JP2021153271A - Optical communication device and transmission path abnormality detection method - Google Patents

Optical communication device and transmission path abnormality detection method Download PDF

Info

Publication number
JP2021153271A
JP2021153271A JP2020053285A JP2020053285A JP2021153271A JP 2021153271 A JP2021153271 A JP 2021153271A JP 2020053285 A JP2020053285 A JP 2020053285A JP 2020053285 A JP2020053285 A JP 2020053285A JP 2021153271 A JP2021153271 A JP 2021153271A
Authority
JP
Japan
Prior art keywords
signal
abnormality
transmission line
communication device
optical communication
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020053285A
Other languages
Japanese (ja)
Other versions
JP7413874B2 (en
Inventor
敬一郎 土居
Keiichiro Doi
敬一郎 土居
友香 杉山
Yuka Sugiyama
友香 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2020053285A priority Critical patent/JP7413874B2/en
Publication of JP2021153271A publication Critical patent/JP2021153271A/en
Application granted granted Critical
Publication of JP7413874B2 publication Critical patent/JP7413874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To speed up abnormality detection of transmission paths using optical lines and quickly stop a gate enable signal when a transmission path abnormality is detected.SOLUTION: In a slave control device 3 that outputs a gate signal to a power conversion device by communication with a master control device 2 via an optical fiber cable 10, a signal determination unit 33 detects an abnormality of a transmission path of the optical fiber cable 10 based on a gate enable signal received from the master control device 2 via the optical fiber cable 10. When the abnormality is detected, the slave control device 3 outputs control information for stopping transmission of the gate enable signal to the master control device 2 and also outputs a signal for stopping output of the power conversion device as the gate signal.SELECTED DRAWING: Figure 1

Description

本発明は、光回線を利用した伝送システムの伝送路の異常を検出する技術に関する。 The present invention relates to a technique for detecting an abnormality in a transmission line of a transmission system using an optical line.

光回線を利用したシリアルデータの伝送路に異常が生じた際の対応が可能な通信装置として、例えば特許文献1,2に開示の光通信装置があり、送信用、受信用の2回路が用いられている。伝送路の異常時の処理として受信信号が0の時にタイマカウンタをアップさせる。タイマが閾値以上となれば許可信号を落として通信が切れたことを判定して光送信を停止させている。 As a communication device capable of responding when an abnormality occurs in a serial data transmission line using an optical line, for example, there are optical communication devices disclosed in Patent Documents 1 and 2, which are used by two circuits for transmission and reception. Has been done. The timer counter is turned up when the received signal is 0 as a process when the transmission line is abnormal. When the timer exceeds the threshold value, the permission signal is dropped, it is determined that the communication is cut off, and the optical transmission is stopped.

特開2002−290348号公報JP-A-2002-290348 特開2004−336132号公報Japanese Unexamined Patent Publication No. 2004-336132

マスタ制御装置及びスレーブ制御装置により電力変換装置を制御する伝送システムにおいも、光回線が利用されることがある。そして、本伝送システムにおいて、特許文献1の検出方式が適用された場合、マスタ制御装置から光回線を介してスレーブ制御装置に電圧指令値やゲートイネーブル信号等の制御情報がシリアルデータで送信され、スレーブ制御装置において電力変換装置のユニットの電圧(出力)が制御される。ゲートイネーブル信号は、電力変換装置の出力状態を決める信号であり、故障発生時には電力変換装置が破損しないように迅速に停止する必要がある。 An optical line may also be used in a transmission system in which a power conversion device is controlled by a master control device and a slave control device. When the detection method of Patent Document 1 is applied in this transmission system, control information such as a voltage command value and a gate enable signal is transmitted as serial data from the master control device to the slave control device via an optical line. The voltage (output) of the unit of the power conversion device is controlled in the slave control device. The gate enable signal is a signal that determines the output state of the power converter, and when a failure occurs, it is necessary to stop the power converter promptly so as not to damage the power converter.

また、上記の伝送システムは、マスタ制御装置で故障を検出してからユニットの出力を停止するまでシリアルデータで送信しているので送信データ量に比例して遅延が発生する。この影響でゲートイネーブル信号の送信が遅れ、電力変換装置が破損する場合がある。この対策としてゲートイネーブル信号の専用回路を1回路追加して1(出力),0(停止)の二値で電力変換装置の出力可否を高速に判定することが考えられる。 Further, in the above transmission system, since the serial data is transmitted from the detection of the failure by the master control device to the stop of the output of the unit, a delay occurs in proportion to the amount of the transmitted data. This effect may delay the transmission of the gate enable signal and damage the power converter. As a countermeasure, it is conceivable to add one dedicated circuit for the gate enable signal and judge whether or not the output of the power converter can be output at high speed based on the binary values of 1 (output) and 0 (stop).

しかしながら、前記電力変換装置の出力中に通信回路の異常でHighに固定された場合、伝送路異常を検出できないことに加え、伝送路異常中に故障が発生してもゲートイネーブル信号を停止できない。そして、このことにより、前記電力変換装置は、過大な出力を出し続け、破損を引き起こすおそれがある。 However, when the power converter is fixed to High due to an abnormality in the communication circuit during the output of the power conversion device, the transmission line abnormality cannot be detected and the gate enable signal cannot be stopped even if a failure occurs during the transmission line abnormality. As a result, the power conversion device may continue to output an excessive output and cause damage.

本発明は、光回線を利用した伝送路の異常検出の高速化と伝送路異常が検出された際のゲートイネーブル信号の迅速な停止を図ることを課題とする。 An object of the present invention is to speed up detection of an abnormality in a transmission line using an optical line and to quickly stop a gate enable signal when an abnormality in a transmission line is detected.

そこで、本発明の一態様は、マスタ側の光通信装置との通信により電力変換装置にゲート信号を出力するスレーブ側の光通信装置であって、前記マスタ側の光通信装置から光回線を介して受信したゲートイネーブル信号に基づき当該光回線の伝送路の異常を検出する信号判定部を備え、前記異常が検出されると、前記ゲートイネーブル信号の伝送を停止させる制御情報を前記マスタ側の光通信装置に出力すると共に、前記ゲート信号として前記電力変換装置の出力を停止させる信号を出力する。 Therefore, one aspect of the present invention is a slave-side optical communication device that outputs a gate signal to the power conversion device by communicating with the master-side optical communication device, from the master-side optical communication device via an optical line. A signal determination unit for detecting an abnormality in the transmission line of the optical line based on the received gate enable signal is provided, and when the abnormality is detected, control information for stopping the transmission of the gate enable signal is transmitted to the optical on the master side. Along with outputting to the communication device, a signal for stopping the output of the power conversion device is output as the gate signal.

本発明の一態様は、前記光通信装置において、前記光回線は、複数の回線を有し、前記信号判定部は、前記回線から受けた前記ゲートイネーブル信号の波形に基づき前記異常を検出する伝送路異常検出回路と、この伝送路異常検出回路から前記異常を示す信号を受けると前記異常を示す信号を出力する論理和回路とを備える。 In one aspect of the present invention, in the optical communication device, the optical line has a plurality of lines, and the signal determination unit detects the abnormality based on the waveform of the gate enable signal received from the line. It includes a path abnormality detection circuit and a logic sum circuit that outputs a signal indicating the abnormality when receiving a signal indicating the abnormality from the transmission line abnormality detection circuit.

本発明の一態様は、前記光通信装置において、前記伝送路異常検出回路は、前記伝送路の前記ゲートイネーブル信号のパルス信号が所定波形となる位相区間の連続数をカウントするカウンタと、前記連続数が閾値を超えた場合に前記伝送路の異常を示す信号を出力する比較器とを備える。 In one aspect of the present invention, in the optical communication device, the transmission line abnormality detection circuit includes a counter that counts the number of consecutive phase sections in which the pulse signal of the gate enable signal of the transmission line has a predetermined waveform, and the continuation. It is provided with a comparator that outputs a signal indicating an abnormality in the transmission line when the number exceeds the threshold value.

本発明の一態様は、前記光通信装置において、前記光回線は、複数の回線を有し、前記信号判定部は、前記マスタ側の光通信装置から受けた前記複数の回線の所定波形の信号のいずれかに基づく出力信号を発する第一論理和回路と、前記所定波形の信号を反転する反転増幅回路と、前記反転された信号のいずれかに基づく出力信号を発する第二論理和回路と、前記第一論理和回路及び前記第二論理和回路の出力信号に基づき、前記伝送路が正常であることを示す第一出力値または前記伝送路が異常であることを示す第二出力値を出力する論理積回路とを備える。 In one aspect of the present invention, in the optical communication device, the optical line has a plurality of lines, and the signal determination unit receives a signal of a predetermined waveform of the plurality of lines received from the optical communication device on the master side. A first logic sum circuit that emits an output signal based on any of the above, an inverting amplifier circuit that inverts a signal having the predetermined waveform, and a second logic sum circuit that emits an output signal based on any of the inverted signals. Based on the output signals of the first logic sum circuit and the second logic sum circuit, the first output value indicating that the transmission line is normal or the second output value indicating that the transmission line is abnormal is output. It is provided with a logical product circuit.

本発明の一態様は、マスタ側の光通信装置との通信により電力変換装置にゲート信号を出力するスレーブ側の光通信装置による伝送路異常検出方法であって、前記マスタ側の光通信装置から光回線を介して受信したゲートイネーブル信号に基づき当該光回線の伝送路の異常を検出する過程と、前記異常が検出されると前記ゲートイネーブル信号の伝送を停止させる制御情報を前記マスタ側の光通信装置に出力すると共に前記ゲート信号として前記電力変換装置の出力を停止させる信号を出力する過程とを有する。 One aspect of the present invention is a method of detecting a transmission path abnormality by a slave-side optical communication device that outputs a gate signal to a power conversion device by communicating with a master-side optical communication device, from the master-side optical communication device. The process of detecting an abnormality in the transmission line of the optical line based on the gate enable signal received via the optical line and the control information for stopping the transmission of the gate enable signal when the abnormality is detected are transmitted to the optical of the master side. It has a process of outputting to a communication device and outputting a signal for stopping the output of the power conversion device as the gate signal.

以上の本発明によれば、光回線を利用した伝送路の異常検出の高速化と伝送路異常が検出された際のゲートイネーブル信号の迅速な停止を図ることができる。 According to the above invention, it is possible to speed up the detection of an abnormality in a transmission line using an optical line and to quickly stop the gate enable signal when a transmission line abnormality is detected.

本発明の一態様である実施形態1の伝送システムのブロック図。The block diagram of the transmission system of Embodiment 1 which is one aspect of this invention. (a)実施形態1におけるスレーブ側の信号判定部のブロック図、(b)当該信号判定部の伝送異常検出回路のブロック図。(A) A block diagram of a signal determination unit on the slave side in the first embodiment, and (b) a block diagram of a transmission abnormality detection circuit of the signal determination unit. 実施形態1の送信信号パターン。The transmission signal pattern of the first embodiment. 信号nがlow固定となった場合の伝送路異常(位相180°で異常)を示す信号パターン。A signal pattern indicating a transmission line abnormality (abnormality at a phase of 180 °) when the signal n is fixed to low. 信号nがhigh固定となった場合の伝送路異常(位相180°で異常)を示す信号パターン。A signal pattern indicating a transmission line abnormality (abnormality at a phase of 180 °) when the signal n is fixed to high. 本発明の一態様である実施形態2の伝送システムのブロック図。The block diagram of the transmission system of Embodiment 2 which is one aspect of this invention. 実施形態2におけるスレーブ側の信号判定部のブロック図。FIG. 2 is a block diagram of a signal determination unit on the slave side in the second embodiment. (a)実施形態2の信号1〜3のパルスパターン、(b)伝送路が正常である場合の当該パルスパターンにおける各位相区間の出力値の一例。(A) An example of the pulse pattern of the signals 1 to 3 of the second embodiment, and (b) an example of the output value of each phase section in the pulse pattern when the transmission line is normal. (a)信号1がhigh固定となった場合の伝送路異常(位相180°で異常)を示す信号1〜3及び信号判定部における各論理回路の出力信号のパルスパターンの一例、(b)信号1がlow固定となった場合の伝送路異常(位相180°で異常)を示す当該パルスパターンの一例。(A) An example of a pulse pattern of signals 1 to 3 indicating a transmission line abnormality (abnormality at a phase of 180 °) when signal 1 is fixed to high and an output signal of each logic circuit in the signal determination unit, (b) signal. An example of the pulse pattern indicating a transmission line abnormality (abnormality at a phase of 180 °) when 1 is fixed to low. 図9(a)(b)の信号1のパルスパターンにおける各位相区間の出力値の一例。An example of the output value of each phase section in the pulse pattern of the signal 1 of FIGS. 9A and 9B. (a)信号2がhigh固定となった場合の伝送路異常(位相180°で異常)を示す信号1〜3及び信号判定部における各論理回路の出力信号のパルスパターンの一例、(b)信号2がlow固定となった場合の伝送路異常(位相180°で異常)を示す当該パルスパターンの一例。(A) An example of a pulse pattern of signals 1 to 3 indicating a transmission line abnormality (abnormality at a phase of 180 °) when signal 2 is fixed to high and an output signal of each logic circuit in the signal determination unit, (b) signal. An example of the pulse pattern showing a transmission line abnormality (abnormality at a phase of 180 °) when 2 is fixed to low. 図11(a)(b)の信号2のパルスパターンにおける各位相区間の出力値の一例。An example of the output value of each phase section in the pulse pattern of the signal 2 of FIGS. 11A and 11B. (a)信号3がhigh固定となった場合の伝送路異常(位相180°で異常)を示す信号1〜3及び信号判定部における各論理回路の出力信号のパルスパターンの一例、(b)信号3がlow固定となった場合の伝送路異常(位相180°で異常)を示す当該パルスパターンの一例。(A) An example of a pulse pattern of signals 1 to 3 indicating a transmission line abnormality (abnormality at a phase of 180 °) when signal 3 is fixed to high and an output signal of each logic circuit in the signal determination unit, (b) signal. An example of the pulse pattern showing a transmission line abnormality (abnormality at a phase of 180 °) when 3 is fixed to low. 図13(a)(b)の信号3のパルスパターンにおける各位相区間の出力値の一例。An example of the output value of each phase section in the pulse pattern of the signal 3 of FIGS. 13 (a) and 13 (b).

以下に図面を参照しながら本発明の実施形態について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

[実施形態1]
図1に例示の伝送システム1は、互いに伝送可能なマスタ制御装置2及びスレーブ制御装置3を有する。マスタ制御装置2とスレーブ制御装置3とは、制御情報及びゲートイネーブル信号(以下、イネーブル信号)を伝送する光回線である光ファイバケーブル10を介して接続される。光ファイバケーブル10は複数の回線を有する。本発明の光回線は、2つ以上の複数の回線を有すればよく、図示の回線数に限定されるものではない。
[Embodiment 1]
The transmission system 1 illustrated in FIG. 1 has a master control device 2 and a slave control device 3 capable of transmitting to each other. The master control device 2 and the slave control device 3 are connected via an optical fiber cable 10 which is an optical line for transmitting control information and a gate enable signal (hereinafter, enable signal). The optical fiber cable 10 has a plurality of lines. The optical line of the present invention may have two or more lines, and is not limited to the number of lines shown in the figure.

(マスタ制御装置2の態様例)
マスタ制御装置2は、伝送システム1のマスタ側の光通信装置であって、スレーブ制御装置3との間で制御情報及びイネーブル信号の送受信を行う。
(Example of mode of master control device 2)
The master control device 2 is an optical communication device on the master side of the transmission system 1 and transmits / receives control information and enable signals to / from the slave control device 3.

マスタ制御装置2は、通信制御部21、電圧レベル変換部220,221〜224及びE/O変換部230,231〜234を備える。 The master control device 2 includes a communication control unit 21, voltage level conversion units 220, 221-224, and E / O conversion units 230, 231-234.

通信制御部21は、スレーブ制御装置3に供する制御情報及びイネーブル信号(以下、信号1〜4)を生成する。 The communication control unit 21 generates control information and enable signals (hereinafter, signals 1 to 4) to be provided to the slave control device 3.

電圧レベル変換部220は、通信制御部21からの制御情報をE/O変換部230のICに適した所定の電圧レベルに変換する。 The voltage level conversion unit 220 converts the control information from the communication control unit 21 into a predetermined voltage level suitable for the IC of the E / O conversion unit 230.

電圧レベル変換部221〜224は、通信制御部21からの信号1〜4のパルスパターンをE/O変換部231〜234のICに適した所定の電圧レベルに各々変換する。 The voltage level conversion units 221 to 224 convert the pulse patterns of the signals 1 to 4 from the communication control unit 21 into predetermined voltage levels suitable for the ICs of the E / O conversion units 231 to 234, respectively.

E/O変換部230は、電圧レベル変換部220から受けた制御情報の電圧レベルを示す電気信号を光信号に変換する。 The E / O conversion unit 230 converts an electric signal indicating the voltage level of the control information received from the voltage level conversion unit 220 into an optical signal.

E/O変換部231〜234は、電圧レベル変換部221〜224から受けた信号1〜4の電圧レベルを示す電気信号を光信号に各々変換する。 The E / O conversion units 231 to 234 convert electrical signals indicating the voltage levels of the signals 1 to 4 received from the voltage level conversion units 221 to 224 into optical signals, respectively.

(スレーブ制御装置3の態様例)
スレーブ制御装置3は、伝送システム1のスレーブ側の光通信装置であって、マスタ制御装置2との間で制御情報の送受信やイネーブル信号の受信を行うと共に、図示省略の電力制御装置にゲート信号を出力する。
(Example of mode of slave control device 3)
The slave control device 3 is an optical communication device on the slave side of the transmission system 1, and transmits / receives control information and receives an enable signal to / from the master control device 2, and a gate signal to a power control device (not shown). Is output.

スレーブ制御装置3は、O/E変換部310〜314、電圧レベル変換部320〜324及び信号判定部33を備える。 The slave control device 3 includes an O / E conversion unit 310-314, a voltage level conversion unit 320 to 324, and a signal determination unit 33.

O/E変換部310は、マスタ制御装置2から光ファイバケーブル10を介して供された前記制御情報の光信号を電気信号に変換する。 The O / E conversion unit 310 converts the optical signal of the control information provided from the master control device 2 via the optical fiber cable 10 into an electric signal.

O/E変換部311〜314は、マスタ制御装置2から光ファイバケーブル10の各回線を介して供された信号1〜4の光信号を電気信号に各々変換する。 The O / E conversion units 31 to 314 convert the optical signals of the signals 1 to 4 provided from the master control device 2 via each line of the optical fiber cable 10 into electric signals, respectively.

電圧レベル変換部320は、O/E変換部310から受けた前記電気信号を信号判定部33のICに適した所定の電圧レベルに変換する。 The voltage level conversion unit 320 converts the electric signal received from the O / E conversion unit 310 into a predetermined voltage level suitable for the IC of the signal determination unit 33.

電圧レベル変換部321〜324は、O/E変換部311〜314から受けた信号1〜4の電気信号を信号判定部33のICに適した所定の電圧レベルに各々変換する。 The voltage level conversion units 321 to 324 convert the electric signals of the signals 1 to 4 received from the O / E conversion units 31 to 314 into predetermined voltage levels suitable for the IC of the signal determination unit 33, respectively.

信号判定部33は、電圧レベル変換部320から前記制御情報の電気信号を受けると共に、電圧レベル変換部321〜324からの信号1〜4の電圧レベルに基づき光ファイバケーブル10の伝送路が正常か否かを判定する。 The signal determination unit 33 receives the electric signal of the control information from the voltage level conversion unit 320, and whether the transmission line of the optical fiber cable 10 is normal based on the voltage levels of the signals 1 to 4 from the voltage level conversion units 321 to 324. Judge whether or not.

(信号判定部33の態様例)
信号判定部33は、図2(a)に例示したように、光ファイバケーブル10の回線数に対応した複数の伝送路異常検出回路331〜334と、論理和回路335とを備える。
(Example of mode of signal determination unit 33)
As illustrated in FIG. 2A, the signal determination unit 33 includes a plurality of transmission line abnormality detection circuits 331 to 334 corresponding to the number of lines of the optical fiber cable 10 and a logical sum circuit 335.

伝送路異常検出回路331〜334は、電圧レベル変換部321〜324から受けた信号1〜4の波形に基づき前記伝送路の異常を各々検出する。 The transmission line abnormality detection circuits 331 to 334 detect the abnormality of the transmission line based on the waveforms of the signals 1 to 4 received from the voltage level conversion units 321 to 324.

論理和回路335は、伝送路異常検出回路331〜334のいずれかから前記伝送路の異常を示す信号を受けると、前記伝送路の異常を示す信号を出力する。 When the OR circuit 335 receives a signal indicating an abnormality of the transmission line from any of the transmission line abnormality detection circuits 331 to 334, the OR circuit 335 outputs a signal indicating the abnormality of the transmission line.

スレーブ制御装置3は、信号判定部33において前記異常が検出されると、信号1〜4の伝送を停止させる制御情報をマスタ制御装置2に出力すると共に、前記電力変換装置の出力を停止させるゲート信号を当該電力変換装置に出力する。 When the signal determination unit 33 detects the abnormality, the slave control device 3 outputs control information for stopping the transmission of the signals 1 to 4 to the master control device 2 and a gate for stopping the output of the power conversion device. The signal is output to the power converter.

(伝送路異常検出回路331〜334の態様例)
伝送路異常検出回路331〜334は、同図(b)に例示したように、low連続検出回路41、high連続検出回路42及び論理和回路43を備える。
(Example of mode of transmission line abnormality detection circuit 331-334)
As illustrated in FIG. 3B, the transmission line abnormality detection circuits 331 to 334 include a low continuous detection circuit 41, a high continuous detection circuit 42, and a disjunction circuit 43.

low連続検出回路41は、カウンタ411、閾値設定部412、比較器413及び反転増幅回路414を備える。カウンタ411は、マスタ制御装置2からイネーブル信号として供された信号n(本態様の場合、n=1〜4)のパルス信号が所定波形(low)となる位相区間の連続数をカウントする。閾値設定部412は、前記連続数の閾値を予め設定する。比較器413は、前記連続数が閾値設定部412での閾値を超えた場合に信号nの伝送路の異常を示す信号を出力する。反転増幅回路414は、信号nを反転してカウンタ411のカウントに供する。 The low continuous detection circuit 41 includes a counter 411, a threshold value setting unit 412, a comparator 413, and an inverting amplifier circuit 414. The counter 411 counts the number of consecutive phase sections in which the pulse signal of the signal n (n = 1 to 4 in this embodiment) provided as the enable signal from the master control device 2 becomes a predetermined waveform (low). The threshold value setting unit 412 sets the threshold value of the continuous number in advance. The comparator 413 outputs a signal indicating an abnormality in the transmission line of the signal n when the continuous number exceeds the threshold value in the threshold value setting unit 412. The inverting amplifier circuit 414 inverts the signal n and uses it for counting of the counter 411.

high連続検出回路42は、カウンタ421、閾値設定部422、比較器423及び反転増幅回路424を備える。カウンタ421は、マスタ制御装置2からイネーブル信号として供された信号n(本態様の場合、n=1〜4)のパルス信号が所定波形(high)となる位相区間の連続数をカウントする。閾値設定部422は、前記連続数の閾値を予め設定する。比較器423は、前記連続数が閾値設定部422での閾値を超えた場合に前記いずれかの伝送路の異常を示す信号を出力する。反転増幅回路424は、信号nを反転してカウンタ421のクリアに供する。 The high continuous detection circuit 42 includes a counter 421, a threshold value setting unit 422, a comparator 423, and an inverting amplifier circuit 424. The counter 421 counts the number of consecutive phase sections in which the pulse signal of the signal n (n = 1 to 4 in this embodiment) provided as the enable signal from the master control device 2 has a predetermined waveform (high). The threshold value setting unit 422 sets the threshold value of the continuous number in advance. The comparator 423 outputs a signal indicating an abnormality in any of the transmission lines when the continuous number exceeds the threshold value in the threshold value setting unit 422. The inverting amplifier circuit 424 inverts the signal n and uses it to clear the counter 421.

論理和回路43は、low連続検出回路41、high連続検出回路42のいずれかから異常を示す信号を受けると、信号nの回線の異常を示す信号を出力する。 When the OR circuit 43 receives a signal indicating an abnormality from either the low continuous detection circuit 41 or the high continuous detection circuit 42, the OR circuit 43 outputs a signal indicating an abnormality in the line of the signal n.

(本実施形態の動作例)
以下、図1〜5を参照して実施形態1の動作例について説明する。
(Operation example of this embodiment)
Hereinafter, an operation example of the first embodiment will be described with reference to FIGS. 1 to 5.

マスタ制御装置2の通信制御部21は、イネーブル信号をして図3に例示のパルスパターンの信号1〜3を生成する。 The communication control unit 21 of the master control device 2 gives an enable signal to generate signals 1 to 3 of the pulse pattern illustrated in FIG.

信号1は360/4×0〜360/4×1(360/n、nは使用回路数)の範囲で値をlow、highに信号を変化させる。信号2は360/4×1〜360/4×2の範囲で信号を変化させ、信号3、信号4もそれぞれ指定の範囲内で信号を変化させる。 The signal 1 changes the value to low and high in the range of 360/4 × 0 to 360/4 × 1 (360 / n, n is the number of circuits used). The signal 2 changes the signal in the range of 360/4 × 1 to 360/4 × 2, and the signal 3 and the signal 4 also change the signal within the specified range, respectively.

マスタ制御装置2は信号1〜4をスレーブ制御装置3に送信する。スレーブ制御装置3は信号1〜4を受信し、光ファイバケーブル10の伝送路の異常を判定する。信号判定部33において、図2(b)のhigh連続検出回路42は、信号1〜4が0になったタイミングでカウンタ421をクリアし、カウンタ421がクリアされなかった場合に異常を判定するための閾値が閾値設定部422により設定される。一方、low連続検出回路41は、カウンタ411がクリアされるタイミングは、high連続検出回路42と逆であり、信号1〜4が1となったタイミングでカウンタをクリアする。 The master control device 2 transmits signals 1 to 4 to the slave control device 3. The slave control device 3 receives signals 1 to 4 and determines an abnormality in the transmission line of the optical fiber cable 10. In the signal determination unit 33, the high continuous detection circuit 42 of FIG. 2B clears the counter 421 at the timing when the signals 1 to 4 become 0, and determines an abnormality when the counter 421 is not cleared. The threshold value of is set by the threshold value setting unit 422. On the other hand, in the low continuous detection circuit 41, the timing at which the counter 411 is cleared is opposite to that at the high continuous detection circuit 42, and the counter is cleared at the timing when the signals 1 to 4 become 1.

前記伝送路の異常で信号nがlow固定となった場合のlow連続検出回路41の信号パターンを図4に示す。前記伝送路の異常で信号nがhigh固定となった場合のhigh連続検出回路42の信号パターンを図5に示す。 FIG. 4 shows a signal pattern of the low continuous detection circuit 41 when the signal n is fixed to low due to an abnormality in the transmission line. FIG. 5 shows a signal pattern of the high continuous detection circuit 42 when the signal n is fixed to high due to an abnormality in the transmission line.

以上のように、スレーブ制御装置3は、光ファイバケーブル10の伝送路を介してマスタ制御装置2から供される「1」「0」の二値で示されるイネーブル信号に基づき当該伝送路の異常を判定する。 As described above, the slave control device 3 has an abnormality in the transmission line based on the enable signals indicated by the binary values of "1" and "0" provided from the master control device 2 via the transmission line of the optical fiber cable 10. To judge.

したがって、本実施形態の伝送路異常の検出方式によれば、光回線を利用した伝送路の異常検出にあたり、シリアルデータ通信に比べて、伝送路の異常を高速に検出すると共にゲートイネーブル信号を迅速に停止できる。 Therefore, according to the transmission line abnormality detection method of the present embodiment, when detecting a transmission line abnormality using an optical line, the transmission line abnormality is detected at a higher speed and the gate enable signal is quickly detected as compared with serial data communication. Can be stopped at.

[実施形態2]
本実施形態は、スレーブ制御装置3の信号判定部33を論理回路のみで構成することで回路構成の簡素化と伝送路の異常検出の高速化を図る。
[Embodiment 2]
In the present embodiment, the signal determination unit 33 of the slave control device 3 is configured only with a logic circuit to simplify the circuit configuration and speed up the detection of abnormalities in the transmission line.

図6に例示された伝送システムはイネーブル信号の光通信回線を3つ有する。 The transmission system illustrated in FIG. 6 has three optical communication lines for enable signals.

本実施形態の伝送システム1は、スレーブ制御装置3の信号判定部33が図7のように実施形態1のカウンタ411,421を備えることなく論理回路のみで構成されること以外は、実施形態1の伝送システム1と同様の態様となっている。 The transmission system 1 of the present embodiment is the first embodiment except that the signal determination unit 33 of the slave control device 3 is composed only of a logic circuit without the counters 411 and 421 of the first embodiment as shown in FIG. The mode is the same as that of the transmission system 1 of the above.

信号判定部33は、第一論理和回路51、反転増幅回路521〜523、第二論理和回路53、論理積回路54を備える。 The signal determination unit 33 includes a first OR circuit 51, an inverting amplifier circuit 521 to 523, a second OR circuit 53, and a AND circuit 54.

第一論理和回路51は、マスタ制御装置2の通信制御部21から受けた所定波形の信号1〜3のいずれかに基づく信号ORを出力する。 The first OR circuit 51 outputs a signal OR based on any of the signals 1 to 3 having a predetermined waveform received from the communication control unit 21 of the master control device 2.

反転増幅回路521〜523は、マスタ制御装置2から受けた信号1〜3を反転した信号1*〜3*を各々出力する。 The inverting amplifier circuits 521 to 523 output signals 1 * to 3 *, which are inverting signals 1 to 3 received from the master control device 2, respectively.

第二論理和回路53は、反転増幅回路521〜523から受けた信号1*〜3*のいずれかに基づく信号OR*を出力する。 The second OR circuit 53 outputs a signal OR * based on any of the signals 1 * to 3 * received from the inverting amplifier circuits 521 to 523.

論理積回路54は、第一論理和回路51の出力信号OR及び第二論理和回路53の出力信号OR*に基づく信号ANDを出力する。例えば、前記伝送路が正常である場合、信号ANDは正常を示す第一出力値として「1」が出力される。一方、前記伝送路が異常である場合、信号ANDは異常を示す第二出力値として「0」が出力される。 The AND circuit 54 outputs a signal AND based on the output signal OR of the first OR circuit 51 and the output signal OR * of the second OR circuit 53. For example, when the transmission line is normal, the signal AND outputs "1" as the first output value indicating normality. On the other hand, when the transmission line is abnormal, the signal AND outputs "0" as a second output value indicating the abnormality.

図8〜14を参照して実施形態2の動作例について説明する。 An operation example of the second embodiment will be described with reference to FIGS. 8 to 14.

マスタ制御装置2は図8(a)に例示したパルスパターンの信号1〜3をスレーブ制御装置3に送信する。スレーブ制御装置3は図7の信号判定部33により信号1〜3に基づく伝送システム1の伝送路の異常を判定する。 The master control device 2 transmits signals 1 to 3 of the pulse pattern illustrated in FIG. 8A to the slave control device 3. The slave control device 3 determines an abnormality in the transmission line of the transmission system 1 based on the signals 1 to 3 by the signal determination unit 33 of FIG.

同図(b)は前記伝送路が正常である場合の信号1〜3のパルスパターンにおける各位相区間の信号1〜3、信号1*〜3*、信号OR、信号OR*、信号ANDの出力値の一例を示す。前記伝送路が正常時は信号ANDが常に「1」として出力される。 FIG. 3B shows the outputs of signals 1 to 3, signals 1 * to 3 *, signal OR, signal OR *, and signal AND in each phase section in the pulse pattern of signals 1 to 3 when the transmission line is normal. An example of the value is shown. When the transmission line is normal, the signal AND is always output as "1".

図9〜14は前記伝送路が異常である場合の信号1〜3のパルスパターンとその各位相区間の信号1〜3、信号1*〜3*、信号OR、信号OR*、信号ANDの出力値の一例を示す。 9 to 14 show the pulse patterns of signals 1 to 3 when the transmission line is abnormal and the outputs of signals 1 to 3, signals 1 * to 3 *, signal OR, signal OR *, and signal AND in each phase section thereof. An example of the value is shown.

図9(a)は、信号1がhigh固定となった場合の伝送路異常(位相180°で異常)を示す信号1〜3及び信号判定部における各論理回路の出力信号のパルスパターンの一例を示す。同図(b)は、信号1がlow固定となった場合の伝送路異常(位相180°で異常)を示す当該パルスパターンの一例を示す。図10は、図9(a)(b)の当該パルスパターンにおける各位相区間の出力値の一例を示す。 FIG. 9A shows an example of a pulse pattern of signals 1 to 3 indicating a transmission line abnormality (abnormality at a phase of 180 °) when signal 1 is fixed to high and an output signal of each logic circuit in the signal determination unit. show. FIG. 3B shows an example of the pulse pattern showing a transmission line abnormality (abnormality at a phase of 180 °) when the signal 1 is fixed at low. FIG. 10 shows an example of the output value of each phase section in the pulse pattern of FIGS. 9A and 9B.

図11(a)は、信号2がhigh固定となった場合の伝送路異常(位相180°で異常)を示す信号1〜3及び信号判定部における各論理回路の出力信号のパルスパターンの一例を示す。同図(b)は、信号2がlow固定となった場合の伝送路異常(位相180°で異常)を示す当該パルスパターンの一例を示す。図12は、図11(a)(b)の当該パルスパターンにおける各位相区間の出力値の一例を示す。 FIG. 11A shows an example of a pulse pattern of signals 1 to 3 indicating a transmission line abnormality (abnormality at a phase of 180 °) when the signal 2 is fixed to high and an output signal of each logic circuit in the signal determination unit. show. FIG. 2B shows an example of the pulse pattern showing a transmission line abnormality (abnormality at a phase of 180 °) when the signal 2 is fixed at low. FIG. 12 shows an example of the output value of each phase section in the pulse pattern of FIGS. 11A and 11B.

図13(a)は、信号3がhigh固定となった場合の伝送路異常(位相180°で異常)を示す信号1〜3及び信号判定部における各論理回路の出力信号のパルスパターンの一例を示す。同図(b)は、信号3がlow固定となった場合の伝送路異常(位相180°で異常)を示す当該パルスパターンの一例を示す。図14は、図13(a)(b)の当該パルスパターンにおける各位相区間の出力値の一例を示す。 FIG. 13A shows an example of the pulse patterns of the signals 1 to 3 indicating a transmission line abnormality (abnormality at a phase of 180 °) when the signal 3 is fixed to high and the output signal of each logic circuit in the signal determination unit. show. FIG. 3B shows an example of the pulse pattern showing a transmission line abnormality (abnormality at a phase of 180 °) when the signal 3 is fixed at low. FIG. 14 shows an example of the output value of each phase section in the pulse pattern of FIGS. 13 (a) and 13 (b).

前記伝送路の異常により信号判定部33から出力された信号ANDの出力値「1」は、例えばスレーブ制御装置3に実装されたラッチ処理回路等の自己保持回路に保持される。 The output value "1" of the signal AND output from the signal determination unit 33 due to the abnormality of the transmission line is held by a self-holding circuit such as a latch processing circuit mounted on the slave control device 3, for example.

したがって、実施形態2の伝送路異常の検出方式によれば、「1」「0」の二値で伝送路異常を判定することで、実施形態1と同様に、シリアルデータ通信に比べて伝送路異常を高速に検出し、かつゲートイネーブル信号を迅速に停止できる。特に、信号判定部33が論理回路のみで構成されたことで回路構成の簡素化が実現する。さらには、伝送路の異常検出の高速化が図られる。特に、実施形態1の検出方式に比べて伝送路の故障発生から180°以内にその異常を検出できる。 Therefore, according to the transmission line abnormality detection method of the second embodiment, by determining the transmission line abnormality by the binary values of "1" and "0", as in the first embodiment, the transmission line is compared with the serial data communication. Anomalies can be detected at high speed and the gate enable signal can be stopped quickly. In particular, since the signal determination unit 33 is composed of only a logic circuit, the circuit configuration can be simplified. Further, the speed of detecting an abnormality in the transmission line can be increased. In particular, as compared with the detection method of the first embodiment, the abnormality can be detected within 180 ° from the occurrence of the failure of the transmission line.

1…伝送システム
2…マスタ制御装置、21…通信制御部、220〜224…電圧レベル変換部、230〜234…E/O変換部
3…スレーブ制御装置、310〜314…O/E変換部、320〜324…電圧レベル変換部、33…信号判定部
331〜334…伝送路異常検出回路、335…論理和回路
41…low連続検出回路、42…high連続検出回路
411,421…カウンタ、412,422…閾値設定部、413,423…比較器
51…第一論理和回路、521〜523…反転増幅回路、53…第二論理和回路、54…論理積回路
10…光ファイバケーブル
1 ... Transmission system 2 ... Master control device, 21 ... Communication control unit, 220 to 224 ... Voltage level conversion unit, 230 to 234 ... E / O conversion unit 3 ... Slave control device, 310 to 314 ... O / E conversion unit, 320 to 324 ... Voltage level conversion unit, 33 ... Signal determination unit 331-334 ... Transmission line abnormality detection circuit, 335 ... Logical sum circuit 41 ... low continuous detection circuit, 42 ... high continuous detection circuit 411, 421 ... Counter, 421 422 ... Voltage setting unit, 413, 423 ... Comparator 51 ... First logic sum circuit, 521-523 ... Inversion amplifier circuit, 53 ... Second logic sum circuit, 54 ... Logical product circuit 10 ... Optical fiber cable

Claims (5)

マスタ側の光通信装置との通信により電力変換装置にゲート信号を出力するスレーブ側の光通信装置であって、
前記マスタ側の光通信装置から光回線を介して受信したゲートイネーブル信号に基づき当該光回線の伝送路の異常を検出する信号判定部を備え、
前記異常が検出されると、前記ゲートイネーブル信号の伝送を停止させる制御情報を前記マスタ側の光通信装置に出力すると共に、前記ゲート信号として前記電力変換装置の出力を停止させる信号を出力すること
を特徴とする光通信装置。
It is an optical communication device on the slave side that outputs a gate signal to the power conversion device by communicating with the optical communication device on the master side.
A signal determination unit for detecting an abnormality in the transmission line of the optical line based on a gate enable signal received from the optical communication device on the master side via the optical line is provided.
When the abnormality is detected, control information for stopping the transmission of the gate enable signal is output to the optical communication device on the master side, and a signal for stopping the output of the power conversion device is output as the gate signal. An optical communication device characterized by.
前記光回線は、複数の回線を有し、
前記信号判定部は、
前記回線から受けた前記ゲートイネーブル信号の波形に基づき前記異常を検出する伝送路異常検出回路と、
この伝送路異常検出回路から前記異常を示す信号を受けると前記異常を示す信号を出力する論理和回路と
を備えたことを特徴とする請求項1に記載の光通信装置。
The optical line has a plurality of lines and has a plurality of lines.
The signal determination unit
A transmission line abnormality detection circuit that detects the abnormality based on the waveform of the gate enable signal received from the line, and
The optical communication device according to claim 1, further comprising a logical sum circuit that outputs a signal indicating the abnormality when receiving a signal indicating the abnormality from the transmission line abnormality detection circuit.
前記伝送路異常検出回路は、
前記伝送路の前記ゲートイネーブル信号のパルス信号が所定波形となる位相区間の連続数をカウントするカウンタと、
前記連続数が閾値を超えた場合に前記伝送路の異常を示す信号を出力する比較器と
を備えたことを特徴とする請求項2に記載の光通信装置。
The transmission line abnormality detection circuit is
A counter that counts the number of consecutive phase sections in which the pulse signal of the gate enable signal of the transmission line has a predetermined waveform, and
The optical communication device according to claim 2, further comprising a comparator that outputs a signal indicating an abnormality in the transmission line when the number of continuous lines exceeds a threshold value.
前記光回線は、複数の回線を有し、
前記信号判定部は、
前記マスタ側の光通信装置から受けた前記複数の回線の所定波形の信号のいずれかに基づく出力信号を発する第一論理和回路と、
前記所定波形の信号を反転する反転増幅回路と、
前記反転された信号のいずれかに基づく出力信号を発する第二論理和回路と、
前記第一論理和回路及び前記第二論理和回路の出力信号に基づき、前記伝送路が正常であることを示す第一出力値または前記伝送路が異常であることを示す第二出力値を出力する論理積回路と
を備えたことを特徴とする請求項1に記載の光通信装置。
The optical line has a plurality of lines and has a plurality of lines.
The signal determination unit
A first OR circuit that emits an output signal based on any of the signals having a predetermined waveform of the plurality of lines received from the optical communication device on the master side.
An inverting amplifier circuit that inverts the signal of the predetermined waveform and
A second OR circuit that emits an output signal based on any of the inverted signals,
Based on the output signals of the first OR circuit and the second OR circuit, the first output value indicating that the transmission line is normal or the second output value indicating that the transmission line is abnormal is output. The optical communication device according to claim 1, further comprising a logical product circuit.
マスタ側の光通信装置との通信により電力変換装置にゲート信号を出力するスレーブ側の光通信装置による伝送路異常検出方法であって、
前記マスタ側の光通信装置から光回線を介して受信したゲートイネーブル信号に基づき当該光回線の伝送路の異常を検出する過程と、
前記異常が検出されると前記ゲートイネーブル信号の伝送を停止させる制御情報を前記マスタ側の光通信装置に出力すると共に前記ゲート信号として前記電力変換装置の出力を停止させる信号を出力する過程と
を有することを特徴とする伝送路異常検出方法。
It is a transmission line abnormality detection method by the optical communication device on the slave side that outputs a gate signal to the power conversion device by communicating with the optical communication device on the master side.
The process of detecting an abnormality in the transmission line of the optical line based on the gate enable signal received from the optical communication device on the master side via the optical line, and
When the abnormality is detected, the process of outputting control information for stopping the transmission of the gate enable signal to the optical communication device on the master side and outputting a signal for stopping the output of the power conversion device as the gate signal. A method for detecting an abnormality in a transmission line, which comprises having.
JP2020053285A 2020-03-24 2020-03-24 Optical communication equipment and transmission path abnormality detection method Active JP7413874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020053285A JP7413874B2 (en) 2020-03-24 2020-03-24 Optical communication equipment and transmission path abnormality detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020053285A JP7413874B2 (en) 2020-03-24 2020-03-24 Optical communication equipment and transmission path abnormality detection method

Publications (2)

Publication Number Publication Date
JP2021153271A true JP2021153271A (en) 2021-09-30
JP7413874B2 JP7413874B2 (en) 2024-01-16

Family

ID=77886742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053285A Active JP7413874B2 (en) 2020-03-24 2020-03-24 Optical communication equipment and transmission path abnormality detection method

Country Status (1)

Country Link
JP (1) JP7413874B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273692A (en) * 1994-03-28 1995-10-20 Hitachi Ltd Crosstalk preventing method and signal transfer device
JP2002290348A (en) * 2001-03-27 2002-10-04 Yokogawa Electric Corp Optical communication unit
JP2005311523A (en) * 2004-04-19 2005-11-04 Fuji Electric Systems Co Ltd Optical communication control unit
JP2012100398A (en) * 2010-11-01 2012-05-24 Hitachi Ltd Power converter
US20170149344A1 (en) * 2015-11-20 2017-05-25 Delta Electronics (Shanghai) Co., Ltd System and method for pulse driving

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07273692A (en) * 1994-03-28 1995-10-20 Hitachi Ltd Crosstalk preventing method and signal transfer device
JP2002290348A (en) * 2001-03-27 2002-10-04 Yokogawa Electric Corp Optical communication unit
JP2005311523A (en) * 2004-04-19 2005-11-04 Fuji Electric Systems Co Ltd Optical communication control unit
JP2012100398A (en) * 2010-11-01 2012-05-24 Hitachi Ltd Power converter
US20170149344A1 (en) * 2015-11-20 2017-05-25 Delta Electronics (Shanghai) Co., Ltd System and method for pulse driving

Also Published As

Publication number Publication date
JP7413874B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5412993B2 (en) Safety device and power converter
EP2656226B1 (en) Communications architecture for providing data communication, synchronization and fault detection between isolated modules
US9678919B2 (en) Collision detection in EIA-485 bus systems
US20080082212A1 (en) Programmable Controller
JP2019096960A (en) Transmission equipment and transmission method
JP2021153271A (en) Optical communication device and transmission path abnormality detection method
US10109440B2 (en) Safety switch
JPH0644854A (en) Method and apparatus fro monitoring of switch
JP2017037644A5 (en)
EP1097513B1 (en) Clock pulse degradation detector
JP4677579B2 (en) Signal transmission device
JP5440418B2 (en) Bus system having a plurality of protocol buses and bus switching device used therefor
US10574514B2 (en) Duplex control device and duplex system
CN108958019A (en) Safe adapter, tandem type safe control loop and method of controlling security
JP6571593B2 (en) Dual system control system
JP2606134B2 (en) Failure detection method
JP2749690B2 (en) Turnback test circuit
JPH07245629A (en) Fault detector for transmission line
JPH04165812A (en) Clock interruption detecting circuit for device group
JPH023342B2 (en)
JPH04267631A (en) Parity bit addition system
JPS61126847A (en) Line disconnection detecting device of data transmission system
JP2007243914A (en) Transmission apparatus including line test function
JP2001024588A (en) Signal converter
JP2019161386A (en) Communications system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7413874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150