WO2021193963A1 - Absorption liquid for separating and recovering carbon dioxide from gas containing carbon dioxide, and carbon dioxide recovery method using same - Google Patents

Absorption liquid for separating and recovering carbon dioxide from gas containing carbon dioxide, and carbon dioxide recovery method using same Download PDF

Info

Publication number
WO2021193963A1
WO2021193963A1 PCT/JP2021/013090 JP2021013090W WO2021193963A1 WO 2021193963 A1 WO2021193963 A1 WO 2021193963A1 JP 2021013090 W JP2021013090 W JP 2021013090W WO 2021193963 A1 WO2021193963 A1 WO 2021193963A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorption liquid
group
imidazole
general formula
Prior art date
Application number
PCT/JP2021/013090
Other languages
French (fr)
Japanese (ja)
Inventor
洋市 松崎
上代 洋
フィロツ アラム チョウドリ
Original Assignee
日本製鉄株式会社
公益財団法人地球環境産業技術研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社, 公益財団法人地球環境産業技術研究機構 filed Critical 日本製鉄株式会社
Priority to JP2022510767A priority Critical patent/JP7394963B2/en
Publication of WO2021193963A1 publication Critical patent/WO2021193963A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/50Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C215/00Compounds containing amino and hydroxy groups bound to the same carbon skeleton
    • C07C215/02Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C215/04Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated
    • C07C215/06Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic
    • C07C215/08Compounds containing amino and hydroxy groups bound to the same carbon skeleton having hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being saturated and acyclic with only one hydroxy group and one amino group bound to the carbon skeleton
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present disclosure relates to an absorption liquid for separating and recovering carbon dioxide from a gas containing carbon dioxide (hereinafter, also referred to as an absorption liquid) and a method for recovering carbon dioxide using the absorption liquid.
  • a method for separating and recovering carbon dioxide from the gas emitted from the source exemplified above several methods have been conventionally known.
  • a method is known in which a gas containing carbon dioxide is brought into contact with an aqueous solution of alkanolamine in an absorption tower to absorb carbon dioxide.
  • alkanolamine monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, diglycolamine and the like are known, and among them, monoethanolamine is widely used.
  • Patent Document 1 describes a combustion exhaust gas characterized by bringing a specific aqueous solution of hindered amine into contact with a combustion exhaust gas under atmospheric pressure. The method of removing carbon dioxide in it is described.
  • N-methylaminoethanol and N-ethylaminoethanol are described as hindered amines, and as other hindered amines, amines such as 2-isopropylaminoethanol are described, although examples are not described.
  • Patent Document 2 describes a method of absorbing a absorbing liquid and carbon dioxide that maximizes the performance while utilizing the characteristics of each amine by mixing a plurality of types of alkanolamines.
  • Patent Document 3 a study using a non-aqueous organic compound such as alcohol as a solvent instead of an aqueous solution using water having a high specific heat as a solvent is also underway.
  • alcohols are used instead of water, for example, the specific heat is lowered, and carbon dioxide is separated and recovered via an unstable alkyl carbonate, so that improvement in low temperature dissipation is expected.
  • Patent Document 4 describes an absorption liquid that uses a mixed liquid of ethylene glycol or the like and water as a solvent.
  • Patent Document 5 describes an absorbing liquid and a recovery method for removing carbon dioxide from a high-pressure gas having a partial pressure of carbon dioxide of 0.4 to 5 MPa. It is described that the heat energy required in the dissipation step can be reduced by intentionally using an absorbent having low absorbency such as a morphophosphorus compound and an imidazole compound in the absorbent solution.
  • Patent Document 6 describes a carbon dioxide absorbing aqueous solution containing 50% by mass of 2-amino-2-methyl-1-propanol (AMP) as an absorbent and 5% by mass of piperazine as an absorption accelerator. ..
  • AMP 2-amino-2-methyl-1-propanol
  • Patent Document 7 describes a carbon dioxide absorbing aqueous solution containing 10% by mass of piperazine as an absorbent and 20% by mass of 2- (isopropylamino) ethanol (IPAE) as an absorption aid.
  • IPAE 2- (isopropylamino) ethanol
  • Patent Document 8 describes a carbon dioxide absorbing aqueous solution adjusted so that 1-methylimidazole is 0.6 mol / L, piperazine is 2.8 mol / L, and methylaminoethanol is 0.2 mol / L.
  • Patent Document 9 describes a carbon dioxide absorbing solution obtained by adding mercaptobenzimidazoles as an oxidation inhibitor of alkanolamine to an aqueous solution of alkanolamine.
  • Patent Document 1 Japanese Patent No. 2871334 Patent Document 2: Japanese Patent No. 5452222 Patent Document 3: Japanese Patent Application Laid-Open No. 2012-236165 Patent Document 4: International Publication No. 2016/152782 Patent Document 5: International Publication No. 2009/066754 Patent Document 6: Japanese Patent Application Laid-Open No. 2015-24374 Patent Document 7: Japanese Patent Application Laid-Open No. 2013-158718 Patent Document 8: International Publication No. 2011-121633 Patent Document 9: Japanese Patent Application Laid-Open No. 2012-45518
  • Patent Documents 1 to 9 disclose a technique for separating and recovering carbon dioxide with less energy.
  • the absorption liquid having the composition described in Patent Document 3 has extremely low carbon dioxide absorption efficiency, and it is necessary to absorb carbon dioxide in a low temperature range of 20 ° C to 25 ° C, and the energy required for cooling during absorption is required. There is a problem that extra is required.
  • the absorption liquid having the composition described in Patent Document 4 has improved carbon dioxide emission performance under low temperature conditions as compared with the conventional aqueous solution, but its viscosity is relatively high, so that the carbon dioxide absorption efficiency is lowered. There is a tendency.
  • Patent Document 5 The absorbing liquid and the recovery method described in Patent Document 5 have low carbon dioxide absorption efficiency with respect to carbon dioxide having a relatively low partial pressure (generally about 0.02 MPa) generated from a thermal power plant or a steel mill blast furnace. Therefore, the energy per unit mass of carbon dioxide recovered is high.
  • an object of the present disclosure is to provide an absorption liquid capable of separating and recovering carbon dioxide with high efficiency and low energy cost, and a method for recovering carbon dioxide using the absorption liquid.
  • the inventors of the present disclosure contain at least one specific alkanolamine compound, a specific imidazole compound and water, and the content of the alkanolamine compound. By setting Was found to be able to be separated and recovered. The inventors of the present disclosure have made further studies based on these findings, and have completed the present disclosure. That is, the present disclosure provides the following absorption liquid for separating and recovering carbon dioxide, and a method for separating and recovering carbon dioxide.
  • the content of the total absorption liquid is 30 to 70% by mass, and the alkanolamine compound represented by the following general formula (1) and The imidazole compound represented by the following general formula (2) and water and, Contains, An absorbent solution for separating and recovering carbon dioxide from a gas containing carbon dioxide.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 are independently hydrogen atoms or an alkyl group having 1 to 3 carbon atoms.
  • R 2 and R 3 are not all hydrogen atoms, and n is 1 or 2.
  • Im is an imidazole ring
  • a plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms
  • x is 1 or 2
  • x is 1.
  • L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • L is a single bond or a divalent linking group that connects two imidazole rings.
  • it is contained in the imidazole ring.
  • R 1 is a hydrogen atom, a methyl group, an ethyl group, n- propyl group, an isopropyl group or n- butyl group, R 2 and R 3, respectively
  • R 1 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group or an n-butyl group
  • R 2 and R 3 are hydrogen atoms.
  • R 1 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group or an n-butyl group
  • R 2 and R 3 are hydrogen atoms.
  • ⁇ 6> The absorption liquid according to any one of ⁇ 1> to ⁇ 5>, wherein the content of the imidazole compound is 5 to 35% by mass with respect to the entire absorption liquid.
  • the imidazole compound is an imidazole compound A represented by the following general formula (2A).
  • Ra is an alkyl group having 1 to 10 carbon atoms
  • the plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms
  • x is 1 or 2.
  • the imidazole compound A is a compound represented by the following general formula (2D), ⁇ 7>.
  • R 4 is an alkyl group having 1 to 4 carbon atoms
  • R 5 , R 6 and R 7 are independently hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, respectively.
  • the imidazole compound is at least one selected from the group consisting of imidazole, 1-methylimidazole, 1-ethylimidazole, 1-butyl imidazole, 1-isopropyl imidazole, 2-methyl imidazole, and 1,2-dimethyl imidazole.
  • the absorption liquid according to any one of ⁇ 1> to ⁇ 10>, wherein the total content of the alkanolamine compound, the imidazole compound, and the water is 99% by mass or more with respect to the entire absorption liquid.
  • ⁇ 12> A step A in which the absorption liquid according to any one of ⁇ 1> to ⁇ 11> is brought into contact with a gas containing carbon dioxide to obtain an absorption liquid that has absorbed carbon dioxide from the gas containing carbon dioxide.
  • Step B in which the absorption liquid is heated to desorb and dissipate carbon dioxide from the absorption liquid, and the released carbon dioxide is recovered.
  • ⁇ 13> The method according to ⁇ 12>, wherein in the step B, the absorption liquid is heated at 80 to 95 ° C. to desorb carbon dioxide.
  • an absorption liquid capable of separating and recovering carbon dioxide with higher efficiency and lower energy cost than a conventional absorption liquid consisting of an aqueous solution having an amine composition, and a method for recovering carbon dioxide using the absorption liquid. ..
  • the numerical range represented by using “-” means a range including the numerical values before and after “-” as the lower limit value and the upper limit value.
  • the numerical range when “greater than” or “less than” is added to the numerical values before and after “to” means a range in which these numerical values are not included as the lower limit value or the upper limit value.
  • the term “process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • the upper limit value described in one numerical range is the upper limit value of the numerical range described in another stepwise description, or the lower limit value described in one numerical range. May be replaced with the lower limit of the numerical range described in other steps.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • the combination of preferred embodiments is a more preferred embodiment.
  • the alkyl group having 3 or more carbon atoms may be a linear alkyl group or a branched alkyl group.
  • the absorption liquid for separating and recovering carbon dioxide of the present disclosure (sometimes referred to simply as “absorption liquid” in the present disclosure) has a content of 30 to 70% by mass with respect to the entire absorption liquid, and has the following general formula ( An alkanolamine compound represented by 1) (sometimes simply referred to as an "alkanolamine compound” in the present disclosure) and an imidazole compound represented by the following general formula (2) (simply “imidazole compound” in the present disclosure). It may be noted) and water.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 are independently hydrogen atoms or an alkyl group having 1 to 3 carbon atoms. Not all of R 1 , R 2 and R 3 are hydrogen atoms, and n is 1 or 2.
  • a plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, x is 1 or 2, and x is 1, L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and when x is 2, L is a single bond or a divalent linking group that connects two imidazole rings.
  • one of the two nitrogen atoms contained in the imidazole ring is bonded to R or L, and the other nitrogen atom is not bonded to either R or L.
  • the absorbent liquid according to the present disclosure can separate and recover carbon dioxide with high efficiency and low energy cost due to the above configuration.
  • the absorbent solution according to the present disclosure was found based on the following findings.
  • the absorption liquid for separating and recovering carbon dioxide recovers carbon dioxide by contacting it with a gas containing carbon dioxide.
  • Carbon dioxide is recovered in the absorption liquid by chemically reacting with components such as amines in the absorption liquid, and the chemical reaction is an exothermic reaction. If the heat generated during carbon dioxide recovery is large, the temperature of the absorbing liquid may rise. The lower the temperature of the absorption liquid, the higher the recovery efficiency of carbon dioxide. Therefore, it is necessary to suppress the increase in the temperature of the absorption liquid. However, if the temperature of the absorption liquid is lowered by a chiller or the like, the energy cost is high. Become. Therefore, it is necessary to suppress the heat generated during carbon dioxide capture.
  • the heat generated during carbon dioxide recovery is due to the solvation of the salt and solvent generated when carbon dioxide is recovered in the absorption liquid. Since the magnitude of solvation is proportional to the dielectric constant of the solvent in the absorbing liquid, the use of a non-aqueous solvent having a small dielectric constant suppresses heat generation generated during carbon dioxide recovery.
  • the inventor tried to study an absorption liquid using a non-aqueous solvent.
  • an alkanolamine compound was used as the amine of the absorption liquid and only ethylene glycol was used as the non-aqueous solvent as the solvent, it was clarified that the effect of suppressing heat generation generated during carbon dioxide recovery was low.
  • the reason is considered to be the structure of the salt generated when carbon dioxide is recovered in the absorption liquid.
  • bicarbonate ions In order to form bicarbonate ions, it is necessary to contain water in the absorption liquid, and when ethylene glycol alone is used as the solvent, carbamionate anion, which generates a large amount of heat, is preferentially generated, so that carbon dioxide can be recovered. It was considered that the effect of suppressing the fever generated at that time was low.
  • the inventor considered that it was appropriate to use a mixed solvent of water and a non-aqueous solvent as the solvent of the absorption liquid, and examined the solvent type.
  • a mixed solvent of water and ethylene glycol was used as the non-aqueous solvent
  • the recovery rate of carbon dioxide was lowered. It is considered that the reason is that a large number of hydrogen bonds were formed between water and ethylene glycol, and the clay of the absorption liquid was improved, so that the efficiency of the gas-liquid reaction was lowered.
  • the absorption liquid according to the present disclosure can separate and recover carbon dioxide with high efficiency and low energy cost by the above configuration.
  • carbon dioxide can be dissipated under lower temperature conditions without impairing the excellent carbon dioxide absorption efficiency with respect to the conventional absorption liquid composed of an aqueous solution having an amine composition.
  • the energy required for the separation and recovery of carbon dioxide is reduced, and carbon dioxide can be recovered efficiently and with low energy consumption.
  • by significantly improving the ability to dissipate carbon dioxide under low temperature conditions it is possible to utilize the so-called low-grade waste heat that was conventionally discarded, and the energy required for separation and recovery of carbon dioxide is greatly reduced. It is possible to do.
  • the absorption liquid according to the present disclosure contains an alkanolamine compound represented by the following general formula (1) in a proportion of 30 to 70% by mass with respect to the entire absorption liquid.
  • the alkanolamine compound contained in the absorption liquid according to the present disclosure may be one kind or two or more kinds, and when two or more kinds of alkanolamine compounds are contained, the total amount thereof is 30 to 70 with respect to the entire absorption liquid. It is mass%.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 are independently hydrogen atoms or an alkyl group having 1 to 3 carbon atoms, respectively, and R 1 , R 2 and R 3 are not all hydrogen atoms, and n is 1 or 2.
  • R 1 in the general formula (1) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • Specific examples of R 1 in the general formula (1) include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and the like.
  • hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group or n-butyl group are preferable, and methyl group and ethyl group are preferable from the viewpoint of separating and recovering carbon dioxide with high efficiency and low energy cost.
  • a group, an n-propyl group, an isopropyl group or an n-butyl group is more preferable, and an isopropyl group is further preferable.
  • N in the general formula (1) is 1 or 2, and 1 is more preferable.
  • R 2 and R 3 in the general formula (1) are independently hydrogen atoms or alkyl groups having 1 to 3 carbon atoms, and specifically, hydrogen atoms, methyl groups, ethyl groups, and n-propyl groups. Alternatively, an isopropyl group can be mentioned. Among these, a hydrogen atom or a methyl group is preferable.
  • Specific alkanolamine compounds represented by the general formula (1) include N-ethylaminoethanol, Nn-propylaminoethanol, N-isopropylaminoethanol, Nn-butylaminoethanol, and 2-amino.
  • Examples thereof include propanol, 3-n-butylamino-1-propanol, 3-isobutylamino-1-propanol and the like, which can also be used industrially.
  • the absorption liquid according to the present disclosure may contain at least one alkanolamine compound represented by the general formula (1), and may contain a mixed amine composed of a plurality of types of alkanolamine compounds.
  • R 1 is a hydrogen atom, a methyl group, an ethyl group, n- propyl group, an isopropyl group or n- butyl group, R 2 and R 3, respectively It is preferably an alkanolamine (I) that is independently a hydrogen atom or a methyl group and has n of 1 or 2.
  • R 1 is methyl group, ethyl group, n- propyl group, an isopropyl group or n- butyl group
  • R 2 and R 3 are hydrogen atom, More preferably, it is an alkanolamine (II) in which n is 1 or 2.
  • R 1 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group or an n-butyl group
  • R 2 and R 3 are hydrogen atoms.
  • n is 1 or 2 (II)
  • R 1 is hydrogen atom
  • R 2 and R 3 are each independently a hydrogen atom or a methyl group
  • a mixed amine of alkanolamine (III) in which n is 1 or 2 can be mentioned.
  • a mixed amine of N-isopropylaminoethanol as the alkanolamine (II) and 2-amino-2-methyl-1-propanol as the alkanolamine (III) is preferable.
  • the total amount of the alkanolamine compound in the absorption liquid according to the present disclosure will be described.
  • the higher the concentration of the amine component the larger the absorption amount, absorption rate, desorption amount and desorption rate of carbon dioxide per unit liquid volume, which is desirable from the viewpoint of energy consumption, size and efficiency of plant equipment.
  • the concentration of the amine component exceeds 70% of the total absorption liquid, the effect of water as an activator may decrease, the amount of carbon dioxide absorbed may decrease, the mixture of the amine component may decrease, and the viscosity may increase. Etc. occur.
  • the content of the alkanolamine compound in the absorption liquid according to the present disclosure is 70% by mass or less with respect to the entire absorption liquid due to problems such as a decrease in the mixing property of the alkanolamine compound and an increase in viscosity.
  • the absorption liquid according to the present disclosure contains an imidazole compound represented by the following general formula (2) as an imidazole compound.
  • the imidazole compound contained in the absorption liquid according to the present disclosure may be one kind or two or more kinds.
  • Im is an imidazole ring
  • a plurality of Rs are hydrogen atoms or alkyl groups having 1 to 10 carbon atoms that are independently bonded to the imidazole ring.
  • L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms bonded to the imidazole ring
  • L connects two imidazole rings. It is a single bond or a divalent linking group.
  • one of the two nitrogen atoms contained in the imidazole ring is bonded to R or L, and the other nitrogen atom is not bonded to either R or L.
  • the "imidazole ring” means a ring of imidazole having the following structure, excluding each hydrogen atom bonded to N at the 1-position and C at the 2-position, 4-position, and 5-position.
  • Examples of the divalent linking group represented by L include a thiocarbonyl group and a carbonyl group.
  • piperazine disclosed in Patent Documents 6 to 8 is generally used as an absorption promoter, but since it has high reactivity with carbon dioxide, it requires a large amount of heat energy to dissipate carbon dioxide, and the energy cost is high. Will be higher.
  • the imidazole compound represented by the general formula (2) has a much lower basicity (reactivity with CO 2 ) than piperazine, and is advantageous in suppressing energy costs.
  • the imidazole compound represented by the general formula (2) has three types depending on the binding form of N at the 1-position of imidazole, that is, the imidazole compound A represented by the following general formula (2A) and the following general formula (2B). Examples thereof include the imidazole compound B represented by the imidazole compound and the imidazole compound C represented by the following general formula (2C).
  • Ra is an alkyl group having 1 to 10 carbon atoms
  • the plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms.
  • L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms
  • L is a single bond or divalent linking two imidazole rings. It is a linking group of. Examples of the divalent linking group include a thiocarbonyl group and a carbonyl group.
  • R a is preferably an alkyl group having 1 to 4 carbon atoms
  • L and R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms It is preferable that all of them are hydrogen atoms.
  • a plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, x is 1 or 2, and when x is 1, L is a hydrogen atom or carbon atoms. It is an alkyl group of 1 to 10, and when x is 2, L is a single bond or a divalent linking group that links two imidazole rings. Examples of the divalent linking group include a thiocarbonyl group and a carbonyl group. From the viewpoint of absorption characteristics and emission characteristics, x is preferably 1 in the general formula (2B), and L and R are preferably hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, both of which are hydrogen atoms. More preferably.
  • a plurality of Rs in each imidazole ring are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms
  • L is a single bond or a divalent linking group that connects two imidazole rings.
  • the divalent linking group include a thiocarbonyl group and a carbonyl group.
  • R is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in the general formula (2C), and more preferably both are hydrogen atoms.
  • the imidazole compounds A to C the imidazole compounds A and B having x of 1 in the general formulas (2A) and (2B) are more preferable, and the imidazole compound A is further preferable, from the viewpoint of absorption characteristics and emission characteristics.
  • Examples of the imidazole compound in which x is 1 in the general formulas (2A) and (2B) include the imidazole compound represented by the following general formula (2D).
  • R 4 , R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 4 represents an alkyl group having 1 to 4 carbon atoms
  • R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the imidazole compound represented by the general formula (2D) is preferably imidazole, 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, 1-isopropylimidazole, 1-butylimidazole, 2-methylimidazole, 2-.
  • 1-methylimidazole More preferably, 1-methylimidazole, 1-ethylimidazole, 1-propyl imidazole, 1-isopropyl imidazole and 1-butyl imidazole are mentioned, and 1-methyl imidazole is particularly preferable.
  • the content of the imidazole compound (total content when two or more kinds of imidazole compounds are contained) is preferably 5 to 35% by mass, preferably 10 to 35% by mass, based on the entire absorption liquid. It is more preferably 20% by mass.
  • the absorbing liquid according to the present disclosure contains water.
  • the content of water is not particularly limited, and the balance can be water, but it is preferably 5 to 60% by mass, more preferably 10 to 45% by mass, and 15 to 15 to 40% by mass with respect to the entire absorption liquid. 40% by mass is more preferable.
  • the water is not particularly limited, and distilled water, ion-exchanged water, tap water, groundwater and the like can be appropriately used.
  • the absorption liquid according to the present disclosure may contain, if necessary, other components other than the alkanolamine compound, the imidazole compound and water, as long as the effects of the present disclosure are not impaired.
  • Other components include stabilizers to ensure the chemical or physical stability of the liquid (eg, side reaction inhibitors such as antioxidants); deterioration of the material of equipment or equipment using the solutions of the present disclosure.
  • Preventive agents eg, corrosion inhibitors
  • antifoaming agents eg, surfactants
  • the content of these other components is not particularly limited as long as it does not impair the effects of the present disclosure.
  • the absorption liquid according to the present disclosure does not contain piperazine, or even if it contains piperazine, the content of piperazine is preferably 1% by mass or less with respect to the entire absorption liquid, and more preferably does not contain piperazine.
  • the absorption liquid according to the present disclosure may have a total content of the alkanolamine compound, the imidazole compound and water of 95% by mass or more, 98% by mass or more, or 99% by mass or more with respect to the entire absorption liquid.
  • the content of each component in the absorption liquid according to the present disclosure reflects the addition amount (mass%) of each component when preparing the absorption liquid, but the content of each component in the absorption liquid is GC-FID ( It can be quantified by gas chromatograph-hydrogen flame ionization detector).
  • the method for producing the absorbent liquid according to the present disclosure is not particularly limited.
  • an alkanolamine compound, an imidazole compound, and water, and if necessary, other components are prepared, and the content of the alkanolamine compound is 30 to 70% by mass with respect to the entire absorption liquid, and the content of the imidazole compound is high.
  • the absorbent solution according to the present disclosure can be prepared by mixing so that the content is preferably 5 to 35% and the water content is preferably 5 to 60% by mass.
  • the method for separating and recovering carbon dioxide from the carbon dioxide-containing gas according to the present disclosure is a step A in which the absorption liquid is brought into contact with the carbon dioxide-containing gas to obtain an absorption liquid that has absorbed carbon dioxide from the carbon dioxide-containing gas.
  • Step A Step of obtaining an absorbent liquid that has absorbed carbon dioxide
  • a gas containing carbon dioxide By contacting the absorption liquid with a gas containing carbon dioxide, carbon dioxide can be absorbed by the absorption liquid.
  • Gases containing carbon dioxide include, for example, exhaust gas from thermal power plants that use heavy oil, natural gas, etc. as fuel; exhaust gas from boilers in factories; exhaust gas from kilns in cement factories; Exhaust gas from a blast furnace at a steelworks; exhaust gas from a converter at a steelworks that burns carbon in iron iron to make steel; etc.
  • the carbon dioxide concentration in the gas is not particularly limited, and may be usually 5 to 30% by volume, particularly 10 to 20% by volume. In such a carbon dioxide concentration range, the effects of the present disclosure are preferably exhibited.
  • the gas containing carbon dioxide may contain impurity gas derived from a source such as water vapor or CO in addition to carbon dioxide.
  • the method of bringing the gas containing carbon dioxide into contact with the absorption liquid is not particularly limited, and for example, a method of bubbling the gas containing carbon dioxide in the absorption liquid; a method of atomizing the absorption liquid in a gas stream containing carbon dioxide. (Spraying or spraying method); A method in which a gas containing carbon dioxide and an absorbing liquid are brought into countercurrent contact in an absorption tower containing a filler made of porcelain or metal mesh; and the like.
  • the temperature at which carbon dioxide in the gas containing carbon dioxide is absorbed by the absorbing liquid is usually 60 ° C. or lower, preferably 50 ° C. or lower, and more preferably 20 to 45 ° C.
  • Absorption of carbon dioxide by amine is an exothermic reaction, and if an attempt is made to increase the amount of carbon dioxide absorbed under low temperature conditions, energy is required to cool the absorption liquid. Is usually preferably carried out at around 40 ° C.
  • the carbon dioxide absorption process is usually performed under atmospheric pressure. Although it can be carried out under pressurization in order to enhance the carbon dioxide absorption performance, it is preferably carried out under atmospheric pressure from the viewpoint of suppressing energy consumption for pressurization.
  • Process B Carbon dioxide emission and recovery process
  • a method of desorbing and dissipating carbon dioxide from the absorbing liquid that has absorbed carbon dioxide for example, a method of heating the absorbing liquid and foaming it in a kettle to remove it; a shelf tower, a spray tower, a porcelain or a metal net A method of expanding the liquid interface and heating in a desorption tower containing the filler of the above; By these methods, carbon dioxide existing as bicarbonate ions in the absorption liquid is desorbed as molecular carbon dioxide and released.
  • the absorption liquid when carbon dioxide is conventionally desorbed from the absorption liquid and dissipated, the absorption liquid is set to 100 to 120 ° C. when a conventional aqueous solution is used as the absorption liquid.
  • the higher the temperature of the absorption liquid the greater the amount of carbon dioxide emitted, but as the temperature rises, the energy required to heat the absorption liquid increases, so that temperature is the gas temperature and heat recovery in the process of discharging gas containing carbon dioxide. Determined by goals, etc.
  • the absorption liquid when carbon dioxide is desorbed from the absorption liquid and dissipated, for example, the absorption liquid can be set to 70 to 120 ° C, and can be set to 70 to 95 ° C. can.
  • the absorption liquid can be set to 70 to 120 ° C, and can be set to 70 to 95 ° C. can.
  • the absorbed liquid after desorbing and dissipating carbon dioxide in the step B can be sent to the step A again and recycled (recycled).
  • Example 1 1 MIm
  • water and IPAE were mixed at a mass ratio of 5:40:55 to obtain an absorbent solution.
  • Example 2 1 MIm
  • water and IPAE were mixed at a mass ratio of 10:35:55 to obtain an absorbent solution.
  • Example 3 1 MIm
  • water and IPAE were mixed at a mass ratio of 15:30:55 to obtain an absorbent solution.
  • Example 4 1 MIm
  • water and IPAE were mixed at a mass ratio of 20:25:55 to obtain an absorbent solution.
  • Example 5 1 MIm
  • water and IPAE were mixed at a mass ratio of 25:20:55 to obtain an absorbent solution.
  • Example 11 Im, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
  • Example 12 2MIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
  • Example 13 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
  • Example 14 1EtIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
  • Example 15 1 BuIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
  • Example 21 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 15:30:40:15 to obtain an absorbent solution.
  • Example 22 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 20:25:40:15 to obtain an absorbent solution.
  • Example 23 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 25:20:40:15 to obtain an absorbent solution.
  • Example 24> 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 35:10:40:15 to obtain an absorbent solution.
  • Example 25> 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:30:45:15 to obtain an absorbent solution.
  • Example 26 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 15:25:45:15 to obtain an absorbent solution.
  • Example 27 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:45:10 to obtain an absorbent solution.
  • Example 28 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:50: 5 to obtain an absorbent solution.
  • Example 29> 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:30:55: 5 to obtain an absorbent solution.
  • Example 30 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:25:60: 5 to obtain an absorbent solution.
  • Example 31 1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:20:65: 5 to obtain an absorbent solution.
  • Example 32 1 MIm, water, IPAE and EAE were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
  • Example 33 1 MIm, water, IPAE and NBAE were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
  • Example 34 1 MIm, water, IPAE and 2A1P were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
  • Example 35 BIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
  • Example 36 1,1'-SIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
  • Example 37 1 MIm, water and IPAE were mixed at a mass ratio of 10:55:35 to obtain an absorbent solution.
  • Example 38 > 1 MIm, water and IPAE were mixed at a mass ratio of 10:60:30 to obtain an absorbent solution.
  • the alkanolamine compound, imidazole compound and ethylene glycol used in the above Examples and Comparative Examples are reagent manufacturers such as Tokyo Chemical Industry Co., Ltd., and general purity products are used. IPAE is manufactured by Koei Chemical Industry Co., Ltd. and has a purity of 99% or more. As the water, ion-exchanged water was used.
  • the circumference of the glass reaction vessel is covered with an electric heater, and the temperature of the absorption liquid in the glass reaction vessel is arbitrarily controlled by a temperature controller.
  • the gas in the upper part of the glass reaction vessel was replaced with nitrogen gas.
  • the absorption liquid in the glass reaction vessel is kept at 40 ° C., and the carbon dioxide gas at a flow rate of 0.14 L / min and the nitrogen gas at a flow rate of 0.56 L / min are mixed with sufficient stirring at a rotation speed of 700 rpm in the glass reaction vessel.
  • the step A was started by blowing into the absorption liquid inside, and continued for 2 hours. After the step A was completed, the absorption liquid in the glass reaction vessel was heated to 80 ° C.
  • the exhaust gas from the glass reaction vessel was analyzed by a carbon dioxide concentration meter.
  • the amount of carbon dioxide dissolved in the absorption solution that is, the amount of absorption was determined from the time course of the carbon dioxide concentration obtained from the carbon dioxide concentration meter.
  • the amount of carbon dioxide emitted from the absorption liquid by heating was defined as a value obtained by subtracting the amount of carbon dioxide dissolved 2 hours after the start of the step B from the amount of carbon dioxide absorbed 2 hours after the start of the step A.
  • the emission rate of carbon dioxide from the absorption liquid was defined as a change in the amount of carbon dioxide absorbed per unit time in 10 minutes after the start of emission of carbon dioxide in the step B.
  • the percentage of the amount of carbon dioxide absorbed to the amount of carbon dioxide absorbed was defined as the emission rate.
  • Tables 1 to 3 show the compositions of the absorbents and the evaluation results in Examples and Comparative Examples.
  • At least one of the alkanolamine compounds represented by the general formula (1) is represented by the general formula (2) in an amount of 30 to 70% by mass. It was confirmed that the absorption liquid for separating and recovering carbon dioxide from the carbon dioxide-containing gas containing the imidazole compound and water has an increase in the amount of carbon dioxide emission, the emission rate, and the emission rate as compared with the conventional absorption solution. Will be done.
  • At least one of the alkanolamine compounds represented by the general formula (1) is represented by the general formula (2) in an amount of 30 to 70% by mass.
  • the absorbent solution for separating and recovering carbon dioxide from the carbon dioxide-containing gas containing the imidazole compound and water has higher emission performance while generally maintaining higher emission performance than the absorbent solution containing ethylene glycol instead of the imidazole compound. An increase in absorption rate is confirmed.
  • the absorption liquid according to the present disclosure is higher than the conventional aqueous solution even if the carbon dioxide emission step is carried out at a relatively low temperature of 80 to 85 ° C. It is confirmed that it shows performance.
  • Example 2 Furthermore, from the comparison between Example 2 and Example 13, only IPAE was used as compared with the case where AMP (corresponding to alkanolamine (I)) and IPAE (corresponding to alkanolamine (II)) were used in combination as alkanolamine. It is confirmed that the emission rate is higher.
  • the absorption liquid according to the present disclosure it is possible to obtain a sufficient emission amount even under extremely low temperature conditions of 80 to 95 ° C. as compared with the conventional case. Furthermore, since the emission rate of carbon dioxide and the emission amount relative to the absorption amount of carbon dioxide can be increased, carbon dioxide can be recovered at a lower energy cost.
  • the carbon dioxide recovered in this way is usually 99% by volume or more and has an extremely high purity, and can be used in the chemical industry or the food industry. It can also be used for underground isolation in EOR (Enhanced Oil Recovery) and CCS (Carbon dioxide Capture and Storage), which are currently under consideration for practical use.

Abstract

Provided is an absorption liquid for separating and recovering carbon dioxide from gas containing carbon dioxide, the absorption liquid containing an alkanolamine compound represented by formula (1) and accounting for 30-70 mass% of the entire absorption liquid, an imidazole compound represented by formula (2), and water. R1 is a hydrogen atom or an alkyl group of 1-4 carbon atoms, R2 and R3 are each independently a hydrogen atom or an alkyl group of 1-3 carbon atoms, R1, R2, and R3 are not all hydrogen atoms, and n is 1 or 2. Im is an imidazole ring, the plurality of R are each independently a hydrogen atom or alkyl group of 1-10 carbon atoms bonded to the imidazole ring, and x is 1 or 2. If x is 1, L is a hydrogen atom or alkyl group of 1-10 carbon atoms bonded to the imidazole ring, and if x is 2, L is a single bond or a divalent linking group bonded to an imidazole ring and connecting two imidazole rings.

Description

二酸化炭素を含むガスから二酸化炭素を分離回収するための吸収液及びそれを用いた二酸化炭素の回収方法Absorbent liquid for separating and recovering carbon dioxide from gas containing carbon dioxide and carbon dioxide recovery method using it
 本開示は、二酸化炭素を含むガスから二酸化炭素を分離回収するための吸収液(以下、吸収液とも称することがある)及びそれを用いた二酸化炭素の回収方法に関する。 The present disclosure relates to an absorption liquid for separating and recovering carbon dioxide from a gas containing carbon dioxide (hereinafter, also referred to as an absorption liquid) and a method for recovering carbon dioxide using the absorption liquid.
 近年、地球温暖化に起因すると考えられている気候変動及び自然災害が、農業生産、住環境、エネルギー消費等に多大な影響を及ぼしている。この地球温暖化は、人類の社会活動が活発になることに付随して増大する二酸化炭素、メタン、亜酸化窒素、フロン等の温室効果ガスが大気中に増大することが原因と考えられている。その温室効果ガスの中で最も主要なものとして大気中の二酸化炭素が挙げられており、二酸化炭素の大気中への排出量の削減に向けての対策が世界的な課題となっている。
 二酸化炭素の発生源としては、石炭、重油、天然ガス等を燃料とする火力発電所;コークスで酸化鉄を還元する製鐵所の高炉;銑鉄中の炭素を燃焼して製鋼する製鐵所の転炉;各種製造所におけるボイラー;セメント工場におけるキルン;ガソリン、重油、軽油等を燃料とする輸送機器(例えば、自動車、船舶、航空機等)がある。これらのうち、輸送機器以外は定置的な設備であり、二酸化炭素の大気中への排出量を削減する対策を施しやすい設備である。
In recent years, climate change and natural disasters, which are thought to be caused by global warming, have had a great impact on agricultural production, living environment, energy consumption, and so on. This global warming is thought to be caused by the increase in greenhouse gases such as carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons, which increase with the active social activity of humankind. .. Atmospheric carbon dioxide is cited as the most important greenhouse gas, and measures to reduce carbon dioxide emissions into the atmosphere have become a global issue.
The sources of carbon dioxide are thermal power plants that use coal, heavy oil, natural gas, etc. as fuel; blast furnaces at steel mills that reduce iron oxide with coke; Blast furnaces; boilers in various factories; kilns in cement factories; transportation equipment fueled by gasoline, heavy oil, light oil, etc. (for example, automobiles, ships, aircraft, etc.). Of these, equipment other than transportation equipment is stationary equipment, and it is easy to take measures to reduce the amount of carbon dioxide emitted into the atmosphere.
 上記で例示される発生源から排出されるガスから二酸化炭素を分離回収する方法としては、従来からいくつかの方法が知られている。
 例えば、二酸化炭素を含むガスを吸収塔内でアルカノールアミンの水溶液と接触させて二酸化炭素を吸収させる方法が知られている。ここでアルカノールアミンとしては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、メチルジエタノールアミン、ジイソプロパノールアミン、ジグリコールアミン等が知られているが、この中でもモノエタノールアミンが汎用されている。
As a method for separating and recovering carbon dioxide from the gas emitted from the source exemplified above, several methods have been conventionally known.
For example, a method is known in which a gas containing carbon dioxide is brought into contact with an aqueous solution of alkanolamine in an absorption tower to absorb carbon dioxide. Here, as the alkanolamine, monoethanolamine, diethanolamine, triethanolamine, methyldiethanolamine, diisopropanolamine, diglycolamine and the like are known, and among them, monoethanolamine is widely used.
 しかし、これらのアルカノールアミンの水溶液を二酸化炭素の吸収液として用いる場合、モノエタノールアミンのような一級アミンは装置の材質の腐食性が高いため、高価な耐食鋼を用いること、吸収液中のアミン濃度を低くすること等が必要となる。また、吸収した二酸化炭素の放散及び回収は、一般的には再生塔内で吸収液を約120℃に加熱することにより行うが、前記のアルカノールアミンでは、吸収塔内における二酸化炭素の吸収量と再生塔内での二酸化炭素の放散量とが十分でないため、結果的に二酸化炭素単位質量当たりの回収に大きなエネルギーが必要となる。 However, when an aqueous solution of these alkanolamines is used as an absorbent for carbon dioxide, primary amines such as monoethanolamine are highly corrosive to the material of the device, so expensive corrosion-resistant steel should be used, and amines in the absorbent should be used. It is necessary to lower the concentration. Further, the emission and recovery of the absorbed carbon dioxide are generally carried out by heating the absorption liquid to about 120 ° C. in the regeneration tower, but in the above-mentioned alkanolamine, the amount of carbon dioxide absorbed in the absorption tower Since the amount of carbon dioxide emitted in the regeneration tower is not sufficient, a large amount of energy is required for recovery per unit mass of carbon dioxide as a result.
 二酸化炭素の発生の削減、省エネルギー及び省資源が求められる時代において、二酸化炭素吸収及び回収における大量のエネルギー消費は、当該技術の実用化を阻む大きな要因となっており、より少ないエネルギーでの二酸化炭素の分離回収技術が求められている。
 そのため、より少ないエネルギーで二酸化炭素の分離回収をするための従来技術として、例えば、特許文献1には、特定のヒンダードアミンの水溶液と大気圧下の燃焼排ガスとを接触させることを特徴とする燃焼排ガス中の二酸化炭素の除去方法が記載されている。その実施例では、ヒンダードアミンとしてN-メチルアミノエタノール及びN-エチルアミノエタノールが記載され、その他のヒンダードアミンとしては、実施例の記載はないが、2-イソプロピルアミノエタノール等のアミンが記載されている。
 また、特許文献2では、複数種のアルカノールアミンを混合することにより、個々のアミンの特性を活かしつつ、最大限の性能を発揮させる吸収液及び二酸化炭素を吸収させる方法が記載されている。
In an era where reduction of carbon dioxide generation, energy saving and resource saving are required, a large amount of energy consumption in carbon dioxide absorption and recovery is a major factor hindering the practical application of the technology, and carbon dioxide with less energy is required. Separation and recovery technology is required.
Therefore, as a conventional technique for separating and recovering carbon dioxide with less energy, for example, Patent Document 1 describes a combustion exhaust gas characterized by bringing a specific aqueous solution of hindered amine into contact with a combustion exhaust gas under atmospheric pressure. The method of removing carbon dioxide in it is described. In that example, N-methylaminoethanol and N-ethylaminoethanol are described as hindered amines, and as other hindered amines, amines such as 2-isopropylaminoethanol are described, although examples are not described.
Further, Patent Document 2 describes a method of absorbing a absorbing liquid and carbon dioxide that maximizes the performance while utilizing the characteristics of each amine by mixing a plurality of types of alkanolamines.
 一方、特許文献3では、比熱の高い水を溶媒とする水溶液に代わって、アルコール等の非水有機化合物を溶媒とする検討も進められている。水の代わりに例えばアルコール類を使用すると比熱が低くなり、且つ不安定なアルキルカーボネートを経由する二酸化炭素の分離回収工程を経ることから、低温放散性の向上等が期待される。 On the other hand, in Patent Document 3, a study using a non-aqueous organic compound such as alcohol as a solvent instead of an aqueous solution using water having a high specific heat as a solvent is also underway. When alcohols are used instead of water, for example, the specific heat is lowered, and carbon dioxide is separated and recovered via an unstable alkyl carbonate, so that improvement in low temperature dissipation is expected.
 特許文献4には、エチレングリコール等と水との混合液を溶媒として用いる吸収液が記載されている。 Patent Document 4 describes an absorption liquid that uses a mixed liquid of ethylene glycol or the like and water as a solvent.
 特許文献5には、二酸化炭素の分圧が0.4~5MPaである高圧ガスから二酸化炭素を除去するための吸収液及び回収方法が記載されている。該吸収液は、モルフォリン化合物及びイミダゾール化合物の様な吸収性の低い吸収剤を敢えて用いることにより、放散工程で要する熱エネルギーを削減できることが記載されている。 Patent Document 5 describes an absorbing liquid and a recovery method for removing carbon dioxide from a high-pressure gas having a partial pressure of carbon dioxide of 0.4 to 5 MPa. It is described that the heat energy required in the dissipation step can be reduced by intentionally using an absorbent having low absorbency such as a morphophosphorus compound and an imidazole compound in the absorbent solution.
 また、特許文献6には、吸収剤として50質量%の2-アミノ-2-メチル-1-プロパノール(AMP)、吸収促進剤として5質量%のピペラジンを含む二酸化炭素吸収水溶液が記載されている。 Further, Patent Document 6 describes a carbon dioxide absorbing aqueous solution containing 50% by mass of 2-amino-2-methyl-1-propanol (AMP) as an absorbent and 5% by mass of piperazine as an absorption accelerator. ..
 特許文献7には、吸収剤として10質量%のピペラジン、吸収助剤として20質量%の2-(イソプロピルアミノ)エタノール(IPAE)を含む二酸化炭素吸収水溶液が記載されている。 Patent Document 7 describes a carbon dioxide absorbing aqueous solution containing 10% by mass of piperazine as an absorbent and 20% by mass of 2- (isopropylamino) ethanol (IPAE) as an absorption aid.
 特許文献8には、1-メチルイミダゾールを0.6mol/L、ピペラジンを2.8mol/L、メチルアミノエタノール0.2mol/Lとなるように調整した二酸化炭素吸収水溶液が記載されている。 Patent Document 8 describes a carbon dioxide absorbing aqueous solution adjusted so that 1-methylimidazole is 0.6 mol / L, piperazine is 2.8 mol / L, and methylaminoethanol is 0.2 mol / L.
 特許文献9には、アルカノールアミンの水溶液に、アルカノールアミンの酸化抑制剤としてメルカプトベンズイミダゾール類を添加した二酸化炭素吸収液が記載されている。 Patent Document 9 describes a carbon dioxide absorbing solution obtained by adding mercaptobenzimidazoles as an oxidation inhibitor of alkanolamine to an aqueous solution of alkanolamine.
  特許文献1:特許第2871334号公報
  特許文献2:特許第5452222号公報
  特許文献3:特開2012-236165号公報
  特許文献4:国際公開第2016/152782号
  特許文献5:国際公開第2009/066754号
  特許文献6:特開2015-24374号公報
  特許文献7:特開2013-158718号公報
  特許文献8:国際公開第2011-121633号
  特許文献9:特開2012-45518号公報
Patent Document 1: Japanese Patent No. 2871334 Patent Document 2: Japanese Patent No. 5452222 Patent Document 3: Japanese Patent Application Laid-Open No. 2012-236165 Patent Document 4: International Publication No. 2016/152782 Patent Document 5: International Publication No. 2009/066754 Patent Document 6: Japanese Patent Application Laid-Open No. 2015-24374 Patent Document 7: Japanese Patent Application Laid-Open No. 2013-158718 Patent Document 8: International Publication No. 2011-121633 Patent Document 9: Japanese Patent Application Laid-Open No. 2012-45518
 このように、特許文献1~9には、より少ないエネルギーでの二酸化炭素の分離回収技術が開示されている。
 しかし、特許文献1及び特許文献2で例示される吸収液であっても、分離回収のためのエネルギーを十分に抑制できていない。
 特許文献3に記載された組成の吸収液は、二酸化炭素の吸収効率が極めて低く、二酸化炭素の吸収を20℃から25℃といった低温域で実施する必要があり、吸収の際に冷却に要するエネルギーが余分に必要となるという問題がある。
 特許文献4に記載された組成の吸収液は、従来の水溶液と比較して、二酸化炭素の低温条件下での放散性能は向上するが、粘性が比較的高いため、二酸化炭素吸収効率は低下する傾向が認められる。
 特許文献5に記載された吸収液及び回収方法は、火力発電所又は製鉄所高炉から発生する比較的低い分圧の二酸化炭素(一般に0.02MPa程度)に対しては、二酸化炭素吸収効率が低く、従って回収される二酸化炭素単位質量当たりのエネルギーが高くなる。
As described above, Patent Documents 1 to 9 disclose a technique for separating and recovering carbon dioxide with less energy.
However, even with the absorbents exemplified in Patent Document 1 and Patent Document 2, the energy for separation and recovery cannot be sufficiently suppressed.
The absorption liquid having the composition described in Patent Document 3 has extremely low carbon dioxide absorption efficiency, and it is necessary to absorb carbon dioxide in a low temperature range of 20 ° C to 25 ° C, and the energy required for cooling during absorption is required. There is a problem that extra is required.
The absorption liquid having the composition described in Patent Document 4 has improved carbon dioxide emission performance under low temperature conditions as compared with the conventional aqueous solution, but its viscosity is relatively high, so that the carbon dioxide absorption efficiency is lowered. There is a tendency.
The absorbing liquid and the recovery method described in Patent Document 5 have low carbon dioxide absorption efficiency with respect to carbon dioxide having a relatively low partial pressure (generally about 0.02 MPa) generated from a thermal power plant or a steel mill blast furnace. Therefore, the energy per unit mass of carbon dioxide recovered is high.
 また、特許文献6~8に記載されている吸収液に含まれるピペラジンは、二酸化炭素との反応性が高いため、二酸化炭素の放散に要する熱エネルギーが大きく、エネルギーコストが高くなる。
 また、特許文献9に記載されている吸収液に含まれるメルカプトベンズイミダゾールは、不快な臭いなどの問題がある。
Further, since the piperazine contained in the absorption liquids described in Patent Documents 6 to 8 has high reactivity with carbon dioxide, the heat energy required for the emission of carbon dioxide is large, and the energy cost is high.
Further, mercaptobenzimidazole contained in the absorption liquid described in Patent Document 9 has a problem such as an unpleasant odor.
 そこで、本開示は、高い効率で、且つ低いエネルギーコストで二酸化炭素を分離回収できる吸収液及びそれを用いた二酸化炭素の回収方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide an absorption liquid capable of separating and recovering carbon dioxide with high efficiency and low energy cost, and a method for recovering carbon dioxide using the absorption liquid.
 本開示の発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、吸収液が特定のアルカノールアミン化合物の少なくとも1種、特定のイミダゾール化合物及び水を含有し、アルカノールアミン化合物の含有量を特定の範囲とすることにより、二酸化炭素の吸収効率を損なわずに、二酸化炭素の低温条件下での放散速度及び放散率が顕著に向上し、二酸化炭素を含むガスから、効率的に二酸化炭素を分離回収できることを見出した。本開示の発明者らは、これらの知見に基づいてさらに検討を行い、本開示を完成するに至った。
 すなわち、本開示は、以下の二酸化炭素を分離回収するための吸収液、及び二酸化炭素を分離回収する方法を提供するものである。
<1>
 吸収液全体に対する含有量が30~70質量%であり、下記一般式(1)で表されるアルカノールアミン化合物と、
 下記一般式(2)で表されるイミダゾール化合物と、
 水と、
を含有する、
 二酸化炭素を含むガスから二酸化炭素を分離回収するための吸収液。
Figure JPOXMLDOC01-appb-C000005

 
(一般式(1)中、Rは、水素原子又は炭素数1~4のアルキル基、R及びRは、それぞれ独立して水素原子又は炭素数1~3のアルキル基であり、R、R及びRのすべてが水素原子であることはなく、nは1又は2である。)
Figure JPOXMLDOC01-appb-C000006

(一般式(2)中、Imはイミダゾール環であり、複数のRはそれぞれ独立して水素原子又は炭素数1~10のアルキル基であり、xは1又は2であり、xが1の場合、Lは水素原子又は炭素数1~10のアルキル基であり、xが2の場合、Lは、2つのイミダゾール環を連結する単結合又は2価の連結基である。但し、イミダゾール環に含まれる2つの窒素原子のうち一方の窒素原子はR又はLと結合し、他方の窒素原子はR及びLのいずれにも結合しない。)
<2>
 前記アルカノールアミン化合物が、前記一般式(1)中、Rが、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基であり、R及びRが、それぞれ独立して水素原子又はメチル基であり、nが1又は2であるアルカノールアミン(I)である、前記<1>に記載の吸収液。
<3>
 前記アルカノールアミン化合物が、前記一般式(1)中、Rが、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基であり、R及びRが水素原子であり、nが1又は2であるアルカノールアミン(II)である、前記<1>又は<2>に記載の吸収液。
<4>
 前記アルカノールアミン化合物が、前記一般式(1)中、Rが、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基であり、R及びRが水素原子であり、nが1又は2であるアルカノールアミン(II)と、
 前記一般式(1)中、Rが水素原子であり、R及びRが、それぞれ独立して水素原子又はメチル基であり、nが1又は2であるアルカノールアミン(III)と、を含有する、混合アミンである、前記<1>に記載の吸収液。
<5>
 前記アルカノールアミン(II)が、N-イソプロピルアミノエタノールであり、前記アルカノールアミン(III)が、2-アミノ-2-メチル-1-プロパノールである、前記<3>又は<4>に記載の吸収液。
<6>
 前記イミダゾール化合物の含有量が、吸収液全体に対して、5~35質量%である、前記<1>~<5>のいずれか一項に記載の吸収液。
<7>
 前記イミダゾール化合物が、下記一般式(2A)で表されるイミダゾール化合物Aである、<1>~<6>のいずれか一項に記載の吸収液。
Figure JPOXMLDOC01-appb-C000007

(一般式(2A)中、Rは炭素数1~10のアルキル基であり、複数のRはそれぞれ独立して水素原子又は炭素数1~10のアルキル基であり、xは1又は2であり、xが1の場合、Lは水素原子又は炭素数1~10のアルキル基であり、xが2の場合、Lは2つのイミダゾール環を連結する単結合又は2価の連結基である。)
<8>
 前記イミダゾール化合物Aが、下記一般式(2D)で表される化合物である、<7>
に記載の吸収液。
Figure JPOXMLDOC01-appb-C000008

(一般式(2D)中、Rは、炭素数1~4のアルキル基であり、R、R及びRは、それぞれ独立して水素原子又は炭素数1~4のアルキル基である。)
<9>
 前記イミダゾール化合物が、イミダゾール、1-メチルイミダゾール、1-エチルイミダゾール、1-ブチルイミダゾール、1-イソプロピルイミダゾール、2-メチルイミダゾール、及び、1,2-ジメチルイミダゾールからなる群から選ばれる少なくとも1種の化合物である、前記<1>~<6>のいずれか一項に記載の吸収液。
<10>
 前記イミダゾール化合物が、1-メチルイミダゾールである、前記<1>~<9>のいずれか一項に記載の吸収液。
<11>
 前記アルカノールアミン化合物、前記イミダゾール化合物、及び前記水の合計含有量が、前記吸収液全体に対して99質量%以上である前記<1>~<10>のいずれか一項に記載の吸収液。
As a result of intensive studies to achieve the above object, the inventors of the present disclosure contain at least one specific alkanolamine compound, a specific imidazole compound and water, and the content of the alkanolamine compound. By setting Was found to be able to be separated and recovered. The inventors of the present disclosure have made further studies based on these findings, and have completed the present disclosure.
That is, the present disclosure provides the following absorption liquid for separating and recovering carbon dioxide, and a method for separating and recovering carbon dioxide.
<1>
The content of the total absorption liquid is 30 to 70% by mass, and the alkanolamine compound represented by the following general formula (1) and
The imidazole compound represented by the following general formula (2) and
water and,
Contains,
An absorbent solution for separating and recovering carbon dioxide from a gas containing carbon dioxide.
Figure JPOXMLDOC01-appb-C000005


(In the general formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 and R 3 are independently hydrogen atoms or an alkyl group having 1 to 3 carbon atoms. 1 , R 2 and R 3 are not all hydrogen atoms, and n is 1 or 2.)
Figure JPOXMLDOC01-appb-C000006

(In the general formula (2), Im is an imidazole ring, a plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, x is 1 or 2, and x is 1. , L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and when x is 2, L is a single bond or a divalent linking group that connects two imidazole rings. However, it is contained in the imidazole ring. One of the two hydrogen atoms is bonded to R or L, and the other nitrogen atom is not bonded to either R or L.)
<2>
The alkanolamine compounds, in the general formula (1), R 1 is a hydrogen atom, a methyl group, an ethyl group, n- propyl group, an isopropyl group or n- butyl group, R 2 and R 3, respectively The absorption solution according to <1> above, which is an alkanolamine (I) independently having a hydrogen atom or a methyl group and n being 1 or 2.
<3>
In the alkanolamine compound, in the general formula (1), R 1 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group or an n-butyl group, and R 2 and R 3 are hydrogen atoms. The absorption solution according to <1> or <2> above, wherein n is an alkanolamine (II) of 1 or 2.
<4>
In the alkanolamine compound, in the general formula (1), R 1 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group or an n-butyl group, and R 2 and R 3 are hydrogen atoms. Alkanolamine (II) in which n is 1 or 2 and
In the general formula (1), alkanolamine (III) in which R 1 is a hydrogen atom, R 2 and R 3 are independently hydrogen atoms or methyl groups, and n is 1 or 2, respectively. The absorbing solution according to <1>, which is a mixed amine contained.
<5>
The absorption according to <3> or <4>, wherein the alkanolamine (II) is N-isopropylaminoethanol and the alkanolamine (III) is 2-amino-2-methyl-1-propanol. liquid.
<6>
The absorption liquid according to any one of <1> to <5>, wherein the content of the imidazole compound is 5 to 35% by mass with respect to the entire absorption liquid.
<7>
The absorption liquid according to any one of <1> to <6>, wherein the imidazole compound is an imidazole compound A represented by the following general formula (2A).
Figure JPOXMLDOC01-appb-C000007

(In the general formula (2A), Ra is an alkyl group having 1 to 10 carbon atoms, the plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, and x is 1 or 2. When x is 1, L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and when x is 2, L is a single bond or a divalent linking group that connects two imidazole rings. )
<8>
The imidazole compound A is a compound represented by the following general formula (2D), <7>.
Absorbent solution described in.
Figure JPOXMLDOC01-appb-C000008

(In the general formula (2D), R 4 is an alkyl group having 1 to 4 carbon atoms, and R 5 , R 6 and R 7 are independently hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, respectively. .)
<9>
The imidazole compound is at least one selected from the group consisting of imidazole, 1-methylimidazole, 1-ethylimidazole, 1-butyl imidazole, 1-isopropyl imidazole, 2-methyl imidazole, and 1,2-dimethyl imidazole. The absorbing solution according to any one of <1> to <6>, which is a compound.
<10>
The absorption liquid according to any one of <1> to <9>, wherein the imidazole compound is 1-methylimidazole.
<11>
The absorption liquid according to any one of <1> to <10>, wherein the total content of the alkanolamine compound, the imidazole compound, and the water is 99% by mass or more with respect to the entire absorption liquid.
<12>
 前記<1>~<11>のいずれか一項に記載の吸収液を、二酸化炭素を含むガスと接触させ、二酸化炭素を含むガスから二酸化炭素を吸収した吸収液を得る工程Aと、
 前記吸収液を加熱して、前記吸収液から二酸化炭素を脱離して放散させ、放散した二酸化炭素を回収する工程Bと、
 を有する二酸化炭素を含むガスから二酸化炭素を分離回収する方法。
<13>
 前記工程Bにおいて、前記吸収液を80~95℃で加熱して二酸化炭素を脱離する、前記<12>に記載の方法。
<12>
A step A in which the absorption liquid according to any one of <1> to <11> is brought into contact with a gas containing carbon dioxide to obtain an absorption liquid that has absorbed carbon dioxide from the gas containing carbon dioxide.
Step B in which the absorption liquid is heated to desorb and dissipate carbon dioxide from the absorption liquid, and the released carbon dioxide is recovered.
A method of separating and recovering carbon dioxide from a gas containing carbon dioxide.
<13>
The method according to <12>, wherein in the step B, the absorption liquid is heated at 80 to 95 ° C. to desorb carbon dioxide.
 本開示によれば、従来のアミン組成の水溶液からなる吸収液よりも、高い効率で、且つ低いエネルギーコストで二酸化炭素を分離回収できる吸収液及びそれを用いた二酸化炭素の回収方法が提供される。 According to the present disclosure, there is provided an absorption liquid capable of separating and recovering carbon dioxide with higher efficiency and lower energy cost than a conventional absorption liquid consisting of an aqueous solution having an amine composition, and a method for recovering carbon dioxide using the absorption liquid. ..
 以下、本開示の一例である実施形態について詳細に説明する。 Hereinafter, an embodiment which is an example of the present disclosure will be described in detail.
 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 「~」の前後に記載される数値に「超」または「未満」が付されている場合の数値範囲は、これら数値を下限値または上限値として含まない範囲を意味する。
 「工程」との用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の目的が達成されれば、本用語に含まれる。
 本開示に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値は他の段階的な記載の数値範囲の上限値に、又は一つの数値範囲で記載された下限値は他の段階的な記載の数値範囲の下限値に置き換えてもよい。
 また、本開示に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、好ましい態様の組み合わせは、より好ましい態様である。
 本開示において、炭素数が3以上のアルキル基は、直鎖のアルキル基でも分岐のアルキル基でもよい。
The numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
The numerical range when "greater than" or "less than" is added to the numerical values before and after "to" means a range in which these numerical values are not included as the lower limit value or the upper limit value.
The term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
In the numerical range described stepwise in the present disclosure, the upper limit value described in one numerical range is the upper limit value of the numerical range described in another stepwise description, or the lower limit value described in one numerical range. May be replaced with the lower limit of the numerical range described in other steps.
Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
In the present disclosure, the combination of preferred embodiments is a more preferred embodiment.
In the present disclosure, the alkyl group having 3 or more carbon atoms may be a linear alkyl group or a branched alkyl group.
<二酸化炭素を分離回収するための吸収液>
 本開示の二酸化炭素を分離回収するための吸収液(本開示において単に「吸収液」と記す場合がある。)は、吸収液全体に対する含有量が30~70質量%であり、下記一般式(1)で表されるアルカノールアミン化合物(本開示において単に「アルカノールアミン化合物」と記す場合がある。)と、下記一般式(2)で表されるイミダゾール化合物(本開示において単に「イミダゾール化合物」と記す場合がある。)と、水と、を含有する。
<Absorbent for separating and recovering carbon dioxide>
The absorption liquid for separating and recovering carbon dioxide of the present disclosure (sometimes referred to simply as "absorption liquid" in the present disclosure) has a content of 30 to 70% by mass with respect to the entire absorption liquid, and has the following general formula ( An alkanolamine compound represented by 1) (sometimes simply referred to as an "alkanolamine compound" in the present disclosure) and an imidazole compound represented by the following general formula (2) (simply "imidazole compound" in the present disclosure). It may be noted) and water.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
  一般式(1)中、Rは、水素原子又は炭素数1~4のアルキル基であり、R及びRは、それぞれ独立して水素原子又は炭素数1~3のアルキル基であり、R、R及びRのすべてが水素原子であることはなく、nは1又は2である。 In the general formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 and R 3 are independently hydrogen atoms or an alkyl group having 1 to 3 carbon atoms. Not all of R 1 , R 2 and R 3 are hydrogen atoms, and n is 1 or 2.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 一般式(2)中、Imはイミダゾール環であり、複数のRはそれぞれ独立して水素原子又は炭素数1~10のアルキル基であり、xは1又は2であり、xが1の場合、Lは水素原子又は炭素数1~10のアルキル基であり、xが2の場合、Lは、2つのイミダゾール環を連結する単結合又は2価の連結基である。但し、イミダゾール環に含まれる2つの窒素原子のうち一方の窒素原子はR又はLと結合し、他方の窒素原子はR及びLのいずれにも結合しない。 In the general formula (2), when Im is an imidazole ring, a plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, x is 1 or 2, and x is 1, L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and when x is 2, L is a single bond or a divalent linking group that connects two imidazole rings. However, one of the two nitrogen atoms contained in the imidazole ring is bonded to R or L, and the other nitrogen atom is not bonded to either R or L.
 本開示に係る吸収液は、上記構成により、高い効率で、且つ低いエネルギーコストで二酸化炭素を分離回収できる。本開示に係る吸収液は、次の知見により見出された。 The absorbent liquid according to the present disclosure can separate and recover carbon dioxide with high efficiency and low energy cost due to the above configuration. The absorbent solution according to the present disclosure was found based on the following findings.
 二酸化炭素を分離回収するための吸収液は、二酸化炭素を含むガスと接触させることで二酸化炭素を回収する。二酸化炭素は吸収液中のアミン等の成分と化学反応することで吸収液中に回収されるが、その化学反応は発熱反応である。二酸化炭素回収の際に発熱が大きい場合、吸収液の温度が上昇することがある。吸収液の温度が低いほど、二酸化炭素の回収効率は高くなるため、吸収液の温度の上昇を抑制することが必要であるが、チラー等により吸収液の温度を下げようとするとエネルギーコストが高くなる。よって、二酸化炭素回収の際に生じる発熱を抑制することが必要である。
 二酸化炭素回収の際に生じる発熱は、吸収液に二酸化炭素が回収されたときに生じる塩と溶媒との溶媒和による。溶媒和の大きさは、吸収液中の溶媒の誘電率に比例するため、誘電率の小さい非水系の溶媒を用いることで、二酸化炭素回収の際に生じる発熱が抑制される。
The absorption liquid for separating and recovering carbon dioxide recovers carbon dioxide by contacting it with a gas containing carbon dioxide. Carbon dioxide is recovered in the absorption liquid by chemically reacting with components such as amines in the absorption liquid, and the chemical reaction is an exothermic reaction. If the heat generated during carbon dioxide recovery is large, the temperature of the absorbing liquid may rise. The lower the temperature of the absorption liquid, the higher the recovery efficiency of carbon dioxide. Therefore, it is necessary to suppress the increase in the temperature of the absorption liquid. However, if the temperature of the absorption liquid is lowered by a chiller or the like, the energy cost is high. Become. Therefore, it is necessary to suppress the heat generated during carbon dioxide capture.
The heat generated during carbon dioxide recovery is due to the solvation of the salt and solvent generated when carbon dioxide is recovered in the absorption liquid. Since the magnitude of solvation is proportional to the dielectric constant of the solvent in the absorbing liquid, the use of a non-aqueous solvent having a small dielectric constant suppresses heat generation generated during carbon dioxide recovery.
 そこで発明者は、非水系の溶媒を用いた吸収液の検討を試みた。
 まず吸収液のアミンとしてアルカノールアミン化合物、溶媒として非水系の溶媒としてエチレングリコールのみを用いたところ、二酸化炭素回収の際に生じる発熱の抑制効果が低いことが明らかとなった。その理由は、吸収液に二酸化炭素が回収されたときに生じる塩の構造によると考えられる。吸収液に二酸化炭素が回収されたときに生じる塩の構造は、カルバミオン酸アニオン又は重炭酸イオンの2種類であり、前者の塩構造を形成すると発熱が大きい。重炭酸イオンを形成するためには、吸収液中に水を含有することが必要であり、溶媒としてエチレングリコールのみを用いると、発熱の大きいカルバミオン酸アニオンが優先的に生じたため、二酸化炭素回収の際に生じる発熱の抑制効果が低いと考えた。
Therefore, the inventor tried to study an absorption liquid using a non-aqueous solvent.
First, when an alkanolamine compound was used as the amine of the absorption liquid and only ethylene glycol was used as the non-aqueous solvent as the solvent, it was clarified that the effect of suppressing heat generation generated during carbon dioxide recovery was low. The reason is considered to be the structure of the salt generated when carbon dioxide is recovered in the absorption liquid. There are two types of salt structures generated when carbon dioxide is recovered in the absorption liquid, carbamionate anion and bicarbonate ion, and when the former salt structure is formed, heat generation is large. In order to form bicarbonate ions, it is necessary to contain water in the absorption liquid, and when ethylene glycol alone is used as the solvent, carbamionate anion, which generates a large amount of heat, is preferentially generated, so that carbon dioxide can be recovered. It was considered that the effect of suppressing the fever generated at that time was low.
 次に、発明者は、吸収液の溶媒として、水と非水系の溶媒との混合溶媒を用いることが適切と考え、溶媒種の検討を行った。
 吸収液のアミンとしてアルカノールアミン化合物、溶媒として水と非水系の溶媒としてエチレングリコールとの混合溶媒を用いたところ、二酸化炭素の回収速度が低下した。その理由は、水とエチレングリコールとで多数の水素結合を形成し、吸収液の粘土が向上したため、気液反応の効率が低下したことによると考えられる。
Next, the inventor considered that it was appropriate to use a mixed solvent of water and a non-aqueous solvent as the solvent of the absorption liquid, and examined the solvent type.
When an alkanolamine compound was used as the amine of the absorption liquid and a mixed solvent of water and ethylene glycol was used as the non-aqueous solvent, the recovery rate of carbon dioxide was lowered. It is considered that the reason is that a large number of hydrogen bonds were formed between water and ethylene glycol, and the clay of the absorption liquid was improved, so that the efficiency of the gas-liquid reaction was lowered.
 そして、吸収液のアミンとしてアルカノールアミン化合物、溶媒として水と非水系の溶媒としてイミダゾール化合物との混合溶媒を用い、アルカノールアミン化合物の含有量を特定の範囲内としたところ、二酸化炭素の回収の際に生じる発熱の抑制効果が高く、さらに二酸化炭素の回収速度が良好であることが見いだされた。 Then, when an alkanolamine compound was used as the amine of the absorption liquid and a mixed solvent of water and an imidazole compound was used as the solvent, and the content of the alkanolamine compound was within a specific range, the carbon dioxide was recovered. It was found that the effect of suppressing the heat generated in the solvent is high and the recovery rate of carbon dioxide is good.
 以上の知見により、本開示に係る吸収液は、上記構成により、高い効率で、且つ低いエネルギーコストで二酸化炭素を分離回収できることが見いだされた。
 本開示に係る吸収液によれば、従来のアミン組成の水溶液からなる吸収液に対し、優れた二酸化炭素吸収効率を損なわずに、より低温条件下での二酸化炭素の放散が可能となる。また、本開示に係る吸収液によれば、二酸化炭素をより低いエネルギー消費量で回収することが可能である。これにより二酸化炭素の分離回収に要するエネルギーは低減され、効率的且つ低エネルギー消費量で二酸化炭素を回収することができる。また、低温条件下での二酸化炭素の放散能力を大幅に改善したことにより、従来、廃棄されていた所謂、低品位廃熱の利用を可能とし、二酸化炭素の分離回収に要するエネルギーを大幅に削減することが可能である。
From the above findings, it has been found that the absorption liquid according to the present disclosure can separate and recover carbon dioxide with high efficiency and low energy cost by the above configuration.
According to the absorption liquid according to the present disclosure, carbon dioxide can be dissipated under lower temperature conditions without impairing the excellent carbon dioxide absorption efficiency with respect to the conventional absorption liquid composed of an aqueous solution having an amine composition. Further, according to the absorption liquid according to the present disclosure, it is possible to recover carbon dioxide with a lower energy consumption. As a result, the energy required for the separation and recovery of carbon dioxide is reduced, and carbon dioxide can be recovered efficiently and with low energy consumption. In addition, by significantly improving the ability to dissipate carbon dioxide under low temperature conditions, it is possible to utilize the so-called low-grade waste heat that was conventionally discarded, and the energy required for separation and recovery of carbon dioxide is greatly reduced. It is possible to do.
 以下、本開示に係る吸収液について詳細に説明する。
(アルカノールアミン化合物)
 本開示に係る吸収液は、下記一般式(1)で表されるアルカノールアミン化合物を、吸収液全体に対して30~70質量%の割合で含有する。本開示に係る吸収液に含まれるアルカノールアミン化合物は、1種でもよく2種以上でもよく、2種以上のアルカノールアミン化合物を含有する場合は、その合計量が吸収液全体に対して30~70質量%である。
Hereinafter, the absorption liquid according to the present disclosure will be described in detail.
(Alkanolamine compound)
The absorption liquid according to the present disclosure contains an alkanolamine compound represented by the following general formula (1) in a proportion of 30 to 70% by mass with respect to the entire absorption liquid. The alkanolamine compound contained in the absorption liquid according to the present disclosure may be one kind or two or more kinds, and when two or more kinds of alkanolamine compounds are contained, the total amount thereof is 30 to 70 with respect to the entire absorption liquid. It is mass%.
Figure JPOXMLDOC01-appb-C000011

 
Figure JPOXMLDOC01-appb-C000011

 
 一般式(1)中、Rは、水素原子又は炭素数1~4のアルキル基、R及びRは、それぞれ独立して水素原子又は炭素数1~3のアルキル基であり、R、R及びRのすべてが水素原子であることはなく、nは1又は2である。 In the general formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 and R 3 are independently hydrogen atoms or an alkyl group having 1 to 3 carbon atoms, respectively, and R 1 , R 2 and R 3 are not all hydrogen atoms, and n is 1 or 2.
 前記一般式(1)におけるRは、水素原子又は炭素数1~4のアルキル基である。
 前記一般式(1)におけるRは、具体的には、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。
 これらの中でも、高い効率で、且つ低いエネルギーコストで二酸化炭素を分離回収する観点から、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基が好ましく、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基がより好ましく、イソプロピル基が更に好ましい。
R 1 in the general formula (1) is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
Specific examples of R 1 in the general formula (1) include a hydrogen atom, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group and the like.
Among these, hydrogen atom, methyl group, ethyl group, n-propyl group, isopropyl group or n-butyl group are preferable, and methyl group and ethyl group are preferable from the viewpoint of separating and recovering carbon dioxide with high efficiency and low energy cost. A group, an n-propyl group, an isopropyl group or an n-butyl group is more preferable, and an isopropyl group is further preferable.
 前記一般式(1)におけるnは、1又は2であり、1がより好ましい。 N in the general formula (1) is 1 or 2, and 1 is more preferable.
 前記一般式(1)におけるR及びRは、それぞれ独立して水素原子又は炭素数1~3のアルキル基であり、具体的には、水素原子、メチル基、エチル基、n-プロピル基又はイソプロピル基が挙げられる。これらの中でも、水素原子又はメチル基が好ましい。 R 2 and R 3 in the general formula (1) are independently hydrogen atoms or alkyl groups having 1 to 3 carbon atoms, and specifically, hydrogen atoms, methyl groups, ethyl groups, and n-propyl groups. Alternatively, an isopropyl group can be mentioned. Among these, a hydrogen atom or a methyl group is preferable.
 前記一般式(1)で表される具体的なアルカノールアミン化合物としては、N-エチルアミノエタノール、N-n-プロピルアミノエタノール、N-イソプロピルアミノエタノール、N-n-ブチルアミノエタノール、2-アミノ-1-プロパノール、N-イソブチルアミノエタノール、2-アミノ-2-メチル-1-プロパノール、3-エチルアミノ-1-プロパノール、3-n-プロピルアミノ-1-プロパノール、3-イソプロピルアミノ-1-プロパノール、3-n-ブチルアミノ-1-プロパノール、3-イソブチルアミノ-1-プロパノール等が挙げられ、これらは工業的にも使用することができる。 Specific alkanolamine compounds represented by the general formula (1) include N-ethylaminoethanol, Nn-propylaminoethanol, N-isopropylaminoethanol, Nn-butylaminoethanol, and 2-amino. -1-propanol, N-isobutylaminoethanol, 2-amino-2-methyl-1-propanol, 3-ethylamino-1-propanol, 3-n-propylamino-1-propanol, 3-isopropylamino-1- Examples thereof include propanol, 3-n-butylamino-1-propanol, 3-isobutylamino-1-propanol and the like, which can also be used industrially.
 本開示に係る吸収液は、前記一般式(1)で表されるアルカノールアミン化合物を少なくとも1種含有していればよく、複数種のアルカノールアミン化合物からなる混合アミンを含有していてもよい。 The absorption liquid according to the present disclosure may contain at least one alkanolamine compound represented by the general formula (1), and may contain a mixed amine composed of a plurality of types of alkanolamine compounds.
 アルカノールアミン化合物としては、前記一般式(1)中、Rが、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基であり、R及びRが、それぞれ独立して水素原子又はメチル基であり、nが1又は2であるアルカノールアミン(I)であることが好ましい。 The alkanolamine compounds, in the general formula (1), R 1 is a hydrogen atom, a methyl group, an ethyl group, n- propyl group, an isopropyl group or n- butyl group, R 2 and R 3, respectively It is preferably an alkanolamine (I) that is independently a hydrogen atom or a methyl group and has n of 1 or 2.
 アルカノールアミン化合物としては、前記一般式(1)中、Rが、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基であり、R及びRが水素原子であり、nが1又は2であるアルカノールアミン(II)であることがより好ましい。 The alkanolamine compounds, in the general formula (1), R 1 is methyl group, ethyl group, n- propyl group, an isopropyl group or n- butyl group, R 2 and R 3 are hydrogen atom, More preferably, it is an alkanolamine (II) in which n is 1 or 2.
 混合アミンとしては、例えば、前記一般式(1)中、Rが、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基であり、R及びRが水素原子であり、nが1又は2であるアルカノールアミン(II)、及び前記一般式(1)中、Rが水素原子であり、R及びRが、それぞれ独立して水素原子又はメチル基であり、nが1又は2であるアルカノールアミン(III)の混合アミンを挙げることができる。
 その中でもアルカノールアミン(II)としてN-イソプロピルアミノエタノール、及びアルカノールアミン(III)として2-アミノ-2-メチル-1-プロパノールの混合アミンが好ましい。
As the mixed amine, for example, in the general formula (1), R 1 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group or an n-butyl group, and R 2 and R 3 are hydrogen atoms. during alkanolamine n is 1 or 2 (II), and the general formula (1), R 1 is hydrogen atom, R 2 and R 3 are each independently a hydrogen atom or a methyl group, A mixed amine of alkanolamine (III) in which n is 1 or 2 can be mentioned.
Among them, a mixed amine of N-isopropylaminoethanol as the alkanolamine (II) and 2-amino-2-methyl-1-propanol as the alkanolamine (III) is preferable.
 以下、本開示に係る吸収液のアルカノールアミン化合物の総量について述べる。
 一般的にはアミン成分の濃度が高い方が単位液容量あたりの二酸化炭素の吸収量、吸収速度、脱離量及び脱離速度が大きく、エネルギー消費、プラント設備の大きさ及び効率からは望ましいが、アミン成分の濃度が、吸収液全体に対して70%を越える場合、活性剤としての水の効果が減少するためか二酸化炭素の吸収量の低下、アミン成分の混合性の低下、粘度の上昇等の問題が生じる。
 本開示に係る吸収液は、アルカノールアミン化合物の混合性の低下、粘度の上昇等の問題より、アルカノールアミン化合物の含有量は、吸収液全体に対して、70質量%以下とする。一方、本開示の発明者らの実験によれば、アルカノールアミン化合物の含有量が吸収液全体に対して30質量%未満では、吸収性能が低いだけでなく、放散速度および放散量(=回収量)も大きく低下してしまう。そのため、実用的な吸収性能及び脱離性能の点からアルカノールアミン化合物の含有量は30質量%以上である。すなわち、アルカノールアミン化合物の含有量は、吸収液全体に対して、30~70質量%であり、好ましくは40~70質量%が選択される。
Hereinafter, the total amount of the alkanolamine compound in the absorption liquid according to the present disclosure will be described.
Generally, the higher the concentration of the amine component, the larger the absorption amount, absorption rate, desorption amount and desorption rate of carbon dioxide per unit liquid volume, which is desirable from the viewpoint of energy consumption, size and efficiency of plant equipment. If the concentration of the amine component exceeds 70% of the total absorption liquid, the effect of water as an activator may decrease, the amount of carbon dioxide absorbed may decrease, the mixture of the amine component may decrease, and the viscosity may increase. Etc. occur.
The content of the alkanolamine compound in the absorption liquid according to the present disclosure is 70% by mass or less with respect to the entire absorption liquid due to problems such as a decrease in the mixing property of the alkanolamine compound and an increase in viscosity. On the other hand, according to the experiments by the inventors of the present disclosure, when the content of the alkanolamine compound is less than 30% by mass with respect to the entire absorption liquid, not only the absorption performance is low, but also the emission rate and the emission amount (= recovered amount). ) Will also drop significantly. Therefore, the content of the alkanolamine compound is 30% by mass or more from the viewpoint of practical absorption performance and desorption performance. That is, the content of the alkanolamine compound is 30 to 70% by mass, preferably 40 to 70% by mass, based on the entire absorption liquid.
(イミダゾール化合物)
 本開示に係る吸収液は、イミダゾール化合物として、下記一般式(2)で表されるイミダゾール化合物を含有する。本開示に係る吸収液に含まれるイミダゾール化合物は、1種でもよく2種以上でもよい。
(Imidazole compound)
The absorption liquid according to the present disclosure contains an imidazole compound represented by the following general formula (2) as an imidazole compound. The imidazole compound contained in the absorption liquid according to the present disclosure may be one kind or two or more kinds.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 一般式(2)中、Imはイミダゾール環であり、複数のRはそれぞれ独立してイミダゾール環に結合する水素原子又は炭素数1~10のアルキル基である。xは1又は2であり、xが1の場合、Lはイミダゾール環に結合する水素原子又は炭素数1~10のアルキル基であり、xが2の場合、Lは2つのイミダゾール環を連結する単結合又は2価の連結基である。但し、イミダゾール環に含まれる2つの窒素原子のうち一方の窒素原子はR又はLと結合し、他方の窒素原子はR及びLのいずれにも結合しない。ここで、「イミダゾール環」とは、下記構造のイミダゾールにおいて、1位のN、並びに2位、4位、及び5位のCに結合する各水素原子を除く環を意味する。Lによって表される2価の連結基としては、チオカルボニル基、カルボニル基等が挙げられる。 In the general formula (2), Im is an imidazole ring, and a plurality of Rs are hydrogen atoms or alkyl groups having 1 to 10 carbon atoms that are independently bonded to the imidazole ring. When x is 1 or 2, L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms bonded to the imidazole ring, and when x is 2, L connects two imidazole rings. It is a single bond or a divalent linking group. However, one of the two nitrogen atoms contained in the imidazole ring is bonded to R or L, and the other nitrogen atom is not bonded to either R or L. Here, the "imidazole ring" means a ring of imidazole having the following structure, excluding each hydrogen atom bonded to N at the 1-position and C at the 2-position, 4-position, and 5-position. Examples of the divalent linking group represented by L include a thiocarbonyl group and a carbonyl group.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 例えば、特許文献6~8に開示されているピペラジンは一般的に吸収促進剤として使用されているが、二酸化炭素との反応性が高いため、二酸化炭素の放散に要する熱エネルギーが大きく、エネルギーコストが高くなる。
 一方、一般式(2)表されるイミダゾール化合物は、ピペラジンよりも塩基度(COとの反応性)がはるかに低く、エネルギーコストを抑制する点で有利である。
For example, piperazine disclosed in Patent Documents 6 to 8 is generally used as an absorption promoter, but since it has high reactivity with carbon dioxide, it requires a large amount of heat energy to dissipate carbon dioxide, and the energy cost is high. Will be higher.
On the other hand, the imidazole compound represented by the general formula (2) has a much lower basicity (reactivity with CO 2 ) than piperazine, and is advantageous in suppressing energy costs.
 一般式(2)で表されるイミダゾール化合物は、イミダゾールの1位のNの結合形態によって3つのタイプ、すなわち、下記一般式(2A)で表されるイミダゾール化合物A、下記一般式(2B)で表されるイミダゾール化合物B、及び下記一般式(2C)で表されるイミダゾール化合物Cが挙げられる。 The imidazole compound represented by the general formula (2) has three types depending on the binding form of N at the 1-position of imidazole, that is, the imidazole compound A represented by the following general formula (2A) and the following general formula (2B). Examples thereof include the imidazole compound B represented by the imidazole compound and the imidazole compound C represented by the following general formula (2C).
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 一般式(2A)中、Rは炭素数1~10のアルキル基であり、複数のRはそれぞれ独立して水素原子又は炭素数1~10のアルキル基である。xは1又は2であり、xが1の場合、Lは水素原子又は炭素数1~10のアルキル基であり、xが2の場合、Lは2つのイミダゾール環を連結する単結合又は2価の連結基である。2価の連結基としては、チオカルボニル基、カルボニル基等が挙げられる。
 吸収特性及び放散特性の観点から、xは1であることが好ましく、Rは炭素数1~4のアルキル基であることが好ましく、L及びRは水素原子又は炭素数1~4のアルキル基であることが好ましく、いずれも水素原子であることがより好ましい。
In the general formula (2A), Ra is an alkyl group having 1 to 10 carbon atoms, and the plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms. When x is 1 or 2, L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and when x is 2, L is a single bond or divalent linking two imidazole rings. It is a linking group of. Examples of the divalent linking group include a thiocarbonyl group and a carbonyl group.
From the viewpoint of absorption and dissipation properties, it is preferred that x is 1, R a is preferably an alkyl group having 1 to 4 carbon atoms, L and R is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms It is preferable that all of them are hydrogen atoms.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 一般式(2B)中、複数のRはそれぞれ独立して水素原子又は炭素数1~10のアルキル基であり、xは1又は2であり、xが1の場合、Lは水素原子又は炭素数1~10のアルキル基であり、xが2の場合、Lは2つのイミダゾール環を連結する単結合又は2価の連結基である。2価の連結基としては、チオカルボニル基、カルボニル基等が挙げられる。
 吸収特性及び放散特性の観点から、一般式(2B)においてxは1であることが好ましく、L及びRは水素原子又は炭素数1~4のアルキル基であることが好ましく、いずれも水素原子であることがより好ましい。
In the general formula (2B), a plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, x is 1 or 2, and when x is 1, L is a hydrogen atom or carbon atoms. It is an alkyl group of 1 to 10, and when x is 2, L is a single bond or a divalent linking group that links two imidazole rings. Examples of the divalent linking group include a thiocarbonyl group and a carbonyl group.
From the viewpoint of absorption characteristics and emission characteristics, x is preferably 1 in the general formula (2B), and L and R are preferably hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, both of which are hydrogen atoms. More preferably.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 一般式(2C)中、各イミダゾール環における複数のRはそれぞれ独立して水素原子又は炭素数1~10のアルキル基であり、Lは2つのイミダゾール環を連結する単結合又は2価の連結基である。2価の連結基としては、チオカルボニル基、カルボニル基等が挙げられる。
 吸収特性及び放散特性の観点から、一般式(2C)においてRは水素原子又は炭素数1~4のアルキル基であることが好ましく、いずれも水素原子であることがより好ましい。
In the general formula (2C), a plurality of Rs in each imidazole ring are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, and L is a single bond or a divalent linking group that connects two imidazole rings. Is. Examples of the divalent linking group include a thiocarbonyl group and a carbonyl group.
From the viewpoint of absorption characteristics and emission characteristics, R is preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms in the general formula (2C), and more preferably both are hydrogen atoms.
 吸収特性及び放散特性の観点から、イミダゾール化合物A~Cのうち、一般式(2A)及び(2B)においてxが1であるイミダゾール化合物A及びBがより好ましく、イミダゾール化合物Aがさらに好ましい。
 一般式(2A)及び(2B)においてxが1であるイミダゾール化合物としては、例えば、下記一般式(2D)で示されるイミダゾール化合物を挙げることができる。
Among the imidazole compounds A to C, the imidazole compounds A and B having x of 1 in the general formulas (2A) and (2B) are more preferable, and the imidazole compound A is further preferable, from the viewpoint of absorption characteristics and emission characteristics.
Examples of the imidazole compound in which x is 1 in the general formulas (2A) and (2B) include the imidazole compound represented by the following general formula (2D).
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 一般式(2D)中、R、R、R及びRは、それぞれ独立して水素原子又は炭素数1~4のアルキル基を示す。好ましくは、Rは、炭素数1~4のアルキル基を示し、R、R及びRは、それぞれ独立して水素原子又は炭素数1~4のアルキル基を示す。 In the general formula (2D), R 4 , R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. Preferably, R 4 represents an alkyl group having 1 to 4 carbon atoms, and R 5 , R 6 and R 7 each independently represent a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
 一般式(2D)で示されるイミダゾール化合物としては、好ましくは、イミダゾール、1-メチルイミダゾール、1-エチルイミダゾール、1-プロピルイミダゾール、1-イソプロピルイミダゾール、1-ブチルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-プロピルイミダゾール、2-イソプロピルイミダゾール、2-ブチルイミダゾール、1,2-ジメチルイミダゾール、1,4-ジメチルイミダゾール、1,5-ジメチルイミダゾール、2,4-ジメチルイミダゾール、4,5-ジメチルイミダゾール等を挙げることができる。より好ましくは、1-メチルイミダゾール、1-エチルイミダゾール、1-プロピルイミダゾール、1-イソプロピルイミダゾール、1-ブチルイミダゾールが挙げられ、特に好ましくは、1-メチルイミダゾールである。 The imidazole compound represented by the general formula (2D) is preferably imidazole, 1-methylimidazole, 1-ethylimidazole, 1-propylimidazole, 1-isopropylimidazole, 1-butylimidazole, 2-methylimidazole, 2-. Ethylimidazole, 2-propylimidazole, 2-isopropylimidazole, 2-butylimidazole, 1,2-dimethylimidazole, 1,4-dimethylimidazole, 1,5-dimethylimidazole, 2,4-dimethylimidazole, 4,5- Examples thereof include dimethylimidazole. More preferably, 1-methylimidazole, 1-ethylimidazole, 1-propyl imidazole, 1-isopropyl imidazole and 1-butyl imidazole are mentioned, and 1-methyl imidazole is particularly preferable.
 本開示に係る吸収液は、イミダゾール化合物を1種単独又は複数種を組み合わせて使用することができる。
 二酸化炭素の吸収効率を向上する観点から、吸収液全体に対する、イミダゾール化合物の含有量(イミダゾール化合物を2種以上含む場合は合計含有量)は、5~35質量%とすることが好ましく、10~20質量%とすることがより好ましい。
In the absorption liquid according to the present disclosure, one type of imidazole compound or a combination of a plurality of types of imidazole compounds can be used.
From the viewpoint of improving the absorption efficiency of carbon dioxide, the content of the imidazole compound (total content when two or more kinds of imidazole compounds are contained) is preferably 5 to 35% by mass, preferably 10 to 35% by mass, based on the entire absorption liquid. It is more preferably 20% by mass.
(水)
 本開示に係る吸収液は、水を含有する。
 水の含有量は、特に限定的なものではなく、残部を水とすることができるが、吸収液全体に対して、5~60質量%が好ましく、10~45質量%がより好ましく、15~40質量%が更に好ましい。
 なお、水は、特に限定されず、蒸留水、イオン交換水、水道水、地下水等を適宜用いることができる。
(water)
The absorbing liquid according to the present disclosure contains water.
The content of water is not particularly limited, and the balance can be water, but it is preferably 5 to 60% by mass, more preferably 10 to 45% by mass, and 15 to 15 to 40% by mass with respect to the entire absorption liquid. 40% by mass is more preferable.
The water is not particularly limited, and distilled water, ion-exchanged water, tap water, groundwater and the like can be appropriately used.
(その他の成分)
 また、本開示に係る吸収液は、アルカノールアミン化合物、イミダゾール化合物及び水以外のその他の成分を、必要に応じて、本開示の効果を阻害しない範囲で含んでいてもよい。その他の成分としては、液体の化学的又は物理的安定性を確保するための安定剤(例えば、酸化防止剤等の副反応抑制剤);本開示の溶液を用いる装置又は設備の材質の劣化を防ぐための防止剤(例えば、腐食防止剤);消泡剤(例えば、界面活性剤);等が挙げられる。これらその他の成分の含有量は、本開示の効果を阻害しない範囲であれば特に制限的なものではない。
(Other ingredients)
In addition, the absorption liquid according to the present disclosure may contain, if necessary, other components other than the alkanolamine compound, the imidazole compound and water, as long as the effects of the present disclosure are not impaired. Other components include stabilizers to ensure the chemical or physical stability of the liquid (eg, side reaction inhibitors such as antioxidants); deterioration of the material of equipment or equipment using the solutions of the present disclosure. Preventive agents (eg, corrosion inhibitors); antifoaming agents (eg, surfactants); and the like. The content of these other components is not particularly limited as long as it does not impair the effects of the present disclosure.
 なお、その他の成分としてピペラジンを含有すると、二酸化炭素の放散に要する熱エネルギーが大きくなり、エネルギーコストが上昇してしまう。そのため、本開示に係る吸収液は、ピペラジンを含有しないか、含有するとしてもピペラジンの含有量は吸収液全体に対して1質量%以下とすることが好ましく、ピペラジンを含有しないことがより好ましい。
 本開示に係る吸収液は、吸収液全体に対するアルカノールアミン化合物、イミダゾール化合物及び水の合計含有量が、95質量%以上、98質量%以上、又は99質量%以上でもよい。
If piperazine is contained as another component, the heat energy required to dissipate carbon dioxide increases, and the energy cost increases. Therefore, the absorption liquid according to the present disclosure does not contain piperazine, or even if it contains piperazine, the content of piperazine is preferably 1% by mass or less with respect to the entire absorption liquid, and more preferably does not contain piperazine.
The absorption liquid according to the present disclosure may have a total content of the alkanolamine compound, the imidazole compound and water of 95% by mass or more, 98% by mass or more, or 99% by mass or more with respect to the entire absorption liquid.
(吸収液における各成分の含有量の測定方法)
 本開示に係る吸収液における各成分の含有量は、吸収液を調製する際に各成分の添加量(質量%)が反映されるが、吸収液における各成分の含有量は、GC-FID(ガスクロマトグラフ-水素炎イオン化検出器)により定量することができる。
(Method of measuring the content of each component in the absorption liquid)
The content of each component in the absorption liquid according to the present disclosure reflects the addition amount (mass%) of each component when preparing the absorption liquid, but the content of each component in the absorption liquid is GC-FID ( It can be quantified by gas chromatograph-hydrogen flame ionization detector).
(吸収液の製造方法)
 本開示に係る吸収液の製造方法は特に限定されない。例えば、アルカノールアミン化合物、イミダゾール化合物、及び水、さらに必要に応じてその他の成分を準備し、吸収液全体に対し、アルカノールアミン化合物の含有量が30~70質量%となり、イミダゾール化合物の含有量が好ましくは5~35%、水の含有量が好ましくは5~60質量%となるように混合することで本開示に係る吸収液を調製することができる。
(Manufacturing method of absorbent liquid)
The method for producing the absorbent liquid according to the present disclosure is not particularly limited. For example, an alkanolamine compound, an imidazole compound, and water, and if necessary, other components are prepared, and the content of the alkanolamine compound is 30 to 70% by mass with respect to the entire absorption liquid, and the content of the imidazole compound is high. The absorbent solution according to the present disclosure can be prepared by mixing so that the content is preferably 5 to 35% and the water content is preferably 5 to 60% by mass.
 <二酸化炭素を含むガスから二酸化炭素を分離回収する方法>
 本開示に係る二酸化炭素を含むガスから二酸化炭素を分離回収する方法は、前記吸収液を、二酸化炭素を含むガスと接触させ、二酸化炭素を含むガスから二酸化炭素を吸収した吸収液を得る工程Aと、前記吸収液を加熱して、前記吸収液から二酸化炭素を脱離して放散させ、放散した二酸化炭素を回収する工程Bと、を有する。
<Method of separating and recovering carbon dioxide from gas containing carbon dioxide>
The method for separating and recovering carbon dioxide from the carbon dioxide-containing gas according to the present disclosure is a step A in which the absorption liquid is brought into contact with the carbon dioxide-containing gas to obtain an absorption liquid that has absorbed carbon dioxide from the carbon dioxide-containing gas. A step B of heating the absorption liquid to desorb and dissipate carbon dioxide from the absorption liquid, and recovering the released carbon dioxide.
(工程A:二酸化炭素を吸収した吸収液を得る工程)
 前記吸収液に二酸化炭素を含むガスを接触させることにより、二酸化炭素を吸収液に吸収させることができる。
(Step A: Step of obtaining an absorbent liquid that has absorbed carbon dioxide)
By contacting the absorption liquid with a gas containing carbon dioxide, carbon dioxide can be absorbed by the absorption liquid.
 二酸化炭素を含むガスとしては、例えば、重油、天然ガス等を燃料とする火力発電所からの排ガス;製造所のボイラーからの排ガス;セメント工場のキルンからの排ガス;コークスで酸化鉄を還元する製鐵所の高炉からの排ガス;銑鉄中の炭素を燃焼して製鋼する製鉄所の転炉からの排ガス;等が挙げられる。 Gases containing carbon dioxide include, for example, exhaust gas from thermal power plants that use heavy oil, natural gas, etc. as fuel; exhaust gas from boilers in factories; exhaust gas from kilns in cement factories; Exhaust gas from a blast furnace at a steelworks; exhaust gas from a converter at a steelworks that burns carbon in iron iron to make steel; etc.
 該ガス中の二酸化炭素濃度は特に限定されず、通常5~30体積%、特に10~20体積%であればよい。かかる二酸化炭素濃度範囲では、本開示の作用効果が好適に発揮される。 The carbon dioxide concentration in the gas is not particularly limited, and may be usually 5 to 30% by volume, particularly 10 to 20% by volume. In such a carbon dioxide concentration range, the effects of the present disclosure are preferably exhibited.
 なお、二酸化炭素を含むガスには、二酸化炭素以外に水蒸気、CO等の発生源に由来する不純物ガスが含まれていてもよい。 The gas containing carbon dioxide may contain impurity gas derived from a source such as water vapor or CO in addition to carbon dioxide.
 吸収液に二酸化炭素を含むガスを接触させる方法は特に限定されず、例えば、吸収液中に二酸化炭素を含むガスをバブリングさせる方法;二酸化炭素を含むガス気流中に吸収液を霧状に降らす方法(噴霧乃至スプレー方式);磁製又は金属網製の充填材の入った吸収塔内で二酸化炭素を含むガスと吸収液とを向流接触させる方法;等が挙げられる。 The method of bringing the gas containing carbon dioxide into contact with the absorption liquid is not particularly limited, and for example, a method of bubbling the gas containing carbon dioxide in the absorption liquid; a method of atomizing the absorption liquid in a gas stream containing carbon dioxide. (Spraying or spraying method); A method in which a gas containing carbon dioxide and an absorbing liquid are brought into countercurrent contact in an absorption tower containing a filler made of porcelain or metal mesh; and the like.
 二酸化炭素を含むガス中の二酸化炭素を吸収液に吸収させる時の温度は、通常60℃以下で行われ、好ましくは50℃以下、より好ましくは20~45℃で行うことができる。
 二酸化炭素を含むガス中の二酸化炭素を吸収液に吸収させる時の温度が低いほど二酸化炭素の吸収量は増加するが、どこまで温度を下げるかは二酸化炭素を含むガスのガス温度、熱回収目標等によって決定される。アミンによる二酸化炭素の吸収は発熱反応であり、低温条件下での二酸化炭素の吸収量を上げようとすると、吸収液を冷却する為のエネルギーが必要となってしまうことから、二酸化炭素の吸収工程は通常40℃前後で行われることが好ましい。
The temperature at which carbon dioxide in the gas containing carbon dioxide is absorbed by the absorbing liquid is usually 60 ° C. or lower, preferably 50 ° C. or lower, and more preferably 20 to 45 ° C.
The lower the temperature at which the carbon dioxide in the gas containing carbon dioxide is absorbed by the absorption liquid, the greater the amount of carbon dioxide absorbed, but how much the temperature should be lowered depends on the gas temperature of the gas containing carbon dioxide, the heat recovery target, etc. Determined by. Absorption of carbon dioxide by amine is an exothermic reaction, and if an attempt is made to increase the amount of carbon dioxide absorbed under low temperature conditions, energy is required to cool the absorption liquid. Is usually preferably carried out at around 40 ° C.
 二酸化炭素の吸収工程は、通常ほぼ大気圧下で行われる。二酸化炭素の吸収性能を高めるため、加圧下で行うこともできるが、加圧のためのエネルギー消費を抑える観点から、大気圧下で行うことが好ましい。 The carbon dioxide absorption process is usually performed under atmospheric pressure. Although it can be carried out under pressurization in order to enhance the carbon dioxide absorption performance, it is preferably carried out under atmospheric pressure from the viewpoint of suppressing energy consumption for pressurization.
(工程B:二酸化炭素の放散及び回収工程)
 前記工程Aで得られた二酸化炭素を吸収した吸収液を加熱することによって二酸化炭素を脱離して放散し、放散された純粋又は高濃度の二酸化炭素を回収することができる。
(Process B: Carbon dioxide emission and recovery process)
By heating the absorption liquid that has absorbed the carbon dioxide obtained in the step A, the carbon dioxide is desorbed and released, and the released pure or high-concentration carbon dioxide can be recovered.
 二酸化炭素を吸収した吸収液から二酸化炭素を脱離して放散させる方法としては、例えば、吸収液を加熱して釜で泡立てて脱離する方法;棚段塔、スプレー塔、磁製又は金属網製の充填材の入った脱離塔内で液界面を広げて加熱する方法;等が挙げられる。
 これらの方法により、吸収液中においては重炭酸イオンで存在する二酸化炭素が分子型の二酸化炭素として脱離し、放散される。
As a method of desorbing and dissipating carbon dioxide from the absorbing liquid that has absorbed carbon dioxide, for example, a method of heating the absorbing liquid and foaming it in a kettle to remove it; a shelf tower, a spray tower, a porcelain or a metal net A method of expanding the liquid interface and heating in a desorption tower containing the filler of the above;
By these methods, carbon dioxide existing as bicarbonate ions in the absorption liquid is desorbed as molecular carbon dioxide and released.
 ここで、従来、吸収液から二酸化炭素を脱離して放散させる際、吸収液として従来の水溶液を用いた場合では吸収液を100~120℃とする。吸収液の温度が高いほど二酸化炭素の放散量は増加するが、温度を上げると吸収液の加熱に要するエネルギーが増すため、その温度は二酸化炭素を含むガスを排出するプロセスにおけるガス温度、熱回収目標等によって決定される。 Here, when carbon dioxide is conventionally desorbed from the absorption liquid and dissipated, the absorption liquid is set to 100 to 120 ° C. when a conventional aqueous solution is used as the absorption liquid. The higher the temperature of the absorption liquid, the greater the amount of carbon dioxide emitted, but as the temperature rises, the energy required to heat the absorption liquid increases, so that temperature is the gas temperature and heat recovery in the process of discharging gas containing carbon dioxide. Determined by goals, etc.
 それに対して、本開示に係る吸収液によれば、吸収液から二酸化炭素を脱離して放散させる際、例えば、吸収液を70~120℃とすることができ、70~95℃とすることもできる。
 放散塔の設計を最適化すること等により、いわゆる低品位廃熱を利用して80~95℃の低温域で充分な放散量を得ることができる。
On the other hand, according to the absorption liquid according to the present disclosure, when carbon dioxide is desorbed from the absorption liquid and dissipated, for example, the absorption liquid can be set to 70 to 120 ° C, and can be set to 70 to 95 ° C. can.
By optimizing the design of the emission tower, a sufficient amount of emission can be obtained in a low temperature range of 80 to 95 ° C. by utilizing so-called low-grade waste heat.
 工程Bにおいて二酸化炭素を脱離して放散した後の吸収液は、再び前記工程Aに送り、循環再利用(リサイクル)することができる。 The absorbed liquid after desorbing and dissipating carbon dioxide in the step B can be sent to the step A again and recycled (recycled).
 以下、実施例を挙げて更に詳細に説明する。ただし、本開示は実施例に限定されるものではない。
 なお、以下の説明において、特に断りのない限り、「%」はすべて質量基準である。
Hereinafter, examples will be described in more detail. However, the present disclosure is not limited to the examples.
In the following description, unless otherwise specified, all "%" are based on mass.
 実施例の説明においては、各種アルカノールアミン化合物、イミダゾール化合物について、以下の定義に基づいて使用する。
 Im:イミダゾール
 1MIm:1-メチルイミダゾール
 1EtIm:1-エチルイミダゾール
 1BuIm:1-ブチルイミダゾール
 1IPIm:1-イソプロピルイミダゾール
 2MIm:2-メチルイミダゾール
 1,2DMIm:1,2-ジメチルイミダゾール
 Bm:ビスイミダゾール
 1,1’-SIm:1,1’-チオカルボニルジイミダゾール
 EGL:エチレングリコール
 IPAE:N-イソプロピルアミノエタノール
 AMP:2-アミノ-2-メチル-1-プロパノール
 EAE:N-エチルアミノエタノール
 NBAE:N-n-ブチルアミノエタノール
 2A1P:2-アミノ-1-プロパノール
In the description of the examples, various alkanolamine compounds and imidazole compounds are used based on the following definitions.
Im: imidazole 1MIm: 1-methylimidazole 1EtIm: 1-ethylimidazole 1BuIm: 1-butylimidazole 1IPIm: 1-isopropylimidazole 2Mim: 2-methylimidazole 1,2DMIm: 1,2-dimethylimidazole Bm: bisimidazole 1,1 '-SIm: 1,1'-thiocarbonyldiimidazole EGL: ethylene glycol IPAE: N-isopropylaminoethanol AMP: 2-amino-2-methyl-1-propanol EAE: N-ethylaminoethanol NBAE: Nn- Butylaminoethanol 2A1P: 2-amino-1-propanol
<実施例1>
 1MIm、水及びIPAEを5:40:55の質量比で混合し、吸収液を得た。
<実施例2>
 1MIm、水及びIPAEを10:35:55の質量比で混合し、吸収液を得た。
<実施例3>
 1MIm、水及びIPAEを15:30:55の質量比で混合し、吸収液を得た。
<実施例4>
 1MIm、水及びIPAEを20:25:55の質量比で混合し、吸収液を得た。
<実施例5>
 1MIm、水及びIPAEを25:20:55の質量比で混合し、吸収液を得た。
<Example 1>
1 MIm, water and IPAE were mixed at a mass ratio of 5:40:55 to obtain an absorbent solution.
<Example 2>
1 MIm, water and IPAE were mixed at a mass ratio of 10:35:55 to obtain an absorbent solution.
<Example 3>
1 MIm, water and IPAE were mixed at a mass ratio of 15:30:55 to obtain an absorbent solution.
<Example 4>
1 MIm, water and IPAE were mixed at a mass ratio of 20:25:55 to obtain an absorbent solution.
<Example 5>
1 MIm, water and IPAE were mixed at a mass ratio of 25:20:55 to obtain an absorbent solution.
<実施例6>
 1MIm、水及びIPAEを30:15:55の質量比で混合し、吸収液を得た。
<実施例7>
 1MIm、水及びIPAEを10:45:45の質量比で混合し、吸収液を得た。
<実施例8>
 1MIm、水及びIPAEを10:40:50の質量比で混合し、吸収液を得た。
<実施例9>
 1MIm、水及びIPAEを10:30:60の質量比で混合し、吸収液を得た。
<実施例10>
 1MIm、水及びIPAEを10:20:70の質量比で混合し、吸収液を得た。
<Example 6>
1 MIm, water and IPAE were mixed at a mass ratio of 30:15:55 to obtain an absorbent solution.
<Example 7>
1 MIm, water and IPAE were mixed at a mass ratio of 10:45:45 to obtain an absorbent solution.
<Example 8>
1 MIm, water and IPAE were mixed at a mass ratio of 10:40:50 to obtain an absorbent solution.
<Example 9>
1 MIm, water and IPAE were mixed at a mass ratio of 10:30:60 to obtain an absorbent solution.
<Example 10>
1 MIm, water and IPAE were mixed at a mass ratio of 10:20:70 to obtain an absorbent solution.
<実施例11>
 Im、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例12>
 2MIm、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例13>
 1MIm、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例14>
 1EtIm、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例15>
 1BuIm、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<Example 11>
Im, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 12>
2MIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 13>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 14>
1EtIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 15>
1 BuIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<実施例16>
 1IPIm、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例17>
 1,2DMIm、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例18>
 1MIm、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例19>
 1MIm、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例20>
 1MIm、水、IPAE及びAMPを5:40:40:15の質量比で混合し、吸収液を得た。
<Example 16>
1 IPIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 17>
1,2DMIM, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbing solution.
<Example 18>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 19>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 20>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 5:40:40:15 to obtain an absorbent solution.
<実施例21>
 1MIm、水、IPAE及びAMPを15:30:40:15の質量比で混合し、吸収液を得た。
<実施例22>
 1MIm、水、IPAE及びAMPを20:25:40:15の質量比で混合し、吸収液を得た。
<実施例23>
 1MIm、水、IPAE及びAMPを25:20:40:15の質量比で混合し、吸収液を得た。
<実施例24>
 1MIm、水、IPAE及びAMPを35:10:40:15の質量比で混合し、吸収液を得た。
<実施例25>
 1MIm、水、IPAE及びAMPを10:30:45:15の質量比で混合し、吸収液を得た。
<Example 21>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 15:30:40:15 to obtain an absorbent solution.
<Example 22>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 20:25:40:15 to obtain an absorbent solution.
<Example 23>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 25:20:40:15 to obtain an absorbent solution.
<Example 24>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 35:10:40:15 to obtain an absorbent solution.
<Example 25>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:30:45:15 to obtain an absorbent solution.
<実施例26>
 1MIm、水、IPAE及びAMPを15:25:45:15の質量比で混合し、吸収液を得た。
<実施例27>
 1MIm、水、IPAE及びAMPを10:35:45:10の質量比で混合し、吸収液を得た。
<実施例28>
 1MIm、水、IPAE及びAMPを10:35:50:5の質量比で混合し、吸収液を得た。
<実施例29>
 1MIm、水、IPAE及びAMPを10:30:55:5の質量比で混合し、吸収液を得た。
<実施例30>
 1MIm、水、IPAE及びAMPを10:25:60:5の質量比で混合し、吸収液を得た。
<Example 26>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 15:25:45:15 to obtain an absorbent solution.
<Example 27>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:45:10 to obtain an absorbent solution.
<Example 28>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:50: 5 to obtain an absorbent solution.
<Example 29>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:30:55: 5 to obtain an absorbent solution.
<Example 30>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:25:60: 5 to obtain an absorbent solution.
<実施例31>
 1MIm、水、IPAE及びAMPを10:20:65:5の質量比で混合し、吸収液を得た。
<実施例32>
 1MIm、水、IPAE及びEAEを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例33>
 1MIm、水、IPAE及びNBAEを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例34>
 1MIm、水、IPAE及び2A1Pを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例35>
 BIm、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例36>
 1,1’-SIm、水、IPAE及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<実施例37>
 1MIm、水及びIPAEを10:55:35の質量比で混合し、吸収液を得た。
<実施例38>
 1MIm、水及びIPAEを10:60:30の質量比で混合し、吸収液を得た。
<Example 31>
1 MIm, water, IPAE and AMP were mixed at a mass ratio of 10:20:65: 5 to obtain an absorbent solution.
<Example 32>
1 MIm, water, IPAE and EAE were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 33>
1 MIm, water, IPAE and NBAE were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 34>
1 MIm, water, IPAE and 2A1P were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 35>
BIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 36>
1,1'-SIm, water, IPAE and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Example 37>
1 MIm, water and IPAE were mixed at a mass ratio of 10:55:35 to obtain an absorbent solution.
<Example 38>
1 MIm, water and IPAE were mixed at a mass ratio of 10:60:30 to obtain an absorbent solution.
<比較例1>
 水及びIPAEを45:55の質量比で混合し、吸収液を得た。
<比較例2>
 水、IPAE、及びAMPを45:40:15の質量比で混合し、吸収液を得た。
<比較例3>
 水、IPAE、及びEAEを45:40:15の質量比で混合し、吸収液を得た。
<比較例4>
 水、IPAE、及びNBAEを45:40:15の質量比で混合し、吸収液を得た。
<比較例5>
 水、IPAE、及び2A1Pを45:40:15の質量比で混合し、吸収液を得た。
<Comparative example 1>
Water and IPAE were mixed at a mass ratio of 45:55 to obtain an absorbent solution.
<Comparative example 2>
Water, IPAE, and AMP were mixed in a mass ratio of 45:40:15 to obtain an absorbent.
<Comparative example 3>
Water, IPAE, and EAE were mixed at a mass ratio of 45:40:15 to obtain an absorbent solution.
<Comparative example 4>
Water, IPAE, and NBAE were mixed at a mass ratio of 45:40:15 to obtain an absorbent solution.
<Comparative example 5>
Water, IPAE, and 2A1P were mixed at a mass ratio of 45:40:15 to obtain an absorbent solution.
<比較例6>
 EGL、水、及びIPAEを10:35:55の質量比で混合し、吸収液を得た。
<比較例7>
 EGL、水、IPAE、及びAMPを10:35:40:15の質量比で混合し、吸収液を得た。
<比較例8>
 EGL、水、IPAE、及びEAEを10:35:40:15の質量比で混合し、吸収液を得た。
<比較例9>
 EGL、水、IPAE、及びNBAEを10:35:40:15の質量比で混合し、吸収液を得た。
<比較例10>
 EGL、水、IPAE、及び2A1Pを10:35:40:15の質量比で混合し、吸収液を得た。
<Comparative Example 6>
EGL, water, and IPAE were mixed at a mass ratio of 10:35:55 to obtain an absorbent solution.
<Comparative Example 7>
EGL, water, IPAE, and AMP were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Comparative Example 8>
EGL, water, IPAE, and EAE were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Comparative Example 9>
EGL, water, IPAE, and NBAE were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<Comparative Example 10>
EGL, water, IPAE, and 2A1P were mixed at a mass ratio of 10:35:40:15 to obtain an absorbent solution.
<比較例11>
 1MIm、IPAE、及びAMPを45:40:15の質量比で混合し、吸収液を得た。
<比較例12>
 水、IPAE、及びAMPを45:40:15の質量比で混合し、吸収液を得た。
<Comparative Example 11>
1 MIm, IPAE, and AMP were mixed at a mass ratio of 45:40:15 to obtain an absorbent solution.
<Comparative Example 12>
Water, IPAE, and AMP were mixed in a mass ratio of 45:40:15 to obtain an absorbent.
<比較例13>
 1MIm、水及びIPAEを10:65:25の質量比で混合し、吸収液を得た。
<Comparative Example 13>
1 MIm, water and IPAE were mixed at a mass ratio of 10:65:25 to obtain an absorbent solution.
 上記の実施例及び比較例において使用したアルカノールアミン化合物、イミダゾール化合物及びエチレングリコールは東京化成工業株式会社等の試薬メーカー品であり、一般純度品を用いている。IPAEは広栄化学工業株式会社製を用いており、純度は99%以上である。水は、イオン交換水を用いた。 The alkanolamine compound, imidazole compound and ethylene glycol used in the above Examples and Comparative Examples are reagent manufacturers such as Tokyo Chemical Industry Co., Ltd., and general purity products are used. IPAE is manufactured by Koei Chemical Industry Co., Ltd. and has a purity of 99% or more. As the water, ion-exchanged water was used.
<評価>
 実施例及び比較例における吸収液について、二酸化炭素の吸収量、放散量及び放散速度の測定を行った。測定は、炭酸ガスボンベ(純度99.9%)及び窒素ガスボンベ(純度99.9%)、炭酸ガス流量コントローラー及び窒素ガス流量コントローラー、ガラス製反応容器(0.5L)、撹拌翼及び温度調整器、ガス流量計、チラー、並びに二酸化炭素濃度計(YOKOGAWA製IR100)を順次接続した二酸化炭素吸収放散装置を用いて行った。
 ガラス製反応容器の周囲は、電気式ヒーターで覆い、温度調整器によりガラス製反応容器内の吸収液の温度を任意に制御する仕様とした。
 ガラス製反応容器内に0.1Lの吸収液を加えた後、窒素ガスによりガラス製反応容器内上部の気体を置換した。ガラス製反応容器内の吸収液を40℃に保持し、700rpmの回転速度で充分撹拌しながら0.14L/分の流量の炭酸ガス及び0.56L/分の流量の窒素ガスをガラス製反応容器内の吸収液に吹き込んで前記工程Aを開始し、2時間継続した。
 前記工程Aが終了した後、そのままガラス製反応容器内の吸収液を80℃~90℃に加熱して前記工程Bを開始し、2時間継続した。
 前記工程A及びBにおいて、ガラス製反応容器からの排出ガスを二酸化炭素濃度計により分析した。吸収液への二酸化炭素の溶解量、すなわち吸収量は、二酸化炭素濃度計から得られる二酸化炭素濃度の経時変化から求めた。加熱による吸収液からの二酸化炭素の放散量は、前記工程Aの開始2時間後における二酸化炭素の吸収量から、前記工程Bの開始2時間後における二酸化炭素溶解量を引いた値として定義した。吸収液からの二酸化炭素の放散速度は、前記工程Bにおいて二酸化炭素の放散開始後10分間における単位時間当たりの二酸化炭素の吸収量の変化として定義した。二酸化炭素の吸収量に対する放散量の百分率を放散率と定義した。
<Evaluation>
For the absorbed liquids in Examples and Comparative Examples, the amount of carbon dioxide absorbed, the amount emitted, and the rate of emission were measured. Measurements were made on a carbon dioxide gas cylinder (purity 99.9%) and a nitrogen gas cylinder (purity 99.9%), a carbon dioxide gas flow controller and a nitrogen gas flow controller, a glass reaction vessel (0.5 L), a stirring blade and a temperature controller. This was performed using a carbon dioxide absorption / dissipation device in which a gas flow meter, a chiller, and a carbon dioxide concentration meter (IR100 manufactured by YOKOGAWA) were sequentially connected.
The circumference of the glass reaction vessel is covered with an electric heater, and the temperature of the absorption liquid in the glass reaction vessel is arbitrarily controlled by a temperature controller.
After adding 0.1 L of an absorbent solution into the glass reaction vessel, the gas in the upper part of the glass reaction vessel was replaced with nitrogen gas. The absorption liquid in the glass reaction vessel is kept at 40 ° C., and the carbon dioxide gas at a flow rate of 0.14 L / min and the nitrogen gas at a flow rate of 0.56 L / min are mixed with sufficient stirring at a rotation speed of 700 rpm in the glass reaction vessel. The step A was started by blowing into the absorption liquid inside, and continued for 2 hours.
After the step A was completed, the absorption liquid in the glass reaction vessel was heated to 80 ° C. to 90 ° C. to start the step B and continued for 2 hours.
In the steps A and B, the exhaust gas from the glass reaction vessel was analyzed by a carbon dioxide concentration meter. The amount of carbon dioxide dissolved in the absorption solution, that is, the amount of absorption was determined from the time course of the carbon dioxide concentration obtained from the carbon dioxide concentration meter. The amount of carbon dioxide emitted from the absorption liquid by heating was defined as a value obtained by subtracting the amount of carbon dioxide dissolved 2 hours after the start of the step B from the amount of carbon dioxide absorbed 2 hours after the start of the step A. The emission rate of carbon dioxide from the absorption liquid was defined as a change in the amount of carbon dioxide absorbed per unit time in 10 minutes after the start of emission of carbon dioxide in the step B. The percentage of the amount of carbon dioxide absorbed to the amount of carbon dioxide absorbed was defined as the emission rate.
 実施例及び比較例における吸収液の組成並びに評価結果を表1~3に示す。
 
Tables 1 to 3 show the compositions of the absorbents and the evaluation results in Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 実施例1~38と比較例1~5との比較から、前記一般式(1)で表されるアルカノールアミン化合物の少なくとも1種を30~70質量%、前記一般式(2)で表されるイミダゾール化合物、及び水を含有する、二酸化炭素を含むガスから二酸化炭素を分離回収するための吸収液は、従来の吸収液に比べ、二酸化炭素の放散量、放散率、及び放散速度の増大が確認される。 From the comparison between Examples 1 to 38 and Comparative Examples 1 to 5, at least one of the alkanolamine compounds represented by the general formula (1) is represented by the general formula (2) in an amount of 30 to 70% by mass. It was confirmed that the absorption liquid for separating and recovering carbon dioxide from the carbon dioxide-containing gas containing the imidazole compound and water has an increase in the amount of carbon dioxide emission, the emission rate, and the emission rate as compared with the conventional absorption solution. Will be done.
 また、実施例1~38と比較例13との比較から、前記一般式(1)で表されるアルカノールアミン化合物を30質量%以上含むことで、吸収特性が向上するだけでなく、放散特性の有意な向上が確認される。 Further, from the comparison between Examples 1 to 38 and Comparative Example 13, by containing 30% by mass or more of the alkanolamine compound represented by the general formula (1), not only the absorption characteristics are improved but also the emission characteristics are improved. Significant improvement is confirmed.
 実施例1~38と比較例6~10との比較から、前記一般式(1)で表されるアルカノールアミン化合物の少なくとも1種を30~70質量%、前記一般式(2)で表されるイミダゾール化合物、及び水を含有する、二酸化炭素を含むガスから二酸化炭素を分離回収するための吸収液は、イミダゾール化合物の代わりにエチレングリコールを含む吸収液に比べ、高い放散性能を概ね維持しつつ、吸収速度の増大が確認される。 From the comparison between Examples 1 to 38 and Comparative Examples 6 to 10, at least one of the alkanolamine compounds represented by the general formula (1) is represented by the general formula (2) in an amount of 30 to 70% by mass. The absorbent solution for separating and recovering carbon dioxide from the carbon dioxide-containing gas containing the imidazole compound and water has higher emission performance while generally maintaining higher emission performance than the absorbent solution containing ethylene glycol instead of the imidazole compound. An increase in absorption rate is confirmed.
 実施例1~38の評価結果から、吸収液全体に対する、イミダゾール化合物の濃度が5~35%の範囲で高い性能を示すことが確認される。 From the evaluation results of Examples 1 to 38, it is confirmed that the concentration of the imidazole compound with respect to the entire absorption liquid shows high performance in the range of 5 to 35%.
 実施例18及び19と比較例12との比較から、本開示に係る吸収液は、二酸化炭素の放散工程を、80~85℃という比較的低温で実施しても、従来の水溶液に比べ、高い性能を示すことが確認される。 From the comparison between Examples 18 and 19 and Comparative Example 12, the absorption liquid according to the present disclosure is higher than the conventional aqueous solution even if the carbon dioxide emission step is carried out at a relatively low temperature of 80 to 85 ° C. It is confirmed that it shows performance.
 実施例11~17と実施例35及び36との比較から、イミダゾール化合物として、イミダゾール、1-メチルイミダゾール、1-エチルイミダゾール、1-ブチルイミダゾール、1-イソプロピルイミダゾール及び2-メチルイミダゾールを使用した場合、イミダゾール化合物として、ビスイミダゾール及び1,1’-チオカルボニルジイミダゾールを使用した場合と比較して、高い性能を示すことが確認される。
 中でも、1-メチルイミダゾールを用いた実施例13は、他のイミダゾールを用いた場合と比較して、吸収特性及び放散特性とも高い性能を示すことが確認される。
 さらに、実施例2と実施例13との比較から、アルカノールアミンとしてAMP(アルカノールアミン(I)に該当)とIPAE(アルカノールアミン(II)に該当)を併用する場合に比べ、IPAEだけを用いた方が放散速度が高いことが確認される。
From the comparison between Examples 11 to 17 and Examples 35 and 36, when imidazole, 1-methylimidazole, 1-ethylimidazole, 1-butylimidazole, 1-isopropylimidazole and 2-methylimidazole were used as the imidazole compounds. , It is confirmed that high performance is exhibited as compared with the case where bisimidazole and 1,1'-thiocarbonyldiimidazole are used as the imidazole compound.
Above all, it is confirmed that Example 13 using 1-methylimidazole exhibits high performance in both absorption characteristics and emission characteristics as compared with the case of using other imidazoles.
Furthermore, from the comparison between Example 2 and Example 13, only IPAE was used as compared with the case where AMP (corresponding to alkanolamine (I)) and IPAE (corresponding to alkanolamine (II)) were used in combination as alkanolamine. It is confirmed that the emission rate is higher.
 以上の実施例によれば、二酸化炭素を含むガスからの高い二酸化炭素の回収量を概ね維持しつつ、二酸化炭素を吸収した吸収液からの、低温条件下における二酸化炭素の放散量を向上させることができる。特に、本開示に係る吸収液によれば、80~95℃という従来に比べ極めて低い温度条件でも十分な放散量を得ることが可能である。
 さらに、二酸化炭素の放散速度及び二酸化炭素の吸収量に対する放散量を高められるため、より低いエネルギーコストで二酸化炭素を回収することができる。
 このようにして回収された二酸化炭素は、通常99体積%以上と極めて純度が高いものであり、化学産業あるいは食品産業に用いることができる。また、現在実用化が検討されているEOR(Enhanced Oil Recovery)及びCCS(Carbon dioxide Capture and Storage)における地下隔離に供することも可能である。
According to the above examples, it is necessary to improve the amount of carbon dioxide emitted from the absorption liquid that has absorbed carbon dioxide under low temperature conditions while generally maintaining the amount of high carbon dioxide recovered from the gas containing carbon dioxide. Can be done. In particular, according to the absorption liquid according to the present disclosure, it is possible to obtain a sufficient emission amount even under extremely low temperature conditions of 80 to 95 ° C. as compared with the conventional case.
Furthermore, since the emission rate of carbon dioxide and the emission amount relative to the absorption amount of carbon dioxide can be increased, carbon dioxide can be recovered at a lower energy cost.
The carbon dioxide recovered in this way is usually 99% by volume or more and has an extremely high purity, and can be used in the chemical industry or the food industry. It can also be used for underground isolation in EOR (Enhanced Oil Recovery) and CCS (Carbon dioxide Capture and Storage), which are currently under consideration for practical use.
 2020年3月26日に出願された日本特許出願2020-056851の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 The entire disclosure of Japanese patent application 2020-056851 filed on March 26, 2020 is incorporated herein by reference in its entirety. All documents, patent applications, and technical standards described herein are referenced herein to the same extent as if individual documents, patent applications, and technical standards were specifically and individually stated. Is taken in by.

Claims (13)

  1.  吸収液全体に対する含有量が30~70質量%であり、下記一般式(1)で表されるアルカノールアミン化合物と、
     下記一般式(2)で表されるイミダゾール化合物と、
     水と、
    を含有する、
     二酸化炭素を含むガスから二酸化炭素を分離回収するための吸収液。
    Figure JPOXMLDOC01-appb-C000001

     
    (一般式(1)中、Rは、水素原子又は炭素数1~4のアルキル基であり、R及びRは、それぞれ独立して、水素原子又は炭素数1~3のアルキル基であり、R、R及びRのすべてが水素原子であることはなく、nは1又は2である。)
    Figure JPOXMLDOC01-appb-C000002

    (一般式(2)中、Imはミダゾール環であり、複数のRはそれぞれ独立して水素原子又は炭素数1~10のアルキル基であり、xは1又は2であり、xが1の場合、Lは水素原子又は炭素数1~10のアルキル基であり、xが2の場合、Lは、2つのイミダゾール環を連結する単結合又は2価の連結基である。但し、イミダゾール環に含まれる2つの窒素原子のうち一方の窒素原子はR又はLと結合し、他方の窒素原子はR及びLのいずれにも結合しない。)
    The content of the total absorption liquid is 30 to 70% by mass, and the alkanolamine compound represented by the following general formula (1) and
    The imidazole compound represented by the following general formula (2) and
    water and,
    Contains,
    An absorbent solution for separating and recovering carbon dioxide from a gas containing carbon dioxide.
    Figure JPOXMLDOC01-appb-C000001


    (In the general formula (1), R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 2 and R 3 are independently hydrogen atoms or an alkyl group having 1 to 3 carbon atoms. Yes, not all of R 1 , R 2 and R 3 are hydrogen atoms, and n is 1 or 2).
    Figure JPOXMLDOC01-appb-C000002

    (In the general formula (2), when Im is a midazole ring, a plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, x is 1 or 2, and x is 1. , L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and when x is 2, L is a single bond or a divalent linking group that connects two imidazole rings. However, it is contained in the imidazole ring. One of the two hydrogen atoms is bonded to R or L, and the other nitrogen atom is not bonded to either R or L.)
  2.  前記アルカノールアミン化合物が、前記一般式(1)中、Rが、水素原子、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基であり、R及びRが、それぞれ独立して、水素原子又はメチル基であり、nが1又は2であるアルカノールアミン(I)である、請求項1に記載の吸収液。 The alkanolamine compounds, in the general formula (1), R 1 is a hydrogen atom, a methyl group, an ethyl group, n- propyl group, an isopropyl group or n- butyl group, R 2 and R 3, respectively The absorption solution according to claim 1, which is an alkanolamine (I) which is independently a hydrogen atom or a methyl group and has n of 1 or 2.
  3.  前記アルカノールアミン化合物が、前記一般式(1)中、Rが、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基であり、R及びRが水素原子であり、nが1又は2であるアルカノールアミン(II)である、請求項1又は請求項2に記載の吸収液。 In the alkanolamine compound, in the general formula (1), R 1 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group or an n-butyl group, and R 2 and R 3 are hydrogen atoms. The absorption solution according to claim 1 or 2, wherein n is an alkanolamine (II) of 1 or 2.
  4.  前記アルカノールアミン化合物が、前記一般式(1)中、Rが、メチル基、エチル基、n-プロピル基、イソプロピル基又はn-ブチル基であり、R及びRが水素原子であり、nが1又は2であるアルカノールアミン(II)と、
     前記一般式(1)中、Rが水素原子であり、R及びRが、それぞれ独立して水素原子又はメチル基であり、nが1又は2であるアルカノールアミン(III)と、を含有する、混合アミンである、請求項1に記載の吸収液。
    In the alkanolamine compound, in the general formula (1), R 1 is a methyl group, an ethyl group, an n-propyl group, an isopropyl group or an n-butyl group, and R 2 and R 3 are hydrogen atoms. Alkanolamine (II) in which n is 1 or 2 and
    In the general formula (1), alkanolamine (III) in which R 1 is a hydrogen atom, R 2 and R 3 are independently hydrogen atoms or methyl groups, and n is 1 or 2, respectively. The absorption solution according to claim 1, which is a mixed amine contained.
  5.  前記アルカノールアミン(II)が、N-イソプロピルアミノエタノールであり、前記アルカノールアミン(III)が、2-アミノ-2-メチル-1-プロパノールである、請求項4に記載の吸収液。 The absorption liquid according to claim 4, wherein the alkanolamine (II) is N-isopropylaminoethanol and the alkanolamine (III) is 2-amino-2-methyl-1-propanol.
  6.  前記イミダゾール化合物の含有量が、吸収液全体に対して、5~35質量%である、請求項1~請求項5のいずれか一項に記載の吸収液。 The absorption liquid according to any one of claims 1 to 5, wherein the content of the imidazole compound is 5 to 35% by mass with respect to the entire absorption liquid.
  7.  前記イミダゾール化合物が、下記一般式(2A)で表されるイミダゾール化合物Aである、請求項1~請求項6のいずれか一項に記載の吸収液。
    Figure JPOXMLDOC01-appb-C000003

    (一般式(2A)中、Rは炭素数1~10のアルキル基であり、複数のRはそれぞれ独立して水素原子又は炭素数1~10のアルキル基であり、xは1又は2であり、xが1の場合、Lは水素原子又は炭素数1~10のアルキル基であり、xが2の場合、Lは2つのイミダゾール環を連結する単結合又は2価の連結基である。)
     
    The absorption liquid according to any one of claims 1 to 6, wherein the imidazole compound is an imidazole compound A represented by the following general formula (2A).
    Figure JPOXMLDOC01-appb-C000003

    (In the general formula (2A), Ra is an alkyl group having 1 to 10 carbon atoms, the plurality of Rs are independently hydrogen atoms or alkyl groups having 1 to 10 carbon atoms, and x is 1 or 2. When x is 1, L is a hydrogen atom or an alkyl group having 1 to 10 carbon atoms, and when x is 2, L is a single bond or a divalent linking group that connects two imidazole rings. )
  8.  前記イミダゾール化合物Aが、下記一般式(2D)で表される化合物である、請求項7に記載の吸収液。
    Figure JPOXMLDOC01-appb-C000004

    (一般式(2D)中、Rは、炭素数1~4のアルキル基であり、R、R及びRは、それぞれ独立して水素原子又は炭素数1~4のアルキル基である。)
    The absorption liquid according to claim 7, wherein the imidazole compound A is a compound represented by the following general formula (2D).
    Figure JPOXMLDOC01-appb-C000004

    (In the general formula (2D), R 4 is an alkyl group having 1 to 4 carbon atoms, and R 5 , R 6 and R 7 are independently hydrogen atoms or alkyl groups having 1 to 4 carbon atoms, respectively. .)
  9.  前記イミダゾール化合物が、イミダゾール、1-メチルイミダゾール、1-エチルイミダゾール、1-ブチルイミダゾール、1-イソプロピルイミダゾール、2-メチルイミダゾール、及び、1,2-ジメチルイミダゾールからなる群から選ばれる少なくとも1種の化合物である、請求項1~請求項6のいずれか一項に記載の吸収液。 The imidazole compound is at least one selected from the group consisting of imidazole, 1-methylimidazole, 1-ethylimidazole, 1-butyl imidazole, 1-isopropyl imidazole, 2-methyl imidazole, and 1,2-dimethyl imidazole. The absorbing solution according to any one of claims 1 to 6, which is a compound.
  10.  前記イミダゾール化合物が、1-メチルイミダゾールである、請求項1~請求項9のいずれか一項に記載の吸収液。 The absorption liquid according to any one of claims 1 to 9, wherein the imidazole compound is 1-methylimidazole.
  11.  前記アルカノールアミン化合物、前記イミダゾール化合物、及び前記水の合計含有量が、前記吸収液全体に対して99質量%以上である請求項1~請求項10のいずれか一項に記載の吸収液。 The absorption liquid according to any one of claims 1 to 10, wherein the total content of the alkanolamine compound, the imidazole compound, and the water is 99% by mass or more with respect to the entire absorption liquid.
  12.  請求項1~請求項11のいずれか一項に記載の吸収液を、二酸化炭素を含むガスと接触させ、二酸化炭素を含むガスから二酸化炭素を吸収した吸収液を得る工程Aと、
     前記吸収液を加熱して、前記吸収液から二酸化炭素を脱離して放散させ、放散した二酸化炭素を回収する工程Bと、
     を有する二酸化炭素を含むガスから二酸化炭素を分離回収する方法。
    A step A in which the absorption liquid according to any one of claims 1 to 11 is brought into contact with a gas containing carbon dioxide to obtain an absorption liquid that has absorbed carbon dioxide from the gas containing carbon dioxide.
    Step B in which the absorption liquid is heated to desorb and dissipate carbon dioxide from the absorption liquid, and the released carbon dioxide is recovered.
    A method of separating and recovering carbon dioxide from a gas containing carbon dioxide.
  13.  前記工程Bにおいて、前記吸収液を80~95℃で加熱して二酸化炭素を脱離する、請求項12に記載の方法。 The method according to claim 12, wherein in the step B, the absorption liquid is heated at 80 to 95 ° C. to desorb carbon dioxide.
PCT/JP2021/013090 2020-03-26 2021-03-26 Absorption liquid for separating and recovering carbon dioxide from gas containing carbon dioxide, and carbon dioxide recovery method using same WO2021193963A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022510767A JP7394963B2 (en) 2020-03-26 2021-03-26 Absorption liquid for separating and recovering carbon dioxide from gas containing carbon dioxide and method for recovering carbon dioxide using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020056851 2020-03-26
JP2020-056851 2020-03-26

Publications (1)

Publication Number Publication Date
WO2021193963A1 true WO2021193963A1 (en) 2021-09-30

Family

ID=77890549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/013090 WO2021193963A1 (en) 2020-03-26 2021-03-26 Absorption liquid for separating and recovering carbon dioxide from gas containing carbon dioxide, and carbon dioxide recovery method using same

Country Status (2)

Country Link
JP (1) JP7394963B2 (en)
WO (1) WO2021193963A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775519A (en) * 1985-10-31 1988-10-04 Texaco Inc. Removal of acid gases from gas streams
JP2014097498A (en) * 2013-12-26 2014-05-29 Toshiba Corp Acid gas absorbent, acid gas removal device and acid gas removal method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012139622A (en) 2010-12-28 2012-07-26 Research Institute Of Innovative Technology For The Earth Solid absorber for separating/recovering carbon dioxide and method for recovering carbon dioxide
JP7176683B2 (en) 2018-08-03 2022-11-22 日本製鉄株式会社 Gas Separator Using Self-Heat Compensating Flexible PCP

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775519A (en) * 1985-10-31 1988-10-04 Texaco Inc. Removal of acid gases from gas streams
JP2014097498A (en) * 2013-12-26 2014-05-29 Toshiba Corp Acid gas absorbent, acid gas removal device and acid gas removal method

Also Published As

Publication number Publication date
JPWO2021193963A1 (en) 2021-09-30
JP7394963B2 (en) 2023-12-08

Similar Documents

Publication Publication Date Title
JP5452222B2 (en) Method for efficiently recovering carbon dioxide in gas
AU2012267842B2 (en) Carbon-dioxide absorber and carbon-dioxide separation/recovery method using said absorber
JP5659128B2 (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JP6383262B2 (en) Acid gas absorbent, acid gas removal method and acid gas removal apparatus
JP2008136989A (en) Mixed absorbent for carbon dioxide separation
JP5449059B2 (en) An aqueous solution that efficiently absorbs and recovers carbon dioxide in exhaust gas
JP5557426B2 (en) Aqueous solution and method for efficiently absorbing and recovering carbon dioxide in gas
JP2017196547A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2015029987A (en) Acid gas absorbent, acid gas removal method, and acid gas removal apparatus
JP2018122278A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2015107443A (en) Acidic gas absorbent, acidic gas removal device, and acidic gas removal method
WO2011071150A1 (en) Carbon dioxide absorbent for use under high pressure, and method for absorption and collection of carbon dioxide under high pressure
JP2009213974A (en) Aqueous solution and method of absorbing and desorption-recovering effectively carbon dioxides in gas
JP2015112574A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
JP2020044489A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
WO2021193963A1 (en) Absorption liquid for separating and recovering carbon dioxide from gas containing carbon dioxide, and carbon dioxide recovery method using same
JP6755854B2 (en) Absorbent solution for separating and recovering carbon dioxide, and a method for separating and recovering carbon dioxide using it
JP2020044490A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device
KR101798976B1 (en) Carbon Dioxide Absorbent
JP2021154236A (en) Carbon dioxide absorption liquid, carbon dioxide separation and recovery method and biogas treatment method
JP2022085754A (en) Absorption liquid and separation recovery method
JP2019202298A (en) Acidic gas absorbent, acidic gas removal method and acidic gas removal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21776996

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022510767

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21776996

Country of ref document: EP

Kind code of ref document: A1