JP6915196B2 - Rotating machine - Google Patents

Rotating machine Download PDF

Info

Publication number
JP6915196B2
JP6915196B2 JP2017185325A JP2017185325A JP6915196B2 JP 6915196 B2 JP6915196 B2 JP 6915196B2 JP 2017185325 A JP2017185325 A JP 2017185325A JP 2017185325 A JP2017185325 A JP 2017185325A JP 6915196 B2 JP6915196 B2 JP 6915196B2
Authority
JP
Japan
Prior art keywords
diameter side
rotor
flow path
outer diameter
cooling flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017185325A
Other languages
Japanese (ja)
Other versions
JP2019062644A (en
Inventor
正幸 池本
正幸 池本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP2017185325A priority Critical patent/JP6915196B2/en
Publication of JP2019062644A publication Critical patent/JP2019062644A/en
Application granted granted Critical
Publication of JP6915196B2 publication Critical patent/JP6915196B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

本発明は、電気モータ等の回転電機に係り、詳しくは永久磁石をロータに配置した回転電機に関する。なお、回転電機は、電気エネルギーを回転力に変換するもの(力行)、回転力を電気エネルギーに変換するもの(回生)を含むが、以下、電気エネルギーを回転力に変換するモータについて代表して説明する。 The present invention relates to a rotary electric machine such as an electric motor, and more particularly to a rotary electric machine in which a permanent magnet is arranged in a rotor. The rotary electric machine includes a motor that converts electrical energy into rotational force (force running) and a motor that converts electrical energy into electrical energy (regeneration). Hereinafter, the motor that converts electrical energy into rotational force will be represented. explain.

一般に、ハイブリッド車両、EV車両等の高出力を要求されるモータとして、永久磁石をロータ(回転子)に配置し、コイル(電機子巻線)をステータ(固定子)に配置した同期モータが用いられている。該同期モータのロータは、鋼板がロータの軸方向に複数枚積層され、該積層鋼板に永久磁石が組込まれており、該永久磁石が積層鋼板の内部に埋込んだ埋込磁石構造と、積層鋼板の表面に組込んだ表面磁石構造がある。 Generally, as a motor that requires high output for hybrid vehicles, EV vehicles, etc., a synchronous motor in which a permanent magnet is arranged in a rotor (rotor) and a coil (armature winding) is arranged in a stator (stator) is used. Has been done. In the rotor of the synchronous motor, a plurality of steel plates are laminated in the axial direction of the rotor, and a permanent magnet is incorporated in the laminated steel plate, and the permanent magnet is embedded in the laminated steel plate with an embedded magnet structure. There is a surface magnet structure built into the surface of the steel plate.

従来、上記ロータにおける磁石の内径側近傍に軸方向に貫通する冷却用流路が形成され、該流路に潤滑油を供給して、冷却効率を高めたモータが提案されている(特許文献1)。 Conventionally, a motor has been proposed in which a cooling flow path penetrating in the axial direction is formed in the vicinity of the inner diameter side of a magnet in the rotor, and lubricating oil is supplied to the flow path to improve cooling efficiency (Patent Document 1). ).

特開2015−89316号公報Japanese Unexamined Patent Publication No. 2015-89316

前記ロータは、シャフトに多数の積層鋼板を嵌合して組立てられており、これら積層鋼板の外径部分に軸方向に貫通する上記冷却用流路が複数個形成されている。このため、これら流路に供給される潤滑油は、ロータの回転による遠心力又はロータとステータの間に発生する斥力により積層鋼板の間から漏出して、その外周面からステータとの間のエアギャップに浸入する。特に、多数の積層鋼板は、その中心部分でシャフトにナットにより締付けられているので、上記軸方向の冷却用流路が形成されている外径側部分にあっては、積層鋼板間に隙間が生じ易く、上記冷却用流路から潤滑油が漏出し易い。 The rotor is assembled by fitting a large number of laminated steel plates to the shaft, and a plurality of the cooling flow paths penetrating in the axial direction are formed in the outer diameter portions of the laminated steel plates. Therefore, the lubricating oil supplied to these flow paths leaks from between the laminated steel sheets due to the centrifugal force due to the rotation of the rotor or the repulsive force generated between the rotor and the stator, and the air between the outer peripheral surface thereof and the stator. Infiltrate the gap. In particular, since many laminated steel plates are fastened to the shaft with nuts at the center thereof, there is a gap between the laminated steel plates in the outer diameter side portion where the cooling flow path in the axial direction is formed. It is likely to occur, and lubricating oil is likely to leak from the cooling flow path.

上記ロータからエアギャップに浸入した潤滑油は、ステータとの間でロータの引摺り抵抗となり、モータの引摺り損失となる。 The lubricating oil that has entered the air gap from the rotor becomes a drag resistance of the rotor with the stator, resulting in a drag loss of the motor.

そこで、本発明は、潤滑油(冷却用液体)が積層鋼板の間からロータ外周面に浸出することを防止し、もって上述した課題を解決した回転電機を提供することを目的とするものである。 Therefore, an object of the present invention is to provide a rotary electric machine that prevents the lubricating oil (cooling liquid) from seeping out from between the laminated steel plates to the outer peripheral surface of the rotor and thus solves the above-mentioned problems. ..

本発明は、コイル(7)が巻回されたステータ(5)と、
シャフト(2)に固定されて積層された複数の積層鋼板(6)及び該積層鋼板に組込まれた複数の磁石(16)を有するロータ(3)と、
前記ロータ(3)の内径側を前記シャフト(2)に対して軸方向に締付けて前記ロータ(3)を固定する締付け手段(11,15)と、
前記締付け手段(11,15)よりも外径側に配置され、前記シャフト(2)から冷却用液体が供給され、前記磁石(16)の近傍において前記積層鋼板を軸方向に貫通して形成された冷却用流路(19)と、
該冷却用流路の外径側壁面に軸方向に連続して形成された溶接部(26)と、
を備えたことを特徴とする回転電機(1)にある。
In the present invention, the stator (5) around which the coil (7) is wound and the stator (5)
A rotor (3) having a plurality of laminated steel plates (6) fixed to a shaft (2) and laminated, and a plurality of magnets (16) incorporated in the laminated steel plates.
Tightening means (11, 15) for fixing the rotor (3) by tightening the inner diameter side of the rotor (3) with respect to the shaft (2) in the axial direction.
It is arranged on the outer diameter side of the tightening means (11, 15), a cooling liquid is supplied from the shaft (2), and is formed by axially penetrating the laminated steel plate in the vicinity of the magnet (16). Cooling flow path (19) and
A welded portion (26) continuously formed on the outer diameter side wall surface of the cooling flow path in the axial direction,
It is in the rotary electric machine (1), which is characterized by being equipped with.

例えば図2を参照して、前記冷却用流路(19)は、断面が略三角形状からなり、該略三角形状の外径側頂部分に前記溶接部(26)が形成されてなる。 For example, referring to FIG. 2, the cooling flow path (19) has a substantially triangular cross section, and the welded portion (26) is formed on the outer diameter side top portion of the substantially triangular shape.

前記複数の磁石(16)は、隣接する磁石が傾斜方向を逆にして交互に傾斜して配置され、
前記冷却用流路(19)は、前記略三角形状の外径側頂部分が隣接する各磁石の外径方向端部の間部分(C)に対向し、前記略三角形状の外径側壁面(19a)が前記各磁石(16)に略平行になるように配置されてなる。
In the plurality of magnets (16), adjacent magnets are arranged so as to be inclined alternately with the inclination directions reversed.
In the cooling flow path (19), the substantially triangular outer diameter side top portion faces the intermediate portion (C) of the outer diameter direction ends of adjacent magnets, and the substantially triangular outer diameter side wall surface. (19a) is arranged so as to be substantially parallel to each of the magnets (16).

前記シャフト(2)からの冷却用液体を前記冷却用流路に供給する連通路(21)が、前記冷却用流路(19)の前記溶接部(26)に対向する内径側壁面(19c)に開口してなる。 The inner side wall surface (19c) in which the communication passage (21) for supplying the cooling liquid from the shaft (2) to the cooling flow path faces the welded portion (26) of the cooling flow path (19). It opens in.

なお、上記カッコ内の符号は、図面と対照するためのものであるが、これにより特許請求の範囲の記載に何等影響を及ぼすものではない。 The reference numerals in parentheses are for comparison with the drawings, but do not affect the description of the claims.

本発明に係る回転電機は、ロータを構成する積層鋼板を軸方向に貫通して形成された冷却用流路により効率よく冷却される。冷却用流路の外径側壁面に軸方向に連続して溶接部が形成されており、冷却用流路の冷却用液体は、積層鋼板の隙間から漏出することが抑制される。また、冷却用流路の外径側壁面を連続して溶接されるので、積層鋼板は、熱収縮により各積層鋼板の間が密着され、冷却用液体が漏出することを阻止される。これにより、積層鋼板の隙間から漏出した冷却用液体がロータとステータとの間のエアギャップに浸入することが抑制されて、引摺り損失を低減することができる。 The rotary electric machine according to the present invention is efficiently cooled by a cooling flow path formed by penetrating a laminated steel plate constituting a rotor in the axial direction. Welded portions are formed continuously in the axial direction on the outer diameter side wall surface of the cooling flow path, and the cooling liquid of the cooling flow path is suppressed from leaking from the gaps of the laminated steel sheets. Further, since the outer diameter side wall surface of the cooling flow path is continuously welded, the laminated steel sheets are brought into close contact with each other due to heat shrinkage, and the cooling liquid is prevented from leaking. As a result, the cooling liquid leaked from the gap between the laminated steel sheets is suppressed from entering the air gap between the rotor and the stator, and the drag loss can be reduced.

上記冷却用流路が、略三角形状からなり、その外径側頂部分に上記溶接部が形成されるので、冷却用液体は、ロータの回転による遠心力が作用していても、積層鋼板を冷却しつつかつその間からの漏出を防止されて軸方向に流れて端部の開口から排出される。 Since the cooling flow path has a substantially triangular shape and the welded portion is formed on the outer diameter side top portion thereof, the cooling liquid can be used as a laminated steel plate even when centrifugal force due to rotation of the rotor is applied. While cooling, leakage from the space between them is prevented, and the liquid flows in the axial direction and is discharged from the opening at the end.

傾斜方向を逆にして交互に配置された磁石に対し、隣接する各磁石の外径方向端部の間部分に、略三角形状の冷却用流路の外径側頂部が対向するように位置するので、冷却用流路をロータの外径側に配置することが可能となり、かつ上記外径側頂部に溶接部を形成したので、各積層鋼板の外径側部分に熱収縮が作用して、積層鋼板の外径部分を密着して冷却用液体のエアギャップへの浸入を高い効率で抑制することができる。また、略三角形状の冷却用流路の外径側壁面が各磁石に略平行となるので、冷却効率を向上することができる。 The outer diameter side tops of the substantially triangular cooling flow paths are located so as to face each other between the outer diameter ends of the adjacent magnets with respect to the magnets arranged alternately with the inclination directions reversed. Therefore, the cooling flow path can be arranged on the outer diameter side of the rotor, and since the welded portion is formed on the outer diameter side top portion, heat shrinkage acts on the outer diameter side portion of each laminated steel plate. The outer diameter portion of the laminated steel plate can be brought into close contact with each other to prevent the cooling liquid from entering the air gap with high efficiency. Further, since the outer diameter side wall surface of the substantially triangular cooling flow path is substantially parallel to each magnet, the cooling efficiency can be improved.

シャフトからの冷却用液体が、冷却用流路の溶接部に対向する内径側壁面から供給されるので、遠心力により冷却用液体が、連通路から冷却用流路に勢いよく噴出しても、溶接部で積層鋼板の間に浸入することなく受けられ、積層鋼板の間から冷却用液体が漏出することを抑制することができる。 Since the cooling liquid from the shaft is supplied from the inner side wall surface facing the welded portion of the cooling flow path, even if the cooling liquid is vigorously ejected from the continuous passage to the cooling flow path by centrifugal force, It is received at the welded portion without penetrating between the laminated steel plates, and it is possible to prevent the cooling liquid from leaking between the laminated steel plates.

本発明の実施の形態による回転電機(モータ)を示し、図2のA−A線断面図。A rotary electric machine (motor) according to an embodiment of the present invention is shown, and is a cross-sectional view taken along the line AA of FIG. 回転電機のロータを示す側面断面図。A side sectional view showing a rotor of a rotary electric machine. ロータの外周部分の概略を示す正面断面図で、(A)は、溶接をしていない場合、(B)は、溶接をした場合を示す。In the front sectional view showing the outline of the outer peripheral part of a rotor, (A) shows the case where welding is not performed, and (B) shows the case where welding is performed.

以下、図面に沿って、本発明を同期モータ(回転電機)に用いた実施の形態について説明する。同期モータ1は、図1に示すように、シャフト2に組込まれたロータ3と、固定部材であるケース(図示せず)に固定されたステータ5とを有する。ロータ3は、多数枚のケイ素鋼板6…が軸方向に積層されており、ステータ5は、コイル7が巻回されている。上記シャフト2は、ケースにベアリングにより回転自在に支持されており、中心部に油孔9を有し、かつ外周部にキー溝10が形成され、軸方向一方に外径方向に突出したフランジ11が形成され、軸方向他方にネジ溝12が形成されている。 Hereinafter, embodiments in which the present invention is used in a synchronous motor (rotary electric machine) will be described with reference to the drawings. As shown in FIG. 1, the synchronous motor 1 has a rotor 3 incorporated in a shaft 2 and a stator 5 fixed to a case (not shown) which is a fixing member. A large number of silicon steel plates 6 ... Are laminated in the axial direction in the rotor 3, and a coil 7 is wound around the stator 5. The shaft 2 is rotatably supported by a bearing in the case, has an oil hole 9 in the center, has a key groove 10 formed in the outer peripheral portion, and has a flange 11 protruding in the outer diameter direction in one axial direction. Is formed, and a screw groove 12 is formed on the other side in the axial direction.

前記ロータ3を構成する鋼板6は、内径方向に突出する突部を上記キー溝10に嵌合して、上記シャフト2に嵌挿され、該シャフト2に多数枚回り止めされて積層される。これら積層鋼板6は、その一端(始めの1枚)を上記フランジ11に当接して、その他端(最後の1枚)にワッシャ13を当接してナット15を上記ネジ溝12に螺合することにより、締付けられてロータ3を構成する。これら積層鋼板の外径側部分には、図2に示すように、交互に傾斜方向を逆にして傾斜した貫通孔が多数形成され、これら貫通孔に永久磁石16が埋込まれている。従って、磁石16は、表面側と裏面側とが交互にS極とN極とになり、ロータ3の外周部分に交互に所定量傾斜して円周状に多数個埋込まれる。 The steel plate 6 constituting the rotor 3 has a protrusion protruding in the inner diameter direction fitted into the key groove 10, is fitted into the shaft 2, and is laminated on the shaft 2 by being prevented from rotating in large numbers. One end (the first one) of these laminated steel plates 6 is brought into contact with the flange 11, the washer 13 is brought into contact with the other end (the last one), and the nut 15 is screwed into the thread groove 12. Is tightened to form the rotor 3. As shown in FIG. 2, a large number of through holes that are alternately inclined in the opposite directions are formed in the outer diameter side portion of these laminated steel sheets, and permanent magnets 16 are embedded in these through holes. Therefore, the front surface side and the back surface side of the magnet 16 alternately become S poles and N poles, and a large number of magnets 16 are embedded in the outer peripheral portion of the rotor 3 by alternately inclining a predetermined amount in a circumferential shape.

前記ロータ3を構成する鋼板6には、上記交互に傾斜して隣接する磁石16の外径側の間部分Cを中央として側面視(図2参照)に周方向に拡がる略三角形状の冷却用油(流)路19が貫通して形成される。該冷却用油路19は、ロータ3を軸方向に貫通して形成され、その外径側壁面19aが上記傾斜した磁石16の内径側面と略平行となり、その外径側頂部分が磁石16の外径側隣接間隔Cの中央部に対向して、各磁石の内径側に近接して配置される。前記シャフト2の上記ロータ3の軸方向中央部分には上記油孔9と外周面とを貫通する多数の孔20が形成されている。各孔20と前記各冷却用油路19とは、図2に破線で示すように、前記ロータ3の鋼板6に形成された連通路21により連通されており、シャフト2の油孔9に供給された潤滑油(冷却用液体)が該連通路21を通って各冷却用油路19に導かれる。 The steel plate 6 constituting the rotor 3 is provided with a substantially triangular shape for cooling, which is inclined alternately and spreads in the circumferential direction in the side view (see FIG. 2) with the intermediate portion C on the outer diameter side of the adjacent magnets 16 as the center. The oil (flow) passage 19 is formed through the passage. The cooling oil passage 19 is formed so as to penetrate the rotor 3 in the axial direction, the outer diameter side wall surface 19a thereof is substantially parallel to the inner diameter side surface of the inclined magnet 16, and the outer diameter side top portion thereof is the magnet 16. It is arranged so as to face the central portion of the outer diameter side adjacent spacing C and close to the inner diameter side of each magnet. A large number of holes 20 penetrating the oil holes 9 and the outer peripheral surface are formed in the axially central portion of the rotor 3 of the shaft 2. As shown by a broken line in FIG. 2, each hole 20 and each cooling oil passage 19 are communicated with each other by a communication passage 21 formed in the steel plate 6 of the rotor 3 and supplied to the oil hole 9 of the shaft 2. The lubricated oil (cooling liquid) is guided to each cooling oil passage 19 through the communication passage 21.

具体的には、図1に示すように、ロータ3における軸方向中央側の所定枚数(例えば2枚)の積層鋼板6は、その内径側部分に上記シャフト2の孔20に連通する切欠き22が形成され、該積層鋼板6に隣接する軸方向外側の所定枚数(例えば2枚)の積層鋼板6の径方向中間部分には上記切欠き22に連通する切欠き23が形成され、該積層鋼板6に隣接する軸方向外側の所定枚数(例えば2枚)の積層鋼板6の外径側部分には上記切欠き23に連通する切欠き25が形成されて、該切欠き23は、上記各冷却用油路19における円弧状の内径側壁面19cの中央部分に開口している。従って、上記積層鋼板6に形成された内径側切欠き22、中間部切欠き23、外径側切欠き25が前記連通路21を構成する。 Specifically, as shown in FIG. 1, a predetermined number (for example, two) of laminated steel plates 6 on the central side in the axial direction of the rotor 3 has a notch 22 communicating with the hole 20 of the shaft 2 in the inner diameter side portion thereof. Is formed, and a notch 23 communicating with the notch 22 is formed in a radial intermediate portion of a predetermined number (for example, two) of laminated steel plates 6 adjacent to the laminated steel plate 6 in the axial direction, and the laminated steel plate is formed. A notch 25 communicating with the notch 23 is formed in an outer diameter side portion of a predetermined number (for example, two) of laminated steel plates 6 adjacent to the sixth in the axial direction, and the notch 23 is used for cooling each of the above. It opens in the central portion of the arcuate inner diameter side wall surface 19c in the oil passage 19. Therefore, the inner diameter side notch 22, the intermediate portion notch 23, and the outer diameter side notch 25 formed in the laminated steel plate 6 form the communication passage 21.

そして、上述したようにナット15で締付けて組付けられた積層鋼板6からなるロータ3は、その上記冷却用油路19の略三角形状の外径側頂部分にレーザ溶接等により溶接部26が軸方向に連続して形成されている。該溶接部26は、レーザ等の高エネルギーにより各積層鋼板6が溶融されて接合される。更に、各積層鋼板6は、上記溶融金属が冷える際熱収縮を生じ、ロータ3の外径側を構成する各積層鋼板6は、各鋼板の間が密着するように引き付き合う。 Then, in the rotor 3 made of the laminated steel plate 6 tightened and assembled with the nut 15 as described above, the welded portion 26 is formed on the substantially triangular outer diameter side top portion of the cooling oil passage 19 by laser welding or the like. It is formed continuously in the axial direction. Each laminated steel plate 6 is melted and joined to the welded portion 26 by high energy such as a laser. Further, each laminated steel sheet 6 causes heat shrinkage when the molten metal cools, and each laminated steel sheet 6 constituting the outer diameter side of the rotor 3 attracts each other so as to be in close contact with each other.

上述した本モータ(回転電機)1は、ステータ5のコイルに電力が供給されると、ロータ3が回転して、シャフト2から車両の走行装置に伝達される。また、車両の慣性力又はエンジンからの回転トルクがシャフト2に伝達され、ロータ3が回転すると、ステータ5に発生した電力がバッテリ等に送られる。いずれの場合では、ロータ3は、高速で回転し、ロータ3における磁石16の近くの積層鋼板6に界磁を生じ、ステータ5のコイル7に電流が流れて、発熱する。 In the motor (rotary electric machine) 1 described above, when electric power is supplied to the coil of the stator 5, the rotor 3 rotates and is transmitted from the shaft 2 to the traveling device of the vehicle. Further, the inertial force of the vehicle or the rotational torque from the engine is transmitted to the shaft 2, and when the rotor 3 rotates, the electric power generated in the stator 5 is sent to the battery or the like. In either case, the rotor 3 rotates at a high speed, a field is generated in the laminated steel plate 6 near the magnet 16 in the rotor 3, a current flows through the coil 7 of the stator 5, and heat is generated.

シャフト2の油孔9にオイルポンプからの潤滑油が供給され、該潤滑油は、シャフト2の放射方向の孔20及び連通路21を通って各冷却用油路19に供給される。該冷却用油路19の潤滑油は、上記界磁によるロータ3の磁石16及び積層鋼板6の発熱を冷却しつつ、軸方向左右に流れ、ロータ3の側端の開口から排出され、該排出された潤滑油は、ロータ3の回転に伴う遠心力により外径方向に飛散して、ステータ5のコイルエンド部の発熱を冷却する。 Lubricating oil from the oil pump is supplied to the oil hole 9 of the shaft 2, and the lubricating oil is supplied to each cooling oil passage 19 through the hole 20 in the radial direction of the shaft 2 and the communication passage 21. The lubricating oil in the cooling oil passage 19 flows left and right in the axial direction while cooling the heat generated by the magnet 16 of the rotor 3 and the laminated steel plate 6 due to the field magnetism, and is discharged from the opening at the side end of the rotor 3. The lubricating oil is scattered in the outer diameter direction by the centrifugal force accompanying the rotation of the rotor 3 to cool the heat generated at the coil end portion of the stator 5.

ロータ3の積層鋼板6は、ロータの内径側部分にあってはフランジ11とナット15により締付けられており、各積層鋼板6の間が詰められて密着されており、上記油孔9,20及び連通路21から各鋼板の間に漏出する潤滑油は少ない。図3(A)に示すように、冷却用油路19の外径側壁面を溶接していない場合、ロータ3の外径側は、ロータ3の内径側での上記ナット15による締付け力が殆ど作用せず、各鋼板6の積層間隔sが生じる傾向となる。この状態では、冷却用油路19の潤滑油(冷却油)が上記鋼板6の積層間隔sから漏出し、該漏出した冷却油が、ロータ3とステータ5との間のエアギャップGに浸入して、ロータ3の回転の引摺り損失が大きくなり、その分モータ1の効率を低下する。 The laminated steel plate 6 of the rotor 3 is tightened by a flange 11 and a nut 15 on the inner diameter side portion of the rotor, and the space between the laminated steel plates 6 is packed and brought into close contact with each other. The amount of lubricating oil leaking from the communication passage 21 to each steel plate is small. As shown in FIG. 3A, when the outer diameter side wall surface of the cooling oil passage 19 is not welded, the tightening force of the nut 15 on the inner diameter side of the rotor 3 is almost the same on the outer diameter side of the rotor 3. It does not work, and the stacking interval s of each steel plate 6 tends to occur. In this state, the lubricating oil (cooling oil) in the cooling oil passage 19 leaks from the stacking interval s of the steel plates 6, and the leaked cooling oil penetrates into the air gap G between the rotor 3 and the stator 5. Therefore, the drag loss of the rotation of the rotor 3 becomes large, and the efficiency of the motor 1 is lowered by that amount.

本実施の形態によるモータ1にあっては、図3(B)に示すように、冷却用油路19の外径側壁面が溶接され、各積層鋼板6を連続して一体結合した溶接部26となっている。連通路21から冷却用油路19に供給される潤滑油は、遠心力により冷却用油路19の内径側壁面19cの周方向中央部に供給され、断面略三角形状の冷却用油路19の外径側頂部分に上記潤滑油が集中して作用する。冷却用油路19は、該頂部分が溶接されており、上記潤滑油の噴出圧は溶接部26により受けられて、各鋼板6の間に潤滑油が漏出することを有効に抑制する。 In the motor 1 according to the present embodiment, as shown in FIG. 3 (B), the outer diameter side wall surface of the cooling oil passage 19 is welded, and the welded portion 26 in which each laminated steel plate 6 is continuously integrally bonded. It has become. The lubricating oil supplied from the communication passage 21 to the cooling oil passage 19 is supplied to the central portion in the circumferential direction of the inner diameter side wall surface 19c of the cooling oil passage 19 by centrifugal force, and the cooling oil passage 19 having a substantially triangular cross section. The lubricating oil concentrates on the outer diameter side top portion. The top portion of the cooling oil passage 19 is welded, and the ejection pressure of the lubricating oil is received by the welded portion 26 to effectively suppress the leakage of the lubricating oil between the steel plates 6.

更に、上記溶接による熱収縮により、ロータ3における外径側部分の各積層鋼板6は、互いに密着して隙間が生じないように接合されており、上記冷却用油路19を流れる潤滑油は、遠心力が作用しても各鋼板6の積層間から漏出して、上記エアギャップGに浸入することはなく、図3(A)に示すような引摺り損失を生じることを抑制する。また、例え連通路21から漏出した潤滑油があっても、上記熱収縮により外径部分の各鋼板6は、密着しており、上記潤滑油のエアギャップGへの浸入は阻止される。 Further, due to heat shrinkage due to the welding, the laminated steel plates 6 on the outer diameter side portion of the rotor 3 are joined to each other so as not to form a gap, and the lubricating oil flowing through the cooling oil passage 19 is Even if centrifugal force acts, it does not leak from between the laminated layers of the steel sheets 6 and infiltrate into the air gap G, and suppresses the occurrence of drag loss as shown in FIG. 3 (A). Further, even if there is lubricating oil leaking from the communication passage 21, the steel plates 6 of the outer diameter portion are in close contact with each other due to the heat shrinkage, and the infiltration of the lubricating oil into the air gap G is prevented.

なお、上記モータ1のロータ3は、磁石16を積層鋼板6の内部に埋込んだ埋込み磁石構造としたが、これは、ロータの外周面に磁石を組付けた表面磁石構造でもよい。また、磁石16の配置は、図2に示すような八字状構造に限らず、どのような配置構造でもよい。また、レーザ溶接により冷却用油路19の外径側壁面を溶接したが、これはレーザ溶接に限らず、電気抵抗溶接等の他の溶接でもよい。冷却用油路19は、略三角形状に限らず、断面円形、矩形等の他の形状でもよく、また磁石16に対する配置も、傾斜する磁石の外径側端が互いに隣接する間に冷却用油路の周方向中央が対抗するように配置したが、これはどのような配置でもよい。高い出力が要求される車両駆動用のモータ(回転電機)に通用して好適であるが、これに限らず、どのようなモータに適用してもない。 The rotor 3 of the motor 1 has an embedded magnet structure in which a magnet 16 is embedded inside the laminated steel plate 6, but this may be a surface magnet structure in which a magnet is assembled on the outer peripheral surface of the rotor. Further, the arrangement of the magnets 16 is not limited to the eight-shaped structure as shown in FIG. 2, and any arrangement structure may be used. Further, although the outer diameter side wall surface of the cooling oil passage 19 is welded by laser welding, this is not limited to laser welding, and other welding such as electric resistance welding may be used. The cooling oil passage 19 is not limited to a substantially triangular shape, but may have another shape such as a circular cross section or a rectangular cross section, and the cooling oil can be arranged with respect to the magnet 16 while the outer diameter side ends of the inclined magnets are adjacent to each other. It is arranged so that the center of the road is opposed to each other, but this may be any arrangement. It is suitable for a vehicle drive motor (rotary electric machine) that requires high output, but it is not limited to this and is not applied to any motor.

1 回転電機(モータ)
2 シャフト
3 ロータ
5 ステータ
6 積層鋼板
7 コイル
9 油孔
16 磁石
19 冷却用流路(油路)
19a 外径側壁面
19c 内径側壁面
21 連通路
26 溶接部
1 Rotating electric machine (motor)
2 Shaft 3 Rotor 5 Stator 6 Laminated steel plate 7 Coil 9 Oil hole 16 Magnet 19 Cooling flow path (oil passage)
19a Outer diameter side wall surface 19c Inner diameter side wall surface 21 Continuous passage 26 Welded part

Claims (4)

コイルが巻回されたステータと、
シャフトに固定されて積層された複数の積層鋼板及び該積層鋼板に組込まれた複数の磁石を有するロータと、
前記ロータの内径側を前記シャフトに対して軸方向に締付けて前記ロータを固定する締付け手段と、
前記締付け手段よりも外径側に配置され、前記シャフトから冷却用液体が供給され、前記磁石の近傍において前記積層鋼板を軸方向に貫通して形成された冷却用流路と、
該冷却用流路の外径側壁面に軸方向に連続して形成された溶接部と、
を備えたことを特徴とする回転電機。
With the stator around which the coil is wound,
A rotor having a plurality of laminated steel plates fixed to a shaft and laminated, and a plurality of magnets incorporated in the laminated steel plates,
A tightening means for fixing the rotor by tightening the inner diameter side of the rotor in the axial direction with respect to the shaft.
A cooling flow path arranged on the outer diameter side of the tightening means, to which a cooling liquid is supplied from the shaft, and which is formed by axially penetrating the laminated steel plate in the vicinity of the magnet.
A welded portion formed continuously in the axial direction on the outer diameter side wall surface of the cooling flow path,
A rotating electric machine characterized by being equipped with.
前記冷却用流路は、断面が略三角形状からなり、該略三角形状の外径側頂部分に前記溶接部が形成されてなる、
請求項1記載の回転電機。
The cooling flow path has a substantially triangular cross section, and the welded portion is formed on the outer diameter side top portion of the substantially triangular shape.
The rotary electric machine according to claim 1.
前記複数の磁石は、隣接する磁石が傾斜方向を逆にして交互に傾斜して配置され、
前記冷却用流路は、前記略三角形状の外径側頂部分が隣接する各磁石の外径方向端部の間部分に対向し、前記略三角形状の外径側壁面が前記各磁石に略平行になるように配置されてなる、
請求項2記載の回転電機。
In the plurality of magnets, adjacent magnets are arranged so as to be inclined alternately with the inclination directions reversed.
In the cooling flow path, the substantially triangular outer-diameter side top portion faces the intermediate portion between the outer-diameter end portions of the adjacent magnets, and the substantially triangular outer-diameter side wall surface is substantially attached to each magnet. Arranged so that they are parallel,
The rotary electric machine according to claim 2.
前記シャフトからの冷却用液体を前記冷却用流路に供給する連通路が、前記冷却用流路の前記溶接部に対向する内径側壁面に開口してなる、
請求項2又は3記載の回転電機。
The communication passage for supplying the cooling liquid from the shaft to the cooling flow path opens on the inner side wall surface of the cooling flow path facing the welded portion.
The rotary electric machine according to claim 2 or 3.
JP2017185325A 2017-09-26 2017-09-26 Rotating machine Active JP6915196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017185325A JP6915196B2 (en) 2017-09-26 2017-09-26 Rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017185325A JP6915196B2 (en) 2017-09-26 2017-09-26 Rotating machine

Publications (2)

Publication Number Publication Date
JP2019062644A JP2019062644A (en) 2019-04-18
JP6915196B2 true JP6915196B2 (en) 2021-08-04

Family

ID=66177821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017185325A Active JP6915196B2 (en) 2017-09-26 2017-09-26 Rotating machine

Country Status (1)

Country Link
JP (1) JP6915196B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101224700B1 (en) * 2009-10-09 2013-01-21 도요타지도샤가부시키가이샤 Rotor and method for manufacturing same
JP2013183480A (en) * 2012-02-29 2013-09-12 Toyota Motor Corp Cooling structure of rotor for rotary electric machine and rotary electric machine
JP6409529B2 (en) * 2014-11-27 2018-10-24 アイシン・エィ・ダブリュ株式会社 Rotor and method for manufacturing rotor

Also Published As

Publication number Publication date
JP2019062644A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP5911033B1 (en) Operation method of rotating electric machine
EP2724450B1 (en) Cooling structure of rotary electric machine
JP5772544B2 (en) Cooling structure of rotating electric machine
US9030062B2 (en) Cooling structure of rotating electric machine
JP2019134564A (en) Rotor of rotary electric machine
JP2009303293A (en) Rotor of rotating electric machine
WO2013136405A1 (en) Rotating electrical machine
JP2007209160A (en) Fixing structure of cooling pipe, and electric motor vehicle
US8884478B2 (en) Cooling structure of generator motor and generator motor
JP5417960B2 (en) Rotating electric machine
JP2009027836A (en) Rotary electric machine
JP6915196B2 (en) Rotating machine
JP5129869B2 (en) Generator motor lubrication structure and generator motor
JP5354793B2 (en) Axial gap type motor
JP6795352B2 (en) Electric electric machine
JP5730740B2 (en) Rotating electric machine
JP2014072921A (en) Rotary electric machine
JP2013051805A (en) Cooling structure of rotary electric machine
JP2012210120A (en) Rotary electric machine
JP6581948B2 (en) Rotating electric machine
CN111384798B (en) Rotating electrical machine
JP2012016240A (en) Rotary electric machine and cooling system for rotary electric machine
JP6581949B2 (en) Rotating electric machine
JP2019068622A (en) Rotary electric machine
JP2012060843A (en) Rotor for rotary electric machine and rotary electric machine

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200131

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210316

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210329

R255 Notification that request for automated payment was rejected

Free format text: JAPANESE INTERMEDIATE CODE: R2525

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210428

R150 Certificate of patent or registration of utility model

Ref document number: 6915196

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150