり)に換算した。
The procedure for measuring the amount of carbon dioxide absorbed using this carbon dioxide absorption / emission test apparatus is described below.
1) The inside of the reaction vessel 115 was replaced with methane gas, and carbon dioxide was expelled from the system.
2) 100 ml of the absorption liquid prepared in advance under a nitrogen atmosphere was introduced into the reaction vessel 115 from the syringe 120 via the valve D (108).
3) The temperature of the absorbing liquid 121 was measured with a thermometer 113, controlled to 30 ° C. by the controller 110 by the cooling water circulation device 118 and the heater 114, and waited for stabilization. At that time, the stirring blade 112 installed in the gas phase and the liquid phase in the reactor was rotated at 800 rpm by the motor 111, and the cooling tower 123 was cooled to 5 ° C. by the circulating water cooling device 119.
4) With the three-way valves (107 and 109) as the bypass 126 side, the gas supplied from the carbon dioxide cylinder 101 and the methane cylinder 102 is sent to the mass flow controllers (103 and 104) via the valves A (105) and B (106), respectively. ), And adjusted so that the indication of the carbon dioxide concentration meter 124 was 46%. At that time, the total flow rate of the mixed gas was adjusted to 400 ml / min. Since the gas flow rate depends on the temperature and pressure, a thermometer and a pressure gauge were installed in the gas flow meter 125 to correct the gas flow rate.
5) The mixed gas was allowed to flow for about 30 minutes, and it was confirmed that the carbon dioxide concentration was stable at 46%.
6) The carbon dioxide absorption test of the first cycle at 30 ° C. was started with the three-way valves (107 and 109) on the reaction vessel 115 side. The time of switching the three-way valve was set to 0 minutes, and the time change of the carbon dioxide concentration and the flow rate of the gas discharged from the reaction vessel 115 was continuously recorded by the carbon dioxide concentration meter 124 and the gas flow meter 125.
7) After conducting a carbon dioxide absorption test at 30 ° C. for 1 hour, the cooling water circulation device 118 was stopped, and the temperature of the absorption liquid was raised to 60 ° C. by the heater 114. The temperature rise from 30 ° C. to 60 ° C. was performed in less than 5 minutes.
8) A carbon dioxide emission test is performed at 60 ° C. for 30 minutes, and as in the absorption test, the carbon dioxide concentration meter 124 and the gas flow meter 125 discharge the carbon dioxide from the reaction vessel 115, with the time set at 60 ° C. as 0 minutes. The time course of carbon dioxide concentration and flow rate of the gas was continuously recorded.
9) After conducting a carbon dioxide emission test at 60 ° C. for 30 minutes, the cooling water circulation device 118 is operated with the three-way valves (107 and 109) as the bypass 126 side, and the temperature of the absorbent liquid 121 is returned to 30 ° C. by the controller. rice field.
10) After confirming that the temperature of the absorption liquid 121 returned to 30 ° C. and was stable, the absorption test of the second cycle was started. The procedure is the same as after 5).
11) The above absorption and emission tests were repeated for 4 cycles.
12) From the concentration of carbon dioxide and the gas flow rate measured at the outlet of the reaction vessel 115, calculate the amount of substance of carbon dioxide discharged from the reaction vessel at each time, subtract it from the amount of substance of carbon dioxide introduced, and absorb it in the absorption liquid. The amount of carbon dioxide absorbed was determined. The amount of carbon dioxide absorbed per 100 ml of the amount of the absorbing liquid charged was converted into per 1000 ml (= per 1 dm 3).

(実施例)
二酸化炭素化学吸収性アミンとしてジエタノールアミン(DEA、和光純薬株式会社製、純度99.0+%)、3級多座アミンとしてN−メチルジエタノールアミン(MDEA、アルドリッチ社製、純度≧99%)、及び希釈剤としてジメチルスルホキシド(DMSO、 和光純薬株式会社製、純度99.0+%)を混合して実施例に係る二酸化炭素吸収液を得た(質量分率で、DEA:MDEA:DMSO=30:50:20)。水分含有率は1%以下である。
(Example)
Diethanolamine (DEA, manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0 +%) as a carbon dioxide chemically absorbent amine, N-methyldiethanolamine (MDEA, manufactured by Aldrich, purity ≥99%) as a tertiary polydentate amine, and dilution. Dimethyl sulfoxide (DMSO, manufactured by Wako Pure Chemical Industries, Ltd., purity 99.0 +%) was mixed as an agent to obtain a carbon dioxide absorbent solution according to an example (in terms of mass fraction, DEA: MDEA: DMSO = 30:50). : 20). The water content is 1% or less.

(比較例)
上記の実施例において、DMSOを加えることなく、DEAとMDEAを質量分率で30:70で混合して比較例に係る二酸化炭素吸収液を得た(質量分率で、DEA:MDEA=30:70)。
(Comparison example)
In the above example, DEA and MDEA were mixed at a mass fraction of 30:70 without adding DMSO to obtain a carbon dioxide absorbent according to a comparative example (in mass fraction, DEA: MDEA = 30:: 70).

前述の二酸化炭素吸収放散試験の手順に従って、混合ガスを毎分400ml供給し、実施例、及び比較例に係る吸収液の1〜4サイクルにおける二酸化炭素吸収量の時間変化を求めた。
図2、図3に、それぞれ実施例及び比較例に係る吸収液の1〜4サイクルにおける二酸化炭素吸収量の時間変化を示す。
2〜4サイクルにおける吸収量の時間変化は、1サイクル目の吸収量の時間変化とは大きく異なるが、2〜4サイクル間では、ほとんど変わりがなく、安定していることがわかる。以下、2サイクル以降のサイクルを「マルチサイクル」という。
According to the procedure of the carbon dioxide absorption and emission test described above, 400 ml of the mixed gas was supplied per minute, and the time change of the carbon dioxide absorption amount in 1 to 4 cycles of the absorption liquids according to Examples and Comparative Examples was determined.
2 and 3 show changes in the amount of carbon dioxide absorbed in the 1st to 4th cycles of the absorbing liquids according to Examples and Comparative Examples, respectively.
It can be seen that the time change of the absorption amount in the 2 to 4 cycles is significantly different from the time change of the absorption amount in the first cycle, but there is almost no change between the 2 to 4 cycles and it is stable. Hereinafter, the cycle after the second cycle is referred to as "multi-cycle".

実施例と比較例とを比較した結果を、以下の図4、図5及び表1、表2を用いて示す。
図4は、図2及び図3を重ねて表示したものに相当し、図5は、マルチサイクルにおける吸収量の時間変化を拡大したものである。
表1は、実施例、比較例に係る吸収液について、1サイクル目の吸収工程における二酸化炭素吸収量の時間変化を、表2は、同じく前記吸収液のマルチサイクルの吸収工程における二酸化炭素吸収量の時間変化を示す。
なお、参考までに、図4、5及び表1、2には、従来用いられる水系の吸収液であるモノエタノールアミン(MEA)を30質量%含む水溶液のデータを併記している。
The results of comparing the examples and the comparative examples are shown with reference to FIGS. 4, 5 and Tables 1 and 2 below.
FIG. 4 corresponds to the one in which FIGS. 2 and 3 are superimposed, and FIG. 5 is an enlarged view of the time change of the absorption amount in the multi-cycle.
Table 1 shows the time change of the carbon dioxide absorption amount in the absorption step of the first cycle for the absorption liquids according to Examples and Comparative Examples, and Table 2 shows the carbon dioxide absorption amount in the multi-cycle absorption step of the absorption liquid. Shows the time change of.
For reference, FIGS. 4 and 5 and Tables 1 and 2 also show data of an aqueous solution containing 30% by mass of monoethanolamine (MEA), which is a conventionally used aqueous absorption liquid.

Figure 2021154237
Figure 2021154237

Figure 2021154237
Figure 2021154237

上記の結果から明らかなとおり、二酸化炭素化学吸収性アミンと3級多座アミンとの混合溶液に、極性が高い希釈剤を加えると、1サイクル目の二酸化炭素吸収量及び吸収速度が増加するとともに、吸収と放散とを繰り返すマルチサイクルにおいても、吸収量及び吸収速度が増加したことがわかる。
MEA水溶液は、1サイクル目の吸収量及び吸収速度が大きいが、マルチサイクルでは吸収量、吸収速度とも大幅に低下するので、吸収と放散を連続して繰り返す二酸化炭素分離回収工程には不適であることがわかる。
As is clear from the above results, when a highly polar diluent is added to a mixed solution of a carbon dioxide chemically absorbing amine and a tertiary polydentate amine, the amount of carbon dioxide absorbed and the absorption rate in the first cycle are increased. It can be seen that the absorption amount and the absorption rate increased even in the multicycle in which absorption and emission were repeated.
The MEA aqueous solution has a large absorption amount and absorption rate in the first cycle, but the absorption amount and absorption rate are significantly reduced in the multicycle, so that it is not suitable for the carbon dioxide separation and recovery step in which absorption and emission are continuously repeated. You can see that.

次に、実施例及び比較例に係る二酸化炭素吸収液の粘度を、30℃において二酸化炭素吸収前後で比較した。なお、粘度測定はAntonPaar社製SVM3000を用いて行った。それらの結果を以下の表3に示す。 Next, the viscosities of the carbon dioxide absorbing liquids according to Examples and Comparative Examples were compared before and after carbon dioxide absorption at 30 ° C. The viscosity was measured using SVM3000 manufactured by AntonioPaar. The results are shown in Table 3 below.

Figure 2021154237
Figure 2021154237

二酸化炭素吸収液に希釈剤のDMSOを加えると、二酸化炭素吸収前の粘度を希釈剤無しと比べて約1/3にまで低減できることがわかった。また、二酸化炭素吸収後の粘度は、約1/4にまで低減するすることがわかった。
したがって、DMSOのように高極性、低揮発性の溶媒を二酸化炭素吸収液に希釈剤として加えることで、二酸化炭素吸収前後のいずれにおいても、二酸化炭素吸収液を低粘度化することができ、二酸化炭素の吸収及び放散の連続過程における二酸化炭素分離回収性能に優れることがわかった。
同様の性能を有する希釈剤としては、ヘキサメチルリン酸トリアミド、1,3−ジメチル−2−イミダゾリジノン、N,N’−ジメチルプロピレン尿素、テトラメチル尿素、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルホルムアミド、N−メチルアセトアミド、N−メチル−2−ピロリドン、スルホラン等が好適に挙げられるが、特に、極性が高いジメチルスルホキシド、ヘキサメチルリン酸トリアミド、1,3−ジメチル−2−イミダゾリジノン、N,N’−ジメチルプロピレン尿素、及びテトラメチル尿素が好ましい。
It was found that when DMSO as a diluent was added to the carbon dioxide absorbing solution, the viscosity before carbon dioxide absorption could be reduced to about 1/3 of that without the diluent. It was also found that the viscosity after carbon dioxide absorption was reduced to about 1/4.
Therefore, by adding a highly polar and low volatility solvent such as DMSO to the carbon dioxide absorbing solution as a diluent, the carbon dioxide absorbing solution can be made low in viscosity both before and after the carbon dioxide absorption, and carbon dioxide can be reduced. It was found that the carbon dioxide separation and recovery performance in the continuous process of carbon absorption and emission was excellent.
As diluents having similar performance, hexamethylphosphoric acid triamide, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, tetramethylurea, N, N-dimethylformamide, N, N-dimethylacetamide, N-methylformamide, N-methylacetamide, N-methyl-2-pyrrolidone, sulfolane and the like are preferably used, but particularly highly polar dimethylsulfoxide, hexamethylphosphoric acid triamide, 1,3-. Dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, and tetramethylurea are preferred.

本発明によれば、二酸化炭素分離回収工程において、本発明の二酸化炭素吸収液を用いることで吸収及び放散を連続的に効率よく行うことができるから、二酸化炭素分離回収を省エネルギーでおこなうことができる。特に、バイオガス中のメタンガスと二酸化炭素を分離し、メタンガスを濃縮するとともに、二酸化炭素を回収するバイオガス処理に利用可能である。 According to the present invention, in the carbon dioxide separation and recovery step, by using the carbon dioxide absorbing solution of the present invention, absorption and emission can be continuously and efficiently performed, so that carbon dioxide separation and recovery can be performed with energy saving. .. In particular, it can be used for biogas treatment that separates methane gas and carbon dioxide in biogas, concentrates methane gas, and recovers carbon dioxide.

101 二酸化炭素ボンベ
102 メタンボンベ
103 二酸化炭素用マスフローコントローラー
104 メタン用マスフローコントローラー
105 バルブA
106 バルブB
107 三方バルブC
108 バルブD
109 三方バルブE
110 コントローラー
111 モーター
112 撹拌翼
113 温度計
114 ヒーター
115 反応容器
116 ガス導入管
117 恒温槽
118 冷却水循環装置
119 冷却水循環装置
120 液体試料注入口
121 吸収液
122 圧力計
123 冷却塔
124 二酸化炭素濃度計
125 ガス流量計
126 バイパス
101 Carbon dioxide cylinder 102 Methane cylinder 103 Mass flow controller for carbon dioxide 104 Mass flow controller for methane 105 Valve A
106 Valve B
107 Three-way valve C
108 Valve D
109 Three-way valve E
110 Controller 111 Motor 112 Stirring blade 113 Thermometer 114 Heater 115 Reaction vessel 116 Gas introduction pipe 117 Constant temperature bath 118 Cooling water circulation device 119 Cooling water circulation device 120 Liquid sample inlet 121 Absorbent liquid 122 Pressure gauge 123 Cooling tower 124 Carbon dioxide concentration meter 125 Gas flow meter 126 bypass

Claims (12)

窒素−水素結合を有する二酸化炭素化学吸収性アミンと、
主鎖の炭素数が2以上の炭化水素基を介した酸素原子及び/又は窒素原子を有し、酸素原子と窒素原子の合計が2以上の水素結合受容性を有する3級多座アミンとを含む非水系の二酸化炭素吸収液であって、
前記窒素−水素結合を有する二酸化炭素化学吸収性アミンは、水酸基を有する炭化水素基を有する2級アミンであり、
さらに、極性が高く、揮発性が低く、かつ、前記二酸化炭素吸収液の二酸化炭素吸収前及び二酸化炭素吸収後のいずれにおいても、粘度を減少させる非水系の希釈剤を含むことを特徴とする二酸化炭素吸収液。
Carbon dioxide chemically absorptive amine with nitrogen-hydrogen bond,
A tertiary polydentate amine having an oxygen atom and / or a nitrogen atom via a hydrocarbon group having 2 or more carbon atoms in the main chain, and having a total of 2 or more hydrogen bond acceptability of the oxygen atom and the nitrogen atom. It is a non-aqueous carbon dioxide absorber that contains
The carbon dioxide chemically absorbing amine having a nitrogen-hydrogen bond is a secondary amine having a hydrocarbon group having a hydroxyl group.
Further, carbon dioxide having high polarity and low volatility, and containing a non-aqueous diluent that reduces the viscosity of the carbon dioxide absorbing liquid both before and after carbon dioxide absorption. Carbon absorption liquid.
前記二酸化炭素化学吸収性アミンは、ジアルカノールアミン又はN−アルキルモノアルカノールアミンのいずれか1以上である、請求項1に記載の二酸化炭素吸収液。 The carbon dioxide absorbing solution according to claim 1, wherein the carbon dioxide chemically absorbing amine is at least one of dialkanolamine and N-alkylmonoalkanolamine. 前記二酸化炭素吸収性アミンは、ジエタノールアミン、ジプロパノールアミン、ジブタノールアミン、N−メチルエタノールアミン、N−エチルエタノールアミン、3−メチルアミノ−1−プロパノ―ル、N−ブチルエタノールアミン、N−プロピルエタノールアミンのいずれか1以上である、請求項2に記載の二酸化炭素吸収液。 The carbon dioxide-absorbing amines are diethanolamine, dipropanolamine, dibutanolamine, N-methylethanolamine, N-ethylethanolamine, 3-methylamino-1-propanol, N-butylethanolamine, N-propyl. The carbon dioxide absorbing solution according to claim 2, which is at least one of ethanolamine. 前記二酸化炭素化学吸収性アミンは、ジエタノールアミンである、請求項3に記載の二酸化炭素吸収液。 The carbon dioxide absorbing liquid according to claim 3, wherein the carbon dioxide chemically absorbing amine is diethanolamine. 前記希釈剤は、ジメチルスルホキシド、ヘキサメチルリン酸トリアミド、1,3−ジメチル−2−イミダゾリジノン、N,N’−ジメチルプロピレン尿素、テトラメチル尿素、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチルホルムアミド、N−メチルアセトアミド、N−メチル−2−ピロリドン、スルホランである、請求項1〜4のいずれか1項に記載の二酸化炭素吸収液。 The diluents are dimethyl sulfoxide, hexamethylphosphoric acid triamide, 1,3-dimethyl-2-imidazolidinone, N, N'-dimethylpropylene urea, tetramethylurea, N, N-dimethylformamide, N, N-. The carbon dioxide absorbing solution according to any one of claims 1 to 4, which is dimethylacetamide, N-methylformamide, N-methylacetamide, N-methyl-2-pyrrolidone, or sulfolane. 前記3級多座アミンは、
1つの窒素原子に、水酸基を有する炭化水素基が2つと、水酸基を有しない炭化水素基が1つ結合した3級多座アミンである、請求項1〜5のいずれか1項に記載の二酸化炭素吸収液。
The tertiary polydentate amine is
The dioxide according to any one of claims 1 to 5, which is a tertiary polydentate amine in which two hydrocarbon groups having a hydroxyl group and one hydrocarbon group having no hydroxyl group are bonded to one nitrogen atom. Carbon absorber.
前記3級多座アミンは、N−メチルジエタノールアミン、N−エチルジエタノールアミン、又はN−ブチルジエタノールアミンのいずれか1以上である、請求項1〜6のいずれか1項に記載の二酸化炭素吸収液。 The carbon dioxide absorbing solution according to any one of claims 1 to 6, wherein the tertiary polydentate amine is at least one of N-methyldiethanolamine, N-ethyldiethanolamine, and N-butyldiethanolamine. 前記二酸化炭素化学吸収性アミンの割合は、前記二酸化炭素化学吸収性アミン/(前記二酸化炭素化学吸収性アミン+前記3級アミン溶媒+前記希釈剤)(質量比)で1/100〜50/100である、請求項1〜7のいずれか1項に記載の二酸化炭素吸収液。 The ratio of the carbon dioxide chemically absorbing amine is 1/100 to 50/100 of the carbon dioxide chemically absorbing amine / (the carbon dioxide chemically absorbing amine + the tertiary amine solvent + the diluent) (mass ratio). The carbon dioxide absorbing solution according to any one of claims 1 to 7. 前記希釈剤の含有割合は、前記希釈剤/(前記二酸化炭素化学吸収性アミン+前記3級アミン溶媒+前記希釈剤)(質量比)で1/100〜50/100である、請求項1〜8のいずれか1項に記載の二酸化炭素吸収液。 The content ratio of the diluent is 1/100 to 50/100 in terms of the diluent / (the carbon dioxide chemically absorbing amine + the tertiary amine solvent + the diluent) (mass ratio), claims 1 to 1. Item 8. The carbon dioxide absorbing solution according to any one of 8. 請求項1〜9のいずれか1項に記載の二酸化炭素吸収液を二酸化炭素を含む混合ガスと10℃以上40℃以下で接触させることによって、二酸化炭素を前記二酸化炭素吸収液に吸収させて、前記混合ガスから二酸化炭素を選択的に分離する吸収工程、及び、
前記の二酸化炭素を吸収した二酸化炭素吸収液を前記吸収温度より高温に加熱することで吸収した二酸化炭素を放散させて回収し、前記二酸化炭素吸収液を再生する加熱再生工程、を含む二酸化炭素分離回収方法。
By contacting the carbon dioxide absorbing solution according to any one of claims 1 to 9 with a mixed gas containing carbon dioxide at 10 ° C. or higher and 40 ° C. or lower, carbon dioxide is absorbed by the carbon dioxide absorbing solution. An absorption step that selectively separates carbon dioxide from the mixed gas, and
Carbon dioxide separation including a heating and regeneration step of heating the carbon dioxide absorbing liquid that has absorbed the carbon dioxide to a temperature higher than the absorption temperature to dissipate and recover the absorbed carbon dioxide and regenerate the carbon dioxide absorbing liquid. Collection method.
請求項1〜9のいずれか1項に記載の二酸化炭素吸収液を二酸化炭素を含む混合ガスと10℃以上40℃以下で接触させることによって、二酸化炭素を前記二酸化炭素吸収液に吸収させて、前記混合ガスから二酸化炭素を選択的に分離する吸収工程、及び、
前記の二酸化炭素を吸収した二酸化炭素吸収液を60℃以上100℃以下に加熱することで吸収した二酸化炭素を放散させて回収し、前記二酸化炭素吸収液を再生する加熱再生工程、を含む二酸化炭素分離回収方法。
By contacting the carbon dioxide absorbing solution according to any one of claims 1 to 9 with a mixed gas containing carbon dioxide at 10 ° C. or higher and 40 ° C. or lower, carbon dioxide is absorbed by the carbon dioxide absorbing solution. An absorption step that selectively separates carbon dioxide from the mixed gas, and
Carbon dioxide including a heating and regeneration step of heating the carbon dioxide absorbing liquid that has absorbed the carbon dioxide to 60 ° C. or higher and 100 ° C. or lower to dissipate and recover the absorbed carbon dioxide and regenerate the carbon dioxide absorbing liquid. Separation and recovery method.
請求項10又は11に記載の二酸化炭素分離回収方法を用いてバイオガス中のメタンガスを濃縮処理するバイオガス処理方法。
A biogas treatment method for concentrating methane gas in biogas using the carbon dioxide separation and recovery method according to claim 10 or 11.
JP2020058690A 2020-03-27 2020-03-27 Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method Pending JP2021154237A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020058690A JP2021154237A (en) 2020-03-27 2020-03-27 Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020058690A JP2021154237A (en) 2020-03-27 2020-03-27 Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method

Publications (1)

Publication Number Publication Date
JP2021154237A true JP2021154237A (en) 2021-10-07

Family

ID=77916461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020058690A Pending JP2021154237A (en) 2020-03-27 2020-03-27 Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method

Country Status (1)

Country Link
JP (1) JP2021154237A (en)

Similar Documents

Publication Publication Date Title
CA2838660C (en) Carbon dioxide absorber and carbon dioxide separation/recovery method using the absorber
JP5575122B2 (en) Method for removal of acid gases from absorbent and fluid streams, in particular exhaust gas
JP2895325B2 (en) Method for removing carbon dioxide in flue gas
KR101432951B1 (en) Aqueous solution capable of absorbing and collecting carbon dioxide in exhaust gas with high efficiency
JP2011525423A (en) Method for removal of acid gases from absorbent and fluid streams, in particular exhaust gas
JP5627956B2 (en) Method and apparatus for treating exhaust gas containing carbon dioxide
JP2008136989A (en) Mixed absorbent for carbon dioxide separation
JP6339094B2 (en) Aqueous CO2 absorbent comprising 2-amino-2-methyl-1-propanol and 3-aminopropanol or 2-amino-2-methyl-1-propanol and 4-aminobutanol
JP6685547B2 (en) Carbon dioxide absorption liquid and carbon dioxide separation and recovery method
JP5576879B2 (en) Carbon dioxide absorption liquid and recovery method
JP5707894B2 (en) Carbon dioxide recovery method and recovery apparatus
WO2018143192A1 (en) Composite amine absorbing solution, and device and method for removing co2 or h2s or both
JP5232361B2 (en) CO2 recovery device and CO2 recovery method
JP5527095B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2021154237A (en) Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method
RU2686925C1 (en) Liquid absorbent for co2 and/or n2s, as well as a device and a method using same
JP2021154236A (en) Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method
JP2015047581A (en) Carbon dioxide absorbent and carbon dioxide separation and recovery method using the same
JP2007000702A (en) Liquid absorbent, and device and method for removing co2 or h2s, or both
JP2013128899A (en) Control method of co2 recovery apparatus
JP5724600B2 (en) Carbon dioxide recovery method and recovery apparatus
JP2013022514A (en) Method and apparatus of recovering carbon dioxide
JP2012196603A (en) Method and device for recovering carbon dioxide
WO2021193963A1 (en) Absorption liquid for separating and recovering carbon dioxide from gas containing carbon dioxide, and carbon dioxide recovery method using same
JP5174216B2 (en) Absorbing liquid, CO2 or H2S removing apparatus and method using absorbing liquid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240410