JP2021153049A - Connection body and manufacturing method thereof - Google Patents

Connection body and manufacturing method thereof Download PDF

Info

Publication number
JP2021153049A
JP2021153049A JP2021044505A JP2021044505A JP2021153049A JP 2021153049 A JP2021153049 A JP 2021153049A JP 2021044505 A JP2021044505 A JP 2021044505A JP 2021044505 A JP2021044505 A JP 2021044505A JP 2021153049 A JP2021153049 A JP 2021153049A
Authority
JP
Japan
Prior art keywords
connector
plug
configuration example
receptacle
terminal row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021044505A
Other languages
Japanese (ja)
Inventor
良介 小高
Ryosuke Odaka
良介 小高
亮 伊藤
Akira Ito
亮 伊藤
博之 熊倉
Hiroyuki Kumakura
博之 熊倉
智幸 阿部
Tomoyuki Abe
智幸 阿部
大祐 佐藤
Daisuke Sato
大祐 佐藤
勝久 折原
Katsuhisa Orihara
勝久 折原
和久 青木
Kazuhisa Aoki
和久 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to PCT/JP2021/011169 priority Critical patent/WO2021187591A1/en
Priority to US17/910,987 priority patent/US20230198186A1/en
Priority to TW110110049A priority patent/TW202141721A/en
Publication of JP2021153049A publication Critical patent/JP2021153049A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Coupling Device And Connection With Printed Circuit (AREA)
  • Manufacturing Of Electrical Connectors (AREA)

Abstract

To provide a connection body and a manufacturing method thereof that can be made fine pitch and miniaturized.SOLUTION: A connection body includes a substrate 10 having a first terminal row 11, a connector 20 having second terminal rows 21A to 21E, and an adhesive layer 30 on which a thermosetting connection material that connects the first terminal row 11 and the second terminal rows 21 is cured, and the second terminal rows 21A to 21E are arranged on the bottom surface of the connector 20 to form a step absorbing portion that absorbs the step on the bottom surface, and the thermosetting connection material includes solder particles and a flux component. As a result, the first terminal row 11 and the second terminal rows 21A to 21E can be connected, such that the terminal row can be made a fine pitch and the connection body can be miniaturized.SELECTED DRAWING: Figure 1

Description

本技術は、コネクタを実装する接続体、及び接続体の製造方法体に関する。 The present technology relates to a connector on which a connector is mounted and a method for manufacturing the connector.

従来、コネクタの実装は、基板上に半田ペーストを設けるか、又はコネクタの導線部分に半田(BGA)を設け、リフローにより半田実装が行われている(例えば特許文献1参照。)。近年、電子機器の小型化の要請から、コネクタのピッチが0.8mm以下、さらには0.3mm以下のものが望まれている。 Conventionally, in the mounting of a connector, solder paste is provided on a substrate, or solder (BGA) is provided on a lead wire portion of the connector, and solder mounting is performed by reflow (see, for example, Patent Document 1). In recent years, due to the demand for miniaturization of electronic devices, those having a connector pitch of 0.8 mm or less and further 0.3 mm or less are desired.

狭ピッチの端子列を接続する技術として、異方性接続が挙げられるが、コネクタは、一般的に樹脂成型品であるため、異方性接続を行った場合、本圧着時のツールの加圧によりコネクタが変形してしまい、例えばケーブルの差し込みができないことが懸念される。 Anisotropic connection can be mentioned as a technique for connecting narrow-pitch terminal rows. However, since the connector is generally a resin molded product, when anisotropic connection is performed, the tool is pressed during the main crimping. This causes the connector to be deformed, and there is a concern that the cable cannot be inserted, for example.

また、従来のコネクタの半田実装では、基板側の端子列にソルダーレジストを使用するため、コネクタの端子列のピッチを、さらに狭小化するのは困難である。また、従来のコネクタは、リード端子(ガルウィング端子)が外側に向かって伸びているため、実装面積が大きくなり、実装体の小型化を妨げていた。 Further, in the conventional solder mounting of the connector, since a solder resist is used for the terminal row on the substrate side, it is difficult to further narrow the pitch of the terminal row of the connector. Further, in the conventional connector, since the lead terminal (gull wing terminal) extends outward, the mounting area becomes large, which hinders the miniaturization of the mounting body.

特開平10−284199号公報Japanese Unexamined Patent Publication No. 10-284199

本技術は、このような従来の実情に鑑みて提案されたものであり、ファインピッチ化及び小型化することができる接続体、及び接続体の製造方法を提供する。 The present technology has been proposed in view of such conventional circumstances, and provides a connecting body capable of fine pitching and miniaturization, and a method for manufacturing the connecting body.

本技術に係る接続体は、第1の端子列を有する基板と、第2の端子列を有するコネクタと、前記第1の端子列と前記第2の端子列とを接続する熱硬化性接続材料が硬化した接着層とを備え、前記第2の端子列が、前記コネクタの底面に配置され、該底面の段差を吸収する段差吸収部を形成し、前記熱硬化性接続材料が、半田粒子とフラックス成分とを含有する。 The connector according to the present technology is a thermosetting connection material that connects a substrate having a first terminal row, a connector having a second terminal row, and the first terminal row and the second terminal row. The second terminal row is arranged on the bottom surface of the connector to form a step absorbing portion that absorbs the step on the bottom surface, and the thermosetting connecting material is formed with solder particles. Contains a flux component.

本技術に係る接続体の製造方法は、第1の端子列を有する基板上に、半田粒子とフラックス成分とを含有する熱硬化性接続材料を介して、底面に第2の端子列が配置され、該底面の段差を吸収する段差吸収部が形成されたコネクタを載置し、前記コネクタを押圧せずに、前記半田粒子の融点以上の温度で前記熱硬化性接続材料を熱硬化させ、前記第1の端子列と前記第2の端子列とを接続する。 In the method for manufacturing a connector according to the present technology, a second terminal row is arranged on the bottom surface of a substrate having a first terminal row via a thermosetting connecting material containing solder particles and a flux component. A connector having a step absorbing portion for absorbing the step on the bottom surface is placed, and the thermosetting connection material is thermoset at a temperature equal to or higher than the melting point of the solder particles without pressing the connector. The first terminal row and the second terminal row are connected.

本技術によれば、コネクタの底面に端子列を配置し、底面の段差を吸収することにより、端子列をファインピッチ化することができ、接続体を小型化することができる。 According to the present technology, by arranging the terminal row on the bottom surface of the connector and absorbing the step on the bottom surface, the terminal row can be made a fine pitch and the connector can be miniaturized.

図1は、本実施の形態に係る接続体の一例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of a connecting body according to the present embodiment. 図2は、従来技術に係るプラグの一例を示す上面図である。FIG. 2 is a top view showing an example of a plug according to the prior art. 図3は、従来技術に係るレセプタクルの一例を示す上面図であるFIG. 3 is a top view showing an example of a receptacle according to the prior art. 図4は、図2に示すプラグ及び図3に示すレセプタクルのA−A断面図である。FIG. 4 is a cross-sectional view taken along the line AA of the plug shown in FIG. 2 and the receptacle shown in FIG. 図5は、本実施の形態に係るプラグの一例を示す上面図である。FIG. 5 is a top view showing an example of the plug according to the present embodiment. 図6は、本実施の形態に係るレセプタクルの一例を示す上面図である。FIG. 6 is a top view showing an example of the receptacle according to the present embodiment. 図7は、図5に示すプラグ及び図6に示すレセプタクルのA−A断面図である。FIG. 7 is a cross-sectional view taken along the line AA of the plug shown in FIG. 5 and the receptacle shown in FIG. 図8は、基板の一例を模式的に示す断面図である。FIG. 8 is a cross-sectional view schematically showing an example of the substrate. 図9は、基板の端子上に、熱硬化性接続材料を設けた状態を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing a state in which a thermosetting connecting material is provided on the terminals of the substrate. 図10は、基板の端子列とコネクタの端子列との位置合わせを模式的に示す断面図である。FIG. 10 is a cross-sectional view schematically showing the alignment between the terminal row of the substrate and the terminal row of the connector. 図11は、基板にコネクタを載置した状態を模式的に示す断面図であるFIG. 11 is a cross-sectional view schematically showing a state in which the connector is mounted on the substrate. 図12は、基板及びコネクタをリフロー炉にて加熱した状態を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing a state in which the substrate and the connector are heated in a reflow oven. 図13は、シミュレーションで用いたコネクタ構造を示す斜視図である。FIG. 13 is a perspective view showing the connector structure used in the simulation. 図14は、シミュレーションで用いたコネクタ構造の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of the connector structure used in the simulation. 図15(A)は、プラグの第1構成例(Plug-1)を示す断面図であり、図15(B)は、プラグの第2構成例(Plug-2)を示す断面図である。FIG. 15 (A) is a cross-sectional view showing a first configuration example (Plug-1) of the plug, and FIG. 15 (B) is a cross-sectional view showing a second configuration example (Plug-2) of the plug. 図16(A)は、プラグの第3構成例(Plug-3)を示す断面図であり、図16(B)は、プラグの第4構成例(Plug-4)を示す断面図である。FIG. 16A is a cross-sectional view showing a third configuration example (Plug-3) of the plug, and FIG. 16B is a cross-sectional view showing a fourth configuration example (Plug-4) of the plug. 図17(A)は、プラグの第1L構成例(Plug-1 Loop)を示す断面図であり、図17(B)は、プラグの第2L構成例(Plug-2 Loop)を示す断面図である。FIG. 17A is a cross-sectional view showing a first L configuration example (Plug-1 Loop) of the plug, and FIG. 17B is a cross-sectional view showing a second L configuration example (Plug-2 Loop) of the plug. be. 図18(A)は、プラグの第3L構成例(Plug-3 Loop)を示す断面図であり、図18(B)は、プラグの第4L構成例(Plug-4 Loop)を示す断面図である。FIG. 18A is a cross-sectional view showing a third L configuration example (Plug-3 Loop) of the plug, and FIG. 18B is a cross-sectional view showing a fourth L configuration example (Plug-4 Loop) of the plug. be. 図19は、レセプタクルの第1構成例(Receptacle−0)を示す断面図である。FIG. 19 is a cross-sectional view showing a first configuration example (Receptacle-0) of the receptacle. 図20は、レセプタクルの第2構成例(Receptacle−1)を示す断面図である。FIG. 20 is a cross-sectional view showing a second configuration example (Receptacle-1) of the receptacle. 図21は、レセプタクルの第3構成例(Receptacle−2)を示す断面図である。FIG. 21 is a cross-sectional view showing a third configuration example (Receptacle-2) of the receptacle. 図22は、レセプタクルの第4構成例(Receptacle−3)を示す断面図である。FIG. 22 is a cross-sectional view showing a fourth configuration example (Receptacle-3) of the receptacle. 図23は、第1構成例(Plug-1)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフである。FIG. 23 is a graph showing a transmission signal S21 when the plug of the first configuration example (Plug-1) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. .. 図24は、第1構成例(Plug-1)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。FIG. 24 is a graph showing a reflection signal S11 when the plug of the first configuration example (Plug-1) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. .. 図25は、第2構成例(Plug-2)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフである。FIG. 25 is a graph showing a transmission signal S21 when the plug of the second configuration example (Plug-2) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. .. 図26は、第2構成例(Plug-2)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。FIG. 26 is a graph showing a reflection signal S11 when the plug of the second configuration example (Plug-2) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. .. 図27は、第3構成例(Plug-3)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフである。FIG. 27 is a graph showing a transmission signal S21 when the plug of the third configuration example (Plug-3) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. .. 図28は、第3構成例(Plug-3)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。FIG. 28 is a graph showing a reflection signal S11 when the plug of the third configuration example (Plug-3) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. .. 図29は、第4構成例(Plug-4)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフである。FIG. 29 is a graph showing a transmission signal S21 when the plug of the fourth configuration example (Plug-4) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. .. 図30は、第4構成例(Plug−4)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。FIG. 30 is a graph showing a reflection signal S11 when the plug of the fourth configuration example (Plug-4) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. .. 図31は、第1L構成例(Plug−1 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフである。FIG. 31 is a graph showing a transmission signal S21 when the plug of the first L configuration example (Plug-1 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. be. 図32は、第1L構成例(Plug−1 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。FIG. 32 is a graph showing the reflected signal S11 when the plug of the first L configuration example (Plug-1 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. be. 図33は、第2L構成例(Plug−2 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフである。FIG. 33 is a graph showing a transmission signal S21 when the plug of the second L configuration example (Plug-2 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. be. 図34は、第2L構成例(Plug−2 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。FIG. 34 is a graph showing the reflected signal S11 when the plug of the second L configuration example (Plug-2 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. be. 図35は、第3L構成例(Plug−3 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフである。FIG. 35 is a graph showing a transmission signal S21 when the plug of the third L configuration example (Plug-3 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. be. 図36は、第3L構成例(Plug−3 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。FIG. 36 is a graph showing the reflected signal S11 when the plug of the third L configuration example (Plug-3 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. be. 図37は、第4L構成例(Plug−4 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフである。FIG. 37 is a graph showing a transmission signal S21 when the plug of the 4L configuration example (Plug-4 Loop) and the receptacles of the 1st configuration example to the 4th configuration example (Receptacle-0 to Receptacle-3) are connected. be. 図38は、第4L構成例(Plug−4 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。FIG. 38 is a graph showing the reflected signal S11 when the plug of the 4L configuration example (Plug-4 Loop) and the receptacles of the 1st configuration example to the 4th configuration example (Receptacle-0 to Receptacle-3) are connected. be.

以下、本技術の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.接続体
2.熱硬化性接続材料
3.接続体の製造方法
4.コネクタ
5.実施例
Hereinafter, embodiments of the present technology will be described in detail in the following order with reference to the drawings.
1. 1. Connection body 2. Thermosetting connection material 3. Method of manufacturing the connector 4. Connector 5. Example

<1.接続体>
本実施の形態に係る接続体は、第1の端子列を有する基板と、第2の端子列を有するコネクタと、第1の端子列と第2の端子列とを接続する熱硬化性接続材料が硬化した接着層とを備え、第2の端子列が、コネクタの底面に配置され、底面の段差を吸収する段差吸収部を形成し、熱硬化性接続材料が、半田粒子とフラックス成分とを含有するものである。これにより、底面の段差を吸収することができるため、端子列をファインピッチ化することができ、接続体を小型化することができる。
<1. Connection>
The connector according to the present embodiment is a thermosetting connection material that connects a substrate having a first terminal row, a connector having a second terminal row, and a first terminal row and a second terminal row. The second terminal row is arranged on the bottom surface of the connector to form a step absorbing portion that absorbs the step on the bottom surface, and the thermosetting connecting material provides the solder particles and the flux component. It contains. As a result, the step on the bottom surface can be absorbed, so that the terminal row can be made a fine pitch and the connector can be miniaturized.

接続体を小型化することにより、電子機器の軽量化や小型化を実現することができる。また、スマートフォン、パソコン等の電子機器内部の実装基板の小型化が可能になる。また、バッテリーの大容量化を図ることができる。また、より大きな指紋センサーなどの各種電子部品の大型化による機能拡張を実現することができる。 By downsizing the connection body, it is possible to reduce the weight and size of the electronic device. In addition, it is possible to reduce the size of the mounting board inside an electronic device such as a smartphone or a personal computer. In addition, the capacity of the battery can be increased. In addition, it is possible to realize functional expansion by increasing the size of various electronic components such as a larger fingerprint sensor.

また、コネクタの底面が、所定範囲の高さの段差を有する場合、第2の端子列における端子面の高さの最大値と最小値との差が、所定範囲の高さよりも小さいことが好ましい。これにより、コネクタの底面の段差を吸収して第1の端子列と第2の端子列と接続することができる。 Further, when the bottom surface of the connector has a step with a height in a predetermined range, it is preferable that the difference between the maximum value and the minimum value of the height of the terminal surface in the second terminal row is smaller than the height in the predetermined range. .. As a result, it is possible to absorb the step on the bottom surface of the connector and connect the first terminal row and the second terminal row.

また、第2の端子列における端子面の高さの最大値と最小値との差が、半田粒子の平均粒子径よりも小さいことが好ましい。これにより、端子列をさらにファインピッチ化することができ、接続体をさらに小型化することができる。 Further, it is preferable that the difference between the maximum value and the minimum value of the height of the terminal surface in the second terminal row is smaller than the average particle size of the solder particles. As a result, the terminal row can be further reduced in pitch, and the connector can be further miniaturized.

ここで、コネクタとは、嵌合部を有する主に樹脂成型品である。コネクタとしては、例えば、プラグ、レセプタクルの基板対基板用コネクタ、基板対フレキシブル基板(FPC:Flexible Printed Circuits)、フリップロック方式によりFPCを嵌合するFPC用コネクタなどの表面実装用部品(SMD:Surface Mount Device)が挙げられる。なお、接続体とは、二つの材料または部材が電気的に接続されたものである。 Here, the connector is mainly a resin molded product having a fitting portion. Examples of the connector include surface mount components (SMD: Surface) such as a plug, a substrate-to-board connector for a receptacle, a board-to-flexible board (FPC: Flexible Printed Circuits), and an FPC connector for fitting an FPC by a flip lock method. Mount Device). The connecting body is one in which two materials or members are electrically connected.

図1は、本実施の形態に係る接続体の一例を模式的に示す断面図である。図1に示すように、接続体は、接続体は、第1の端子列11を有する基板10と、第2の端子列21A〜21Eを有するコネクタ20と、第1の端子列11と第2の端子列21とを接続する熱硬化性接続材料が硬化した接着層30とを備える。 FIG. 1 is a cross-sectional view schematically showing an example of a connecting body according to the present embodiment. As shown in FIG. 1, the connector includes a substrate 10 having a first terminal row 11, a connector 20 having second terminal rows 21A to 21E, and a first terminal row 11 and a second. The adhesive layer 30 is provided with a cured thermosetting connecting material for connecting the terminal row 21 of the above.

基板10は、コネクタ20の第2の端子列21A〜21Eに対応する第1の端子列11を有する。基板10は、特に限定されるものではなく、所謂プリント配線板(PWB)として広義に定義できるものが挙げられ、リジット基板であっても、フレキシブル基板であってもよい。基材種類による基板例としては、例えば、ガラス基板、セラミック基板、プラスチック基板などが挙げられる。 The substrate 10 has a first terminal row 11 corresponding to the second terminal rows 21A to 21E of the connector 20. The substrate 10 is not particularly limited, and examples thereof can be broadly defined as a so-called printed wiring board (PWB), and may be a rigid substrate or a flexible substrate. Examples of substrates depending on the type of substrate include glass substrates, ceramic substrates, plastic substrates, and the like.

また、第1の端子列11の隣接端子間(スペース部)には、ソルダーレジストによる短絡防止の加工(壁や溝など)が形成されていないことが好ましい。第1の端子列11の端子面の高さは、基板面と同じ(端子の突出がなく、接続面がフラットな状態)か、図1に示すように、基板面より突出していてもよい。これにより、第1の端子列11と第2の端子列21A〜21Eとを半田粒子により接続することができ、端子列をファインピッチ化することができる。 Further, it is preferable that a short-circuit prevention process (wall, groove, etc.) by a solder resist is not formed between adjacent terminals (space portion) of the first terminal row 11. The height of the terminal surface of the first terminal row 11 may be the same as the substrate surface (the state where the terminals do not protrude and the connection surface is flat), or as shown in FIG. 1, it may protrude from the substrate surface. As a result, the first terminal row 11 and the second terminal rows 21A to 21E can be connected by solder particles, and the terminal row can be made into a fine pitch.

コネクタ20は、熱硬化性接続材料に接する面に第2の端子列21A〜21Eからなる段差吸収部を有する。コネクタ20は、樹脂成型品であるため、通常、コネクタ20の底面には、作製時に樹脂モールドにより形成された20μm程度の範囲の高さの段差(うねり)を有する。 The connector 20 has a step absorbing portion composed of second terminal rows 21A to 21E on a surface in contact with the thermosetting connecting material. Since the connector 20 is a resin molded product, the bottom surface of the connector 20 usually has a step (waviness) having a height in the range of about 20 μm formed by the resin mold at the time of production.

段差吸収部は、第2の端子列21A〜21Eの端子面の高さを揃え、コネクタ20の底面の段差を吸収する。第2の端子列21A〜21Eの端子面の高さの最大値と最小値との差は、コネクタ20の底面の段差及び半田粒子の平均粒子径よりも小さいことが好ましく、より好ましくは10μm以下、さらに好ましくは5μm以下である。 The step absorbing portion aligns the heights of the terminal surfaces of the second terminal rows 21A to 21E and absorbs the step on the bottom surface of the connector 20. The difference between the maximum and minimum heights of the terminal surfaces of the second terminal rows 21A to 21E is preferably smaller than the step on the bottom surface of the connector 20 and the average particle size of the solder particles, and more preferably 10 μm or less. , More preferably 5 μm or less.

ここで、平均粒子径は、金属顕微鏡、光学顕微鏡、SEM(Scanning Electron Microscope)等の電子顕微鏡などを用いた観察画像において、例えばN=20以上、好ましくはN=50以上、さらに好ましくはN=200以上で測定した粒子の長軸径の平均値であり、粒子が球形の場合は、粒子の直径の平均値である。また、観察画像を公知の画像解析ソフト(「WinROOF」:三谷商事(株)、「A像くん(登録商標)」:旭化成エンジニアリング株式会社など)を用いて計測された測定値、画像型粒度分布測定装置(例として、FPIA−3000(マルバーン社))を用いて測定した測定値(N=1000以上)であってもよい。観察画像や画像型粒度分布測定装置から求めた平均粒子径は、粒子の最大長の平均値とすることができる。なお、熱硬化性接続材料を作製する際には、簡易的にレーザー回折・散乱法によって求めた粒度分布における頻度の累積が50%になる粒径(D50)、算術平均径(体積基準であることが好ましい)などのメーカー値を用いることができる。 Here, the average particle size is, for example, N = 20 or more, preferably N = 50 or more, and more preferably N = in an observation image using an electron microscope such as a metallurgical microscope, an optical microscope, or an SEM (Scanning Electron Microscope). It is the average value of the major axis diameters of the particles measured at 200 or more, and when the particles are spherical, it is the average value of the diameters of the particles. In addition, the measured values and image-type grain size distribution of the observed images measured using known image analysis software ("WinROOF": Mitani Shoji Co., Ltd., "A image-kun (registered trademark)": Asahi Kasei Engineering Co., Ltd., etc.) It may be a measured value (N = 1000 or more) measured using a measuring device (for example, FPIA-3000 (Malburn)). The average particle size obtained from the observed image or the image-type particle size distribution measuring device can be the average value of the maximum lengths of the particles. When producing a thermocurable connection material, the particle size (D50) and the arithmetic mean diameter (volume basis) at which the cumulative frequency in the particle size distribution simply obtained by the laser diffraction / scattering method is 50%. The manufacturer value such as (preferably) can be used.

図1に示すように、段差吸収部は、例えば、第2の端子21A、21Eのように樹脂モールド内部に端子が形成されてもよく、第2の端子21B、21Dのように樹脂モールド面に端子が形成されてもよく、第2の端子21Cのように樹脂モールド面から離れて端子が形成されてもよい。段差吸収部は、例えば、コネクタの外側に向かって伸びているリード端子をコネクタの底面に折り曲げ、端子面の高さを揃えることにより形成することができる。また、段差吸収部は、例えば、予め底面に位置するように端子を形成し、樹脂成型することにより形成することができる。また、必要に応じて端子面を研磨し、端子面の高さを揃えてもよい。 As shown in FIG. 1, the step absorbing portion may have terminals formed inside the resin mold as in the second terminals 21A and 21E, and may be formed on the resin mold surface as in the second terminals 21B and 21D. The terminal may be formed, or the terminal may be formed away from the resin mold surface as in the second terminal 21C. The step absorbing portion can be formed, for example, by bending a lead terminal extending toward the outside of the connector to the bottom surface of the connector and aligning the heights of the terminal surfaces. Further, the step absorbing portion can be formed, for example, by forming terminals so as to be located on the bottom surface in advance and molding the terminals with resin. Further, the terminal surface may be polished to make the height of the terminal surface uniform, if necessary.

接着層30は、後述するように、半田粒子31とフラックス成分とを含有する熱硬化性接続材料が硬化して膜状となったものである。接着層30は、基板10の第1の端子列11とコネクタ20の第2の端子列21とが半田接合32するとともに、基板10とコネクタとの間を熱硬化性接続材料の熱硬化性バインダーにより接着する。1つの端子面には、複数の半田接合32の箇所と、熱硬化性バインダーによる接着箇所とが存在することとなる。 As will be described later, the adhesive layer 30 is a film formed by curing a thermosetting connecting material containing solder particles 31 and a flux component. In the adhesive layer 30, the first terminal row 11 of the substrate 10 and the second terminal row 21 of the connector 20 are solder-bonded 32, and the thermosetting binder of the thermosetting connection material is sandwiched between the substrate 10 and the connector. Adhere by. On one terminal surface, there are a plurality of solder-bonded portions 32 and bonding portions by a thermosetting binder.

本実施の形態に係る接続体において、第1の端子列11及び第2の端子列21における隣接端子間距離(スペース間距離)の最小値の上限は、800μm以下であり、好ましくは300μm以下、より好ましくは150μm以下である。また、第1の端子列11及び第2の端子列21における隣接端子間の距離の最小値の下限は、30μm以上であり、より好ましくは50μm以上、さらに好ましくは70μm以上である。 In the connector according to the present embodiment, the upper limit of the minimum value of the distance between adjacent terminals (distance between spaces) in the first terminal row 11 and the second terminal row 21 is 800 μm or less, preferably 300 μm or less. More preferably, it is 150 μm or less. Further, the lower limit of the minimum value of the distance between the adjacent terminals in the first terminal row 11 and the second terminal row 21 is 30 μm or more, more preferably 50 μm or more, still more preferably 70 μm or more.

また、第1の端子列11及び第2の端子列21における隣接端子間距離の最小値に対する半田粒子31の平均粒子径の比の上限は、0.15未満であり、より好ましくは0.1以下である。また、第1の端子列11の端子面と基板面との間の端子高さ(距離)と、第2の端子列21の端子面とコネクタ底面との間の端子高さ(距離)との合計の最小値は、半田粒子31の平均粒子径よりも大きいことが好ましい Further, the upper limit of the ratio of the average particle size of the solder particles 31 to the minimum value of the distance between adjacent terminals in the first terminal row 11 and the second terminal row 21 is less than 0.15, more preferably 0.1. It is as follows. Further, the terminal height (distance) between the terminal surface of the first terminal row 11 and the substrate surface and the terminal height (distance) between the terminal surface of the second terminal row 21 and the bottom surface of the connector are defined. The minimum value of the total is preferably larger than the average particle size of the solder particles 31.

また、第1の端子列11及び第2の端子列21の端子の表面が金メッキされていても良い。また、基板10及びコネクタ20は、リフローにおける耐熱性を備えていることが望ましい。 Further, the surfaces of the terminals of the first terminal row 11 and the second terminal row 21 may be gold-plated. Further, it is desirable that the substrate 10 and the connector 20 have heat resistance in reflow.

本実施の形態に係る接続体によれば、コネクタ20の底面に第2の端子列21A〜21Eからなる段差吸収部が、底面の段差を吸収することができ、半田粒子による接続ができるため、端子列のファインピッチ化に対応することができ、コネクタを小型化することができる。 According to the connector according to the present embodiment, the step absorbing portion composed of the second terminal rows 21A to 21E can absorb the step on the bottom surface of the connector 20 and can be connected by solder particles. It is possible to cope with the fine pitch of the terminal row and to reduce the size of the connector.

本実施の形態に係る接続体は、半田ペーストやBGA(Ball grid array)などで広く使われている半田粒子により接続されており、接続信頼性が高いため、センサー機器、ディスクリート部品、各種ICチップ、モジュール、eSim(Embedded Subscriber Identity Module)、SoC(System on a chip)、車載用機器、IoT(Internet of Things)機器など、多くの用途に適用することができる。 The connector according to this embodiment is connected by solder particles widely used in solder paste, BGA (Ball grid array), etc., and has high connection reliability, so that it is a sensor device, a discrete component, and various IC chips. , Modules, eSim (Embedded Subscriber Identity Module), SoC (System on a chip), in-vehicle devices, IoT (Internet of Things) devices, and many other applications.

図2〜図4は、従来技術に係るプラグ、レセプタクルの基板対基板用コネクタの一例を示す図であり、図2は、従来技術に係るプラグの一例を示す上面図であり、図3は、従来技術に係るレセプタクルの一例を示す上面図であり、図4は、図2に示すプラグ及び図3に示すレセプタクルのA−A断面図である。 2 to 4 are views showing an example of a substrate-to-board connector of a plug and a receptacle according to the prior art, FIG. 2 is a top view showing an example of the plug according to the prior art, and FIG. 3 is a top view. It is a top view which shows an example of the receptacle according to the prior art, and FIG. 4 is a cross-sectional view taken along the line AA of the plug shown in FIG. 2 and the receptacle shown in FIG.

従来技術に係るプラグ140は、第1のオス型の垂直嵌合列141Aと、第2のオス型の垂直嵌合列141Bと、第1のオス型の垂直嵌合列141Aから底面に伸び、短手方向の外側に伸びた第1のリード端子列142Aと、第2のオス型の垂直嵌合列142Aから底面に伸び、短手方向の外側に伸びた第2のリード端子列142Bと、これらを固定する絶縁樹脂143とを備える。また、従来技術に係るプラグ140は、長手方向の一方の端部に設けられた第1の補強部144Aと、長手方向の他方の端部に設けられた第2の補強部144Bとを備える。第1のリード端子列142A及び第2のリード端子列142Bの半田接合のみでは接着強度が不足するため、第1の補強部144A及び第2の補強部144Bの底面には、補強金具が形成されることがある。 The plug 140 according to the prior art extends from the first male type vertical fitting row 141A, the second male type vertical fitting row 141B, and the first male type vertical fitting row 141A to the bottom surface. A first lead terminal row 142A extending outward in the lateral direction and a second lead terminal row 142B extending outward from the second male vertical fitting row 142A extending outward in the lateral direction. An insulating resin 143 for fixing these is provided. Further, the plug 140 according to the prior art includes a first reinforcing portion 144A provided at one end in the longitudinal direction and a second reinforcing portion 144B provided at the other end in the longitudinal direction. Since the adhesive strength is insufficient only by soldering the first lead terminal row 142A and the second lead terminal row 142B, reinforcing metal fittings are formed on the bottom surfaces of the first reinforcing portion 144A and the second reinforcing portion 144B. There are times.

また、従来技術に係るレセプタクル150は、第1のメス型の垂直嵌合列151Aと、第2のメス型の垂直嵌合列151Bと、第1のメス型の垂直嵌合列151Aから底面に伸び、短手方向の外側に伸びた第1のリード端子列152Aと、第2のメス型の垂直嵌合列152Aから底面に伸び、短手方向の外側に伸びた第2のリード端子列152Bと、これらを固定する絶縁樹脂153とを備える。また、従来技術に係るレセプタクル150は、長手方向の一方の端部に設けられた第1の補強部154Aと、長手方向の他方の端部に設けられた第2の補強部154Bとを備える。第1のリード端子列152A及び第2のリード端子列152Bの半田接合のみでは接着強度が不足するため、プラグ140と同様に、第1の補強部154A及び第2の補強部154Bの底面には、補強金具が形成されることがある。 Further, in the receptacle 150 according to the prior art, from the first female type vertical fitting row 151A, the second female type vertical fitting row 151B, and the first female type vertical fitting row 151A to the bottom surface. A first lead terminal row 152A extending outward in the lateral direction and a second lead terminal row 152B extending outward from the second female vertical fitting row 152A extending to the bottom surface. And an insulating resin 153 for fixing them. Further, the receptacle 150 according to the prior art includes a first reinforcing portion 154A provided at one end in the longitudinal direction and a second reinforcing portion 154B provided at the other end in the longitudinal direction. Since the adhesive strength is insufficient only by soldering the first lead terminal row 152A and the second lead terminal row 152B, the bottom surface of the first reinforcing portion 154A and the second reinforcing portion 154B is similar to the plug 140. , Reinforcing metal fittings may be formed.

従来技術に係るプラグ140及びレセプタクル150は、リード端子列が外側に向かって伸びている所謂ムカデ型のコネクタであり、比較的大きな実装面積が必要であり、接着不足のための補強部がさらに小型化を妨げている。また、コネクタの底面に所定範囲の高さの段差がある場合、半田粒子により接続させるためには、半田粒子の平均粒子径を段差の所定範囲の高さよりも大きくしなければならず、端子列のファインピッチ化を妨げている。 The plug 140 and the receptacle 150 according to the prior art are so-called centipede type connectors in which the lead terminal row extends outward, require a relatively large mounting area, and have a smaller reinforcing portion due to insufficient adhesion. It is hindering the conversion. Further, when the bottom surface of the connector has a step having a height within a predetermined range, the average particle diameter of the solder particles must be larger than the height within the predetermined range in order to connect with the solder particles, and the terminal row Is hindering the fine pitching of.

図5〜図7は、本実施の形態に係るプラグ、レセプタクルの基板対基板用コネクタの一例を示す図であり、図5は、本実施の形態に係るプラグの一例を示す上面図であり、図6は、本実施の形態に係るレセプタクルの一例を示す上面図であり、図7は、図5に示すプラグ及び図6に示すレセプタクルのA−A断面図である。 5 to 7 are views showing an example of a substrate-to-board connector of the plug and the receptacle according to the present embodiment, and FIG. 5 is a top view showing an example of the plug according to the present embodiment. FIG. 6 is a top view showing an example of the receptacle according to the present embodiment, and FIG. 7 is a cross-sectional view taken along the line AA of the plug shown in FIG. 5 and the receptacle shown in FIG.

本実施の形態に係るプラグ40は、第1のオス型の垂直嵌合列41Aと、第2のオス型の垂直嵌合列41Bと、第1のオス型の垂直嵌合列41Aから底面に伸び、短手方向の内側に伸びた第1の端子列42Aと、第2のオス型の垂直嵌合列41Bから底面に伸び、短手方向の内側に伸びた第2の端子列42Bと、これらを固定する絶縁樹脂43とを備え、第1の端子列42A、及び第2の端子列42Bは、底面から突出しており、端子面の高さを同じとする段差吸収部を形成する。 The plug 40 according to the present embodiment has a first male type vertical fitting row 41A, a second male type vertical fitting row 41B, and a first male type vertical fitting row 41A on the bottom surface. A first terminal row 42A extending inward in the lateral direction and a second terminal row 42B extending inward in the lateral direction extending from the second male vertical fitting row 41B to the bottom surface. The first terminal row 42A and the second terminal row 42B are provided with an insulating resin 43 for fixing them, and project from the bottom surface to form a step absorbing portion having the same height of the terminal surfaces.

また、本実施の形態に係るレセプタクル50は、第1のメス型の垂直嵌合列51Aと、第2のメス型の垂直嵌合列51Bと、第1のメス型の垂直嵌合列51Aから底面に伸び、短手方向の内側に伸びた第1の端子列52Aと、第2のメス型の垂直嵌合列51Bから底面に伸び、短手方向の内側に伸びた第2の端子列52Bと、これらを固定する絶縁樹脂53とを備え、第1の端子列52A、及び第2の端子列52Bは、底面から突出しており、端子面の高さのバラつきが小さい段差吸収部を形成する。 Further, the receptacle 50 according to the present embodiment is from the first female type vertical fitting row 51A, the second female type vertical fitting row 51B, and the first female type vertical fitting row 51A. A first terminal row 52A extending inward in the lateral direction extending to the bottom surface and a second terminal row 52B extending inward in the lateral direction extending inward from the second female vertical fitting row 51B to the bottom surface. The first terminal row 52A and the second terminal row 52B project from the bottom surface to form a step absorbing portion having a small variation in the height of the terminal surface. ..

プラグ40の第1のオス型の垂直嵌合列41Aとレセプタクル50の第1のメス型の垂直嵌合列51Aとは、垂直嵌合するように金属形状が成形され、プラグ40の第2のオス型の垂直嵌合列41Bとレセプタクル50の第2のメス型の垂直嵌合列51Bとは、垂直嵌合するように金属形状が成形されている。 The first male vertical fitting row 41A of the plug 40 and the first female vertical fitting row 51A of the receptacle 50 are formed in a metal shape so as to be vertically fitted, and the second of the plug 40 is formed. The male vertical fitting row 41B and the second female vertical fitting row 51B of the receptacle 50 are formed in a metal shape so as to be vertically fitted.

絶縁樹脂43、53は、例えばポリアミド、LCPなどからなり、例えば樹脂成形により、プラグ40の第1の端子列42A及び第2の端子列42B、並びにレセプタクル50の第1の端子列52A及び第2の端子列52Bを固定する。 The insulating resins 43 and 53 are made of, for example, polyamide, LCP, or the like, and by, for example, resin molding, the first terminal row 42A and the second terminal row 42B of the plug 40, and the first terminal row 52A and the second terminal row 52A and the second of the receptacle 50. The terminal row 52B of the above is fixed.

すなわち、本実施の形態に係るプラグ、レセプタクルは、端子列がコネクタの底面の外側から内側に延在してなるのに対し、従来技術に係るプラグ、レセプタクルは、端子列がコネクタの底面から外側に延在してなる点で異なる。また、本実施の形態に係るプラグ、レセプタクルは、補強部を有する必要はないのに対し、従来技術に係るプラグ、レセプタクルは、補強部を必ず有する点で異なる。 That is, in the plug and receptacle according to the present embodiment, the terminal row extends from the outside to the inside of the bottom surface of the connector, whereas in the plug and receptacle according to the prior art, the terminal row extends from the bottom surface to the outside of the connector. It differs in that it extends to. Further, the plug and the receptacle according to the present embodiment do not need to have a reinforcing portion, whereas the plug and the receptacle according to the prior art always have a reinforcing portion.

本実施の形態に係るプラグ、レセプタクルによれば、端子列を底面に配置することにより、従来技術の所謂ムカデ型のコネクタに比して、実装面積を削減させることができる。また、コネクタの底面の段差を吸収することができるため、端子列をファインピッチ化することができ、コネクタを小型化することができる。また、コネクタの底面を熱硬化性接続材料により接着するため、補強金具が形成された補強部を有しない構成とすることができ、コネクタをさらに小型化することができる。 According to the plug and receptacle according to the present embodiment, by arranging the terminal row on the bottom surface, the mounting area can be reduced as compared with the so-called centipede type connector of the prior art. Further, since the step on the bottom surface of the connector can be absorbed, the terminal row can be made a fine pitch, and the connector can be miniaturized. Further, since the bottom surface of the connector is bonded with a thermosetting connecting material, the connector can be further miniaturized because it does not have a reinforcing portion on which a reinforcing metal fitting is formed.

<2.熱硬化性接続材料>
本実施の形態に係る熱硬化性接続材料は、半田粒子とフラックス成分とを含有する。フラックス成分が、半田粒子及び端子表面の酸化膜を取り除いたり、溶融半田の表面張力を低下させたりするため、ツールにて熱圧着することなく、無荷重のリフローにて接続させることができる。ここで、無荷重とは、リフロー中に機械的な加圧がない状態をいう。
<2. Thermosetting connection material>
The thermosetting connection material according to the present embodiment contains solder particles and a flux component. Since the flux component removes the solder particles and the oxide film on the terminal surface and lowers the surface tension of the molten solder, it can be connected by non-load reflow without thermocompression bonding with a tool. Here, no load means a state in which there is no mechanical pressurization during reflow.

熱硬化性接続材料は、フィルム状の熱硬化性接続フィルム、又はペースト状の熱硬化性接続ペーストのいずれであってもよい。また、熱硬化性接続ペーストを接続時にフィルム状にしても、部品を搭載することでフィルムに近い形態としてもよい。 The thermosetting connection material may be either a film-like thermosetting connection film or a paste-like thermosetting connection paste. Further, the thermosetting connection paste may be formed into a film at the time of connection, or may be formed into a form similar to a film by mounting a component.

熱硬化性接続ペーストの場合、基板上に所定量を均一に塗布することができればよく、例えば、ディスペンス、スタンピング、スクリーン印刷等の塗布方法を用いることができ、必要に応じて乾燥させてもよい。この場合、従来用いられているソルダーペーストの設備を流用、改造し応用することで、設備投資を抑えることが期待できる。 In the case of a thermosetting connection paste, it suffices if a predetermined amount can be uniformly applied onto the substrate. For example, application methods such as dispensing, stamping, and screen printing can be used, and the paste may be dried if necessary. .. In this case, it can be expected that capital investment can be suppressed by diverting, modifying and applying the conventionally used solder paste equipment.

熱硬化性接続フィルムの場合、フィルム厚により接合材料(例えば、異方性導電材料)の量を均一化することができるだけでなく、基板上に一括ラミネートすることができ、タクトを短縮することができるため特に好ましい。また、予めフィルム状とすることで取り扱い易いので作業効率も高くすることが期待できる。 In the case of a thermosetting connection film, not only can the amount of bonding material (for example, anisotropic conductive material) be made uniform depending on the film thickness, but also it can be laminated on the substrate all at once, and the tact can be shortened. It is especially preferable because it can be done. In addition, since it is easy to handle by forming it into a film in advance, it can be expected that the work efficiency will be improved.

また、熱硬化性接続フィルムの場合、基板上に一括ラミネートすることができるため、コネクタだけでなく、ディスクリート部品、各種ICチップ、モジュール、eSim、SoC等の各種電子部品を一括して実装することも可能になり、タクトタイムの短縮化や各種電子部品のファインピッチ化を図ることができる。また、各種電子部品のファインピッチ化によって、隣接する実装部品との距離を小さくすることが可能になり、高密度の実装が可能になる。各種電子部品がファインピッチ化することにより、部品が小さくなり、例えば1枚のウェハから切り出される個数が多くなることに繋がり、コストダウンを図ることができる。また、ウェハに限らず、部品が小さくなることによる各種電子部品のコストダウンが可能になる。 Further, in the case of a heat-curable connection film, since it can be laminated on the substrate at once, not only the connector but also various electronic parts such as discrete parts, various IC chips, modules, eSim, and SoC should be mounted at once. It is also possible to shorten the tact time and fine pitch of various electronic components. In addition, fine pitching of various electronic components makes it possible to reduce the distance between adjacent mounting components and enable high-density mounting. Fine pitching of various electronic components leads to smaller components, for example, an increase in the number of components cut out from one wafer, and cost reduction can be achieved. Further, not only the wafer but also various electronic parts can be reduced in cost by making the parts smaller.

また、熱硬化性接続材料を用いた接続は、上記部品に限定されるものでは無く、SMT部品に導電用の接続端子があり、接続端子の高さが底面に対して平坦や凸になっている形状全てに適用することができる。また、熱硬化性接続材料で固定した各種電子部品と、半田ペーストなどの接続材料で固定した各種電子部品とを同時にリフローに投入し、接続することもできる。 Further, the connection using the thermosetting connection material is not limited to the above-mentioned parts, and the SMT part has a connection terminal for conductivity, and the height of the connection terminal becomes flat or convex with respect to the bottom surface. It can be applied to all existing shapes. In addition, various electronic components fixed with a thermosetting connecting material and various electronic components fixed with a connecting material such as solder paste can be simultaneously put into reflow and connected.

熱硬化性接続材料の最低溶融粘度は、100Pa・s未満でもよく、好ましくは50Pa・s以下、より好ましくは30Pa・s以下、さらに好ましくは10Pa・s以下である。最低溶融粘度が高すぎると、リフローにおいて無荷重では樹脂溶融が進行せず、半田粒子と端子間の挟持に支障を来す虞がある。また、熱硬化性接続材料の最低溶融粘度到達温度は、好ましくは半田粒子の融点の−10℃〜−60℃、より好ましくは半田粒子の融点の−10℃〜−50℃、さらに好ましくは半田粒子の溶点の−10℃〜−40℃である。これにより、半田溶融前に最低溶融粘度に到達して樹脂を溶融させ、樹脂溶融後に半田粒子を溶融させ、その後、樹脂を硬化させることができるため、良好な半田接合を得ることができる。ここで、熱硬化性接続材料の最低溶融粘度到達温度は、例えば、回転式レオメーター(TA instrument社製)を用い、測定圧力5g、温度範囲30〜200℃、昇温速度10℃/分、測定周波数10Hz、測定プレート直径8mm、測定プレートに対する荷重変動5gの条件で測定し、粘度が最低値(最低溶融粘度)となる温度をいう。 The minimum melt viscosity of the thermosetting connecting material may be less than 100 Pa · s, preferably 50 Pa · s or less, more preferably 30 Pa · s or less, still more preferably 10 Pa · s or less. If the minimum melt viscosity is too high, the resin will not melt under no load during reflow, which may hinder the sandwiching between the solder particles and the terminals. The temperature at which the minimum melt viscosity of the thermosetting connection material is reached is preferably −10 ° C. to −60 ° C., which is the melting point of the solder particles, more preferably −10 ° C. to −50 ° C., which is the melting point of the solder particles, and more preferably solder. The melting point of the particles is −10 ° C. to −40 ° C. As a result, the minimum melt viscosity is reached before the solder melts, the resin is melted, the solder particles are melted after the resin is melted, and then the resin is cured, so that a good solder bond can be obtained. Here, the minimum melt viscosity reaching temperature of the thermosetting connecting material is, for example, using a rotary rheometer (manufactured by TA instrument), measuring pressure 5 g, temperature range 30 to 200 ° C., heating rate 10 ° C./min. It refers to the temperature at which the viscosity becomes the minimum value (minimum melt viscosity) when measured under the conditions of a measurement frequency of 10 Hz, a measurement plate diameter of 8 mm, and a load fluctuation of 5 g with respect to the measurement plate.

また、熱硬化性接続材料は、発熱ピーク温度が、半田粒子の融点よりも高いことが好ましく、半田粒子の融点よりも低い溶融温度を有するものであることが好ましい。これにより、熱硬化性バインダーの溶融後、半田粒子が端子間に挟持された状態で半田が溶融するため、ファインピッチの端子列を接合させることができる。ここで、発熱ピーク温度は、示差走査熱量測定(DSC)で試料5mg以上をアルミパンで計量し、温度範囲30〜250℃、昇温速度10℃/分の条件で測定することができる。 Further, the thermosetting connection material preferably has a heat generation peak temperature higher than the melting point of the solder particles, and preferably has a melting temperature lower than the melting point of the solder particles. As a result, after the thermosetting binder is melted, the solder is melted in a state where the solder particles are sandwiched between the terminals, so that a fine pitch terminal row can be joined. Here, the exothermic peak temperature can be measured under the conditions of a temperature range of 30 to 250 ° C. and a heating rate of 10 ° C./min by measuring 5 mg or more of the sample with an aluminum pan by differential scanning calorimetry (DSC).

熱硬化性接続材料がフィルム状である場合、熱硬化性接続材料の厚みに対する半田粒子の平均粒子径の比の下限は、好ましくは0.5以上、より好ましくは0.6以上である。これにより、半田粒子の端子間への挟持が容易になり、ファインピッチの端子列に対応することができる。ここで、フィルム厚みは、1μm以下、好ましくは0.1μm以下を測定できる公知のマイクロメータやデジタルシックネスゲージ(例えば、株式会社ミツトヨ:MDE−25M、最小表示量0.0001mm)を用いて測定することができる。フィルム厚みは、10箇所以上を測定し、平均して求めればよい。但し、粒子径よりもフィルム厚みが薄い場合には、接触式の厚み測定器は適さないので、レーザー変位計(例えば、株式会社キーエンス、分光干渉変位タイプSI−Tシリーズなど)を用いることが好ましい。また、フィルム厚みとは、樹脂層のみの厚みであり、粒子径は含まない。また、平均粒子径は、公知の金属顕微鏡や光学顕微鏡を用いて、フィルム平面視における1mm以上の面積を任意に5箇所以上抜き取って、確認することができる。 When the thermosetting connection material is in the form of a film, the lower limit of the ratio of the average particle size of the solder particles to the thickness of the thermosetting connection material is preferably 0.5 or more, more preferably 0.6 or more. As a result, the solder particles can be easily sandwiched between the terminals, and can correspond to a fine pitch terminal row. Here, the film thickness is measured using a known micrometer or digital thickness gauge (for example, Mitutoyo Co., Ltd .: MDE-25M, minimum display amount 0.0001 mm) capable of measuring 1 μm or less, preferably 0.1 μm or less. be able to. The film thickness may be obtained by measuring 10 or more points and averaging them. However, if the film thickness is thinner than the particle size, a contact-type thickness measuring instrument is not suitable, so it is preferable to use a laser displacement meter (for example, KEYENCE Co., Ltd., spectroscopic interference displacement type SI-T series, etc.). .. The film thickness is the thickness of the resin layer only, and does not include the particle size. Further, the average particle size can be confirmed by arbitrarily extracting 5 or more areas of 1 mm 2 or more in a film plan view using a known metal microscope or optical microscope.

[半田粒子]
半田粒子は、JIS Z 3282−1999に規定されているものであっても、そうでなくても良い、例えば、Sn−Pb系、Pb−Sn−Sb系、Sn−Sb系、Sn−Pb−Bi系、Bi−Sn系、Sn−Bi−Cu系、Sn−Cu系、Sn−Pb−Cu系、Sn−In系、Sn−Ag系、Sn−Pb−Ag系、Pb−Ag系などから、端子材料や接続条件などに応じて適宜選択することができる。
[Solder particles]
The solder particles may or may not be those specified in JIS Z 3282-1999, for example, Sn-Pb system, Pb-Sn-Sb system, Sn-Sb system, Sn-Pb-. From Bi system, Bi-Sn system, Sn-Bi-Cu system, Sn-Cu system, Sn-Pb-Cu system, Sn-In system, Sn-Ag system, Sn-Pb-Ag system, Pb-Ag system, etc. , Can be appropriately selected according to the terminal material, connection conditions, and the like.

半田粒子の融点の下限は、好ましくは110℃以上、より好ましくは120℃以上、さらに好ましくは130℃以上。半田粒子の融点の上限は、200℃以下でもよく、好ましくは180℃以下、より好ましくは160℃以下、さらに好ましくは150℃以下である。また、半田粒子は、表面を活性化させる目的でフラックス化合物が直接表面に結合されていても構わない。表面を活性化させることで端子との金属結合を促進することができる。 The lower limit of the melting point of the solder particles is preferably 110 ° C. or higher, more preferably 120 ° C. or higher, still more preferably 130 ° C. or higher. The upper limit of the melting point of the solder particles may be 200 ° C. or lower, preferably 180 ° C. or lower, more preferably 160 ° C. or lower, and further preferably 150 ° C. or lower. Further, the solder particles may have a flux compound directly bonded to the surface for the purpose of activating the surface. By activating the surface, metal bonding with terminals can be promoted.

半田粒子の平均粒子径は、好ましくは基板の第1の端子列及びコネクタの第2の端子列における端子間距離(スペース間距離)の最小値の0.2倍以下である。半田粒子の平均粒子径が基板の第1の端子列及びコネクタの第2の端子列における端子間距離の最小値の0.2倍より大きくなると、ショートが発生する可能性が高くなる。 The average particle size of the solder particles is preferably 0.2 times or less the minimum value of the inter-terminal distance (inter-space distance) in the first terminal row of the substrate and the second terminal row of the connector. When the average particle size of the solder particles is larger than 0.2 times the minimum value of the distance between the terminals in the first terminal row of the substrate and the second terminal row of the connector, the possibility of a short circuit increases.

半田粒子の平均粒子径の下限は、好ましくは0.5μm以上、より好ましくは3μm以上、より好ましくは5μm以上である。半田粒子の平均粒子径が0.5μmより小さいと端子と良好な半田接合状態を得ることができず、信頼性が悪化する傾向にある。また、半田粒子の平均粒子径の上限は、50μm以下であってもよく、30μm以下、好ましくは20μm以下、さらに好ましくは10μm以下である。 The lower limit of the average particle size of the solder particles is preferably 0.5 μm or more, more preferably 3 μm or more, and more preferably 5 μm or more. If the average particle size of the solder particles is smaller than 0.5 μm, a good solder bonding state with the terminal cannot be obtained, and the reliability tends to deteriorate. The upper limit of the average particle size of the solder particles may be 50 μm or less, 30 μm or less, preferably 20 μm or less, and more preferably 10 μm or less.

また、半田粒子の最大径は、平均粒子径の200%以下、好ましくは平均粒子径の150%以下、より好ましくは平均粒子径の120%以下とすることができる。半田粒子の最大径が、上記範囲であることにより、半田粒子を端子間に挟持させ、半田粒子の溶融により端子列を接合させることができる。 The maximum diameter of the solder particles can be 200% or less of the average particle size, preferably 150% or less of the average particle size, and more preferably 120% or less of the average particle size. When the maximum diameter of the solder particles is within the above range, the solder particles can be sandwiched between the terminals, and the terminal rows can be joined by melting the solder particles.

また、半田粒子は、複数個が凝集した凝集体であってもよい。複数の半田粒子が凝集した凝集体である場合、凝集体の大きさを前述の半田粒子の平均粒子径と同等にしてもよい。なお、凝集体の大きさは、電子顕微鏡や光学顕微鏡で観察して求めることができる。 Further, the solder particles may be agglomerates in which a plurality of the solder particles are agglomerated. When a plurality of solder particles are agglomerated, the size of the agglomerates may be equal to the average particle size of the above-mentioned solder particles. The size of the aggregate can be determined by observing it with an electron microscope or an optical microscope.

半田粒子の配合量の質量比範囲の下限は、好ましくは10wt%以上、より好ましくは20wt%以上、さらに好ましくは30wt%以上であり、半田粒子の配合量の質量比範囲の上限は、70wt%以下、より好ましくは60wt%以下、さらに好ましくは50wt%以下である。 The lower limit of the mass ratio range of the blended amount of solder particles is preferably 10 wt% or more, more preferably 20 wt% or more, still more preferably 30 wt% or more, and the upper limit of the mass ratio range of the blended amount of solder particles is 70 wt% or more. Below, it is more preferably 60 wt% or less, still more preferably 50 wt% or less.

半田粒子の配合量が少なすぎると優れた導通性が得られなくなり、配合量が多すぎると端子間の絶縁が損なわれ易くなり、優れた導通信頼性が得られ難くなる。なお、半田粒子が熱硬化型バインダー中に存在する場合には、体積比を用いてもよく、熱硬化性接続材料を製造する場合(半田粒子がバインダーに存在する前)には、質量比を用いてもよい。質量比は、配合物の比重や配合比などから体積比に変換することができる。 If the blending amount of the solder particles is too small, excellent conductivity cannot be obtained, and if the blending amount is too large, the insulation between the terminals is likely to be impaired, and it becomes difficult to obtain excellent conduction reliability. When the solder particles are present in the thermosetting binder, the volume ratio may be used, and when the thermosetting connection material is produced (before the solder particles are present in the binder), the mass ratio is used. You may use it. The mass ratio can be converted into a volume ratio from the specific gravity of the compound, the compounding ratio, and the like.

半田粒子は、熱硬化型バインダー中に分散されていることが好ましく、半田粒子はランダム配置であっても、一定の規則で配置されていてもよい。規則的配置の態様としては、正方格子、六方格子、斜方格子、長方格子等の格子配列を挙げることができる。また、半田粒子は、複数個が凝集した凝集体として配置されていてもよい。この場合、熱硬化性接続材料の平面視における凝集体の配置は、前述の半田粒子の配置と同様に、規則的配置でもランダム配置でもよい。 The solder particles are preferably dispersed in a thermosetting binder, and the solder particles may be arranged randomly or according to a certain rule. As a mode of regular arrangement, a lattice arrangement such as a square lattice, a hexagonal lattice, an orthorhombic lattice, and a rectangular lattice can be mentioned. Further, the solder particles may be arranged as agglomerates in which a plurality of the solder particles are agglomerated. In this case, the arrangement of the agglomerates in the plan view of the thermosetting connecting material may be a regular arrangement or a random arrangement as in the arrangement of the solder particles described above.

[フラックス成分]
フラックス成分としては、例えば、レブリン酸、マレイン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸等のカルボン酸を用いることが好ましい。これにより、良好なはんだ接続を得ることができるとともに、エポキシ樹脂を配合した場合、エポキシ樹脂の硬化剤として機能させることができる。
[Flux component]
As the flux component, for example, it is preferable to use a carboxylic acid such as levulinic acid, maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and sebacic acid. As a result, a good solder connection can be obtained, and when an epoxy resin is blended, it can function as a curing agent for the epoxy resin.

また、フラックス化合物として、カルボキシル基がアルキルビニルエーテルでブロック化されたブロック化カルボン酸を用いてもよい。これにより、フラックス効果、及び硬化剤機能が発揮される温度をコントロールすることができる。また、樹脂に対する溶解性が向上するため、フィルム化する際の混合・塗布ムラを改善することができる。 Further, as the flux compound, a blocked carboxylic acid in which the carboxyl group is blocked with an alkyl vinyl ether may be used. Thereby, it is possible to control the temperature at which the flux effect and the curing agent function are exhibited. Further, since the solubility in the resin is improved, it is possible to improve the mixing / coating unevenness at the time of forming a film.

[熱硬化型バインダー]
熱硬化型バインダー(絶縁性バインダー)としては、(メタ)アクリレート化合物と熱ラジカル重合開始剤とを含む熱ラジカル重合型樹脂組成物、エポキシ化合物と熱カチオン重合開始剤とを含む熱カチオン重合型樹脂組成物、エポキシ化合物と熱アニオン重合開始剤とを含む熱アニオン重合型樹脂組成物などが挙げられる。また、公知の粘着剤組成物を用いてもよい。なお、(メタ)アクリルモノマーとは、アクリルモノマー、及びメタクリルモノマーのいずれも含む意味である。
[Thermosetting binder]
Examples of the thermocurable binder (insulating binder) include a thermal radical polymerization type resin composition containing a (meth) acrylate compound and a thermal radical polymerization initiator, and a thermal cationic polymerization type resin containing an epoxy compound and a thermal cationic polymerization initiator. Examples thereof include a composition, a thermal anionic polymerization type resin composition containing an epoxy compound and a thermal anionic polymerization initiator. Moreover, you may use a known pressure-sensitive adhesive composition. The (meth) acrylic monomer means to include both an acrylic monomer and a methacrylic monomer.

以下では、具体例として、固形エポキシ樹脂と、液状エポキシ樹脂と、エポキシ樹脂硬化剤とを含有する熱アニオン重合型樹脂組成物を例に挙げて説明する。 Hereinafter, as a specific example, a thermal anionic polymerization type resin composition containing a solid epoxy resin, a liquid epoxy resin, and an epoxy resin curing agent will be described as an example.

固形エポキシ樹脂は、常温で固形であり、分子内に1つ以上のエポキシ基を有するエポキシ樹脂であれば、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビフェニル型エポキシ樹脂等であってもよい。これにより、フィルム形状を維持することができる。ここで、常温とは、JIS Z 8703で規定する20℃±15℃(5℃〜35℃)の範囲である。 The solid epoxy resin is not particularly limited as long as it is an epoxy resin that is solid at room temperature and has one or more epoxy groups in the molecule, and is, for example, a bisphenol A type epoxy resin, a biphenyl type epoxy resin, or the like. There may be. Thereby, the film shape can be maintained. Here, the normal temperature is in the range of 20 ° C. ± 15 ° C. (5 ° C. to 35 ° C.) defined by JIS Z 8703.

液状エポキシ樹脂は、常温で液状であれば、特に限定されるものではなく、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂等であってもよく、ウレタン変性のエポキシ樹脂であっても構わない。 The liquid epoxy resin is not particularly limited as long as it is liquid at room temperature, and may be, for example, a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, or a urethane-modified epoxy resin. No.

液状エポキシ樹脂の配合量は、固形エポキシ樹脂100質量部に対し、好ましくは160質量部以下、より好ましくは100質量部以下、さらに好ましくは70質量部以下である。液状エポキシ樹脂の配合量が多くなると、フィルム形状を維持することが困難となる。 The blending amount of the liquid epoxy resin is preferably 160 parts by mass or less, more preferably 100 parts by mass or less, and further preferably 70 parts by mass or less with respect to 100 parts by mass of the solid epoxy resin. When the amount of the liquid epoxy resin blended is large, it becomes difficult to maintain the film shape.

エポキシ樹脂硬化剤は、熱で硬化が開始する熱硬化剤であれば、特に限定されるものではなく、例えば、アミン、イミダゾール等のアニオン系硬化剤、スルホニウム塩等のカチオン系硬化剤が挙げられる。また、硬化剤は、フィルム化させる際に使用される溶剤に対して耐性が得られるようにマイクロカプセル化されていてもよい。 The epoxy resin curing agent is not particularly limited as long as it is a thermosetting agent that starts curing by heat, and examples thereof include anionic curing agents such as amines and imidazoles, and cationic curing agents such as sulfonium salts. .. In addition, the curing agent may be microencapsulated so as to obtain resistance to the solvent used for film formation.

[他の添加剤]
熱硬化性接続材料には、上述した絶縁性バインダー及び半田粒子に加えて、本発明の効果を損なわない範囲で、従来、加熱硬化型接着剤で使われている種々の添加剤を配合することができる。添加剤の粒子径は、半田粒子の平均粒子径よりも小さいことが望ましいが、端子間接合を阻害しない大きさであれば特に限定はない。例えば、バランス調整のためにスペーサーを配合してもよい。スペーサーとしては、例えば単分散シリカ(例えば宇部エクシモ株式会社の「ハイプレシカ」)を半田の粒径に合わせて適宜配合しても良い。
[Other additives]
In addition to the above-mentioned insulating binder and solder particles, the thermosetting connection material should contain various additives conventionally used in heat-curable adhesives as long as the effects of the present invention are not impaired. Can be done. The particle size of the additive is preferably smaller than the average particle size of the solder particles, but is not particularly limited as long as it does not hinder the bonding between terminals. For example, a spacer may be blended for balance adjustment. As the spacer, for example, monodisperse silica (for example, "High Presica" manufactured by Ube Exsymo Co., Ltd.) may be appropriately blended according to the particle size of the solder.

上述の熱硬化性接続材料は、例えば、絶縁性バインダー及び半田粒子を溶剤中で混合し、この混合物を、バーコーターにより、剥離処理フィルム上に所定厚みとなるように塗布した後、乾燥させて溶媒を揮発させることにより得ることができる。また、混合物をバーコーターにより剥離処理フィルム上に塗布した後、加圧により所定厚みとしてもよい。また、半田粒子の分散性を高くするために、溶媒を含んだ状態で高シェアをかけることが好ましい。例えば、公知のバッチ式遊星攪拌装置を用いることができる。また、熱硬化性接続材料の残溶剤量は、好ましくは2%以下、より好ましくは1%以下である。 In the above-mentioned thermosetting connection material, for example, an insulating binder and solder particles are mixed in a solvent, the mixture is applied to a peeling film by a bar coater to a predetermined thickness, and then dried. It can be obtained by volatilizing the solvent. Further, the mixture may be applied on the peeling film by a bar coater and then pressed to a predetermined thickness. Further, in order to increase the dispersibility of the solder particles, it is preferable to apply a high share in a state containing a solvent. For example, a known batch type planetary stirrer can be used. The amount of residual solvent in the thermosetting connecting material is preferably 2% or less, more preferably 1% or less.

<3.接続体の製造方法>
本実施の形態における接続体の製造方法は、第1の端子列を有する基板上に、半田粒子とフラックス成分とを含有する熱硬化性接続材料を介して、底面に第2の端子列が配置され、底面の段差を吸収する段差吸収部が形成されたコネクタを載置し、コネクタを押圧せずに、半田粒子の融点以上の温度で熱硬化性接続材料を熱硬化させ、第1の端子列と第2の端子列とを接続する。これにより、底面の段差を吸収することができるため、端子をファインピッチ化することができ、接続体を小型化することができる。
<3. Manufacturing method of connector>
In the method for manufacturing a connector according to the present embodiment, a second terminal row is arranged on the bottom surface of a substrate having a first terminal row via a thermosetting connecting material containing solder particles and a flux component. A connector having a step absorbing portion for absorbing the step on the bottom surface is placed, and the thermosetting connection material is thermoset at a temperature equal to or higher than the melting point of the solder particles without pressing the connector to heat the first terminal. Connect the row to the second terminal row. As a result, the step on the bottom surface can be absorbed, so that the terminals can be made into a fine pitch and the connector can be miniaturized.

以下、図8〜図12を参照して、基板の第1の端子列上に、熱硬化性接続材料を設ける工程(A)、熱硬化性接続材料上にコネクタを載置する工程(B)、及び、半田粒子の融点以上に設定されたリフロー炉を用いて、基板の第1の端子列とコネクタの第2の端子列とを接合させる工程(C)について説明する。なお、図1に示す接続体と同様の構成には、同一の符号を付し、ここでは説明を省略する。 Hereinafter, with reference to FIGS. 8 to 12, a step of providing a thermosetting connection material on the first terminal row of the substrate (A) and a step of placing the connector on the thermosetting connection material (B). A step (C) of joining the first terminal row of the substrate and the second terminal row of the connector by using a reflow furnace set to a temperature equal to or higher than the melting point of the solder particles will be described. The same components as those shown in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted here.

[工程(A)]
図8は、基板の一例を模式的に示す断面図であり、図9は、基板の端子上に、熱硬化性接続材料を設けた状態を模式的に示す断面図である。図8及び図9に示すように、工程(A)では、基板10の第1の端子列11上に、半田粒子31を含有する熱硬化性接続材料33を設ける。
[Step (A)]
FIG. 8 is a cross-sectional view schematically showing an example of a substrate, and FIG. 9 is a cross-sectional view schematically showing a state in which a thermosetting connecting material is provided on a terminal of the substrate. As shown in FIGS. 8 and 9, in the step (A), the thermosetting connection material 33 containing the solder particles 31 is provided on the first terminal row 11 of the substrate 10.

工程(A)は、熱硬化性接続ペーストを基板上にフィルム状にする工程であってもよく、従来の導電フィルムや異方性導電フィルムで用いられているように、熱硬化性接続フィルムを基板上に、低温で貼着する仮貼り工程であってもよく、熱硬化性接続フィルムを基板上にラミネートするラミネート工程であってもよい。 The step (A) may be a step of forming the thermosetting connection paste into a film on the substrate, and as used in the conventional conductive film or anisotropic conductive film, the thermosetting connection film is formed. It may be a temporary sticking step of sticking on the substrate at a low temperature, or a laminating step of laminating a thermosetting connection film on the substrate.

工程(A)が仮貼り工程の場合、公知の使用条件で基板上に熱硬化性接続フィルムを設けることができる。この場合、従前の装置からツールの設置や変更といった最低限の変更だけですむため、経済的なメリットが得られる。 When the step (A) is a temporary pasting step, a thermosetting connection film can be provided on the substrate under known usage conditions. In this case, only minimal changes such as installation and change of tools from the conventional device are required, which is economically advantageous.

工程(A)がラミネート工程の場合、例えば、加圧式ラミネータを用いて熱硬化性接続フィルムを基板上にラミネートする。ラミネート工程は、真空加圧式であってもよい。従来の導電フィルムや異方性導電フィルムの加熱加圧ツールを用いた仮貼りである場合、フィルムの幅がツール幅の制約を受けるが、ラミネート工程の場合、加熱加圧ツールを用いないため、比較的広い幅を一括で搭載できるようになることが期待できる。 When the step (A) is a laminating step, for example, a thermosetting connection film is laminated on the substrate using a pressure type laminator. The laminating step may be a vacuum pressurization type. In the case of temporary pasting using a conventional conductive film or anisotropic conductive film heating / pressing tool, the width of the film is restricted by the tool width, but in the laminating process, the heating / pressing tool is not used. It can be expected that a relatively wide width can be mounted all at once.

工程(A)において、熱硬化性接続材料の厚みに対する半田粒子の平均粒子径の比の下限は、前述と同様、好ましくは0.6以上、より好ましくは0.8以上、さらに好ましくは0.9以上である。これにより、半田粒子の端子間への挟持が容易になり、ファインピッチの端子列に対応することができる。 In the step (A), the lower limit of the ratio of the average particle size of the solder particles to the thickness of the thermosetting connecting material is preferably 0.6 or more, more preferably 0.8 or more, still more preferably 0. 9 or more. As a result, the solder particles can be easily sandwiched between the terminals, and can correspond to a fine pitch terminal row.

[工程(B)]
図10は、基板の端子列とコネクタの端子列との位置合わせを模式的に示す断面図である。図10に示すように、工程(B)では、例えば、ツール60を用いて、基板10の端子列11とコネクタ30の端子列31とを位置合わせし、熱硬化性接続材料20上にコネクタ30を載置する。ツール60は、コネクタ20を吸着する吸着機構を備えることが好ましい。本技術では、半田によるセルフアライメントが期待できないため、工程(B)では、コネクタ20を正確にアライメントし、熱硬化性接続材料33により固定することが望ましい。
[Step (B)]
FIG. 10 is a cross-sectional view schematically showing the alignment between the terminal row of the substrate and the terminal row of the connector. As shown in FIG. 10, in the step (B), for example, the tool 60 is used to align the terminal row 11 of the substrate 10 with the terminal row 31 of the connector 30, and the connector 30 is placed on the thermosetting connection material 20. Is placed. The tool 60 preferably includes a suction mechanism that sucks the connector 20. Since self-alignment by solder cannot be expected in this technique, it is desirable to accurately align the connector 20 and fix it with the thermosetting connection material 33 in the step (B).

[工程(C)]
図11は、基板にコネクタを載置した状態を模式的に示す断面図であり、図12は、基板及びコネクタをリフロー炉にて加熱した状態を模式的に示す断面図である。図11及び図12に示すように、工程(C)では、半田粒子31の融点以上に設定されたリフロー炉を用いて、基板10の第1の端子列11とコネクタ20の第2の端子21とを接合させる。
[Step (C)]
FIG. 11 is a cross-sectional view schematically showing a state in which the connector is placed on the substrate, and FIG. 12 is a cross-sectional view schematically showing a state in which the substrate and the connector are heated in a reflow oven. As shown in FIGS. 11 and 12, in step (C), a reflow furnace set above the melting point of the solder particles 31 is used, and the first terminal row 11 of the substrate 10 and the second terminal 21 of the connector 20 are used. To join.

リフロー炉は、機械的な加圧をせずに無荷重で加熱接合させることができるため、基板10及びコネクタ20のダメージを抑制することができる。また、無荷重であるため、半田粒子の移動量が小さくなり、ファインピッチの端子列に対応することができる。 Since the reflow furnace can be heat-bonded without a load without mechanical pressurization, damage to the substrate 10 and the connector 20 can be suppressed. Further, since there is no load, the amount of movement of the solder particles is small, and it is possible to correspond to a fine pitch terminal row.

リフロー炉としては、簡便さの点から大気圧リフローが好ましいが、大気圧リフロー、真空リフロー、大気圧オーブン、オートクレーブ(加圧オーブン)などを用いても良い。 As the reflow furnace, atmospheric pressure reflow is preferable from the viewpoint of simplicity, but atmospheric pressure reflow, vacuum reflow, atmospheric pressure oven, autoclave (pressurized oven) and the like may be used.

リフロー炉におけるピーク温度(最高到達温度)の下限は、半田粒子が溶融する温度以上であって、熱硬化性バインダーが硬化を始める温度以上であればよく、好ましくは150℃以上、より好ましくは180℃以上、さらに好ましくは200℃以上である。また、リフロー炉におけるピーク温度の上限は、300℃以下、より好ましくは290℃以下、さらに好ましくは280℃以下である。これにより、基板10の第1の端子列11とコネクタ20の第2の端子列21とが接合32させることができる。 The lower limit of the peak temperature (maximum temperature reached) in the reflow oven may be at least the temperature at which the solder particles melt and at least the temperature at which the thermosetting binder starts to cure, preferably 150 ° C. or higher, more preferably 180. ° C. or higher, more preferably 200 ° C. or higher. The upper limit of the peak temperature in the reflow furnace is 300 ° C. or lower, more preferably 290 ° C. or lower, and further preferably 280 ° C. or lower. As a result, the first terminal row 11 of the substrate 10 and the second terminal row 21 of the connector 20 can be joined 32.

本実施の形態に係る接続体の製造方法によれば、底面の段差を吸収することができるため、端子をファインピッチ化することができ、接続体を小型化することができる。また、熱硬化性接続材料が熱硬化性バインダーの場合、リフロー工程の昇温・維持・降温と、熱硬化性接続材料の熱硬化性の挙動を合わせることにより、リフロー工程における樹脂溶融、端子間での半田粒子の挟持、半田溶融・樹脂硬化を最適化することができる。なお、熱硬化性接続材料の熱硬化性の挙動は、DSC測定やレオメーターによる粘度測定により知ることができる。 According to the method for manufacturing a connecting body according to the present embodiment, since the step on the bottom surface can be absorbed, the terminals can be made fine pitch and the connecting body can be miniaturized. When the thermosetting connection material is a thermosetting binder, the temperature rise / maintenance / temperature decrease in the reflow process is combined with the thermosetting behavior of the thermosetting connection material to melt the resin in the reflow process and between the terminals. It is possible to optimize the sandwiching of solder particles, melting of solder, and curing of resin. The thermosetting behavior of the thermosetting connection material can be known by DSC measurement or viscosity measurement with a rheometer.

<4.コネクタ>
次に、本技術を適用したコネクタの端子構造について説明する。従来のコネクタは、半田による表面実装のため、端子列がコネクタ内部から外側に延在する構造である。このため、スタブと呼ばれる開放端をつくり、周波数特性に悪影響を及ぼす場合がある。例えば、開放端部分は、長さが1/4波長になる周波数で共振を起こして、その周波数の信号レベルが0になるという周波数特性を持つ。
<4. Connector>
Next, the terminal structure of the connector to which this technique is applied will be described. Since the conventional connector is surface-mounted by soldering, the terminal row has a structure extending from the inside to the outside of the connector. Therefore, an open end called a stub may be created, which may adversely affect the frequency characteristics. For example, the open end portion has a frequency characteristic that resonance occurs at a frequency whose length becomes 1/4 wavelength and the signal level at that frequency becomes 0.

本技術を適用したコネクタは、端子列が底面から外側に延在する必要がないため、端子構造の自由度が増し、高周波特性に優れた端子構造の選択が可能である。以下、プラグ、レセプタクルの端子構造の組合せについてシミュレーションし、Sパラメータ(Scattering parameters)により評価した。 In the connector to which this technology is applied, since the terminal row does not need to extend from the bottom surface to the outside, the degree of freedom of the terminal structure is increased, and the terminal structure having excellent high frequency characteristics can be selected. Hereinafter, the combination of the terminal structure of the plug and the receptacle was simulated and evaluated by S-parameters (Scattering parameters).

図13は、シミュレーションで用いたコネクタ構造を示す斜視図であり、図14は、シミュレーションで用いたコネクタ構造の一例を示す断面図である。配線板モデルは、配線ピッチ0.35mm、配線厚み18μmのカバーレイ付きFPC(Flexible printed circuits)とし、配線幅を最適化した。インピーダンスが100Ωとなる配線幅は0.25mmである。 FIG. 13 is a perspective view showing the connector structure used in the simulation, and FIG. 14 is a cross-sectional view showing an example of the connector structure used in the simulation. The wiring board model was an FPC (Flexible printed circuits) with a coverlay having a wiring pitch of 0.35 mm and a wiring thickness of 18 μm, and the wiring width was optimized. The wiring width at which the impedance is 100Ω is 0.25 mm.

図13及び図14に示すように、コプレーナ差動線路を用いたコネクタ接続において、第1のFPC71にプラグ、及び第2のFPC72にレセプタクルを実装した場合についてシミュレーションした。プラグは、図15〜図18に示す形状から選択し、レセプタクルは、図19〜図22に示す形状から選択し、プラグとレセプタクルとの組み合わせが伝送特性に与える影響について、伝送信号S21及び反射信号S11により評価した。伝送信号S21は、第1のFPC71の端子Aから信号を入力したときに、第2のFPC72の端子Bに通過する信号であり、絶対値のデシベル表示は、端子Aから端子Bの挿入損失(インサーションロス)を示す。反射信号S11は、第1のFPC71の端子Aから信号を入力したときに、端子Aに反射する信号であり、絶対値のデシベル表示は、端子Aの反射損失(リターンロス)を示す。 As shown in FIGS. 13 and 14, in a connector connection using a coplanar differential line, a simulation was performed in which a plug was mounted on the first FPC 71 and a receptacle was mounted on the second FPC 72. The plug is selected from the shapes shown in FIGS. 15 to 18, and the receptacle is selected from the shapes shown in FIGS. 19 to 22. Regarding the influence of the combination of the plug and the receptacle on the transmission characteristics, the transmission signal S21 and the reflected signal It was evaluated according to S11. The transmission signal S21 is a signal that passes through the terminal B of the second FPC 72 when the signal is input from the terminal A of the first FPC 71, and the decibel display of the absolute value is the insertion loss from the terminal A to the terminal B (the insertion loss from the terminal A to the terminal B. Insertion loss) is shown. The reflected signal S11 is a signal that is reflected to the terminal A when a signal is input from the terminal A of the first FPC 71, and the decibel display of the absolute value indicates the reflection loss (return loss) of the terminal A.

図15(A)は、プラグの第1構成例(Plug-1)を示す断面図であり、図15(B)は、プラグの第2構成例(Plug-2)を示す断面図である。第1構成例は、第1端部から水平方向(X軸方向)に直線状に延び、配線と接続される接続部81aと、接続部81aから垂直方向(Y軸方向)に曲がり、直線状に延び、半円形状により接続部81aの内側に延び、第2の端部となるオス型垂直嵌合部82bとを備える。第2構成例は、第1構成例と左右対称であり、第1端部から水平方向(X軸方向)に直線状に延び、配線と接続される接続部82aと、接続部82aから垂直方向(Y軸方向)に曲がり、直線状に延び、半円形状により接続部82aの内側に延び、第2の端部となるオス型垂直嵌合部82bとを備える。そして、第1構成例は、第1のFPC71の配線の端部の向きと第1端部の向きとを揃えて実装され、第2構成例は、第1のFPC71の配線の端部の向きと第1端部の反対向きとを揃えて実装される。 FIG. 15 (A) is a cross-sectional view showing a first configuration example (Plug-1) of the plug, and FIG. 15 (B) is a cross-sectional view showing a second configuration example (Plug-2) of the plug. In the first configuration example, a connecting portion 81a extending linearly in the horizontal direction (X-axis direction) from the first end portion and being connected to the wiring, and a connecting portion 81a bent in the vertical direction (Y-axis direction) to form a straight line. It is provided with a male vertical fitting portion 82b which extends inward of the connecting portion 81a due to a semicircular shape and serves as a second end portion. The second configuration example is symmetrical with the first configuration example, and extends linearly in the horizontal direction (X-axis direction) from the first end portion and is connected to the wiring, and the connection portion 82a and the connection portion 82a in the vertical direction. It is provided with a male vertical fitting portion 82b that bends in the (Y-axis direction), extends linearly, extends inward of the connecting portion 82a due to a semicircular shape, and serves as a second end portion. Then, the first configuration example is implemented with the orientation of the end portion of the wiring of the first FPC 71 aligned with the orientation of the first end portion, and the second configuration example is the orientation of the end portion of the wiring of the first FPC 71. And the opposite direction of the first end are aligned.

図16(A)は、プラグの第3構成例(Plug-3)を示す断面図であり、図16(B)は、プラグの第4構成例(Plug-4)を示す断面図である。第3構成例は、第1端部から水平方向(X軸方向)に直線状に延び、配線と接続される接続部83aと、接続部83aから垂直方向(Y軸方向)に曲がり、直線状に延び、半円形状により接続部83aの外側に延び、第2の端部となるオス型垂直嵌合部83bとを備える。第4構成例は、第3構成例と左右対称であり、第1端部から水平方向(X軸方向)に直線状に延び、配線と接続される接続部84aと、接続部84aから垂直方向(Y軸方向)に曲がり、直線状に延び、半円形状により接続部84aの外側に延び、第2の端部となるオス型垂直嵌合部84bとを備える。すなわち、第3構成例及び第4構成例は、それぞれ第1構成例及び第2構成例において、半円形状を接続部83aの外側に延ばしたものである。そして、第3構成例は、第1のFPC71の配線の端部の向きと第1端部の反対向きとを揃えて実装され、第4構成例は、第1のFPC71の配線の端部の向きと第1端部の向きとを揃えて実装される。 FIG. 16A is a cross-sectional view showing a third configuration example (Plug-3) of the plug, and FIG. 16B is a cross-sectional view showing a fourth configuration example (Plug-4) of the plug. In the third configuration example, the connecting portion 83a extending linearly from the first end in the horizontal direction (X-axis direction) and being connected to the wiring, and the connecting portion 83a are bent in the vertical direction (Y-axis direction) to form a straight line. It is provided with a male vertical fitting portion 83b which extends to the outside of the connecting portion 83a due to a semicircular shape and serves as a second end portion. The fourth configuration example is symmetrical with the third configuration example, and extends linearly in the horizontal direction (X-axis direction) from the first end portion and is connected to the wiring, and the connection portion 84a and the connection portion 84a in the vertical direction. It is provided with a male vertical fitting portion 84b that bends in the (Y-axis direction), extends linearly, extends outside the connecting portion 84a due to a semicircular shape, and serves as a second end portion. That is, in the third configuration example and the fourth configuration example, the semicircular shape is extended to the outside of the connecting portion 83a in the first configuration example and the second configuration example, respectively. Then, the third configuration example is mounted so that the direction of the end portion of the wiring of the first FPC 71 and the opposite direction of the first end portion are aligned, and the fourth configuration example is the end portion of the wiring of the first FPC 71. It is mounted with the orientation aligned with the orientation of the first end.

図17(A)は、プラグの第1L構成例(Plug-1 Loop)を示す断面図であり、図17(B)は、プラグの第2L構成例(Plug-2 Loop)を示す断面図である。第1L構成例は、第1端部から水平方向(X軸方向)に直線状に延び、配線と接続される接続部85aと、接続部85aから垂直方向(Y軸方向)に曲がり、直線状に延び、半円形状により接続部85aの内側に延び、半円形状により接続部85aに繋がるオス型垂直嵌合部85bとを備える。第2L構成例は、第1L構成例と左右対称であり、第1端部から水平方向(X軸方向)に直線状に延び、配線と接続される接続部86aと、接続部86aから垂直方向(Y軸方向)に曲がり、直線状に延び、半円形状により接続部86aの内側に延び、半円形状により接続部86aに繋がるオス型垂直嵌合部86bとを備える。すなわち、第1L構成例及び第2L構成例は、それぞれ第1構成例及び第2構成例において、第2の端部が半円形状により接続部に繋がったものである。そして、第1L構成例は、第1のFPC71の配線の端部の向きと第1端部の向きとを揃えて実装され、第2L構成例は、第1のFPC71の配線の端部の向きと第1端部の反対向きとを揃えて実装される。 FIG. 17A is a cross-sectional view showing a first L configuration example (Plug-1 Loop) of the plug, and FIG. 17B is a cross-sectional view showing a second L configuration example (Plug-2 Loop) of the plug. be. In the first L configuration example, a connecting portion 85a extending linearly in the horizontal direction (X-axis direction) from the first end portion and being connected to the wiring, and a connecting portion 85a bent in the vertical direction (Y-axis direction) to form a linear shape. It is provided with a male vertical fitting portion 85b that extends inwardly of the connecting portion 85a due to the semicircular shape and is connected to the connecting portion 85a by the semicircular shape. The second L configuration example is symmetrical with the first L configuration example, and extends linearly in the horizontal direction (X-axis direction) from the first end portion and is connected to the wiring, and the connection portion 86a and the connection portion 86a in the vertical direction. It is provided with a male vertical fitting portion 86b that bends in the (Y-axis direction), extends linearly, extends inward of the connecting portion 86a due to the semicircular shape, and is connected to the connecting portion 86a by the semicircular shape. That is, in the first configuration example and the second configuration example, in the first configuration example and the second configuration example, the second end portion is connected to the connection portion by a semicircular shape, respectively. Then, the first L configuration example is implemented with the orientation of the end portion of the wiring of the first FPC 71 aligned with the orientation of the first end portion, and the second L configuration example is the orientation of the end portion of the wiring of the first FPC 71. And the opposite direction of the first end are aligned.

図18(A)は、プラグの第3L構成例(Plug-3 Loop)を示す断面図であり、図18(B)は、プラグの第4L構成例(Plug-4 Loop)を示す断面図である。第3L構成例は、第1端部から水平方向(X軸方向)に直線状に延び、配線と接続される接続部87aと、接続部87aから垂直方向(Y軸方向)に曲がり、直線状に延び、半円形状により接続部86aの外側に延び、半円形状により接続部86aに繋がるオス型垂直嵌合部86bとを備える。第4L構成例は、第3L構成例と左右対称であり、第1端部から水平方向(X軸方向)に直線状に延び、配線と接続される接続部88aと、接続部88aから垂直方向(Y軸方向)に曲がり、直線状に延び、半円形状により接続部88aの外側に延び、半円形状により接続部88aに繋がるオス型垂直嵌合部88bとを備える。すなわち、第3L構成例及び第4L構成例は、それぞれ第3構成例及び第4構成例において、第2の端部が半円形状により接続部に繋がったものである。そして、第3L構成例は、第1のFPC71の配線の端部の向きと第1端部の反対向きとを揃えて実装され、第4L構成例は、第1のFPC71の配線の端部の向きと第1端部の向きとを揃えて実装される。 FIG. 18A is a cross-sectional view showing a third L configuration example (Plug-3 Loop) of the plug, and FIG. 18B is a cross-sectional view showing a fourth L configuration example (Plug-4 Loop) of the plug. be. The third L configuration example extends linearly from the first end in the horizontal direction (X-axis direction) and bends in the vertical direction (Y-axis direction) from the connecting portion 87a connected to the wiring and linearly. It is provided with a male vertical fitting portion 86b that extends to the outside of the connecting portion 86a due to the semicircular shape and is connected to the connecting portion 86a by the semicircular shape. The fourth L configuration example is bilaterally symmetrical with the third L configuration example, and extends linearly from the first end in the horizontal direction (X-axis direction) and is connected to the wiring. It is provided with a male vertical fitting portion 88b that bends in the (Y-axis direction), extends linearly, extends outside the connecting portion 88a by a semicircular shape, and connects to the connecting portion 88a by a semicircular shape. That is, in the third configuration example and the fourth configuration example, in the third configuration example and the fourth configuration example, the second end portion is connected to the connection portion by a semicircular shape, respectively. Then, the third L configuration example is mounted so that the direction of the end portion of the wiring of the first FPC 71 and the opposite direction of the first end portion are aligned, and the fourth L configuration example is the end portion of the wiring of the first FPC 71. It is mounted with the orientation aligned with the orientation of the first end.

図19は、レセプタクルの第1構成例(Receptacle−0)を示す断面図である。第1構成例は、第1端部から水平方向(X軸方向)に直線状に延び、配線と接続される接続部91aと、接続部91aから垂直方向(Y軸方向)に曲がり、直線状に延びる垂直部91bと、垂直部91bから半円形状により接続部91aの外側に垂直方向(Y軸方向)に直線状に延び、水平方向(X軸方向)に外側に曲がり、直線状に延び、再び垂直方向(Y軸方向)に内側に曲がり、更に内側に曲がり、半円形状により第2の端部となるメス型垂直嵌合部91cとを備える。そして、第1構成例は、第2のFPC72の配線の端部の向きと第1端部の反対向きとを揃えて実装される。 FIG. 19 is a cross-sectional view showing a first configuration example (Receptacle-0) of the receptacle. In the first configuration example, a connecting portion 91a extending linearly in the horizontal direction (X-axis direction) from the first end portion and being connected to the wiring, and a connecting portion 91a bent in the vertical direction (Y-axis direction) to form a straight line. The vertical portion 91b and the vertical portion 91b extend linearly from the vertical portion 91b to the outside of the connecting portion 91a in the vertical direction (Y-axis direction), bend outward in the horizontal direction (X-axis direction), and extend linearly. A female vertical fitting portion 91c that bends inward again in the vertical direction (Y-axis direction), further bends inward, and becomes a second end portion due to a semicircular shape is provided. Then, the first configuration example is mounted so that the direction of the end portion of the wiring of the second FPC 72 and the opposite direction of the first end portion are aligned.

図20は、レセプタクルの第2構成例(Receptacle−1)を示す断面図である。第2構成例は、第1端部から水平方向(X軸方向)に直線状に延び、配線と接続される接続部92aと、接続部92aから垂直方向(Y軸方向)に曲がり、直線状に延びる垂直部92bと、垂直部92bから半円形状により接続部92aの内側に垂直方向(Y軸方向)に直線状に延び、水平方向(X軸方向)に外側に曲がり、直線状に延び、再び垂直方向(Y軸方向)に内側に曲がり、更に内側に曲がり、半円形状により第2の端部となるメス型垂直嵌合部92cとを備える。すなわち、第2構成例は、第1構成例において、接続部がメス型垂直嵌合部側に曲がったものである。そして、第2構成例は、第2のFPC72の配線の端部の向きと第1端部の向きとを揃えて実装される。 FIG. 20 is a cross-sectional view showing a second configuration example (Receptacle-1) of the receptacle. In the second configuration example, the connecting portion 92a extending linearly from the first end in the horizontal direction (X-axis direction) and being connected to the wiring, and the connecting portion 92a are bent in the vertical direction (Y-axis direction) to form a straight line. The vertical portion 92b and the vertical portion 92b extend linearly in the vertical direction (Y-axis direction) inside the connecting portion 92a due to a semicircular shape, bend outward in the horizontal direction (X-axis direction), and extend linearly. A female vertical fitting portion 92c that bends inward again in the vertical direction (Y-axis direction), further bends inward, and becomes a second end portion due to a semicircular shape is provided. That is, in the second configuration example, in the first configuration example, the connecting portion is bent toward the female vertical fitting portion. Then, the second configuration example is implemented so that the orientation of the end portion of the wiring of the second FPC 72 and the orientation of the first end portion are aligned.

図21は、レセプタクルの第3構成例(Receptacle−2)を示す断面図である。第3構成例は、第1端部から垂直方向(Y軸方向)に直線状に延びる垂直部93aと、垂直部93aから水平方向(X軸方向)に曲がり、直線状に延び、配線と接続される接続部93bと、接続部93bから垂直方向(Y軸方向)に内側に曲がり、更に内側に曲がり、半円形状により第2の端部となり、垂直部93aと接続部93bとを構成要素とするメス型垂直嵌合部93cとを備える。そして、第3構成例は、第2のFPC72の配線の端部の向きに対して垂直部93aが内側になるように実装される。 FIG. 21 is a cross-sectional view showing a third configuration example (Receptacle-2) of the receptacle. In the third configuration example, a vertical portion 93a extending linearly in the vertical direction (Y-axis direction) from the first end portion and a vertical portion 93a bent in the horizontal direction (X-axis direction) from the vertical portion 93a and extending linearly to be connected to a wiring. The connecting portion 93b to be formed and the connecting portion 93b are bent inward in the vertical direction (Y-axis direction) and further bent inward to become the second end portion due to the semicircular shape, and the vertical portion 93a and the connecting portion 93b are constituent elements. It is provided with a female vertical fitting portion 93c. Then, the third configuration example is mounted so that the vertical portion 93a is inside with respect to the direction of the end portion of the wiring of the second FPC 72.

図22は、レセプタクルの第4構成例(Receptacle−3)を示す断面図である。第4構成例は、第3構成例と左右対称であり、第1端部から垂直方向(Y軸方向)に直線状に延びる垂直部94aと、垂直部94aから水平方向(X軸方向)に曲がり、直線状に延び、配線と接続される接続部94bと、接続部94bから垂直方向(Y軸方向)に内側に曲がり、更に内側に曲がり、半円形状により第2の端部となり、垂直部94aと接続部94bとを構成要素とするメス型垂直嵌合部94cとを備える。そして、第4構成例は、第2のFPC72の配線の端部の向きに対して垂直部94aが外側になるように実装される。 FIG. 22 is a cross-sectional view showing a fourth configuration example (Receptacle-3) of the receptacle. The fourth configuration example is symmetrical with the third configuration example, and has a vertical portion 94a extending linearly from the first end portion in the vertical direction (Y-axis direction) and a vertical portion 94a extending linearly from the vertical portion 94a in the horizontal direction (X-axis direction). A connection part 94b that bends, extends linearly, and is connected to the wiring, and bends inward in the vertical direction (Y-axis direction) from the connection part 94b, and then bends inward, becoming the second end due to the semicircular shape, and is vertical. A female vertical fitting portion 94c having a portion 94a and a connecting portion 94b as constituent elements is provided. Then, the fourth configuration example is mounted so that the vertical portion 94a is on the outside with respect to the direction of the end portion of the wiring of the second FPC 72.

[第1構成例〜第4構成例(Plug-1〜Plug-4)の高周波特性]
図23は、第1構成例(Plug-1)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフであり、図24は、第1構成例(Plug-1)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。
[High frequency characteristics of the first configuration example to the fourth configuration example (Plug-1 to Plug-4)]
FIG. 23 is a graph showing a transmission signal S21 when the plug of the first configuration example (Plug-1) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. 24 is a graph showing the reflected signal S11 when the plug of the first configuration example (Plug-1) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. be.

図25は、第2構成例(Plug-2)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフであり、図26は、第2構成例(Plug-2)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。 FIG. 25 is a graph showing a transmission signal S21 when the plug of the second configuration example (Plug-2) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. 26 is a graph showing the reflected signal S11 when the plug of the second configuration example (Plug-2) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. be.

図27は、第3構成例(Plug-3)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフであり、図28は、第3構成例(Plug-3)のプラグと第1構成例〜第4構成例(Receptacle-0〜Receptacle-3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。 FIG. 27 is a graph showing a transmission signal S21 when the plug of the third configuration example (Plug-3) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. 28 is a graph showing the reflected signal S11 when the plug of the third configuration example (Plug-3) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. be.

図29は、第4構成例(Plug-4)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフであり、図30は、第4構成例(Plug−4)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。 FIG. 29 is a graph showing a transmission signal S21 when the plug of the fourth configuration example (Plug-4) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. FIG. 30 is a graph showing a reflection signal S11 when the plug of the fourth configuration example (Plug-4) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. be.

図23〜図30に示すグラフより、プラグ、レセプタクルの端子構造の組合せは、例えば、第1構成例(Plug−1)のプラグに対して第1構成例(Receptacle−0)又は第2構成例(Receptacle−1)のレセプタクルが好ましく、第2構成例(Plug−2)のプラグに対して第4構成例(Receptacle−3)のレセプタクルが好ましく、第3構成例(Plug−3)のプラグに対して第1構成例(Receptacle−0)又は第2構成例(Receptacle−1)のレセプタクルが好ましく、第4構成例(Plug−4)のプラグに対して第4構成例(Receptacle−3)のレセプタクルが好ましいことが分かった。 From the graphs shown in FIGS. 23 to 30, the combination of the terminal structure of the plug and the receptacle is, for example, the first configuration example (Receptacle-0) or the second configuration example with respect to the plug of the first configuration example (Plug-1). The receptacle of (Receptacle-1) is preferable, and the receptacle of the fourth configuration example (Receptacle-3) is preferable to the plug of the second configuration example (Plug-2), and the plug of the third configuration example (Plug-3) is used. On the other hand, the receptacle of the first configuration example (Receptacle-0) or the receptacle of the second configuration example (Receptacle-1) is preferable, and the plug of the fourth configuration example (Plug-4) is compared with the plug of the fourth configuration example (Receptacle-3). Receptacles have been found to be preferred.

[第1L構成例〜第4L構成例(Plug−1 Loop〜Plug−4 Loop)の高周波特性]
図31は、第1L構成例(Plug−1 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフであり、図32は、第1L構成例(Plug−1 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。
[High frequency characteristics of 1st L configuration example to 4th L configuration example (Plug-1 Loop to Plug-4 Loop)]
FIG. 31 is a graph showing a transmission signal S21 when the plug of the first L configuration example (Plug-1 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. FIG. 32 shows a reflection signal S11 when the plug of the first L configuration example (Plug-1 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. It is a graph.

図33は、第2L構成例(Plug−2 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフであり、図34は、第2L構成例(Plug−2 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。 FIG. 33 is a graph showing a transmission signal S21 when the plug of the second L configuration example (Plug-2 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. FIG. 34 shows a reflection signal S11 when the plug of the second L configuration example (Plug-2 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. It is a graph.

図35は、第3L構成例(Plug−3 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフであり、図36は、第3L構成例(Plug−3 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。 FIG. 35 is a graph showing a transmission signal S21 when the plug of the third L configuration example (Plug-3 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. FIG. 36 shows a reflection signal S11 when the plug of the third L configuration example (Plug-3 Loop) and the receptacles of the first configuration example to the fourth configuration example (Receptacle-0 to Receptacle-3) are connected. It is a graph.

図37は、第4L構成例(Plug−4 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の伝送信号S21を示すグラフであり、図38は、第4L構成例(Plug−4 Loop)のプラグと第1構成例〜第4構成例(Receptacle−0〜Receptacle−3)のレセプタクルとを接続した場合の反射信号S11を示すグラフである。 FIG. 37 is a graph showing a transmission signal S21 when the plug of the 4L configuration example (Plug-4 Loop) and the receptacles of the 1st configuration example to the 4th configuration example (Receptacle-0 to Receptacle-3) are connected. FIG. 38 shows a reflection signal S11 when the plug of the 4L configuration example (Plug-4 Loop) and the receptacles of the 1st configuration example to the 4th configuration example (Receptacle-0 to Receptacle-3) are connected. It is a graph.

図31〜図38に示すグラフより、プラグ、レセプタクルの端子構造の組合せは、例えば、第1L構成例(Plug−1 Loop)のプラグに対して第3構成例(Receptacle−2)又は第4構成例(Receptacle−3)のレセプタクルが好ましく、第2L構成例(Plug−2 Loop)のプラグに対して第3構成例(Receptacle−2)又は第4構成例(Receptacle−3)のレセプタクルが好ましく、第3L構成例(Plug−3 Loop)のプラグに対して第3構成例(Receptacle−2)又は第4構成例(Receptacle−3)のレセプタクルが好ましく、第4L構成例(Plug−4 Loop)のプラグに対して第3構成例(Receptacle−2)又は第4構成例(Receptacle−3)のレセプタクルが好ましいことが分かった。 From the graphs shown in FIGS. 31 to 38, the combination of the terminal structure of the plug and the receptacle is, for example, the third configuration example (Receptacle-2) or the fourth configuration with respect to the plug of the first L configuration example (Plug-1 Loop). The receptacle of the example (Receptacle-3) is preferable, and the receptacle of the third configuration example (Receptacle-2) or the fourth configuration example (Receptacle-3) is preferable to the plug of the second L configuration example (Plug-2 Loop). The receptacle of the third configuration example (Receptacle-2) or the fourth configuration example (Receptacle-3) is preferable to the plug of the third L configuration example (Plug-3 Loop), and the receptacle of the fourth L configuration example (Plug-4 Loop) is preferable. It was found that the receptacle of the third configuration example (Receptacle-2) or the fourth configuration example (Receptacle-3) is preferable for the plug.

[シミュレーション評価]
従来の半田実装では、端子がコネクタの底面から外側に延在する構造であり、第4構成例(Plug−4)のプラグと第1構成例(Receptacle−0)のレセプタクルとの接続、及びその反転の組み合わせしかない。また、半田実装用のコネクタは、両端子の片側は必ず電気の流れの進行方向は片側が逆になるのでスタブが発生する。また、従来の半田実装は、半田のZ方向の厚みが0.1〜1mmと高く、高周波特性に向かないものである。
[Simulation evaluation]
In the conventional solder mounting, the terminal has a structure extending outward from the bottom surface of the connector, and the connection between the plug of the fourth configuration example (Plug-4) and the receptacle of the first configuration example (Receptacle-0), and the connection thereof. There is only a combination of inversions. Further, in the solder mounting connector, stubs occur because one side of both terminals always has the opposite direction of electricity flow. Further, in the conventional solder mounting, the thickness of the solder in the Z direction is as high as 0.1 to 1 mm, which is not suitable for high frequency characteristics.

一方、本技術に係る熱硬化性接続材料を用いた接続では、端子がコネクタの底面から外側に延在する必要がなくなり、コネクタは両端子に対して端子の向きを選択することを可能にし、電流の流れの進行方向を選択することを可能にし、スタブの影響を少なくし高周波特性を向上させることができる。また、プラグをループ構造にすることにより、スタブの影響を更に少なくすることができる。また、熱硬化性接続材料の厚みは1〜30μmと半田の厚みの10分の1程度小さく、高周波特性を改善することができる。 On the other hand, in the connection using the thermosetting connection material according to the present technology, it is not necessary for the terminals to extend from the bottom surface of the connector to the outside, and the connector allows the orientation of the terminals to be selected for both terminals. It is possible to select the traveling direction of the current flow, reduce the influence of stubs, and improve the high frequency characteristics. Further, by making the plug a loop structure, the influence of the stub can be further reduced. Further, the thickness of the thermosetting connecting material is 1 to 30 μm, which is about 1/10 of the thickness of the solder, and the high frequency characteristics can be improved.

本技術によれば、これまでのB2Bコネクタでは、使用できなかった高周波対応の領域を使用可能とし、その領域を広げることができる。このため、スマホ等の通信向け電子機器に高周波特性の優れたコネクタを使用できるようになる。また、高周波対応コネクタを使用することにより、基板が壊れた時に基板の交換での対応を、同軸コネクタより安価に実現することができる。 According to this technology, it is possible to use a region corresponding to high frequencies that could not be used with the conventional B2B connector, and to expand the region. Therefore, a connector having excellent high frequency characteristics can be used for communication electronic devices such as smartphones. Further, by using the high frequency connector, it is possible to replace the board when the board is broken at a lower cost than the coaxial connector.

<5.実施例>
本実施例では、熱硬化性接続材料として半田粒子を含有する異方性導電フィルムを作製した。そして、異方性導電フィルムを用いて、プラグ、レセプタクルの基板対基板用のコネクタをそれぞれ基板に実装し、実装体の初期の導通評価、及び挿抜試験後の導通評価を行った。なお、本実施例は、これらに限定されるものではない。
<5. Example>
In this example, an anisotropic conductive film containing solder particles was produced as a thermosetting connection material. Then, using the anisotropic conductive film, the substrate-to-board connectors of the plug and the receptacle were mounted on the substrate, respectively, and the initial continuity evaluation of the mounted body and the continuity evaluation after the insertion / removal test were performed. The present embodiment is not limited to these.

[初期の導通評価]
プラグの実装体サンプル、及びレセプタクルの実装体サンプルについて、コネクタの端子とそれに対応する基板の端子との間に、電流1mAを流したときの抵抗値を測定し、中央値を算出した。抵抗値の中央値が1.0Ω以下である実装体を「OK」と評価し、それ以外の実装体を「NG」と評価した。
[Initial continuity evaluation]
For the plug mounting body sample and the receptacle mounting body sample, the resistance value when a current of 1 mA was passed between the terminal of the connector and the terminal of the corresponding substrate was measured, and the median value was calculated. A mounting body having a median resistance value of 1.0Ω or less was evaluated as "OK", and other mounting bodies were evaluated as "NG".

[挿抜試験後の導通評価]
プラグの実装体サンプル、及びレセプタクルの実装体サンプルを用いて、10回挿抜試験を行った。挿抜試験後のプラグの実装体サンプル、及びレセプタクルの実装体サンプルについて、初期の導通評価と同様に評価を行った。
[Continuity evaluation after insertion / removal test]
The insertion / removal test was performed 10 times using the plug mounting body sample and the receptacle mounting body sample. The plug mount sample and the receptacle mount sample after the insertion / removal test were evaluated in the same manner as the initial continuity evaluation.

[ACF−Aの作製]
表1に示すように、固形エポキシ樹脂(ビスフェノールF型エポキシ樹脂、三菱ケミカル(株)、JER4007P、軟化点108℃)を80質量部、液状エポキシ樹脂(ジシクロペンタジエン骨格エポキシ樹脂、ADEKA(株)、EP4088L)を20質量部、エポキシ樹脂硬化剤(イミダゾール系硬化剤、四国化成工業(株)、キュアゾール2P4MHZ−PW)を5質量部、フラックス化合物(グルタル酸(1,3−プロパンジカルボン酸)、東京化成(株))を3質量部、及び平均粒子径30μmの半田粒子(MCP−137、5N Plus inc、Sn−58Bi合金、固相線温度138℃)を50質量部配合し、異方性導電フィルム(ACF−A)を作製した。異方性導電フィルムの最低溶融粘度は6.1Pa・sであり、最低溶融粘度到達温度は114℃であった。また、異方性導電フィルムの発熱ピーク温度は163℃であった。
[Preparation of ACF-A]
As shown in Table 1, 80 parts by mass of solid epoxy resin (bisphenol F type epoxy resin, Mitsubishi Chemical Co., Ltd., JER4007P, softening point 108 ° C.), liquid epoxy resin (dicyclopentadiene skeleton epoxy resin, ADEKA Co., Ltd.) , EP4088L) by 20 parts by mass, epoxy resin curing agent (imidazole-based curing agent, Shikoku Kasei Kogyo Co., Ltd., Curesol 2P4MHZ-PW) by 5 parts by mass, flux compound (glutaric acid (1,3-propanedicarboxylic acid), Tokyo Kasei Co., Ltd. is blended with 3 parts by mass and 50 parts by mass of solder particles (MCP-137, 5N Plus inc, Sn-58Bi alloy, solid phase line temperature 138 ° C.) having an average particle diameter of 30 μm, and is anisotropic. A conductive film (ACF-A) was produced. The minimum melt viscosity of the anisotropic conductive film was 6.1 Pa · s, and the temperature at which the minimum melt viscosity was reached was 114 ° C. The exothermic peak temperature of the anisotropic conductive film was 163 ° C.

PMA(プロピレングリコールモノメチルエーテルアセテート)に溶解した固形エポキシ樹脂及び液状エポキシ樹脂に、フラックス化合物のMEK(メチルエチルケトン)溶解品、エポキシ樹脂硬化剤を混合した。この混合溶液に、半田粒子を分散させた後、ギャップコーターにて溶剤乾燥後の厚みが半田粒子の平均粒子径の+5μmになるようにPET(ポリエチレンテレフタラート)フィルム上に塗布し、異方性導電フィルム(ACF−A)を作製した。乾燥は70℃−5minの条件で行った。 A flux compound MEK (methyl ethyl ketone) dissolved product and an epoxy resin curing agent were mixed with a solid epoxy resin and a liquid epoxy resin dissolved in PMA (propylene glycol monomethyl ether acetate). After the solder particles are dispersed in this mixed solution, it is coated on a PET (polyethylene terephthalate) film so that the thickness after solvent drying with a gap coater is +5 μm of the average particle size of the solder particles, and is anisotropic. A conductive film (ACF-A) was produced. Drying was carried out under the condition of 70 ° C.-5 min.

[ACF−Bの作製]
表1に示すように、平均粒子径20μmの半田粒子(MCP−137、5N Plus inc、Sn−58Bi合金、固相線温度138℃)を用いた以外は、ACF−Aと同様に異方性導電フィルム(ACF−B)を作製した。異方性導電フィルムの最低溶融粘度は6.1Pa・sであり、最低溶融粘度到達温度は114℃であった。また、異方性導電フィルムの発熱ピーク温度は163℃であった。
[Preparation of ACF-B]
As shown in Table 1, it is anisotropic like ACF-A except that solder particles having an average particle diameter of 20 μm (MCP-137, 5N Plus inc, Sn-58Bi alloy, solid phase temperature of 138 ° C.) are used. A conductive film (ACF-B) was produced. The minimum melt viscosity of the anisotropic conductive film was 6.1 Pa · s, and the temperature at which the minimum melt viscosity was reached was 114 ° C. The exothermic peak temperature of the anisotropic conductive film was 163 ° C.

[ACF−Cの作製]
表1に示すように、平均粒子径10μmの半田粒子(MCP−137、5N Plus inc、Sn−58Bi合金、固相線温度138℃)を用いた以外は、ACF−Aと同様に異方性導電フィルム(ACF−C)を作製した。異方性導電フィルムの最低溶融粘度は6.1Pa・sであり、最低溶融粘度到達温度は114℃であった。また、異方性導電フィルムの発熱ピーク温度は163℃であった。
[Preparation of ACF-C]
As shown in Table 1, it is anisotropic like ACF-A except that solder particles having an average particle diameter of 10 μm (MCP-137, 5N Plus inc, Sn-58Bi alloy, solid phase temperature of 138 ° C.) are used. A conductive film (ACF-C) was produced. The minimum melt viscosity of the anisotropic conductive film was 6.1 Pa · s, and the temperature at which the minimum melt viscosity was reached was 114 ° C. The exothermic peak temperature of the anisotropic conductive film was 163 ° C.

[ACF−Dの作製]
表1に示すように、液状エポキシ樹脂(三菱化学株式会社製:EP828)を15質量部、フェノキシ樹脂(新日鐵化学株式会社製:YP50)を20質量部、ブタジエン−アクリロニトリルゴム(品名:XER−91、JSR社製)18質量部、水酸基含有アクリルゴム(品名:SG−80H、ナガセケムテックス社製)4質量部、マイクロカプセル型アミン系硬化剤(旭化成イーマテリアルズ株式会社製:ノバキュアHX3941HP)を40質量部、及び平均粒子径30μmの半田粒子(MCP−137、5N Plus inc、Sn−58Bi合金、固相線温度138)を50質量部配合し、異方性導電フィルム(ACF−D)を作製した。
[Preparation of ACF-D]
As shown in Table 1, 15 parts by mass of liquid epoxy resin (manufactured by Mitsubishi Chemical Corporation: EP828), 20 parts by mass of phenoxy resin (manufactured by Nippon Steel Chemical Co., Ltd .: YP50), butadiene-acrylonitrile rubber (product name: XER) -91, manufactured by JSR Corporation) 18 parts by mass, hydroxyl group-containing acrylic rubber (product name: SG-80H, manufactured by Nagase ChemteX Corporation) 4 parts by mass, microcapsule type amine-based curing agent (manufactured by Asahi Kasei E-Materials Co., Ltd .: Novacure HX3941HP) ) To 40 parts by mass and 50 parts by mass of solder particles (MCP-137, 5N Plus inc, Sn-58Bi alloy, solid phase line temperature 138) having an average particle diameter of 30 μm, and an anisotropic conductive film (ACF-D). ) Was prepared.

PMA(プロピレングリコールモノメチルエーテルアセテート)に溶解したフェノキシ樹脂及び液状エポキシ樹脂に、ブタジエン−アクリロニトリルゴム、水酸基含有アクリルゴム、及びマイクロカプセル型アミン系硬化剤を混合した。この混合溶液に、半田粒子を分散させた後、ギャップコーターにて溶剤乾燥後の厚みが半田粒子の平均粒子径の+5μmになるようにPET(ポリエチレンテレフタラート)フィルム上に塗布し、異方性導電フィルム(ACF−D)を作製した。乾燥は70℃−5minの条件で行った。 Butadiene-acrylonitrile rubber, hydroxyl group-containing acrylic rubber, and a microcapsule type amine-based curing agent were mixed with a phenoxy resin and a liquid epoxy resin dissolved in PMA (propylene glycol monomethyl ether acetate). After the solder particles are dispersed in this mixed solution, it is coated on a PET (polyethylene terephthalate) film so that the thickness after solvent drying with a gap coater is +5 μm of the average particle size of the solder particles, and is anisotropic. A conductive film (ACF-D) was produced. Drying was carried out under the condition of 70 ° C.-5 min.

Figure 2021153049
Figure 2021153049

<実施例1>
プラグ、レセプタクルの基板対基板用のコネクタ(ヒロセ(株)、BM23FR0.6−20DS/DP)を準備した。コネクタの底面には、20μm程度の段差(うねり)があった。そして、図2〜図4に示すように、プラグ、レセプタクルの各コネクタについて、コネクタの外側に向かって伸びているリード端子をコネクタの底面に折り曲げ、端子面の高さを揃えた。端子面とコネクタ底面との間の最小の高さ(距離)は50μmであった。また、図2、3に示すように、プラグ、レセプタクルの各コネクタについて、補強部を削り取った。
<Example 1>
A board-to-board connector for the plug and receptacle (Hirose Co., Ltd., BM23FR 0.6-20DS / DP) was prepared. There was a step (waviness) of about 20 μm on the bottom surface of the connector. Then, as shown in FIGS. 2 to 4, for each of the plug and receptacle connectors, the lead terminals extending toward the outside of the connector were bent toward the bottom surface of the connector to make the heights of the terminal surfaces uniform. The minimum height (distance) between the terminal surface and the bottom surface of the connector was 50 μm. Further, as shown in FIGS. 2 and 3, the reinforcing portion of each of the plug and receptacle connectors was scraped off.

また、上記プラグに対応するフレキシブルプリント基板(デクセリアルズ(株)評価用FPC、Ni−Auメッキ)と、上記レセプタクルに対応するリジッド基板(デクセリアルズ評価用ガラスエポキシ基板、18μm厚Cuパターン、Ni−Auメッキ)とを準備した。 In addition, a flexible printed circuit board (Dexerials Co., Ltd. evaluation FPC, Ni-Au plating) corresponding to the above plug and a rigid substrate (Dexerials evaluation glass epoxy board, 18 μm thick Cu pattern, Ni-Au plating) corresponding to the above receptacle. ) And prepared.

プラグをフレキシブル基板上に異方性導電フィルムを介してアライメントして無加重−常温にて固定した。また、レセプタクルをリジット基板上に異方性導電フィルムを介してアライメントして無加重−常温にて固定した。そして、リフローにより、プラグをフレキシブル基板上に実装し、レセプタクルをリジット基板上に実装し、プラグの実装体サンプル、及びレセプタクルの実施例1の実装体サンプルを作製した。リフロー条件は、150℃〜260℃−100sec、ピークトップ260℃とした。表2に、プラグの実装体サンプル、及びレセプタクルの実装体サンプルの初期の導通評価結果、及び挿抜試験後の導通評価結果を示す。 The plugs were aligned on a flexible substrate via an anisotropic conductive film and fixed at unweighted-room temperature. Further, the receptacle was aligned on the rigid substrate via an anisotropic conductive film and fixed at unloaded-room temperature. Then, by reflow, the plug was mounted on the flexible substrate, the receptacle was mounted on the rigid substrate, and the plug mounting body sample and the mounting body sample of Example 1 of the receptacle were prepared. The reflow conditions were 150 ° C. to 260 ° C.-100 sec, and the peak top was 260 ° C. Table 2 shows the initial continuity evaluation results of the plug mounting body sample and the receptacle mounting body sample, and the continuity evaluation results after the insertion / removal test.

<実施例2>
異方性導電フィルムとして、ACF−Bを用いた以外は、実施例1と同様にして、実施例2のプラグの実装体サンプル、及びレセプタクルの実装体サンプルを作製した。表2に、プラグの実装体サンプル、及びレセプタクルの実装体サンプルの初期の導通評価結果、及び挿抜試験後の導通評価結果を示す。
<Example 2>
A plug mounting sample and a receptacle mounting sample of Example 2 were prepared in the same manner as in Example 1 except that ACF-B was used as the anisotropic conductive film. Table 2 shows the initial continuity evaluation results of the plug mounting body sample and the receptacle mounting body sample, and the continuity evaluation results after the insertion / removal test.

<実施例3>
異方性導電フィルムとして、ACF−Cを用いた以外は、実施例1と同様にして、実施例3のプラグの実装体サンプル、及びレセプタクルの実装体サンプルを作製した。表2に、プラグの実装体サンプル、及びレセプタクルの実装体サンプルの初期の導通評価結果、及び挿抜試験後の導通評価結果を示す。
<Example 3>
A plug mounting sample and a receptacle mounting sample of Example 3 were prepared in the same manner as in Example 1 except that ACF-C was used as the anisotropic conductive film. Table 2 shows the initial continuity evaluation results of the plug mounting body sample and the receptacle mounting body sample, and the continuity evaluation results after the insertion / removal test.

<比較例1>
異方性導電フィルムとして、ACF−Dを用いた以外は、実施例1と同様にして、比較例1のプラグの実装体サンプル、及びレセプタクルの実装体サンプルを作製した。表2に、プラグの実装体サンプル、及びレセプタクルの実装体サンプルの初期の導通評価結果、及び挿抜試験後の導通評価結果を示す。
<Comparative example 1>
A plug mounting sample and a receptacle mounting sample of Comparative Example 1 were prepared in the same manner as in Example 1 except that ACF-D was used as the anisotropic conductive film. Table 2 shows the initial continuity evaluation results of the plug mounting body sample and the receptacle mounting body sample, and the continuity evaluation results after the insertion / removal test.

<比較例2>
異方性導電フィルムとして、ACF−Bを準備した。
<Comparative example 2>
ACF-B was prepared as an anisotropic conductive film.

プラグ、レセプタクルの基板対基板用のコネクタ(ヒロセ(株)、BM23FR0.6−20DS/DP)を準備した。コネクタの底面には、20μm程度の段差(うねり)があった。プラグ、レセプタクルの各コネクタの外側に向かって伸びているリード端子、及び補強部は、そのままにした。 A board-to-board connector for the plug and receptacle (Hirose Co., Ltd., BM23FR 0.6-20DS / DP) was prepared. There was a step (waviness) of about 20 μm on the bottom surface of the connector. The lead terminals and reinforcements extending outward from the plug and receptacle connectors were left untouched.

また、上記プラグに対応するフレキシブルプリント基板(デクセリアルズ(株)評価用FPC、Ni−Auメッキ、)と、上記レセプタクルに対応するリジッド基板(デクセリアルズ評価用ガラスエポキシ基板、Ni−Auメッキ)とを準備した。 In addition, a flexible printed circuit board (Dexerials Co., Ltd. evaluation FPC, Ni-Au plating) corresponding to the above plug and a rigid substrate (Dexerials evaluation glass epoxy board, Ni-Au plating) corresponding to the above receptacle are prepared. bottom.

プラグをフレキシブル基板上に異方性導電フィルムを介してアライメントして無加重−常温にて固定した。また、レセプタクルをリジット基板上に異方性導電フィルムを介してアライメントして無加重−常温にて固定した。そして、リフローにより、プラグをフレキシブル基板上に実装し、レセプタクルをリジット基板上に実装し、プラグの実装体サンプル、及びレセプタクルの比較例2の実装体サンプルを作製した。リフロー条件は、150℃〜260℃−100sec、ピークトップ260℃とした。表2に、プラグの実装体サンプル、及びレセプタクルの実装体サンプルの初期の導通評価結果、及び挿抜試験後の導通評価結果を示す。 The plugs were aligned on a flexible substrate via an anisotropic conductive film and fixed at unweighted-room temperature. Further, the receptacle was aligned on the rigid substrate via an anisotropic conductive film and fixed at unloaded-room temperature. Then, by reflow, the plug was mounted on the flexible substrate, the receptacle was mounted on the rigid substrate, and a mounting sample of the plug and a mounting sample of Comparative Example 2 of the receptacle were prepared. The reflow conditions were 150 ° C. to 260 ° C.-100 sec, and the peak top was 260 ° C. Table 2 shows the initial continuity evaluation results of the plug mounting body sample and the receptacle mounting body sample, and the continuity evaluation results after the insertion / removal test.

<比較例3>
異方性導電フィルムとして、ACF−Cを用いた以外は、比較例2と同様にして、比較例3のプラグの実装体サンプル、及びレセプタクルの実装体サンプルを作製した。表2に、プラグの実装体サンプル、及びレセプタクルの実装体サンプルの初期の導通評価結果、及び挿抜試験後の導通評価結果を示す。
<Comparative example 3>
A plug mounting sample and a receptacle mounting sample of Comparative Example 3 were prepared in the same manner as in Comparative Example 2 except that ACF-C was used as the anisotropic conductive film. Table 2 shows the initial continuity evaluation results of the plug mounting body sample and the receptacle mounting body sample, and the continuity evaluation results after the insertion / removal test.

<比較例4>
異方性導電フィルムとして、ACF−Dを用いた以外は、比較例2と同様にして、比較例4のプラグの実装体サンプル、及びレセプタクルの実装体サンプルを作製した。表2に、プラグの実装体サンプル、及びレセプタクルの実装体サンプルの初期の導通評価結果、及び挿抜試験後の導通評価結果を示す。
<Comparative example 4>
A plug mounting sample and a receptacle mounting sample of Comparative Example 4 were prepared in the same manner as in Comparative Example 2 except that ACF-D was used as the anisotropic conductive film. Table 2 shows the initial continuity evaluation results of the plug mounting body sample and the receptacle mounting body sample, and the continuity evaluation results after the insertion / removal test.

Figure 2021153049
Figure 2021153049

比較例1及び比較例4で使用されたACF−Dは、熱圧着用であり、フラックス化合物が配合されていないため、プラグの実装体サンプル、及びレセプタクルの実装体サンプルの初期の導通が取れず、接続することができなかった。比較例2及び比較例3で使用されたプラグ、レセプタクルの基板対基板用のコネクタは、リード端子が外側に向かって伸びているため、大きな実装面が必要であった。また、比較例2及び比較例3で使用されたプラグ、レセプタクルの基板対基板用のコネクタは、コネクタ底面の段差により接続することができなかった。 Since the ACF-D used in Comparative Example 1 and Comparative Example 4 is for thermocompression bonding and does not contain a flux compound, the initial continuity of the plug mounting body sample and the receptacle mounting body sample cannot be obtained. , Could not connect. The board-to-board connectors of the plugs and receptacles used in Comparative Examples 2 and 3 required a large mounting surface because the lead terminals extended outward. Further, the plug-to-board connector of the plug and the receptacle used in Comparative Example 2 and Comparative Example 3 could not be connected due to the step on the bottom surface of the connector.

一方、実施例1〜3で使用されたプラグ、レセプタクルの基板対基板用のコネクタは、コネクタ底面に端子列を有し、コネクタ底面の段差を吸収し、異方性導電フィルムが、半田粒子とフラックス化合物とを含有するため、接続することができた。このため、端子列をファインピッチ化することができ、コネクタを小型化することができる。 On the other hand, the board-to-board connector of the plug and receptacle used in Examples 1 to 3 has a terminal row on the bottom surface of the connector, absorbs a step on the bottom surface of the connector, and the anisotropic conductive film forms a solder particle. Since it contains a flux compound, it can be connected. Therefore, the terminal row can be made fine pitch, and the connector can be miniaturized.

実施例1〜3で使用されたレセプタクルは、120μm×170μmの接続面積で、L(Line)/S(Space)=120μm/230μmであるが、平均粒子径10μmの半田粒子を使用することで、原理上、L/Sを50μm/50μm、Line長さを200μmとした接続面積10000μm(50μm×200μm)までファインピッチ化することが可能である。 The receptacles used in Examples 1 to 3 have a connection area of 120 μm × 170 μm and L (Line) / S (Space) = 120 μm / 230 μm, but by using solder particles having an average particle diameter of 10 μm, In principle, it is possible to make a fine pitch up to a connection area of 10000 μm 2 (50 μm × 200 μm) with an L / S of 50 μm / 50 μm and a line length of 200 μm.

10 基板、11 第1の端子列、20 コネクタ、21 第2の端子列、30 熱硬化性接続材料、31 半田粒子、32 半田接合、33 熱硬化性接続材料、40 プラグ、41A 第1のオス型の垂直嵌合列、41B 第2のオス型の垂直嵌合列、42A 第1の端子列、42B 第2の端子列、43 絶縁樹脂、50 レセプタクル、51A 第1のメス型の垂直嵌合列、51B 第2のメス型の垂直嵌合列、52A 第1の端子列、52B 第2の端子列、53 絶縁樹脂、60 ツール、71 第1のFPC、72 第2のFPC、81a,82a 接続部、81b,82b オス型垂直嵌合部、83a,84a 接続部、83b,84b オス型垂直嵌合部、85a,86a 接続部、85b,86b オス型垂直嵌合部、87a,88a 接続部、87b,88b オス型垂直嵌合部、91a,92a 接続部、91b,92b 垂直部、91c,92c メス型垂直嵌合部、93a,94a 垂直部、93b,94b 接続部、93c,94c メス型垂直嵌合部、140 プラグ、141A 第1のオス型の垂直嵌合列、141B 第2のオス型の垂直嵌合列、142A 第1のリード端子列、142B 第2のリード端子列、143 絶縁樹脂、150 レセプタクル、151A 第1のメス型の垂直嵌合列、151B 第2のメス型の垂直嵌合列、152A 第1のリード端子列、152B 第2のリード端子列、153 絶縁樹脂
10 Substrate, 11 1st Terminal Row, 20 Connector, 21 2nd Terminal Row, 30 Thermocurable Connecting Material, 31 Solder Particles, 32 Solder Bonding, 33 Thermocurable Connecting Material, 40 Plugs, 41A 1st Male Mold Vertical Fitting Row, 41B Second Male Mold Vertical Fitting Row, 42A First Terminal Row, 42B Second Terminal Row, 43 Insulating Resin, 50 Receptacle, 51A First Female Mold Vertical Fitting Row, 51B second female vertical mating row, 52A first terminal row, 52B second terminal row, 53 insulating resin, 60 tools, 71 first FPC, 72 second FPC, 81a, 82a Connection part, 81b, 82b male type vertical fitting part, 83a, 84a connection part, 83b, 84b male type vertical fitting part, 85a, 86a connection part, 85b, 86b male type vertical fitting part, 87a, 88a connection part , 87b, 88b male vertical fitting part, 91a, 92a connecting part, 91b, 92b vertical part, 91c, 92c female vertical fitting part, 93a, 94a vertical part, 93b, 94b connecting part, 93c, 94c female type Vertical Fitting, 140 Plugs, 141A First Male Vertical Fitting Row, 141B Second Male Vertical Fitting Row, 142A First Lead Terminal Row, 142B Second Lead Terminal Row, 143 Insulation Resin, 150 receptacle, 151A first female vertical fitting row, 151B second female vertical fitting row, 152A first lead terminal row, 152B second lead terminal row, 153 insulating resin.

Claims (15)

第1の端子列を有する基板と、
第2の端子列を有するコネクタと、
前記第1の端子列と前記第2の端子列とを接続する熱硬化性接続材料が硬化した接着層とを備え、
前記第2の端子列が、前記コネクタの底面に配置され、該底面の段差を吸収する段差吸収部を形成し、
前記熱硬化性接続材料が、半田粒子とフラックス成分とを含有する、接続体。
A substrate having a first terminal row and
A connector with a second row of terminals and
It is provided with an adhesive layer in which a thermosetting connecting material for connecting the first terminal row and the second terminal row is cured.
The second terminal row is arranged on the bottom surface of the connector to form a step absorbing portion that absorbs the step on the bottom surface.
A connector in which the thermosetting connecting material contains solder particles and a flux component.
前記コネクタの底面が、所定範囲の高さの段差を有し、
前記第2の端子列における端子面の高さの最大値と最小値との差が、前記所定範囲の高さよりも小さい、請求項1記載の接続体。
The bottom surface of the connector has a step with a height within a predetermined range.
The connector according to claim 1, wherein the difference between the maximum value and the minimum value of the height of the terminal surface in the second terminal row is smaller than the height in the predetermined range.
前記第2の端子列における端子面の高さの最大値と最小値との差が、前記半田粒子の平均粒子径よりも小さい、請求項1又は2記載の接続体。 The connector according to claim 1 or 2, wherein the difference between the maximum value and the minimum value of the height of the terminal surface in the second terminal row is smaller than the average particle size of the solder particles. 前記第2の端子列が、前記コネクタの底面の外側から内側に延在してなる、請求項1乃至3に記載の接続体。 The connector according to claim 1 to 3, wherein the second terminal row extends from the outside to the inside of the bottom surface of the connector. 前記半田粒子の平均粒径が、30μm以下である、請求項1乃至4に記載の接続体。 The connector according to claim 1 to 4, wherein the average particle size of the solder particles is 30 μm or less. 前記第2の端子列における最小端子間距離が、0.8mm以下である、請求項1乃至5に記載の接続体。 The connector according to claim 1 to 5, wherein the minimum distance between terminals in the second terminal row is 0.8 mm or less. 前記コネクタが、補強部を有しない、請求項1乃至6に記載の接続体。 The connector according to claim 1 to 6, wherein the connector does not have a reinforcing portion. 前記請求項1乃至7記載の接続体に用いる、コネクタ。 A connector used for the connector according to claims 1 to 7. 前記請求項1乃至7記載の接続体に用いる、熱硬化性接続材料。 A thermosetting connecting material used for the connecting body according to any one of claims 1 to 7. 第1の端子列を有する基板上に、半田粒子とフラックス成分とを含有する熱硬化性接続材料を介して、底面に第2の端子列が配置され、該底面の段差を吸収する段差吸収部が形成されたコネクタを載置し、
前記コネクタを押圧せずに、前記半田粒子の融点以上の温度で前記熱硬化性接続材料を熱硬化させ、前記第1の端子列と前記第2の端子列とを接続する、接続体の製造方法。
A second terminal row is arranged on the bottom surface of the substrate having the first terminal row via a thermosetting connector material containing solder particles and a flux component, and a step absorbing portion that absorbs the step on the bottom surface. Place the formed connector,
Manufacture of a connector in which the thermosetting connection material is thermoset at a temperature equal to or higher than the melting point of the solder particles without pressing the connector to connect the first terminal row and the second terminal row. Method.
前記熱硬化が、リフローにより行われる、請求項10記載の接続体の製造方法。 The method for manufacturing a connector according to claim 10, wherein the thermosetting is performed by reflow. 前記半田粒子の平均粒径が、30μm以下である、請求項10又は11記載の接続体の製造方法。 The method for producing a connector according to claim 10 or 11, wherein the average particle size of the solder particles is 30 μm or less. 前記第2の端子列における最小端子間距離が、0.8mm以下である、請求項10乃至12記載の接続体の製造方法。 The method for manufacturing a connector according to claims 10 to 12, wherein the minimum distance between terminals in the second terminal row is 0.8 mm or less. 所定高さの段差を有する底面に配置された端子列を備え、
前記端子列における端子面の高さの最大値と最小値との差が、前記段差の高さよりも小さい、コネクタ。
It has a terminal row arranged on the bottom surface with a step of a predetermined height.
A connector in which the difference between the maximum value and the minimum value of the height of the terminal surface in the terminal row is smaller than the height of the step.
前記端子列が、前記コネクタの底面の外側から内側に延在してなる、請求項14記載のコネクタ。
The connector according to claim 14, wherein the terminal row extends from the outside to the inside of the bottom surface of the connector.
JP2021044505A 2020-03-19 2021-03-18 Connection body and manufacturing method thereof Pending JP2021153049A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/011169 WO2021187591A1 (en) 2020-03-19 2021-03-18 Connecting body, and method for manufacturing connecting body
US17/910,987 US20230198186A1 (en) 2020-03-19 2021-03-18 Connection body and method for manufacturing connection body
TW110110049A TW202141721A (en) 2020-03-19 2021-03-19 Connected body and method for manufacturing connected body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020050218 2020-03-19
JP2020050218 2020-03-19

Publications (1)

Publication Number Publication Date
JP2021153049A true JP2021153049A (en) 2021-09-30

Family

ID=77886673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021044505A Pending JP2021153049A (en) 2020-03-19 2021-03-18 Connection body and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2021153049A (en)
CN (1) CN115244786A (en)

Also Published As

Publication number Publication date
CN115244786A (en) 2022-10-25

Similar Documents

Publication Publication Date Title
KR101082238B1 (en) Connector, manufacture method for connector and anisotropic conductive film to be used therein
TWI476266B (en) Anisotropic conductive paste
KR101982034B1 (en) Anisotropic conductive paste and electronic component connecting method using the same
WO2015125778A1 (en) Conductive paste, connection structure, and connection structure manufacturing method
JP2011192651A (en) Anisotropic conductive film, connection method, and connection structure
JP6949258B2 (en) Manufacturing method of connecting body and connecting body
JP2016127010A (en) Anisotropic conductive material, connection structure and method for producing connection structure
WO2021157490A1 (en) Method for producing connected body, and connected body
WO2021187591A1 (en) Connecting body, and method for manufacturing connecting body
TWI663900B (en) Manufacturing method of connection structure
JP2021153049A (en) Connection body and manufacturing method thereof
KR102707134B1 (en) Method for manufacturing a connector, anisotropic conductive joining material, and connector
TWI717416B (en) Flux bonding material, connection structure and manufacturing method of connection structure
KR102350347B1 (en) self-assembled conductive bonding paste for micro LED chip bonding, mini LED chip-circuit board bondig module comprising the same and manufacturing method thereof
JP5579996B2 (en) Solder joining method
CN116438269A (en) Conductive adhesive, anisotropic conductive film, connection structure, and method for producing connection structure
JPWO2017130892A1 (en) Conductive material and connection structure
JP2023079630A (en) Manufacturing method for connection structure and connection structure
JP5438450B2 (en) Conductive fine particles, anisotropic conductive material, and connection structure
JP2023092710A (en) Connected structure and connected structure manufacturing method
JP2023079632A (en) Connection structure and method for manufacturing connection structure
CN114250043B (en) Self-welding conductive connecting material, bonding die block comprising self-welding conductive connecting material and manufacturing method of bonding die block
TW202223031A (en) Conductive adhesive, anisotropic conductive film, connection structure body and method for manufacturing connection structure body
JP2017017318A (en) Connection structure manufacturing method and connection structure
JP2017022112A (en) Connection structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240820