JP2021151098A - Rotating electric machine and vehicle including the same - Google Patents

Rotating electric machine and vehicle including the same Download PDF

Info

Publication number
JP2021151098A
JP2021151098A JP2020049159A JP2020049159A JP2021151098A JP 2021151098 A JP2021151098 A JP 2021151098A JP 2020049159 A JP2020049159 A JP 2020049159A JP 2020049159 A JP2020049159 A JP 2020049159A JP 2021151098 A JP2021151098 A JP 2021151098A
Authority
JP
Japan
Prior art keywords
refrigerant
rotor
passage
electric machine
refrigerant passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020049159A
Other languages
Japanese (ja)
Inventor
智 藤代
Satoshi Fujishiro
智 藤代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2020049159A priority Critical patent/JP2021151098A/en
Publication of JP2021151098A publication Critical patent/JP2021151098A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

To provide a rotating electric machine capable of removing heat from a magnet in a high rotation region while improving fuel efficiency in a low/medium rotation region, and a vehicle equipped with the same.SOLUTION: A rotating electric machine 100 includes: a rotor 120; a rotating shaft 110 located in the center of the rotor 120; an axial cooling path 111 inside the rotating shaft 110, extending in the axial direction and sending a refrigerant to the rotor 120 in response to refrigerant supply; a refrigerant passage 122 provided in the rotor 120 so as to allow the refrigerant to flow from the axial cooling path 111; and a storage unit 112 located between the axial cooling path 111 and the refrigerant passage 122, receiving and storing the refrigerant from the axial cooling path 111 and sending the refrigerant to the refrigerant passage 122 by centrifugal force. The storage portion 112 is formed in a tapered shape that increases in diameter toward the refrigerant passage 122.SELECTED DRAWING: Figure 2

Description

本発明は、回転電機およびこれを備えた車両に関する。 The present invention relates to a rotary electric machine and a vehicle including the rotary electric machine.

ハイブリッド車両等の車両用駆動装置は、モータ/ジェネレータ(回転電機)を並設し、モータ/ジェネレータは、それぞれ回転軸を有し、互いの回転軸が同軸状に重畳するように配置されている。モータは、非回転側のステータと、回転側のロータとを備えている。 In a vehicle drive device such as a hybrid vehicle, motors / generators (rotating electric machines) are arranged side by side, and each motor / generator has a rotating shaft, and the rotating shafts are arranged so as to overlap each other in a coaxial manner. .. The motor includes a stator on the non-rotating side and a rotor on the rotating side.

自動車用の駆動モータは低回転から高回転まで使用される。高回転動作点では鉄損が支配的となるので磁石発熱が懸念となる。磁石を冷却するために、回転軸内に冷却油(例えばATF:Automatic Transmission Fluid)(冷媒)を流し磁石温度を抜熱させていることが知られている。 Drive motors for automobiles are used from low speed to high speed. At high rotation operating points, iron loss is dominant, so magnet heat generation is a concern. It is known that in order to cool a magnet, cooling oil (for example, ATF: Automatic Transmission Fluid) (refrigerant) is flowed in a rotating shaft to remove heat from the magnet temperature.

モータの冷却回路では、ロータと同軸心上に配置されたシャフト(回転軸)内から供給された冷媒をロータ内部の軸方向油路へ供給して、ロータを冷却した後、ロータの両端に配置されている一対のエンドプレートの一方に形成されている油孔から、ロータの遠心力を用いて、ステータより軸方向に突き出す環状のコイルエンドに冷媒を供給する。
また、シャフトから一定のオリフィス(冷却穴)によって常に冷媒がロータ内に流れ込む構造となっている。ロータを通過した冷媒は、ステータに当り、ロータとステータ間にも入り込んでフリクションとなる。冷媒によるフリクションが発生すると、ロータに回転損失(油剪断損失)が発生する。また、ロータから回転により冷媒が放出されることで生じる回転損失であるポンプ損失が発生して燃費(電費)が悪くなる。
In the motor cooling circuit, the refrigerant supplied from the shaft (rotary shaft) arranged coaxially with the rotor is supplied to the axial oil passage inside the rotor to cool the rotor, and then arranged at both ends of the rotor. A refrigerant is supplied to the annular coil end protruding axially from the stator by using the centrifugal force of the rotor from the oil holes formed in one of the pair of end plates.
In addition, the structure is such that the refrigerant always flows into the rotor through a constant orifice (cooling hole) from the shaft. The refrigerant that has passed through the rotor hits the stator and enters between the rotor and the stator to cause friction. When friction due to the refrigerant occurs, rotational loss (oil shear loss) occurs in the rotor. Further, a pump loss, which is a rotation loss caused by the discharge of the refrigerant by rotation from the rotor, is generated, and the fuel consumption (electricity cost) is deteriorated.

特許文献1には、冷媒案内部材の内部に、冷媒供給口に対して回転軸の径外方向に対向し且つ径方向で前記冷媒流路よりも回転軸寄りの位置に径方向内側に開口した状態で、冷媒供給口から排出された冷媒を一旦受け止めたのち溢れさせることで冷媒を冷媒流路の夫々に分配供給する溜まり部として堰部を有する環状溝を備えてある回転電機用ロータが記載されている。特許文献1では、ロータ内の多数の冷媒流路に対して冷媒をより均等に供給することができる、としている。 In Patent Document 1, an opening is provided inside the refrigerant guide member in the radial direction so as to face the refrigerant supply port in the outward direction of the rotation shaft and at a position closer to the rotation axis than the refrigerant flow path in the radial direction. Described as a rotor for a rotary electric machine having an annular groove having a dam portion as a reservoir for distributing and supplying the refrigerant to each of the refrigerant flow paths by temporarily receiving the refrigerant discharged from the refrigerant supply port and then overflowing the state. Has been done. Patent Document 1 states that the refrigerant can be supplied more evenly to a large number of refrigerant flow paths in the rotor.

特開2011−254572号公報Japanese Unexamined Patent Publication No. 2011-254572

しかしながら、特許文献1に記載の回転電機用ロータにあっては、磁石冷却用の軸内油量は回転速度に依存していたため、冷媒の流量が低回転〜高回転速度で常に適切とは言えないという課題がある。すなわち、低〜中回転速度では、燃費モード範囲で軸内給油がフリクションとなり、燃費悪化の要因となる。一方で、高回転速度では、熱害モード範囲で積極的に軸内給油して磁石抜熱させる必要がある。 However, in the rotor for rotary electric machines described in Patent Document 1, since the amount of oil in the shaft for cooling the magnet depends on the rotation speed, it can be said that the flow rate of the refrigerant is always appropriate at a low rotation speed to a high rotation speed. There is a problem that there is no such thing. That is, at low to medium rotation speeds, in-shaft refueling becomes friction in the fuel consumption mode range, which causes deterioration of fuel consumption. On the other hand, at high rotation speeds, it is necessary to actively refuel the shaft in the heat damage mode range to remove heat from the magnet.

本発明は、このような背景に鑑みてなされたもので、低・中回転速度領域で燃費を向上させつつ、高回転速度領域では磁石の抜熱を図ることができる回転電機およびこれを備えた車両を提供することを目的とする。 The present invention has been made in view of such a background, and includes a rotary electric machine capable of removing heat from a magnet in a high rotation speed region while improving fuel efficiency in a low / medium rotation speed region. The purpose is to provide a vehicle.

前記課題を解決すべく、請求項1に記載の回転電機は、ロータと、前記ロータの中心に配置される回転軸と、前記回転軸の内部にあって、軸方向に延在し冷媒の供給を受けて前記ロータへ冷媒を送る軸心冷却路と、前記軸心冷却路からの冷媒を流すように前記ロータに設けられた冷媒路と、前記軸心冷却路と前記冷媒路との間にあって、前記軸心冷却路からの冷媒を受けて貯留しつつ遠心力で前記冷媒を前記冷媒路に送出する貯留部と、を備え、前記貯留部は、前記冷媒路に向けてその径を大きくするテーパ形状に形成されたことを特徴とする。 In order to solve the above-mentioned problems, the rotary electric machine according to claim 1 has a rotor, a rotary shaft arranged at the center of the rotor, and inside the rotary shaft, which extends in the axial direction to supply a refrigerant. Between the axial cooling passage and the refrigerant passage provided in the rotor so as to flow the refrigerant from the axial cooling passage, and the axial cooling passage for receiving and sending the refrigerant to the rotor. A storage unit that receives and stores the refrigerant from the axial cooling path and discharges the refrigerant to the refrigerant path by centrifugal force is provided, and the storage unit increases its diameter toward the refrigerant path. It is characterized by being formed in a tapered shape.

本発明によれば、低・中回転速度領域で燃費を向上させつつ、高回転速度領域では磁石の抜熱を図ることができる。 According to the present invention, it is possible to remove heat from the magnet in the high rotation speed region while improving fuel efficiency in the low / medium rotation speed region.

本発明の実施形態に係る回転電機のロータの斜視図である。It is a perspective view of the rotor of the rotary electric machine which concerns on embodiment of this invention. 本発明の実施形態に係る回転電機のロータの軸中心上部の断面図である。It is sectional drawing of the upper part of the shaft center of the rotor of the rotary electric machine which concerns on embodiment of this invention. 本発明の実施形態に係る回転電機のロータの要部拡大図である。It is an enlarged view of the main part of the rotor of the rotary electric machine which concerns on embodiment of this invention. 本発明の実施形態に係る回転電機の回転軸の貯留部の形状を説明する説明図である。It is explanatory drawing explaining the shape of the storage part of the rotary shaft of the rotary electric machine which concerns on embodiment of this invention. 比較例1の回転電機のロータの断面図である。It is sectional drawing of the rotor of the rotary electric machine of the comparative example 1. FIG. 比較例1の回転電機の回転軸の冷媒路の構造を説明する図であり、(a)は冷媒路が狭い場合の構成例を示し、(b)は冷媒路が広い場合の構成例を示し、(c)は冷媒路が中程度の場合の構成例を示す。It is a figure explaining the structure of the refrigerant passage of the rotary shaft of the rotary electric machine of the comparative example 1, (a) shows the configuration example when the refrigerant passage is narrow, and (b) shows the configuration example when the refrigerant passage is wide. , (C) show a configuration example when the refrigerant passage is medium. 本発明の実施形態に係る回転電機のロータ回転中の冷媒の流れを比較例2と比較して示す図であり、(a)は比較例2の回転電機のロータ回転中の冷媒の流れを示す模式図であり、(b)は本実施形態の回転電機のロータ回転中の冷媒の流れを示す模式図である。It is a figure which shows the flow of the refrigerant in the rotor rotation of the rotary electric machine which concerns on embodiment of this invention in comparison with the comparative example 2, (a) shows the flow of the refrigerant in the rotor rotation of the rotary electric machine of the comparative example 2. It is a schematic diagram, (b) is a schematic diagram which shows the flow of the refrigerant during the rotor rotation of the rotary electric machine of this embodiment. 本発明の実施形態に係る回転電機のテーパ形状を有する貯留部と狭い油路のオリフィスと備える回転電機の作用効果を説明する図であり、(a)は遠心力が小さい場合を示し、(b)は遠心力が大きい場合を示す。It is a figure explaining the action effect of the rotary electric machine provided with the storage part having a tapered shape of the rotary electric machine and the orifice of a narrow oil passage which concerns on embodiment of this invention, (a) shows the case where the centrifugal force is small, and (b). ) Indicates a case where the centrifugal force is large. 本発明の実施形態に係る回転電機の冷媒路に発生する、油圧と油量の関係を示す図であり、(a)は低回転時における必要油圧と油量の関係を示し、(b)は高回転時における必要油圧と油量を示す。It is a figure which shows the relationship between the oil pressure and the amount of oil generated in the refrigerant passage of the rotary electric machine which concerns on embodiment of this invention, (a) shows the relationship between the required oil pressure and the amount of oil at a low rotation speed, and (b) is Shows the required oil pressure and oil amount at high rpm. 本発明の実施形態に係る回転電機の効率MAPを示す図である。It is a figure which shows the efficiency MAP of the rotary electric machine which concerns on embodiment of this invention. 本発明の実施形態に係る回転電機と従来例の回転電機の燃費モードと熱害範囲を示す図である。It is a figure which shows the fuel consumption mode and the heat damage range of the rotary electric machine which concerns on embodiment of this invention, and the rotary electric machine of the conventional example.

次に、本発明の実施形態に係る回転電機およびこれを備えた車両について、適宜図面を参照しながら詳細に説明する。なお、各図において、共通する部分には同一の符号を付し重複した説明を省略する。
(実施形態)
図1は、本発明の実施形態に係る回転電機のロータの斜視図である。図2は、図1の回転電機のロータの軸中心上部の断面図である。図3は、図2のロータの要部拡大図である。図4は、図3の回転軸110の貯留部112の形状を説明する説明図である。
本実施形態に係る回転電機100は、例えば、ハイブリッド自動車、電気自動車、燃料電池自動車等を含む各種車両1に対して搭載可能に設けられる。
図1および図2に示すように、回転電機100は、ロータ120と、ロータ120の中心に配置される回転軸110と、を備える。
なお、ロータ120を囲うように回転電機100のケース(図示省略)に固定されたステータ(図示省略)が配置される。
Next, the rotary electric machine and the vehicle provided with the rotary electric machine according to the embodiment of the present invention will be described in detail with reference to the drawings as appropriate. In each figure, the same reference numerals are given to common parts, and duplicate description will be omitted.
(Embodiment)
FIG. 1 is a perspective view of a rotor of a rotary electric machine according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the upper part of the shaft center of the rotor of the rotary electric machine of FIG. FIG. 3 is an enlarged view of a main part of the rotor of FIG. FIG. 4 is an explanatory diagram illustrating the shape of the storage portion 112 of the rotating shaft 110 of FIG.
The rotary electric machine 100 according to the present embodiment is provided so as to be mounted on various vehicles 1 including, for example, a hybrid vehicle, an electric vehicle, a fuel cell vehicle, and the like.
As shown in FIGS. 1 and 2, the rotary electric machine 100 includes a rotor 120 and a rotary shaft 110 arranged at the center of the rotor 120.
A stator (not shown) fixed to a case (not shown) of the rotary electric machine 100 is arranged so as to surround the rotor 120.

<回転軸110>
図1乃至図3に示すように、回転軸110は、軸心冷却路111を有する中空の筒状部材である。回転軸110は、ロータ120のロータコア121の中心に配置され、図示しない一対のベアリングを介してケース(図示省略)に軸支される。
軸心冷却路111は、回転軸110の内部空間であり、軸方向に延在し冷媒の供給を受けてロータコア121へ冷媒を送る。
<Rotating shaft 110>
As shown in FIGS. 1 to 3, the rotating shaft 110 is a hollow cylindrical member having an axial cooling path 111. The rotating shaft 110 is arranged at the center of the rotor core 121 of the rotor 120, and is pivotally supported by a case (not shown) via a pair of bearings (not shown).
The axial cooling path 111 is an internal space of the rotating shaft 110, extends in the axial direction, receives the supply of the refrigerant, and sends the refrigerant to the rotor core 121.

図1乃至図3に示すように、回転軸110は、周壁部110aに、軸心冷却路111と冷媒路122との間にあって、軸心冷却路111からの冷媒を受けて貯留しつつ遠心力で冷媒路122に送出する貯留部112と、貯留部112と冷媒路122との間にあって、冷媒路122よりも径を小さく形成された所定のオリフィス径を有する隘路であるオリフィス113と、を備える。 As shown in FIGS. 1 to 3, the rotating shaft 110 is located between the axial cooling passage 111 and the refrigerant passage 122 on the peripheral wall portion 110a, and receives and stores the refrigerant from the axial cooling passage 111 while storing the centrifugal force. The storage unit 112 is provided between the storage unit 112 and the refrigerant passage 122, and an orifice 113 which is formed to have a diameter smaller than that of the refrigerant passage 122 and has a predetermined orifice diameter. ..

図3および図4に示すように、貯留部112は、冷媒路122に向けてその径を大きくするテーパ形状に形成されている。具体的には、貯留部112は、冷媒路122に向けてその径を大きくするテーパ形状を形成するテーパ面112aを有する。貯留部112のテーパ形状(テーパ面112a)は、後記図8等をもとに作成される。なお、テーパ面112aの形状は、断面視して直線のテーパ形状に限定されず、断面視して曲線(すなわち湾曲面)であってもよい。 As shown in FIGS. 3 and 4, the storage portion 112 is formed in a tapered shape in which the diameter thereof increases toward the refrigerant passage 122. Specifically, the storage unit 112 has a tapered surface 112a that forms a tapered shape that increases its diameter toward the refrigerant passage 122. The tapered shape (tapered surface 112a) of the storage portion 112 is created based on FIG. 8 and the like described later. The shape of the tapered surface 112a is not limited to a straight tapered shape when viewed in cross section, and may be a curved surface (that is, a curved surface) when viewed in cross section.

図4の矢印に示すように、軸心冷却路111からの冷媒は(図4の矢印a参照)、貯留部112で貯留しつつ遠心力で貯留部112のテーパ面112aに沿って(図4の矢印b参照)オリフィス口113aまで移動する。そして、ロータコア121の冷媒路122に連通するオリフィス113で絞られて(図4の矢印c参照)遠心力でロータコア121(図1および図2参照)の冷媒路122に吐出される。 As shown by the arrow in FIG. 4, the refrigerant from the axial cooling passage 111 (see the arrow a in FIG. 4) is stored in the storage unit 112 and centrifugally is applied along the tapered surface 112a of the storage unit 112 (FIG. 4). (See arrow b) Move to the orifice port 113a. Then, it is throttled by the orifice 113 communicating with the refrigerant passage 122 of the rotor core 121 (see the arrow c in FIG. 4) and discharged to the refrigerant passage 122 of the rotor core 121 (see FIGS. 1 and 2) by centrifugal force.

<ロータ120>
図1および図2に示すように、ロータ120は、ステータ(図示省略)の生起する磁力によって回転する回転子である。ロータ120は、円筒状のロータコア121と、軸心冷却路111からの冷媒を流すようにロータコア121に設けられた冷媒路122と、ロータコア121の軸線O方向と平行して形成され、永久磁石130を埋設固定する磁石挿入孔123と、冷媒路122からの冷媒(例えばATF)を永久磁石130に沿って流し永久磁石130の熱を回収する冷媒流路124と、ロータコア121が回転軸110の一端方向へ変位しないようにする端面板125(図1は一方のみを表示)と、を備える。
図1に示すように、永久磁石130は、ロータコア121の外周面側(径方向外側、ステータ側)で周方向において等間隔で配置されている。
<Rotor 120>
As shown in FIGS. 1 and 2, the rotor 120 is a rotor that is rotated by a magnetic force generated by a stator (not shown). The rotor 120 is formed in parallel with the cylindrical rotor core 121, the refrigerant passage 122 provided in the rotor core 121 so as to flow the refrigerant from the axial cooling path 111, and the axis O direction of the rotor core 121, and is a permanent magnet 130. The rotor core 121 is one end of the rotating shaft 110, the magnet insertion hole 123 for burying and fixing the refrigerant, the refrigerant flow path 124 for flowing the refrigerant (for example, ATF) from the refrigerant passage 122 along the permanent magnet 130 and recovering the heat of the permanent magnet 130. It is provided with an end face plate 125 (FIG. 1 shows only one) so as not to be displaced in the direction.
As shown in FIG. 1, the permanent magnets 130 are arranged at equal intervals in the circumferential direction on the outer peripheral surface side (diameter outside, stator side) of the rotor core 121.

図1に示すように、ロータコア121は、薄リング板状のロータコア用電磁鋼板が軸線O方向に積層されてかしめ結合されている。プレス加工により、各電磁鋼板に円周方向に等間隔に打ち抜き穴を設けることで、ロータ120の円周方向には等間隔に複数の冷媒流路124が形成される。冷媒流路124には、冷媒路122から導入された冷媒が供給される。永久磁石130は、それぞれの冷媒流路124の径方向外側に接着固定されている。 As shown in FIG. 1, in the rotor core 121, thin ring plate-shaped electromagnetic steel sheets for the rotor core are laminated in the axis O direction and caulked. By press working, each electromagnetic steel sheet is provided with punching holes at equal intervals in the circumferential direction, so that a plurality of refrigerant flow paths 124 are formed at equal intervals in the circumferential direction of the rotor 120. The refrigerant introduced from the refrigerant passage 122 is supplied to the refrigerant flow path 124. The permanent magnets 130 are adhesively fixed to the outside of each refrigerant flow path 124 in the radial direction.

導入された冷媒(ATF)が永久磁石130に接しながら流れ、永久磁石130が効率的に冷却される。すなわち、冷媒が冷媒流路124を流れて排出口124aから排出される間に(図2の矢印d参照)、永久磁石130の熱が冷媒によって回収されることにより、永久磁石130が高温により減磁することが抑制される。
図1および図2に示すように、端面板125は、ステンレス鋼、アルミニウム等の非磁性体の金属により形成される。
The introduced refrigerant (ATF) flows in contact with the permanent magnet 130, and the permanent magnet 130 is efficiently cooled. That is, while the refrigerant flows through the refrigerant flow path 124 and is discharged from the discharge port 124a (see the arrow d in FIG. 2), the heat of the permanent magnet 130 is recovered by the refrigerant, so that the permanent magnet 130 is reduced by the high temperature. Magnetism is suppressed.
As shown in FIGS. 1 and 2, the end face plate 125 is formed of a non-magnetic metal such as stainless steel or aluminum.

図2に示すように、回転軸110の軸心冷却路111から流出する冷媒は、遠心力によりロータコア121の端面と端面板125間の円板状の冷媒路122を経て、冷媒流路124に供給される。 As shown in FIG. 2, the refrigerant flowing out from the axial cooling path 111 of the rotating shaft 110 passes through the disc-shaped refrigerant path 122 between the end face of the rotor core 121 and the end face plate 125 due to centrifugal force, and enters the refrigerant flow path 124. Be supplied.

以下、上述のように構成された回転電機の回転軸の冷却動作について説明する。
まず、比較例1について述べる。
<比較例1>
図5は、比較例1の回転電機のロータの断面図である。図2と同一構成部分には同一符号を付している。
図5に示すように、比較例1の回転電機1000は、回転軸1110と、回転軸1110に固定されたロータ120を備える。
回転軸1110は、周壁部1110aに、軸心冷却路1111からの冷媒を遠心力で径方向外側のロータコアに流す冷媒路(油路)1112を備える。
図5に示すように、軸心冷却路111には冷媒(ATF)が流入する。軸心冷却路111に流入した冷媒は、遠心力により冷媒路1112からロータコア側に送出される。冷媒路1112の広狭については、下記により決定される。
Hereinafter, the cooling operation of the rotating shaft of the rotating electric machine configured as described above will be described.
First, Comparative Example 1 will be described.
<Comparative example 1>
FIG. 5 is a cross-sectional view of the rotor of the rotary electric machine of Comparative Example 1. The same components as those in FIG. 2 are designated by the same reference numerals.
As shown in FIG. 5, the rotary electric machine 1000 of Comparative Example 1 includes a rotary shaft 1110 and a rotor 120 fixed to the rotary shaft 1110.
The rotating shaft 1110 is provided with a refrigerant passage (oil passage) 1112 in the peripheral wall portion 1110a, which allows the refrigerant from the axial cooling passage 1111 to flow to the rotor core on the outer side in the radial direction by centrifugal force.
As shown in FIG. 5, the refrigerant (ATF) flows into the axial cooling passage 111. The refrigerant that has flowed into the axial cooling passage 111 is sent out from the refrigerant passage 1112 to the rotor core side by centrifugal force. The width of the refrigerant passage 1112 is determined as follows.

図6は、比較例1の回転電機の回転軸の冷媒路の構造を説明する図である。図6(a)は冷媒路が狭い場合(冷媒路1112a)の構成例を示し、図6(b)は冷媒路が広い場合(冷媒路1112b)の構成例を示し、図6(c)は冷媒路が中程度の場合(冷媒路1112c)の構成例を示している。
前提として、ロータコア121に冷媒(ATF)が流れることでイナーシャ(フリクション)が増える。このため、ロータコア121への冷媒の流量を適量に抑えたい要求がある。その一方で、ロータコア121への冷媒の流量が適量でないと、磁石発熱の抑制が不十分となる。
FIG. 6 is a diagram for explaining the structure of the refrigerant passage of the rotating shaft of the rotating electric machine of Comparative Example 1. FIG. 6A shows a configuration example when the refrigerant path is narrow (refrigerant path 1112a), FIG. 6B shows a configuration example when the refrigerant path is wide (refrigerant path 1112b), and FIG. 6C shows a configuration example. A configuration example is shown when the refrigerant passage is medium (refrigerant passage 1112c).
As a premise, inertia (friction) increases due to the flow of the refrigerant (ATF) through the rotor core 121. Therefore, there is a demand to suppress the flow rate of the refrigerant to the rotor core 121 to an appropriate amount. On the other hand, if the flow rate of the refrigerant to the rotor core 121 is not an appropriate amount, the suppression of magnet heat generation becomes insufficient.

また、回転電機の回転速度に応じて、上記イナーシャ(フリクション)および流量に対する要求は異なっている。すなわち、回転電機の回転速度に応じた、上記要求は下記の通りである。
(1)低回転速度(燃費領域)
低回転速度(燃費領域)では軸内給油がイナーシャ(フリクション)となり、イナーシャが低い方が燃費は良くなる。流量については、低くても問題がない。このため、低回転速度では、イナーシャの大小を考慮する必要がある。図6の回転軸の冷媒路の構造に当てはめてみると、図6(a)は冷媒路が狭い場合(冷媒路1112a)であり、ロータコア121の冷媒路122への冷媒の流れ込みは少ないので、イナーシャは小さく好ましい。図6(b)は冷媒路が広い場合(冷媒路1112b)であり、ロータコア121への冷媒の流れ込みは多いので、イナーシャは大きく燃費向上の点で好ましくない。
Further, the requirements for the inertia (friction) and the flow rate are different depending on the rotation speed of the rotary electric machine. That is, the above requirements are as follows according to the rotation speed of the rotary electric machine.
(1) Low rotation speed (fuel efficiency range)
At low rotation speeds (fuel economy range), in-shaft refueling becomes inertia (friction), and the lower the inertia, the better the fuel economy. There is no problem even if the flow rate is low. Therefore, at low rotation speeds, it is necessary to consider the magnitude of inertia. When applied to the structure of the refrigerant passage of the rotating shaft of FIG. 6, FIG. 6A shows a case where the refrigerant passage is narrow (refrigerant passage 1112a), and the inflow of the refrigerant into the refrigerant passage 122 of the rotor core 121 is small. The inertia is small and preferable. FIG. 6B shows a case where the refrigerant path is wide (refrigerant path 1112b), and since a large amount of refrigerant flows into the rotor core 121, inertia is large and is not preferable in terms of improving fuel efficiency.

(2)高回転速度(熱害領域)
イナーシャは、低回転速度の場合と同様に、低い方が燃費は良い。しかし、流量については、高くないと抜熱ができない。すなわち、燃費の悪化については許容し、抜熱を優先させる。図6の回転軸の冷媒路の構造に当てはめてみると、図6(a)は冷媒路が狭い場合(冷媒路1112a)であり、ロータコア121の冷媒路122への冷媒の流れ込みは少ないので、イナーシャは小さいものの、流量が少なく抜熱が十分でない。この状態が続くと磁石の損傷が懸念される。
また、図6(b)は冷媒路が広い場合(冷媒路1112b)は、ロータコア121への冷媒の流れ込みが多く、流量は多いので抜熱については問題ない。
(2) High rotation speed (heat damage area)
As with the case of low rotation speed, the lower the inertia, the better the fuel efficiency. However, heat cannot be removed unless the flow rate is high. That is, the deterioration of fuel efficiency is tolerated, and heat removal is prioritized. When applied to the structure of the refrigerant passage of the rotating shaft of FIG. 6, FIG. 6A shows a case where the refrigerant passage is narrow (refrigerant passage 1112a), and the flow of the refrigerant into the refrigerant passage 122 of the rotor core 121 is small. Although the inertia is small, the flow rate is small and the heat removal is not sufficient. If this condition continues, there is concern about damage to the magnet.
Further, in FIG. 6B, when the refrigerant passage is wide (refrigerant passage 1112b), there is a large amount of refrigerant flowing into the rotor core 121 and the flow rate is large, so that there is no problem with heat removal.

(3)まとめ
低回転速度(燃費領域)において、上記イナーシャの観点から避けなければならない構成は、図6(b)に示す冷媒路が広い場合(冷媒路1112b)である。一方、高回転速度(燃費領域)において、流量の観点から避けなければならない構成は、図6(a)に示す冷媒路が狭い場合(冷媒路1112a)である。このように、低回転速度(燃費領域)と高回転速度(燃費領域)とでは、冷媒路の広狭について相反する要求がある。このため、比較例1では、冷媒路の広狭について両者の中間をとって、図6(c)に示す冷媒路が中程度の場合(冷媒路1112c)の構成、すなわち、イナーシャおよび流量がいずれも中程度の構成を採用していた。
ただし、高回転速度時における抜熱を優先させるので、後記図11の従来例に示すように、低〜中回転速度における流量(フリクション)が多く、燃費は犠牲となっていた。
(3) Summary In the low rotation speed (fuel consumption region), the configuration that must be avoided from the viewpoint of the inertia is the case where the refrigerant passage shown in FIG. 6B is wide (refrigerant passage 1112b). On the other hand, in the high rotation speed (fuel consumption region), the configuration that must be avoided from the viewpoint of the flow rate is the case where the refrigerant passage shown in FIG. 6A is narrow (refrigerant passage 1112a). As described above, the low rotation speed (fuel consumption region) and the high rotation speed (fuel consumption region) have conflicting demands regarding the width of the refrigerant path. Therefore, in Comparative Example 1, the width of the refrigerant passage is intermediate between the two, and the configuration in which the refrigerant passage shown in FIG. 6 (c) is medium (refrigerant passage 1112c), that is, the inertia and the flow rate are both. It had a medium configuration.
However, since heat removal at high rotation speed is prioritized, as shown in the conventional example of FIG. 11 below, the flow rate (friction) at low to medium rotation speed is large, and fuel consumption is sacrificed.

<ロータ回転中の冷媒(ATF)の流れ>
図4、図7および図8を参照して本発明の基本的な考え方を説明する。
前記図4は、ロータ回転中の冷媒の流れを示す模式図である。
図4の矢印aに示すように、軸心冷却路111には冷媒(ATF)(図4の網掛参照)が流入し、貯留部112で貯留する。
回転軸110の回転により、冷媒には式(1)に示す遠心力Fが加わる。
<Flow of refrigerant (ATF) during rotor rotation>
The basic concept of the present invention will be described with reference to FIGS. 4, 7 and 8.
FIG. 4 is a schematic view showing the flow of the refrigerant during rotor rotation.
As shown by the arrow a in FIG. 4, the refrigerant (ATF) (see the shaded area in FIG. 4) flows into the axial cooling passage 111 and is stored in the storage unit 112.
Due to the rotation of the rotating shaft 110, the centrifugal force F represented by the equation (1) is applied to the refrigerant.

F=mv/r …(1)

F:遠心力[N]
m:質量[g]
v:速度(回転速度)
r:径(回転軸の中心軸から冷媒路122の入口までの距離)
F = mv 2 / r ... (1)

F: Centrifugal force [N]
m: Mass [g]
v: Speed (rotational speed)
r: Diameter (distance from the central axis of the rotating shaft to the inlet of the refrigerant passage 122)

貯留部112に貯留している冷媒は、遠心力Fで、貯留部112のテーパ面112aに沿って、冷媒路122に連通するオリフィス口113aまで移動する(図4の矢印b参照)。
オリフィス口113aまで移動した冷媒は、オリフィス113で絞られて(図4の矢印c参照)遠心力でロータコア121(図1および図2参照)側に吐出される。
The refrigerant stored in the storage unit 112 moves by centrifugal force F along the tapered surface 112a of the storage unit 112 to the orifice port 113a communicating with the refrigerant passage 122 (see arrow b in FIG. 4).
The refrigerant that has moved to the orifice port 113a is throttled by the orifice 113 (see arrow c in FIG. 4) and discharged to the rotor core 121 (see FIGS. 1 and 2) by centrifugal force.

<回転軸の貯留部の構造>
図7は、ロータ回転中の冷媒の流れを、比較例2と本実施形態で比較して示す図である。図7(a)は、図5の比較例2の回転電機のロータ回転中の冷媒の流れを示す模式図である。図7(b)は、図2の本実施形態の回転電機のロータ回転中の冷媒の流れを示す模式図である。
<Structure of rotating shaft storage>
FIG. 7 is a diagram showing the flow of the refrigerant during rotor rotation in comparison with Comparative Example 2 in the present embodiment. FIG. 7A is a schematic view showing the flow of the refrigerant during the rotor rotation of the rotary electric machine of Comparative Example 2 of FIG. FIG. 7B is a schematic view showing the flow of the refrigerant during the rotation of the rotor of the rotary electric machine of the present embodiment of FIG.

図7(a)に示すように、比較例2の回転軸1110は、軸心冷却路1111からの冷媒を貯留する矩形形状の貯留部1113と、矩形形状の貯留部1113で保持された冷媒を遠心力で径方向外側のロータコアに流す冷媒路1112と、を備える。
図7(a)の比較例2において、回転軸1110の軸心冷却路1111(軸心油路)径をΦ10とし、冷媒路1112(油路)径をΦ1とする。
図7(a)に示すように、軸心冷却路1111には冷媒(ATF)が流入する。流入した冷媒は、矩形形状の貯留部1113で一旦環状に保持され、矩形形状の貯留部1113に貯留された冷媒が、遠心力により冷媒路1112からロータコア側に送出される。
As shown in FIG. 7A, the rotating shaft 1110 of Comparative Example 2 contains a rectangular storage portion 1113 for storing the refrigerant from the axial cooling passage 1111 and a refrigerant held by the rectangular storage portion 1113. It is provided with a refrigerant passage 1112 that flows through the rotor core on the outer side in the radial direction by centrifugal force.
In Comparative Example 2 of FIG. 7A, the diameter of the axial cooling passage 1111 (axial core oil passage) of the rotating shaft 1110 is Φ10, and the diameter of the refrigerant passage 1112 (oil passage) is Φ1.
As shown in FIG. 7A, the refrigerant (ATF) flows into the axial cooling path 1111. The inflowing refrigerant is temporarily held in a circular shape by the rectangular storage unit 1113, and the refrigerant stored in the rectangular storage unit 1113 is sent out from the refrigerant passage 1112 to the rotor core side by centrifugal force.

比較例2は、本実施形態のテーパ形状を有する貯留部112(図1乃至図4参照)とは異なり、遠心力を受けても矩形形状の貯留部1113に貯留された冷媒を冷媒路1112側に移動させる力が働かない(主として径方向に力が働く)(図7(a)の矢印d参照)。換言すれば、比較例2では、遠心力を受けても冷媒が矩形形状の貯留部1113に静的に保持される。このため、比較例2の回転電機では、回転速度が変わっても、冷媒路1112からロータコア側に送出される冷媒の流量はそれほど変わらない(図7(a)の矢印e参照)。このため、回転速度に応じた冷媒の流量の制御は困難である。 In Comparative Example 2, unlike the tapered storage portion 112 (see FIGS. 1 to 4) of the present embodiment, the refrigerant stored in the rectangular storage portion 1113 is subjected to the refrigerant passage 1112 side even when subjected to centrifugal force. (Refer to arrow d in FIG. 7A). In other words, in Comparative Example 2, the refrigerant is statically held in the rectangular storage portion 1113 even when it receives centrifugal force. Therefore, in the rotary electric machine of Comparative Example 2, the flow rate of the refrigerant sent from the refrigerant passage 1112 to the rotor core side does not change so much even if the rotation speed changes (see arrow e in FIG. 7A). Therefore, it is difficult to control the flow rate of the refrigerant according to the rotation speed.

これに対し、本実施形態では、図7(b)に示すように、テーパ形状を有する貯留部112としたので、遠心力を受けると、冷媒は貯留部112のテーパ面112aに沿って冷媒路122側に移動する。すなわち、テーパ形状を有する貯留部112であることで、遠心力かかった時に積極的に冷媒路122(油路)に冷媒が流れていく。 On the other hand, in the present embodiment, as shown in FIG. 7B, the storage unit 112 has a tapered shape, so that when centrifugal force is applied, the refrigerant flows along the tapered surface 112a of the storage unit 112. Move to the 122 side. That is, since the storage portion 112 has a tapered shape, the refrigerant positively flows into the refrigerant passage 122 (oil passage) when centrifugal force is applied.

<貯留部112および冷媒路122の作用効果>
次に、テーパ形状を有する貯留部112と狭い油路のオリフィス113と備える回転電機100(図1乃至3参照)の作用効果について述べる。
図8は、テーパ形状を有する貯留部112と狭い油路のオリフィス113と備える回転電機100の作用効果を説明する図である。図8(a)は、遠心力が小さい場合を示し、図8(b)は、遠心力が大きい場合を示す。
<Action and effect of storage unit 112 and refrigerant passage 122>
Next, the operation and effect of the rotary electric machine 100 (see FIGS. 1 to 3) including the storage portion 112 having a tapered shape and the orifice 113 of the narrow oil passage will be described.
FIG. 8 is a diagram illustrating the operation and effect of the rotary electric machine 100 including the storage portion 112 having a tapered shape and the orifice 113 of a narrow oil passage. FIG. 8A shows a case where the centrifugal force is small, and FIG. 8B shows a case where the centrifugal force is large.

・低回転速度(燃費領域)(図8(a)参照)
上述したように、低回転速度(燃費領域)では、イナーシャ(フリクション)が低い(小さい)方が燃費は良くなる。また、流量は、低くても問題がない。
図8(a)の細矢印に示すように、本実施形態の回転軸110は、低回転速度時には、遠心力が小さいので、貯留部112のテーパ面112a上で、冷媒を冷媒路122側に移動させる力が小さい。ただし、オリフィス113は、狭い油路であるため、必要な油量は確保される。このため、流量は低くなる。
・ Low rotation speed (fuel consumption range) (see Fig. 8 (a))
As described above, in the low rotation speed (fuel consumption region), the lower (smaller) the inertia (friction), the better the fuel consumption. Moreover, there is no problem even if the flow rate is low.
As shown by the thin arrow in FIG. 8A, the rotary shaft 110 of the present embodiment has a small centrifugal force at a low rotation speed, so that the refrigerant is sent to the refrigerant passage 122 side on the tapered surface 112a of the storage portion 112. The force to move is small. However, since the orifice 113 is a narrow oil passage, the required amount of oil is secured. Therefore, the flow rate is low.

・高回転速度(熱害領域)(図8(b)参照)
上述したように、高回転速度(熱害領域)では、イナーシャ(フリクション)が低い(小さい)方が燃費は良くなることは、低回転速度(燃費領域)の場合と同様である。しかしながら、流量が、高くないと抜熱ができない。また、抜熱が燃費より優先される。
図8(b)の太矢印に示すように、本実施形態の回転軸110は、高回転速度時には、遠心力が大きいので、貯留部112に貯留されている冷媒は、テーパ面112aに沿って積極的にオリフィス113側に移動する。このため、流量は大きくなる。
・ High rotation speed (heat damage area) (see Fig. 8 (b))
As described above, at a high rotation speed (heat damage region), the fuel efficiency is improved when the inertia (friction) is low (small), as in the case of the low rotation speed (fuel efficiency region). However, heat cannot be removed unless the flow rate is high. In addition, heat removal is prioritized over fuel efficiency.
As shown by the thick arrow in FIG. 8B, the rotary shaft 110 of the present embodiment has a large centrifugal force at a high rotation speed, so that the refrigerant stored in the storage unit 112 is along the tapered surface 112a. It actively moves to the orifice 113 side. Therefore, the flow rate becomes large.

<油路に発生する、油圧と油量の関係>
次に、冷媒路122(油路)に発生する、油圧と油量の関係について述べる。
図9は、冷媒路122(油路)に発生する、油圧と油量の関係を示す図である。図9(a)は、低回転速度時(〜8,000rpm)における必要油圧と油量の関係を示し、図9(b)は、高回転速度時(10,000rpm〜)における必要油圧と油量を示す。図9の横軸に、油路に発生する油圧[kpa]をとり、縦軸に、油路に発生する油量[L/min]をとる。
<Relationship between oil pressure and oil amount generated in the oil passage>
Next, the relationship between the oil pressure and the amount of oil generated in the refrigerant passage 122 (oil passage) will be described.
FIG. 9 is a diagram showing the relationship between the oil pressure and the amount of oil generated in the refrigerant passage 122 (oil passage). FIG. 9 (a) shows the relationship between the required oil pressure and the amount of oil at a low rotation speed (up to 8,000 rpm), and FIG. 9 (b) shows the required oil pressure and the amount of oil at a high rotation speed (from 10,000 rpm). show. The horizontal axis of FIG. 9 is the oil pressure [kpa] generated in the oil passage, and the vertical axis is the amount of oil [L / min] generated in the oil passage.

図9(a)に示すように、低回転速度時(〜8,000rpm)には油圧と油量がこの曲線上にあるように、冷媒路122(油路)および貯留部112の構造を設定する。具体的には、下記の通りである。
前記図6(c)に示すように、比較例1においては、回転軸の冷媒路1112cは中程度の大きさにする必要があった。図9(a)の破線は、比較例1における冷媒路1112cを用いた場合の低回転速度時(〜8,000rpm)における必要油圧と油量を表わしている。
As shown in FIG. 9A, the structures of the refrigerant passage 122 (oil passage) and the storage portion 112 are set so that the oil pressure and the amount of oil are on this curve at a low rotation speed (~ 8,000 rpm). .. Specifically, it is as follows.
As shown in FIG. 6C, in Comparative Example 1, the refrigerant passage 1112c of the rotating shaft had to have a medium size. The broken line in FIG. 9A shows the required oil pressure and the amount of oil at a low rotation speed (up to 8,000 rpm) when the refrigerant passage 1112c in Comparative Example 1 is used.

これに対し、本実施形態では、図8(a)に示すように、回転軸110が冷媒を受けて貯留しつつ遠心力で冷媒路122に送出する貯留部112と、冷媒路122よりも径を小さく形成されたオリフィス113と、を備える構成としたので、低回転速度時すなわち遠心力が小さい場合には、狭めた油路である冷媒路122により、磁石冷却用の軸内油量を下げることができる(図9(a)の矢印g参照)。また、油圧を下げることができる(図9(a)の矢印f参照)これにより、比較例1と比較してイナーシャ(フリクション)を減少させることができる。 On the other hand, in the present embodiment, as shown in FIG. 8A, the storage portion 112 in which the rotating shaft 110 receives and stores the refrigerant and sends it to the refrigerant passage 122 by centrifugal force, and the diameter of the storage portion 112 is larger than that of the refrigerant passage 122. Since the structure is provided with an orifice 113 formed in a small size, the amount of in-shaft oil for cooling the magnet is reduced by the refrigerant passage 122, which is a narrowed oil passage, at a low rotation speed, that is, when the centrifugal force is small. (See arrow g in FIG. 9A). Further, the oil pressure can be lowered (see the arrow f in FIG. 9A), whereby the inertia (friction) can be reduced as compared with Comparative Example 1.

図9(b)に示すように、高回転時(10,000rpm〜)は、低回転時(〜8,000rpm)と同様に、油圧と油量がこの曲線上にあるように、オリフィス113、冷媒路122(油路)および貯留部112の構造を設定する。
図9(b)の破線は、比較例1における冷媒路1112cを用いた場合の高回転速度時(10,000rpm〜)における必要油圧と油量を表わしている。高回転速度時(10,000rpm〜)は、図9(b)に示す低回転速度時(〜8,000rpm)に比して必要油圧と油量は元々大きい。
As shown in FIG. 9B, at high rpm (10,000 rpm ~), as at low rpm (~ 8,000 rpm), the orifice 113 and the refrigerant path are arranged so that the oil pressure and the amount of oil are on this curve. The structure of 122 (oil channel) and the storage unit 112 is set.
The broken line in FIG. 9B shows the required oil pressure and the amount of oil at a high rotation speed (10,000 rpm or more) when the refrigerant passage 1112c in Comparative Example 1 is used. At the high rotation speed (10,000 rpm or more), the required oil pressure and the amount of oil are originally larger than those at the low rotation speed (up to 8,000 rpm) shown in FIG. 9 (b).

これに対し、本実施形態では、高回転速度時には、狭めた油路である冷媒路122に加えて、大きい遠心力を用いることで、貯留部112に貯留されている冷媒を、テーパ面112aに沿って積極的に冷媒路122側に移動させ、油量を担保することができる。すなわち、図9(b)の矢印hに示すように、比較例1に比して油圧を上げて、磁石冷却用の軸内流量を大きくすることができ、抜熱を達成することができる。 On the other hand, in the present embodiment, at a high rotation speed, the refrigerant stored in the storage unit 112 is transferred to the tapered surface 112a by using a large centrifugal force in addition to the refrigerant passage 122 which is a narrowed oil passage. The amount of oil can be secured by actively moving the refrigerant passage along the line to the side of the refrigerant passage 122. That is, as shown by the arrow h in FIG. 9B, the oil pressure can be increased as compared with Comparative Example 1, the in-shaft flow rate for cooling the magnet can be increased, and heat removal can be achieved.

このように、本実施形態では、高回転速度時には、貯留部112が大きい遠心力を用いて磁石冷却用の軸内油量を担保し、低回転速度時には、オリフィス113が油路を狭めて油圧を下げて油量が減るようにする。 As described above, in the present embodiment, at a high rotation speed, the storage unit 112 uses a large centrifugal force to secure the amount of oil in the shaft for cooling the magnet, and at a low rotation speed, the orifice 113 narrows the oil passage to reduce the oil pressure. To reduce the amount of oil.

<効果>
図10は、回転電機の効率MAPを示す図である。図10の横軸に回転速度[rpm]、縦軸にトルク[Nm]を表わす。
回転電機100(図1参照)は、例えば車両に搭載する場合、低〜中回転速度では、図10の符号iに示す燃費モード範囲内で運転することが望ましい。一方、高回転速度では、図10の符号jに示す熱害範囲内で運転することが求められる。
<Effect>
FIG. 10 is a diagram showing the efficiency MAP of the rotary electric machine. The horizontal axis of FIG. 10 represents the rotation speed [rpm], and the vertical axis represents the torque [Nm].
When the rotary electric machine 100 (see FIG. 1) is mounted on a vehicle, for example, it is desirable to operate the rotary electric machine 100 (see FIG. 1) at a low to medium rotation speed within the fuel consumption mode range shown by reference numeral i in FIG. On the other hand, at a high rotation speed, it is required to operate within the heat damage range shown by reference numeral j in FIG.

本実施形態の回転電機100(図1参照)は、低〜中回転速度の燃費モード範囲では、油圧を下げて軸内給油によるフリクションを低減するとともに、高回転速度の熱害モード範囲では、積極的に軸内給油して永久磁石130を抜熱させることができる。 The rotary electric machine 100 (see FIG. 1) of the present embodiment lowers the oil pressure in the low to medium rotation speed fuel mode range to reduce friction due to in-shaft refueling, and is positive in the high rotation speed heat damage mode range. The permanent magnet 130 can be deheated by lubrication in the shaft.

図11は、本実施形態と従来例の回転電機の燃費モードと熱害範囲を比較して示す図である。図11の横軸に回転速度[rpm]、縦軸に流量(フリクション)[Nm]を表わす。
回転電機100(図1参照)は、例えば車両に搭載する場合、低〜中回転速度では、図10の符号iに示す「燃費モード範囲」内で運転することが望ましい。一方、高回転速度では、図10の符号jに示す「熱害範囲」内で運転すること求められる。
本実施形態の回転電機100(図1参照)は、低〜中回転速度の燃費モードでは、油圧を下げて軸内給油によるフリクションを低減することができる。高回転速度の熱害範囲では、積極的に軸内給油して従来例とほぼ同様の磁石抜熱を実現することができる。
FIG. 11 is a diagram showing a comparison between the fuel consumption mode and the heat damage range of the rotary electric machine of the present embodiment and the conventional example. The horizontal axis of FIG. 11 represents the rotation speed [rpm], and the vertical axis represents the flow rate (friction) [Nm].
When the rotary electric machine 100 (see FIG. 1) is mounted on a vehicle, for example, it is desirable to operate the rotary electric machine 100 (see FIG. 1) within the “fuel consumption mode range” shown by reference numeral i in FIG. 10 at low to medium rotation speeds. On the other hand, at a high rotation speed, it is required to operate within the "heat damage range" shown by reference numeral j in FIG.
The rotary electric machine 100 (see FIG. 1) of the present embodiment can reduce the friction due to the in-shaft refueling by lowering the oil pressure in the fuel consumption mode of low to medium rotation speed. In the heat damage range of high rotation speed, it is possible to positively refuel in the shaft to achieve magnet heat removal almost the same as in the conventional example.

このように、低〜中回転領域では低流量になり、燃費を向上させることができる。また、高回転の熱害では同等の流量にして、回転電機100の機能を保護することができる。 In this way, the flow rate becomes low in the low to medium rotation range, and fuel efficiency can be improved. In addition, the function of the rotary electric machine 100 can be protected by setting the same flow rate for heat damage at high rotation.

以上説明したように、回転電機100は、ロータ120と、ロータ120の中心に配置される回転軸110と、回転軸110の内部にあって、軸方向に延在し冷媒の供給を受けてロータ120へ冷媒を送る軸心冷却路111と、軸心冷却路111からの冷媒を流すようにロータ120に設けられた冷媒路122と、軸心冷却路111と冷媒路122との間にあって、軸心冷却路111からの冷媒を受けて貯留しつつ遠心力で冷媒を冷媒路122に送出する貯留部112と、を備え、貯留部112は、冷媒路122に向けてその径を大きくするテーパ形状に形成されている。 As described above, the rotary electric machine 100 is inside the rotor 120, the rotary shaft 110 arranged at the center of the rotor 120, and the rotary shaft 110, and extends in the axial direction to receive the supply of the refrigerant. A shaft located between the axial cooling path 111 that sends the refrigerant to the 120, the refrigerant path 122 provided in the rotor 120 so that the refrigerant from the axial cooling path 111 flows, and the axial cooling path 111 and the refrigerant path 122. A storage unit 112 that receives and stores the refrigerant from the core cooling passage 111 and sends the refrigerant to the refrigerant passage 122 by centrifugal force is provided, and the storage unit 112 has a tapered shape that increases its diameter toward the refrigerant passage 122. Is formed in.

従来の技術は、比較例2のような単純な油路幅変更であった(図6参照)。また、磁石冷却用の軸内油量は回転速度に依存していたため、冷媒の流量が低回転〜高回転速度で常に適切とは言えなかった。
これに対し、本実施形態では、回転電機100は、テーパ形状を有する貯留部112と狭い油路のオリフィス113と備え、遠心力を利用することで、貯留部112の冷媒に対する作用を変えている。すなわち、低〜中回転速度の燃費モード範囲では、油圧を下げて軸内給油によるフリクションを低減するとともに、高回転速度の熱害モード範囲では、積極的に軸内給油して永久磁石130を抜熱させることができる。
The conventional technique is a simple oil channel width change as in Comparative Example 2 (see FIG. 6). Further, since the amount of oil in the shaft for cooling the magnet depends on the rotation speed, it cannot always be said that the flow rate of the refrigerant is appropriate at low rotation speed to high rotation speed.
On the other hand, in the present embodiment, the rotary electric machine 100 includes a storage unit 112 having a tapered shape and an orifice 113 of a narrow oil passage, and by utilizing centrifugal force, the action of the storage unit 112 on the refrigerant is changed. .. That is, in the low to medium rotation speed fuel mode range, the oil pressure is lowered to reduce friction due to in-shaft lubrication, and in the high rotation speed heat damage mode range, in-shaft lubrication is actively performed to remove the permanent magnet 130. Can be heated.

回転電機100において、回転軸110は、貯留部112と冷媒路122との間にあって、冷媒路122よりも径を小さく形成された所定のオリフィス径を有するオリフィス113を備える。 In the rotary electric machine 100, the rotary shaft 110 includes an orifice 113 having a predetermined orifice diameter formed between the storage unit 112 and the refrigerant passage 122 and having a diameter smaller than that of the refrigerant passage 122.

この構成により、必要な油量は確保しつつ、低・中回転速度領域で燃費を向上させることができ、高回転速度領域では磁石の抜熱を図ることができる。 With this configuration, it is possible to improve fuel efficiency in the low / medium rotation speed region while securing the required amount of oil, and it is possible to remove heat from the magnet in the high rotation speed region.

なお、本発明は、上記各実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。 It should be noted that the present invention is not limited to each of the above embodiments, and it goes without saying that various configurations can be adopted based on the contents described in this specification.

冷却構造としてハイブリッド車両1を挙げたが、回転電機(モータおよびジェネレータ)を備えこれを冷却する必要のある構造体であれば、これに限らない。例えば、ハイブリッド車両1は、エンジンを有さずモータのみを駆動源とする電気自動車または燃料電池車両であってもよい。 The hybrid vehicle 1 is mentioned as the cooling structure, but the present invention is not limited to this as long as it is a structure provided with a rotating electric machine (motor and generator) and which needs to be cooled. For example, the hybrid vehicle 1 may be an electric vehicle or a fuel cell vehicle that does not have an engine and uses only a motor as a drive source.

1 ハイブリッド車両(車両)
100 回転電機
110 回転軸
111 軸心冷却路
112 貯留部
112a テーパ面
113 オリフィス
113a オリフィス口
120 ロータ
121 ロータコア
122 冷媒路
123 磁石挿入孔
124 冷媒流路
125 端面板
130 永久磁石
1 Hybrid vehicle (vehicle)
100 Rotating electric machine 110 Rotating shaft 111 Axis cooling path 112 Reservoir 112a Tapered surface 113 orifice 113a orifice port 120 Rotor 121 Rotor core 122 Refrigerant path 123 Magnet insertion hole 124 Refrigerant flow path 125 End face plate 130 Permanent magnet

Claims (3)

ロータと、
前記ロータの中心に配置される回転軸と、
前記回転軸の内部にあって、軸方向に延在し冷媒の供給を受けて前記ロータへ冷媒を送る軸心冷却路と、
前記軸心冷却路からの冷媒を流すように前記ロータに設けられた冷媒路と、
前記軸心冷却路と前記冷媒路との間にあって、前記軸心冷却路からの冷媒を受けて貯留しつつ遠心力で前記冷媒を前記冷媒路に送出する貯留部と、を備え、
前記貯留部は、前記冷媒路に向けてその径を大きくするテーパ形状に形成されたことを特徴とする回転電機。
With the rotor
A rotation shaft arranged in the center of the rotor and
An axial cooling path inside the rotating shaft that extends in the axial direction, receives the supply of the refrigerant, and sends the refrigerant to the rotor.
A refrigerant passage provided in the rotor so as to allow the refrigerant to flow from the axial cooling passage, and a refrigerant passage provided in the rotor.
A storage unit located between the axial cooling passage and the refrigerant passage, which receives and stores the refrigerant from the axial cooling passage and discharges the refrigerant to the refrigerant passage by centrifugal force, is provided.
The rotating electric machine is characterized in that the storage portion is formed in a tapered shape whose diameter is increased toward the refrigerant passage.
前記回転軸は、前記貯留部と前記冷媒路との間にあって、前記冷媒路よりも径を小さく形成された所定のオリフィス径を有するオリフィスを備える
ことを特徴とする請求項1に記載の回転電機。
The rotary electric machine according to claim 1, wherein the rotating shaft includes an orifice between the storage portion and the refrigerant passage and having a predetermined orifice diameter formed to be smaller than the refrigerant passage. ..
請求項1または請求項2に記載の回転電機を搭載した車両。 A vehicle equipped with the rotary electric machine according to claim 1 or 2.
JP2020049159A 2020-03-19 2020-03-19 Rotating electric machine and vehicle including the same Pending JP2021151098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020049159A JP2021151098A (en) 2020-03-19 2020-03-19 Rotating electric machine and vehicle including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020049159A JP2021151098A (en) 2020-03-19 2020-03-19 Rotating electric machine and vehicle including the same

Publications (1)

Publication Number Publication Date
JP2021151098A true JP2021151098A (en) 2021-09-27

Family

ID=77849712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020049159A Pending JP2021151098A (en) 2020-03-19 2020-03-19 Rotating electric machine and vehicle including the same

Country Status (1)

Country Link
JP (1) JP2021151098A (en)

Similar Documents

Publication Publication Date Title
US9729027B2 (en) Cooling structure of rotary electric machine
JP5772544B2 (en) Cooling structure of rotating electric machine
JP4363479B2 (en) Rotating electric machine and driving device
JP5887870B2 (en) Rotating electric machine
JP5482376B2 (en) Hermetic rotary electric machine
CN106100186A (en) Electric rotating machine
JP2012223075A (en) Cooling structure of rotary electric machine
JP2009195082A (en) Cooling structure of stator
JP5417960B2 (en) Rotating electric machine
EP3058643B1 (en) Electric motor
JP2014045586A (en) Rotary electric machine
JP2012075244A (en) Rotating electric machine and cooling mechanism
JP2021151098A (en) Rotating electric machine and vehicle including the same
JP2014092216A (en) Driving device
JP2013258889A (en) Induction motor
JP6581948B2 (en) Rotating electric machine
JP7108529B2 (en) Rotating electric machine
JP2013090454A (en) Cooling device for vehicle use rotary electric machine
WO2023095716A1 (en) Rotary electric machine
JP2019161950A (en) Dynamo-electric machine system and vehicle
JP2019134573A (en) Stator of rotary electric machine
JP2019126133A (en) Rotary electric machine
JP6915196B2 (en) Rotating machine
JP2012165488A (en) Cooling device for rotary electric machine
JP2020108210A (en) Dynamo-electric machine