JP2021150207A - Coated steel material for solid oxide-type fuel cell member, solid oxide fuel cell member, and production method thereof - Google Patents

Coated steel material for solid oxide-type fuel cell member, solid oxide fuel cell member, and production method thereof Download PDF

Info

Publication number
JP2021150207A
JP2021150207A JP2020049870A JP2020049870A JP2021150207A JP 2021150207 A JP2021150207 A JP 2021150207A JP 2020049870 A JP2020049870 A JP 2020049870A JP 2020049870 A JP2020049870 A JP 2020049870A JP 2021150207 A JP2021150207 A JP 2021150207A
Authority
JP
Japan
Prior art keywords
less
fuel cell
solid oxide
layer
oxide fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020049870A
Other languages
Japanese (ja)
Other versions
JP7413867B2 (en
Inventor
将伍 桃野
Shogo Momono
将伍 桃野
和広 山村
Kazuhiro Yamamura
和広 山村
利弘 上原
Toshihiro Uehara
利弘 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2020049870A priority Critical patent/JP7413867B2/en
Publication of JP2021150207A publication Critical patent/JP2021150207A/en
Application granted granted Critical
Publication of JP7413867B2 publication Critical patent/JP7413867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

To provide a solid oxide fuel cell member which has an excellent oxidation resistance and has suppressed Cr poisoning, and a production method thereof, and a steel material therefor.SOLUTION: A coated steel material for a solid oxide fuel cell member has a metal base material and a metal coating as a surface layer of the metal base material. The metal base material contains, by mass%, C: over 0 and 0.1% or less, Al: 0.2% or less, Si:0.2% or less, Mn: 0.1% or more and 1.0% or less, Cr: 20.0% or more and 26.0% or less, Ni: 0.1% or more and 1.0% or less, Cu: 0.3% or more and 4.0% or less, W: 1.0% or more and 3.0% or less, La: 0.02-0.12%, Zr: 0.01-0.5%, and La+Zr: 0.03% or more and 0.5% or less with the balance consisting of Fe and inevitable impurities. The metal coating has a Co layer of 0.5-5.0 μm in thickness. A solid oxide fuel cell member arranged by use of the coated steel material, and a production method thereof are also disclosed.SELECTED DRAWING: Figure 1

Description

本発明は、固体酸化物形燃料電池部材用被覆鋼材、並びに、固体酸化物形燃料電池部材およびその製造方法に関するものである。 The present invention relates to a coated steel material for a solid oxide fuel cell member, a solid oxide fuel cell member, and a method for manufacturing the same.

固体酸化物形燃料電池は、その発電効率が高いこと、SOx、NOx、COの発生量が少ないこと、負荷の変動に対する応答性が良いこと、コンパクトであること等の優れた特徴を有するため、火力発電の代替としての大規模集中型、都市近郊分散配置型、及び自家発電用等の幅広い発電システムへの適用が期待されている。近年では700〜900℃程度の中高温で作動する固体酸化物形燃料電池も開発されており、その中でセパレータ、インターコネクタ、集電体等の固体酸化物形燃料電池用の部品には中高温での耐酸化性、電気伝導性、電解質や電極に近い熱膨張係数、低コスト、加工容易性等の特性が要求されている。このことから、材質としてはフェライト系ステンレス鋼、例えばFe−Cr系合金からなる金属基材が好適に用いられている。本願出願人も特開2007−16297号公報(特許文献1)、国際公開公報第2012/144600(特許文献2)等として、耐酸化性に優れるフェライト系ステンレス鋼を提案している。 The solid oxide fuel cell has excellent features such as high power generation efficiency, low amount of SOx, NOx, and CO 2 generated, good responsiveness to load fluctuations, and compactness. It is expected to be applied to a wide range of power generation systems such as large-scale centralized type as an alternative to thermal power generation, decentralized type in the suburbs of cities, and private power generation. In recent years, solid oxide fuel cells that operate at medium and high temperatures of about 700 to 900 ° C have been developed, and among them, the parts for solid oxide fuel cells such as separators, interconnectors, and current collectors are medium. Properties such as oxidation resistance at high temperatures, electrical conductivity, thermal expansion coefficient close to that of electrolytes and electrodes, low cost, and ease of processing are required. For this reason, a ferritic stainless steel, for example, a metal base material made of a Fe—Cr alloy is preferably used as the material. The applicant of the present application has also proposed ferrite-based stainless steel having excellent oxidation resistance as JP-A-2007-16297 (Patent Document 1), International Publication No. 2012/144600 (Patent Document 2), and the like.

Fe−Cr系合金をセパレータ、インターコネクタ、集電体等に使用した場合、固体酸化物形燃料電池の作動に伴い、高温酸化雰囲気下におかれることで、金属表面で酸化が進行してCrを主体とする酸化被膜が生成し、これが保護被膜として作用することで耐酸化性を確保している。しかし、一方で、Crを主体とする酸化被膜からCr又はCr化合物(以下、Crと略記する。)が揮発して電極に再析出し電極特性を徐々に低下させる、いわゆるCr被毒の問題がある。
この問題を解決するために、セパレータ、インターコネクタ、集電体には金属基材の表面に耐酸化性と導電性を兼ね備えた被膜が設けられたものが用いられている。
When a Fe-Cr alloy is used for a separator, interconnector, current collector, etc., it is placed in a high-temperature oxidizing atmosphere with the operation of the solid oxide fuel cell, so that oxidation progresses on the metal surface and Cr An oxide film mainly composed of 2 O 3 is formed, which acts as a protective film to ensure oxidation resistance. However, on the other hand, Cr or Cr compounds (hereinafter abbreviated as Cr) volatilize from the oxide film mainly composed of Cr 2 O 3 and reprecipitate on the electrode, gradually deteriorating the electrode characteristics, so-called Cr poisoning. There is a problem.
In order to solve this problem, separators, interconnectors, and current collectors are used in which a coating film having both oxidation resistance and conductivity is provided on the surface of a metal base material.

例えば、特許文献3には、Ni−Co合金が表面に被覆されているセパレータを構成要素に含む、固体酸化物形燃料電池が開示されている。Ni−Co合金を所定の割合でコーティングしたものに一定時間表面処理(酸化処理)を行うと、導電性に優れるスピネル型構造の酸化物(NiCr)が表面に生成される。また、Ni−Co合金の被覆により、酸化クロム(Cr)の酸化物被膜がコーティング内部にできる二重酸化物層となり、クロムの蒸発をニッケルコバルトのコーティング層によって防ぐことができると記載されている。 For example, Patent Document 3 discloses a solid oxide fuel cell containing a separator whose surface is coated with a Ni—Co alloy as a component. When a Ni—Co alloy coated at a predetermined ratio is surface-treated (oxidized) for a certain period of time, an oxide (NiCr 2 O 4 ) having a spinel-type structure having excellent conductivity is formed on the surface. It is also stated that the coating of Ni-Co alloy forms a double oxide layer in which an oxide film of chromium oxide (Cr 2 O 3 ) is formed inside the coating, and the evaporation of chromium can be prevented by the coating layer of nickel cobalt. Has been done.

また、特許文献4には、ステンレス鋼を主成分とする基材に酸化Coを主成分とする被膜を形成してなる燃料電池用インターコネクタの製造方法が開示されている。基材に対してCoメッキを行った後、そのCoメッキ層を酸化雰囲気下で酸化する酸化工程を行って、前記金属Coのメッキ層を酸化Coの被膜に変換するという手順で基材の表面に酸化Co被膜を設けた場合、Cr蒸発を抑制できると記載されている。一方で、金属Coの基材へ拡散する反応が優先的に起きた場合には、基材の耐酸化性が低下するため、Coメッキ前に基材の表面粗さ(Ra)を1.2μm以下とする研磨工程を行うことで、基材の耐酸化性を低下させにくくしている。特許文献7に記載されている酸化Coは一般にスピネル型構造を持つことが知られている。 Further, Patent Document 4 discloses a method for manufacturing an interconnector for a fuel cell, which is formed by forming a film containing Co oxide as a main component on a base material containing stainless steel as a main component. After Co-plating the base material, the surface of the base material is converted into a coating of Co-oxide by performing an oxidation step of oxidizing the Co-plated layer in an oxidizing atmosphere. It is described that Cr evaporation can be suppressed when a Co oxide film is provided on the surface. On the other hand, when the reaction of diffusing the metal Co to the base material occurs preferentially, the oxidation resistance of the base material is lowered, so that the surface roughness (Ra) of the base material is 1.2 μm before Co plating. By performing the following polishing steps, it is difficult to reduce the oxidation resistance of the base material. It is generally known that the oxidized Co described in Patent Document 7 has a spinel-type structure.

特開2007−16297号公報Japanese Unexamined Patent Publication No. 2007-16297 国際公開公報第2012/144600号International Publication No. 2012/144600 特開2012−119126号公報Japanese Unexamined Patent Publication No. 2012-119126 特開2011−192546号公報Japanese Unexamined Patent Publication No. 2011-192546

以上のように、Fe−Cr系合金からなる金属基材の表面に、金属CoまたはNi−Co合金をコーティングし、意図的に予備酸化処理を行うことによって表面を酸化させることでスピネル系の酸化Co被膜またはNi−Co酸化被膜を形成して、セパレータ、インターコネクタ、集電体として使用することは知られている。 As described above, the surface of a metal base material made of an Fe—Cr alloy is coated with a metal Co or Ni—Co alloy, and the surface is oxidized by intentionally performing a preliminary oxidation treatment to oxidize the spinel. It is known that a Co film or a Ni—Co oxide film is formed and used as a separator, an interconnector, and a current collector.

特許文献3に記載されているNi−Co合金のように、オーステナイト安定化元素であるNiやMn等を含む金属被膜を金属基材にコーティングした場合、NiやMn等が金属基材側に拡散すると、金属基材表面のフェライト組織を不安定化させるとともに、オーステナイト組織が安定化する。金属基材表面にオーステナイトが形成されると熱膨張係数が大きく増加するため、金属基材と被膜の層間剥離が生じたり、セルを構成する電極や電解質との熱膨張差が大きくなりセルの破損を引き起こしたりするリスクがある。また、Ni−Co酸化被膜を形成させるために一定時間表面処理(酸化処理)を行う必要がある。 When a metal film containing austenite stabilizing elements such as Ni and Mn is coated on a metal base material like the Ni-Co alloy described in Patent Document 3, Ni and Mn and the like diffuse to the metal base material side. Then, the ferrite structure on the surface of the metal base material is destabilized and the austenite structure is stabilized. When austenite is formed on the surface of the metal base material, the coefficient of thermal expansion increases significantly, causing delamination between the metal base material and the coating film, and the difference in thermal expansion between the electrodes and electrolytes that make up the cell increases, causing damage to the cell. There is a risk of causing. Further, it is necessary to perform surface treatment (oxidation treatment) for a certain period of time in order to form a Ni—Co oxide film.

特許文献4で開示されている技術はインターコネクタの金属基材の耐酸化性の向上と、クロム成分の揮散に代表されるインターコネクタに接続される部材に対する悪影響の防止を両立させるためのインターコネクタの製造方法であり、Coメッキ層中のCoが金属基材に拡散しないよう、金属基材の表面粗さを小さくし、かつ予備酸化処理を行い、表面に酸化Co膜を形成させるものである。すなわち、酸化Co膜は純粋なCo酸化物からなり、金属基材へのCoの拡散も、Coメッキ層への金属基材からの合金元素の拡散もさせないことに特徴がある。しかし、酸化Co膜は酸化膜の緻密性が十分とは言えず、酸化膜剥離の可能性があり、十分なCr被毒抑制の効果が得られない可能性がある。また、酸化Co被膜を形成させるために予備酸化処理を行う必要がある。 The technique disclosed in Patent Document 4 is an interconnector for both improving the oxidation resistance of the metal base material of the interconnector and preventing adverse effects on the member connected to the interconnector represented by the volatilization of the chromium component. This is a method for producing a Co oxide film on the surface by reducing the surface roughness of the metal base material and performing a preliminary oxidation treatment so that Co in the Co plating layer does not diffuse to the metal base material. .. That is, the Co oxide film is composed of a pure Co oxide, and is characterized in that neither the diffusion of Co into the metal substrate nor the diffusion of the alloying element from the metal substrate into the Co plating layer is allowed. However, it cannot be said that the Co oxide film has sufficient denseness of the oxide film, and there is a possibility that the oxide film is peeled off, so that a sufficient effect of suppressing Cr poisoning may not be obtained. In addition, it is necessary to perform a preliminary oxidation treatment in order to form a Co-oxide film.

以上より本発明の目的は、優れた耐酸化性を有し、Cr被毒を抑制した固体酸化物形燃料電池部材を提供することにある。また、本発明の目的は、固体酸化物形燃料電池部材及びその製造方法を提供することにある。 From the above, an object of the present invention is to provide a solid oxide fuel cell member having excellent oxidation resistance and suppressing Cr poisoning. Another object of the present invention is to provide a solid oxide fuel cell member and a method for manufacturing the same.

本発明者等は、上記目的のため、Co被膜を施す金属基材の組成を検討した。その結果、MnおよびCuを適量含有する耐酸化性に優れたFe−Cr系フェライト合金からなる金属基材において、固体酸化物形燃料電池の製造時および/または作動時の高温保持時に、金属基材からCo被膜へMnおよびCuが拡散することでMnおよびCuを含む(Co、Mn、Cu)のスピネル型酸化物層が形成しCr蒸発を抑制すること、また、金属基材と(Co、Mn、Cu)のスピネル型酸化物層の境界には、クロミア系酸化物層が形成され、スピネル型酸化物層及びクロミア系酸化物層から構成される二層の酸化物層によって耐酸化性が向上すること、及び長時間酸化後においても金属基材はフェライト組織を維持することを見出し、本発明に到達した。 The present inventors examined the composition of the metal base material to which the Co coating is applied for the above purpose. As a result, in a metal base material made of an Fe—Cr-based ferrite alloy having an appropriate amount of Mn and Cu and having excellent oxidation resistance, the metal group is used during the production and / or high temperature holding during operation of the solid oxide fuel cell. By diffusing Mn and Cu from the material to the Co coating, a spinel-type oxide layer containing Mn and Cu (Co, Mn, Cu) 3 O 4 is formed to suppress Cr evaporation, and the metal substrate and the metal substrate. (Co, Mn, Cu) on the boundary of the spinel-type oxide layer 3 O 4 is chromia-based oxide layer is formed, an oxide of two layers composed of spinel-type oxide layer and chromia-based oxide layer We have found that the layer improves the oxidation resistance and that the metal substrate maintains the ferrite structure even after long-term oxidation, and has reached the present invention.

即ち本発明の一態様は、金属基材の表層に金属被膜を有する、固体酸化物形燃料電池部材用被覆鋼材であって、前記金属基材は、質量%でC:0%超0.1%以下、Al:0.2%以下、Si:0.2%以下、Mn:0.1%以上1.0%以下、Cr:20.0%以上26.0%以下、Ni:0.1%以上1.0%以下、Cu:0.3%以上%4.0%以下、W:1.0%以上3.0%以下、La:0.02%以上0.12%以下、Zr:0.01%以上0.5%以下、La+Zr:0.03%以上0.52%以下、残部Fe及び不可避的不純物からなり、前記金属被膜は、厚さ0.5μm以上5.0μm以下のCo層を備えることを特徴とする、固体酸化物形燃料電池部材用被覆鋼材である。
好ましくは、前記金属基材は、前記MnおよびCuが、Mn:0.1%以上0.5%以下、Cu:0.3%以上2.0%以下である。
好ましくは、前記金属基材は、厚さ1.5mm以下の板形状である。
That is, one aspect of the present invention is a coated steel material for a solid oxide fuel cell member having a metal coating on the surface layer of the metal base material, and the metal base material has a mass% of C: more than 0% and 0.1. % Or less, Al: 0.2% or less, Si: 0.2% or less, Mn: 0.1% or more and 1.0% or less, Cr: 20.0% or more and 26.0% or less, Ni: 0.1 % Or more and 1.0% or less, Cu: 0.3% or more and% 4.0% or less, W: 1.0% or more and 3.0% or less, La: 0.02% or more and 0.12% or less, Zr: It is composed of 0.01% or more and 0.5% or less, La + Zr: 0.03% or more and 0.52% or less, the balance Fe and unavoidable impurities, and the metal coating has a thickness of 0.5 μm or more and 5.0 μm or less. It is a coated steel material for a solid oxide fuel cell member, which is characterized by having a layer.
Preferably, the metal base material contains Mn: 0.1% or more and 0.5% or less, and Cu: 0.3% or more and 2.0% or less.
Preferably, the metal base material has a plate shape having a thickness of 1.5 mm or less.

また、本発明の他の一態様は、上記の固体酸化物形燃料電池部材用被覆鋼材を用いた、固体酸化物形燃料電池部材であって、この固体酸化物形燃料電池部材は、前記金属基材の表層に酸化物被膜を有し、前記酸化物被膜は、クロミア系酸化物層であるA層と、前記A層の直上に形成され、Co、MnおよびCuを含むスピネル型酸化物層であるB層と、から構成されることを特徴とする、固体酸化物形燃料電池用部材である。 Further, another aspect of the present invention is a solid oxide fuel cell member using the above-mentioned coated steel material for a solid oxide fuel cell member, and the solid oxide fuel cell member is the metal. The surface layer of the base material has an oxide film, and the oxide film is a spinel-type oxide layer formed directly above the A layer, which is a chromia-based oxide layer, and containing Co, Mn, and Cu. It is a member for a solid oxide fuel cell, characterized in that it is composed of a layer B, which is a solid oxide fuel cell.

また、本発明の他の一態様は、上記の固体酸化物形燃料電池部材用被覆鋼材を固体酸化物形燃料電池に適用し、この固体酸化物形燃料電池の動作環境下において、上記の固体酸化物形燃料電池部材用被覆鋼材に形成されている金属被膜を酸化物被膜に変化させて固体酸化物形燃料電池用部材とし、上記の酸化物被膜は、クロミア系酸化物層であるA層と、このA層の直上に形成され、Co、MnおよびCuを含むスピネル型酸化物層であるB層と、から構成される、固体酸化物形燃料電池部材の製造方法である。 Further, in another aspect of the present invention, the above-mentioned coated steel material for a solid oxide type fuel cell member is applied to a solid oxide type fuel cell, and the above solid oxide type fuel cell is used in an operating environment. The metal film formed on the coated steel material for the oxide type fuel cell member is changed into an oxide film to form a solid oxide type fuel cell member, and the above oxide film is the A layer which is a chromae-based oxide layer. This is a method for manufacturing a solid oxide type fuel cell member, which is formed directly above the A layer and is composed of a B layer which is a spinel type oxide layer containing Co, Mn and Cu.

本発明によれば、特殊な予備酸化処理を行う必要がなく、長時間に渡り集電特性に優れ、Cr被毒を抑制した信頼性の高い固体酸化物形燃料電池部材と、その製造方法とを得ることができる。そして、これらのことに好適な固体酸化物形燃料電池部材用被覆鋼材を得ることができる。 According to the present invention, a highly reliable solid oxide fuel cell member that does not require special pre-oxidation treatment, has excellent current collecting characteristics for a long period of time, and suppresses Cr poisoning, and a method for manufacturing the same. Can be obtained. Then, a coated steel material for a solid oxide fuel cell member suitable for these can be obtained.

固体酸化物形燃料電池用被覆鋼材の未使用時における断面顕微鏡写真である。It is a cross-sectional micrograph of a solid oxide fuel cell coated steel material when not in use. 固体酸化物形燃料電池用被覆鋼材の850℃で4000時間加熱した後の断面顕微鏡写真である。It is a cross-sectional micrograph of a solid oxide fuel cell coated steel material after heating at 850 ° C. for 4000 hours. (a)固体酸化物形燃料電池用被覆鋼材の未使用時における、金属被膜領域から得られた[001]入射の電子回折像である。(b)稠密六方構造の[001]入射の電子回折シミュレーション像である。(A) It is an electron diffraction image of [001] incident obtained from a metal coating region when a solid oxide fuel cell coated steel material is not used. (B) It is an electron diffraction simulation image of [001] incident of a dense hexagonal structure. (a)固体酸化物形燃料電池用被覆鋼材の850℃で4000時間加熱した後の、金属基材領域から得られた[111]入射の電子回折像である。(b)フェライトの[111]入射の電子回折シミュレーション像である。(A) It is an electron diffraction image of [111] incident obtained from a metal base material region after heating a coated steel material for a solid oxide fuel cell at 850 ° C. for 4000 hours. (B) It is an electron diffraction simulation image of [111] incident of ferrite. (a)固体酸化物形燃料電池用被覆鋼材の850℃で4000時間加熱した後の、2層の酸化物層の内、上側に位置する酸化物層領域から得られた[110]入射の電子回折像である。(b)スピネル型構造の[110]入射の電子回折シミュレーション像である。(A) [110] Incident electrons obtained from the oxide layer region located on the upper side of the two oxide layers after heating the coated steel material for a solid oxide fuel cell at 850 ° C. for 4000 hours. It is a diffraction image. (B) It is an electron diffraction simulation image of [110] incident of a spinel type structure. (a)固体酸化物形燃料電池用被覆鋼材の850℃で4000時間加熱した後の、断面の反射電子像である。(b)電子線マイクロアナライザーによるCoの面分析結果である。(c)電子線マイクロアナライザーによるMnの面分析結果である。(d)電子線マイクロアナライザーによるCuの面分析結果である。(A) A reflected electron image of a cross section of a solid oxide fuel cell coated steel material after being heated at 850 ° C. for 4000 hours. (B) It is the surface analysis result of Co by the electron probe microanalyzer. (C) It is the surface analysis result of Mn by the electron probe microanalyzer. (D) It is the surface analysis result of Cu by the electron probe microanalyzer.

本発明の固体酸化物形燃料電池部材用被覆鋼材における金属基材について説明する。金属基材は、質量%でC:0%超0.1%以下、Al:0.2%以下、Si:0.2%以下、Mn:0.1%以上1.0%以下、Cr:20.0%以上26.0%以下、Ni:0.1%以上1.0%以下、Cu:0.3%以上%4.0%以下、W:1.0%以上3.0%以下、La:0.02以上0.12%以下、Zr:0.01以上0.5%以下、La+Zr:0.03%以上0.5%以下、残部Fe及び不可避的不純物からなる金属材料を用いる。
この組成のFe−Cr系合金は、フェライト系合金であり、金属基材表面にCo被膜を有する時、固体酸化物形燃料電池の作動温度において、Mn及びCuの金属被膜への拡散により、(Co、Mn、Cu)スピネル型酸化物層を形成してCrの蒸発を抑制するとともに、耐酸化性を向上させ、燃料電池の性能の低下を抑制することができる。
各元素の含有量を規定した理由は以下の通りである。なお、各元素の含有量は質量%として記す。
The metal base material in the coated steel material for a solid oxide fuel cell member of the present invention will be described. The metal base material contains C: more than 0% and 0.1% or less in mass%, Al: 0.2% or less, Si: 0.2% or less, Mn: 0.1% or more and 1.0% or less, Cr: 20.0% or more and 26.0% or less, Ni: 0.1% or more and 1.0% or less, Cu: 0.3% or more and% 4.0% or less, W: 1.0% or more and 3.0% or less , La: 0.02 or more and 0.12% or less, Zr: 0.01 or more and 0.5% or less, La + Zr: 0.03% or more and 0.5% or less, and a metal material composed of the balance Fe and unavoidable impurities is used. ..
The Fe-Cr alloy having this composition is a ferrite alloy, and when it has a Co coating on the surface of the metal substrate, it is caused by the diffusion of Mn and Cu into the metal coating at the operating temperature of the solid oxide fuel cell. Co, Mn, Cu) It is possible to form a 3 O 4 spinel type oxide layer to suppress the evaporation of Cr, improve the oxidation resistance, and suppress the deterioration of the performance of the fuel cell.
The reasons for defining the content of each element are as follows. The content of each element is described as% by mass.

<C:0%超0.1%以下>
Cは、Crと結びつくことにより母材のCr量を減少させ、耐酸化性を低下させる元素である。そのため、耐酸化性を向上させるためには、Cをできる限り低くすることが有効であり、本発明では0.1%以下の範囲に限定する。Cの好ましい上限は0.04%である。
但し、Zrを含む本発明の固体酸化物形燃料電池部材用被覆鋼材の場合、CがZr炭化物(Nも存在する場合はZr炭窒化物)を形成するところ、Cが低すぎると、Zr炭化物を形成しないZrがフェライト基地中に固溶してもなお余剰のZrが残存する場合がある。余剰のZrはFeと反応してLaves相等の金属間化合物を形成して析出し耐酸化性を低下させる。そのため、Cは0%を超える必要がある。Cの好ましい下限は0.001%である。
<C: More than 0% and less than 0.1%>
C is an element that reduces the amount of Cr in the base material by combining with Cr and lowers the oxidation resistance. Therefore, in order to improve the oxidation resistance, it is effective to make C as low as possible, and in the present invention, it is limited to the range of 0.1% or less. The preferred upper limit of C is 0.04%.
However, in the case of the coated steel material for a solid oxide fuel cell member of the present invention containing Zr, C forms Zr carbide (Zr carbide if N is also present), but if C is too low, Zr carbide Even if Zr that does not form a solid solution is dissolved in the ferrite matrix, excess Zr may still remain. The excess Zr reacts with Fe to form an intermetallic compound such as the Laves phase and precipitates to reduce the oxidation resistance. Therefore, C needs to exceed 0%. The preferable lower limit of C is 0.001%.

<Al:0.2%以下>
Alは、固体酸化物形燃料電池の作動温度において、クロミア系酸化物近傍の金属組織中にAlを粒子状、及び針状に形成する。なお、クロミア系酸化物とは、クロミアを主体とする酸化物のことである。これにより、Crの外方拡散を不均一にして安定なクロミア系酸化物層の形成を妨げることで、耐酸化性を劣化させる。このため、本発明では0.2%以下(0%を含む)の範囲に限定する。
<Al: 0.2% or less>
Al forms Al 2 O 3 in the form of particles and needles in the metal structure near the chromium-based oxide at the operating temperature of the solid oxide fuel cell. The chromia-based oxide is an oxide mainly composed of chromia. As a result, the outward diffusion of Cr becomes non-uniform and the formation of a stable chromia-based oxide layer is hindered, thereby deteriorating the oxidation resistance. Therefore, in the present invention, the range is limited to 0.2% or less (including 0%).

<Si:0.2%以下>
Siは、固体酸化物形燃料電池の作動温度において、クロミア系酸化物層と母材の界面付近にSiO膜を形成する。SiOの電気比抵抗がクロミア系酸化物層よりも高いことから、電気伝導性を低下させる。また、上述のAlの形成と同様に、安定なクロミア系酸化物層の形成を妨げることで、耐酸化性を劣化させる。このため、本発明では0.2%以下(0%を含む)の範囲に限定する。
<Si: 0.2% or less>
Si forms a SiO 2 film near the interface between the chromium-based oxide layer and the base material at the operating temperature of the solid oxide fuel cell. Since the electrical resistivity of SiO 2 is higher than that of the chromium-based oxide layer, the electrical conductivity is lowered. Further, similarly to the formation of Al 2 O 3 described above, the oxidation resistance is deteriorated by hindering the formation of a stable chromia-based oxide layer. Therefore, in the present invention, the range is limited to 0.2% or less (including 0%).

<Mn:0.1%以上1.0%以下>
Mnは、金属基材が表面にCo被膜を有する時、700℃〜900℃程度の作動温度において、Cuとともに金属基材からCo被膜中に拡散してスピネル型酸化物を形成する元素である。Co、Mnを含むスピネル型酸化物層は、クロミア系酸化物層の外側(表面側)に形成される。このスピネル型酸化物層は、固体酸化物形燃料電池の電解質・電極等のセラミックス部品に蒸着して燃料電池の性能を劣化させる複合酸化物を形成するCrが、固体酸化物形燃料電池用鋼から蒸発するのを防ぐ保護効果を有する。このため、最低限0.1%を必要とする。
一方、過度に添加すると、スピネル型酸化物層中のMn含有量が多くなり、酸化被膜が厚くなり、耐酸化性および導電性が悪くなる恐れがある。従って、Mnは1.0%を上限とする。好ましいMnの上限は0.5%である。
<Mn: 0.1% or more and 1.0% or less>
Mn is an element that, when the metal base material has a Co coating on the surface, diffuses from the metal base material into the Co coating together with Cu at an operating temperature of about 700 ° C. to 900 ° C. to form a spinel-type oxide. The spinel-type oxide layer containing Co and Mn is formed on the outside (surface side) of the chromia-based oxide layer. In this spinel type oxide layer, Cr forming a composite oxide that is deposited on ceramic parts such as electrolytes and electrodes of the solid oxide fuel cell to deteriorate the performance of the fuel cell is a steel for the solid oxide fuel cell. It has a protective effect that prevents it from evaporating from. Therefore, a minimum of 0.1% is required.
On the other hand, if it is added excessively, the Mn content in the spinel-type oxide layer increases, the oxide film becomes thick, and the oxidation resistance and conductivity may deteriorate. Therefore, Mn has an upper limit of 1.0%. The preferred upper limit of Mn is 0.5%.

<Cr:20.0%以上26.0%以下>
Crは、金属基材のフェライト組織を維持するため、および固体酸化物形燃料電池の作動温度において、緻密なクロミア系酸化物層の生成により、優れた耐酸化性を実現するために必要な元素である。良好な耐酸化性及び電気伝導性を得るため最低限20.0%を必要とする。好ましいCrの下限は22.0%であり、さらに好ましいCrの下限は23.0%である。
しかしながら、過度の添加は耐酸化性向上にさほど効果がないばかりか加工性の劣化を招くので上限を26.0%に限定する。好ましいCrの上限は25.0%である。
<Cr: 20.0% or more and 26.0% or less>
Cr is an element necessary for maintaining the ferrite structure of a metal substrate and for achieving excellent oxidation resistance by forming a dense chromium-based oxide layer at the operating temperature of a solid oxide fuel cell. Is. A minimum of 20.0% is required to obtain good oxidation resistance and electrical conductivity. The lower limit of Cr that is preferable is 22.0%, and the lower limit of Cr that is more preferable is 23.0%.
However, excessive addition is not so effective in improving the oxidation resistance and causes deterioration in workability, so the upper limit is limited to 26.0%. The preferred upper limit of Cr is 25.0%.

<Ni:0.1%以上1.0%以下>
Niは、少量添加することで靭性の向上に効果がある。また、Cuを含む鋼の熱間加工性を改善する効果があるため、最低限0.1%を必要とする。一方、Niはオーステナイト生成元素であり、過度に含有した場合、フェライト―オーステナイトの二相組織となり易く、熱膨張係数を増加させる。また、本発明のようなフェライト系ステンレス鋼を製造する際に、例えば、リサイクル材の溶解原料を用いたりすると、不可避的に混入する場合もある。Niの含有量が多くなりすぎると、セラミックス系の部品との熱膨張差により接合性が低下したりセラミックス部品が破損したりすることが懸念されるため、多量の添加または混入は好ましくない。そのため本発明においては、Niの上限を1.0%とする。
<Ni: 0.1% or more and 1.0% or less>
Ni is effective in improving toughness by adding a small amount. Further, since it has the effect of improving the hot workability of steel containing Cu, a minimum of 0.1% is required. On the other hand, Ni is an austenite-forming element, and when it is excessively contained, it tends to have a duplex structure of ferrite-austenite and increases the coefficient of thermal expansion. Further, when producing a ferrite-based stainless steel as in the present invention, for example, when a melting raw material of a recycled material is used, it may be inevitably mixed. If the Ni content is too high, there is a concern that the bondability may be lowered or the ceramic parts may be damaged due to the difference in thermal expansion with the ceramic parts, so that a large amount of addition or mixing is not preferable. Therefore, in the present invention, the upper limit of Ni is set to 1.0%.

<Cu:0.3%以上%4.0%以下>
Cuは、金属基材が表面にCo被膜を有する時、700℃〜900℃程度の作動温度において、金属基材からCo被膜中に拡散し、クロミア系酸化物層上に形成されるCo、Mnを含むスピネル型酸化物を緻密化する。このスピネル型酸化物により、クロミア系酸化物層からのCrの蒸発を抑制する効果がある。そのため、最低限0.3%を必要とする。一方、Cuを過度に添加すると母相中にCu相が析出して、Cu相の存在場所で緻密なクロミア系酸化物層が形成されにくくなり、耐酸化性が低下したり、熱間加工性が低下したり、フェライト組織が不安定になる可能性があるので、Cuの上限を4.0%とした。好ましいCuの上限は2.0%以下である。
<Cu: 0.3% or more and 4.0% or less>
When the metal substrate has a Co film on its surface, Cu diffuses from the metal substrate into the Co film at an operating temperature of about 700 ° C. to 900 ° C., and Co and Mn are formed on the chromium-based oxide layer. The spinel-type oxide containing is densified. This spinel-type oxide has the effect of suppressing the evaporation of Cr from the chromium-based oxide layer. Therefore, a minimum of 0.3% is required. On the other hand, when Cu is added excessively, the Cu phase is precipitated in the matrix phase, making it difficult to form a dense chromia-based oxide layer at the location of the Cu phase, resulting in a decrease in oxidation resistance and hot workability. The upper limit of Cu was set to 4.0% because there is a possibility that the amount of copper may decrease or the ferrite structure may become unstable. The upper limit of preferred Cu is 2.0% or less.

<La:0.02%以上0.12%以下>
Laは、少量添加により、主としてCrを含む酸化被膜を緻密化させ、密着性を向上させることによって、良好な耐酸化性を発揮させており、添加が不可欠である。Laは0.02%より添加が少ないと酸化被膜の緻密性、密着性を向上させる効果が少なく、一方0.12%より多く添加するとLaを含む酸化物等の介在物が増加し熱間加工性が劣化する恐れがあるため、Laは0.02%以上0.12%以下とする。
<La: 0.02% or more and 0.12% or less>
La is indispensable to be added because it exhibits good oxidation resistance by densifying the oxide film containing Cr mainly by adding a small amount and improving the adhesion. When La is added less than 0.02%, the effect of improving the denseness and adhesion of the oxide film is small, while when added more than 0.12%, inclusions such as oxides containing La increase and hot working. La is 0.02% or more and 0.12% or less because the property may deteriorate.

<Zr:0.01%以上0.5%以下>
Zrもまた、少量添加により酸化被膜を緻密化させ、酸化被膜の密着性を向上させることで、耐酸化性、及び酸化被膜の電気伝導度を大幅に改善する効果を有する。Zrは0.01%より少ないと酸化被膜の緻密性、密着性を向上させる効果が少なく、一方、0.5%より多く添加するとZrを含む粗大な化合物が多く形成され、熱間加工性及び冷間加工性が劣化する恐れがある。また、Feと反応してLaves相等の金属間化合物を形成して析出し耐酸化性を低下させることから、Zrは0.01%以上0.5%以下とする。
<Zr: 0.01% or more and 0.5% or less>
Zr also has the effect of significantly improving the oxidation resistance and the electrical conductivity of the oxide film by densifying the oxide film by adding a small amount and improving the adhesion of the oxide film. When Zr is less than 0.01%, the effect of improving the denseness and adhesion of the oxide film is small, while when it is added more than 0.5%, many coarse compounds containing Zr are formed, resulting in hot workability and hot workability. Cold workability may deteriorate. Further, since it reacts with Fe to form an intermetallic compound such as a Laves phase and precipitates to lower the oxidation resistance, Zr is set to 0.01% or more and 0.5% or less.

<La+Zr:0.03%以上0.52%以下>
本発明では、前述のLa及びZrについて、いずれも優れた高温での耐酸化性を向上させる効果を有することから複合添加が好ましいが、その場合、LaとZrの合計が0.03%より少ないと耐酸化性向上への効果が少なく、一方、0.52%を超えて添加するとLaやZrを含む化合物が多く生成することによって熱間加工性や冷間加工性の低下が心配されることから、LaとZrは合計で0.03%以上0.52%以下とする。
<La + Zr: 0.03% or more and 0.52% or less>
In the present invention, the above-mentioned La and Zr are all preferably combined because they have an excellent effect of improving the oxidation resistance at high temperature, but in that case, the total of La and Zr is less than 0.03%. On the other hand, if it is added in excess of 0.52%, a large amount of compounds containing La and Zr are produced, which may reduce hot workability and cold workability. Therefore, La and Zr are 0.03% or more and 0.52% or less in total.

<W:1.0%以上3.0%以下>
一般に、固溶強化等に対してWと同じ作用効果を発揮する元素としてMoが知られている。しかし、WはMoと比較して、固体酸化物形燃料電池の作動温度で酸化したとき、Fe−Cr系フェライト合金の金属基材中のCrの外方拡散を適度に抑制する効果があり、緻密なクロミア系酸化物層の過度な成長を抑制して、安定した保護作用を長時間維持するのに有効である。そのため、本発明では、Wを単独で必須添加する。
W添加により、Fe−Cr系フェライト合金の金属基材中のCrの外方拡散を適度に抑制することで、クロミア系酸化物層形成後の合金内部のCr量の減少を抑制することができる。これにより、緻密なクロミア系酸化物層が長時間維持されるので、合金の異常酸化を防止して、優れた耐酸化性を長時間維持することができる。この効果を発揮するためには最低限1.0%を必要とする。しかし、Wを3.0%を超えて添加すると熱間加工性が劣化するため、Wは3.0を上限とする。
<W: 1.0% or more and 3.0% or less>
Generally, Mo is known as an element that exerts the same action and effect as W on solid solution strengthening and the like. However, as compared with Mo, W has an effect of appropriately suppressing the outward diffusion of Cr in the metal base material of the Fe—Cr based ferrite alloy when oxidized at the operating temperature of the solid oxide fuel cell. It is effective in suppressing excessive growth of a dense chromia-based oxide layer and maintaining a stable protective action for a long period of time. Therefore, in the present invention, W is essentially added alone.
By adding W, it is possible to appropriately suppress the outward diffusion of Cr in the metal base material of the Fe—Cr-based ferrite alloy, thereby suppressing the decrease in the amount of Cr inside the alloy after the formation of the chromium-based oxide layer. .. As a result, the dense chromia-based oxide layer is maintained for a long time, so that abnormal oxidation of the alloy can be prevented and excellent oxidation resistance can be maintained for a long time. A minimum of 1.0% is required to exert this effect. However, if W is added in excess of 3.0%, the hot workability deteriorates, so the upper limit of W is 3.0.

本発明では、上述した元素以外は、Fe及び不可避的不純物とする。以下、代表的な不純物とその好ましい上限を以下に記しておく。なお、不純物元素であるため、各元素の好ましい下限は0%である。
<Mo:0.2%以下>
Moは、耐酸化性を低下させることから積極的な添加は行わないが、0.2%以下の含有は酸化特性に大きく影響しないので0.2%以下に制限する。
<S:0.015%以下>
Sは、希土類元素と硫化物系介在物を形成して、耐酸化性に効果をもつ有効な希土類元素量を低下させ、耐酸化性を低下させるだけでなく、熱間加工性、表面肌を劣化させるため、0.015%以下にすると良い。好ましくは、0.008%以下が良い。
<P:0.04%以下>
Pは酸化被膜を形成するCrよりも酸化しやすい元素であり、耐酸化性を劣化させるため、0.04%以下に制限すると良い。好ましくは、0.03%以下が良く、更に好ましくは、0.02%以下、更には0.01%以下が良い。
<B:0.003%以下>
Bは、約700℃以上の高温で酸化被膜の成長速度を大きくし、耐酸化性を劣化させる。また、酸化被膜の表面粗さを大きくして酸化被膜と電極との接触面積を小さくすることによって接触抵抗を劣化させる。そのため、Bは0.003%以下に制限すると良く、できるだけ0%まで低減させる方が良い。好ましい上限は0.002%以下が良く、更に好ましくは0.001%未満が良い。
<H:0.0003%以下>
Hは、Fe−Cr系フェライト母相中に過剰に存在すると、粒界等の欠陥部へ集まり易く、水素脆化を起こすことで製造中に割れを発生させる場合があることから、0.0003%以下に制限すると良い。更に好ましくは0.0002%以下が良い。
In the present invention, Fe and unavoidable impurities other than the above-mentioned elements are used. Hereinafter, typical impurities and their preferable upper limits are described below. Since it is an impurity element, the preferable lower limit of each element is 0%.
<Mo: 0.2% or less>
Mo is not positively added because it lowers the oxidation resistance, but the content of 0.2% or less does not significantly affect the oxidation characteristics, so the content is limited to 0.2% or less.
<S: 0.015% or less>
S forms sulfide-based inclusions with rare earth elements to reduce the amount of effective rare earth elements that have an effect on oxidation resistance, which not only lowers the oxidation resistance, but also improves hot workability and surface skin. Since it deteriorates, it is preferable to make it 0.015% or less. Preferably, it is 0.008% or less.
<P: 0.04% or less>
P is an element that is more easily oxidized than Cr that forms an oxide film, and in order to deteriorate the oxidation resistance, it is preferable to limit it to 0.04% or less. It is preferably 0.03% or less, more preferably 0.02% or less, and further preferably 0.01% or less.
<B: 0.003% or less>
B increases the growth rate of the oxide film at a high temperature of about 700 ° C. or higher, and deteriorates the oxidation resistance. Further, the contact resistance is deteriorated by increasing the surface roughness of the oxide film and reducing the contact area between the oxide film and the electrode. Therefore, B should be limited to 0.003% or less, and should be reduced to 0% as much as possible. The upper limit is preferably 0.002% or less, more preferably less than 0.001%.
<H: 0.0003% or less>
If H is excessively present in the Fe—Cr-based ferrite matrix, it easily gathers at defective parts such as grain boundaries and may cause hydrogen embrittlement, which may cause cracks during production. Therefore, 0.0003 It is good to limit it to% or less. More preferably, 0.0002% or less is preferable.

次に、本発明の固体酸化物形燃料電池部材用被覆鋼材における、金属基材の表層に形成される金属被膜について説明する。
本発明の金属被膜はCo層を備え、Co層はCoとその他不可避的不純物から成る。この金属被膜を有する本発明の固体酸化物形燃料電池用被覆鋼材は700℃〜900℃程度の作動温度にて、Co、MnおよびCuを含むスピネル型酸化物層を形成し、燃料電池部材の耐Cr被毒および耐酸化性に貢献する。
不可避的不純物のうち、オーステナイト安定化元素であるNiは、金属基材側に拡散すると、金属基材内の表面近傍にオーステナイト相が形成され、熱膨張係数が増加し、金属基材と酸化物被膜の層間剥離が生じることから有害な元素である。そのため、Niは0.2%以下が好ましく、0.1%以下がさらに好ましい。また、Mnもオーステナイト安定化元素であるが、Niより影響力が小さく、少量の含有は許容でき、Co、Mnを含むスピネル型酸化物の形成にも有効であるものの、金属基材中にMnを含む場合、Co被膜中にMnを含有する必要はなく、Mnを含まないCo膜の方が製造性も良好であることから、Mnは0.5%以下が好ましく、さらに好ましくは0.1%以下がよい。
Next, the metal coating formed on the surface layer of the metal base material in the coated steel material for the solid oxide fuel cell member of the present invention will be described.
The metal coating of the present invention comprises a Co layer, which is composed of Co and other unavoidable impurities. The coated steel material for a solid oxide fuel cell of the present invention having this metal coating forms a spinel-type oxide layer containing Co, Mn and Cu at an operating temperature of about 700 ° C. to 900 ° C. to form a fuel cell member. Contributes to Cr poisoning resistance and oxidation resistance.
Among the unavoidable impurities, when Ni, which is an austenite stabilizing element, diffuses toward the metal base material, an austenite phase is formed near the surface in the metal base material, the thermal expansion coefficient increases, and the metal base material and oxides. It is a harmful element because delamination of the film occurs. Therefore, Ni is preferably 0.2% or less, more preferably 0.1% or less. Mn is also an austenite stabilizing element, but it has a smaller influence than Ni, and although it can be contained in a small amount and is effective for forming spinel-type oxides containing Co and Mn, Mn is contained in the metal substrate. When Mn is contained, it is not necessary to contain Mn in the Co film, and the Co film containing no Mn has better manufacturability. Therefore, the Mn is preferably 0.5% or less, more preferably 0.1. % Or less is good.

金属被膜の形成方法は、金属基材への密着性に優れた緻密な被膜を形成する任意の方法を選択することができる。好ましい被膜形成方法としては、比較的簡易に薄い被膜を形成することができるため、電気メッキ、無電解メッキが挙げられる。 As the method for forming the metal film, any method for forming a dense film having excellent adhesion to the metal substrate can be selected. Preferred film forming methods include electroplating and electroless plating because a thin film can be formed relatively easily.

固体酸化物形燃料電池用被覆鋼材として未使用である状態において、金属被膜の厚さは0.5〜5.0μmであることが好ましい。0.5μm未満であると、スピネル型酸化物被膜が薄くなり、Cr蒸発を抑制する効果が不十分になる。そのため、下限を0.5μmとする。好ましい金属被膜の厚さの下限は1.0μmであり、より好ましい金属被膜の厚さの下限は1.5μmである。一方、5.0μm超えると、酸化物被膜が厚くなり、導電性が低下するだけでなく、固体酸化物形燃料電池の繰り返し作動における熱サイクルにより、酸化物層の剥がれが生じる恐れがある。そのため、上限を5.0μmとする。より好ましい金属被膜の厚みの上限は、4.5μmである。 The thickness of the metal coating is preferably 0.5 to 5.0 μm in a state where it is not used as a coating steel material for a solid oxide fuel cell. If it is less than 0.5 μm, the spinel-type oxide film becomes thin and the effect of suppressing Cr evaporation becomes insufficient. Therefore, the lower limit is set to 0.5 μm. The lower limit of the preferable metal film thickness is 1.0 μm, and the lower limit of the more preferable metal film thickness is 1.5 μm. On the other hand, if it exceeds 5.0 μm, not only the oxide film becomes thick and the conductivity decreases, but also the oxide layer may be peeled off due to the thermal cycle in the repeated operation of the solid oxide fuel cell. Therefore, the upper limit is set to 5.0 μm. A more preferable upper limit of the thickness of the metal coating is 4.5 μm.

結晶粒界は結晶粒内に比べて原子の拡散速度が速いため、固体酸化物形燃料電池の作動温度において、金属基材におけるMn及びCuの金属被膜への拡散を促進する。そのため、固体酸化物形燃料電池用被覆鋼材として未使用である状態において、金属被膜の結晶粒は金属基材表面に対して垂直に近い方位に結晶粒界を有している方が好ましい。この時、「金属基材表面に対して垂直に近い方位に結晶粒界を有している」とは、図1に示すように被覆鋼材における金属基材と金属被膜の境界を電子顕微鏡で拡大して観察した際に、金属被膜に観察される結晶粒界が、金属基材と金属被膜の境界面の垂直方位に対して、0°〜45°となることを意味する。 Since the grain boundaries have a higher atomic diffusion rate than those in the crystal grains, the diffusion of Mn and Cu in the metal film on the metal substrate is promoted at the operating temperature of the solid oxide fuel cell. Therefore, when it is not used as a coated steel material for a solid oxide fuel cell, it is preferable that the crystal grains of the metal coating have grain boundaries in an orientation close to perpendicular to the surface of the metal base material. At this time, "having grain boundaries in an orientation close to perpendicular to the surface of the metal base material" means that the boundary between the metal base material and the metal coating in the coated steel material is enlarged with an electron microscope as shown in FIG. This means that the grain boundaries observed in the metal film are 0 ° to 45 ° with respect to the vertical direction of the interface between the metal base material and the metal film.

金属被膜形成後から、固体酸化物形燃料電池用被覆鋼材として未使用である状態において、Co金属被膜は常温で稠密六方晶の結晶構造を有しており、その(001)面の格子定数は約0.25nmであることが知られている。一方、金属基材である体心立方構造をもつFe−Cr系フェライト合金の(110)面の最近接原子間距離は約0.25nmであり、Coの格子定数と非常に近いことから良好な方位関係をもって膜形成が可能である。これは膜の密着性や結晶方位制御にも有利である。Co膜中に不純物元素や合金元素が多く含まれると格子定数が変化するため、金属基材との密着性が変化することが懸念されることから、Co膜は稠密六方晶の結晶構造を有していることが好ましい。 After the metal film is formed, the Co metal film has a dense hexagonal crystal structure at room temperature in a state where it is not used as a coating steel material for solid oxide fuel cells, and its (001) plane lattice constant is It is known to be about 0.25 nm. On the other hand, the closest atom-to-atom distance of the (110) plane of the Fe—Cr-based ferrite alloy having a body-centered cubic structure, which is a metal base material, is about 0.25 nm, which is good because it is very close to the lattice constant of Co. Film formation is possible with an orientation relationship. This is also advantageous for film adhesion and crystal orientation control. Since the lattice constant changes when a large amount of impurity elements and alloying elements are contained in the Co film, there is a concern that the adhesion to the metal substrate may change. Therefore, the Co film has a dense hexagonal crystal structure. It is preferable to do so.

次に、本発明の固体酸化物形燃料電池部材用被覆鋼材の金属基材における、板厚の範囲を規定した理由を述べる。
本発明の金属基材は圧延によって供せられ、その板厚は1.5mm以下にすることが良い。一般に高温環境下で使用される合金の耐酸化性は板厚が薄くなるにつれて低下し、また合金素材の性質をより顕著に反映することが知られている。本発明は上述した合金組成を達成することで特に薄板における耐酸化性を向上させることができる。そのため、本発明の固体酸化物形燃料電池用被覆鋼材の板厚の好ましい上限を1.5mmとした。なお、板厚が1.5mm超であった場合においても本発明の合金組成を達成することで固体酸化物形燃料電池用被覆鋼材の耐酸化性の向上が図られることは言うまでもない。
Next, the reason for defining the range of plate thickness in the metal base material of the coated steel material for the solid oxide fuel cell member of the present invention will be described.
The metal substrate of the present invention is provided by rolling, and the plate thickness thereof is preferably 1.5 mm or less. It is known that the oxidation resistance of alloys generally used in a high temperature environment decreases as the plate thickness decreases, and more significantly reflects the properties of the alloy material. The present invention can improve the oxidation resistance especially in a thin plate by achieving the above-mentioned alloy composition. Therefore, the preferable upper limit of the plate thickness of the coated steel material for the solid oxide fuel cell of the present invention is set to 1.5 mm. Needless to say, even when the plate thickness is more than 1.5 mm, the oxidation resistance of the coated steel material for a solid oxide fuel cell can be improved by achieving the alloy composition of the present invention.

本発明の固体酸化物形燃料電池部材用被覆鋼材を用いることで、固体酸化物形燃料電池の作動温度である700℃〜900℃(動作環境下)において、金属基材のMn及びCuがCo被膜側に拡散し、Co、Mn及びCuを有するスピネル型酸化物層が形成する。また、金属基材とスピネル型酸化物層の境界には、クロミア系酸化物層が形成される。この二層の酸化物被膜の構造により、優れた耐酸化性と、Cr被毒の抑制が実現する。言い換えると、本発明の固体酸化物形燃料電池部材用被覆鋼材を用いることで、図2に示すような、金属基材の表層に二層の酸化物被膜を有する、優れた耐酸化性とCr被毒の抑制を実現した固体酸化物形燃料電池部材を得ることができる。この時、前記酸化物被膜はクロミア系酸化物層であるA層と、A層の直上に形成され、Co、MnおよびCuを含むスピネル型酸化物層であるB層と、から構成される。
クロミア系酸化物層であるA層の直上に形成されスピネル型酸化物層であるB層は、Coを主成分とする酸化物層である。Coのみからなるスピネル型酸化物層は、酸化膜の緻密性、安定性が十分ではなく、厚さが約1μm以上になると剥離等が起こることが懸念される。本発明規定のMn、Cuを含むFe−Cr系フェライト合金からなる金属基材からCo金属膜中にMn、Cuが拡散して酸化することで、Co、MnおよびCuを含むスピネル型酸化物層がA層の直上に形成されると、スピネル型酸化物層の密着性、緻密性、安定性が向上し、厚さが増しても剥離しにくくなり、またMn、Cuによりスピネル型酸化物層の導電性も向上する。
By using the coated steel material for the solid oxide fuel cell member of the present invention, Mn and Cu of the metal base material are Co. It diffuses to the coating side to form a spinel-type oxide layer having Co, Mn and Cu. In addition, a chromia-based oxide layer is formed at the boundary between the metal substrate and the spinel-type oxide layer. Due to the structure of this two-layer oxide film, excellent oxidation resistance and suppression of Cr poisoning are realized. In other words, by using the coated steel material for the solid oxide fuel cell member of the present invention, as shown in FIG. 2, it has two oxide coatings on the surface layer of the metal base material, and has excellent oxidation resistance and Cr. It is possible to obtain a solid oxide fuel cell member that suppresses poisoning. At this time, the oxide film is composed of a layer A, which is a chromia-based oxide layer, and a layer B, which is a spinel-type oxide layer formed directly above the layer A and containing Co, Mn, and Cu.
The B layer, which is a spinel-type oxide layer formed directly above the A layer, which is a chromia-based oxide layer, is an oxide layer containing Co as a main component. The spinel-type oxide layer composed of only Co does not have sufficient density and stability of the oxide film, and there is a concern that peeling or the like may occur when the thickness is about 1 μm or more. A spinel-type oxide layer containing Co, Mn and Cu by diffusing and oxidizing Mn and Cu in a Co metal film from a metal base material made of an Fe—Cr-based ferrite alloy containing Mn and Cu specified in the present invention. Is formed directly above the A layer, the adhesion, denseness, and stability of the spinel-type oxide layer are improved, and even if the thickness is increased, it is difficult to peel off, and the spinel-type oxide layer is formed by Mn and Cu. The conductivity of is also improved.

以上のことによって、金属基材の表層に酸化物被膜を有する、固体酸化物形燃料電池部材であって、上記の金属基材は、質量%でC:0%超0.1%以下、Al:0.2%以下、Si:0.2%以下、Mn:0.1%以上1.0%以下、Cr:20.0%以上26.0%以下、Ni:0.1%以上1.0%以下、Cu:0.3%以上%4.0%以下、W:1.0%以上3.0%以下、La:0.02%以上0.12%以下、Zr:0.01%以上0.5%以下、La+Zr:0.03%以上0.52%以下、残部Fe及び不可避的不純物からなり、上記の酸化物被膜は、クロミア系酸化物層であるA層と、このA層の直上に形成され、Co、MnおよびCuを含むスピネル型酸化物層であるB層と、から構成される、固体酸化物形燃料電池用部材とすることができる。
好ましくは、上記のMnおよびCuが、質量%でMn:0.1%以上0.5%以下、Cu:0.3%以上2.0%以下である。また、好ましくは、上記の金属基材が、厚さ1.5mm以下の板形状である。
As described above, the solid oxide fuel cell member having an oxide film on the surface layer of the metal base material, the above-mentioned metal base material has a mass% of C: more than 0% and 0.1% or less, Al. : 0.2% or less, Si: 0.2% or less, Mn: 0.1% or more and 1.0% or less, Cr: 20.0% or more and 26.0% or less, Ni: 0.1% or more 1. 0% or less, Cu: 0.3% or more and 4.0% or less, W: 1.0% or more and 3.0% or less, La: 0.02% or more and 0.12% or less, Zr: 0.01% It is composed of 0.5% or less, La + Zr: 0.03% or more and 0.52% or less, the balance Fe and unavoidable impurities, and the above oxide film is an A layer which is a chromia oxide layer and this A layer. It can be a member for a solid oxide fuel cell formed directly above the solid oxide fuel cell and composed of a layer B which is a spinel type oxide layer containing Co, Mn and Cu.
Preferably, the Mn and Cu are Mn: 0.1% or more and 0.5% or less, and Cu: 0.3% or more and 2.0% or less in mass%. Further, preferably, the metal base material has a plate shape having a thickness of 1.5 mm or less.

以下の実施例で本発明を更に詳しく説明するが、これら実施例によって本発明が限定されるものではない。
本発明の金属基材を、真空誘導炉または、真空精錬炉を用いて鋼塊を作製した。真空溶解または真空精錬時には、C、Si、Al及び不純物元素を規定内に低く抑えるために、操業条件を制御して溶解を行った。ここで言う操業条件とは、例えば、原料の厳選、炉内真空雰囲気の高真空化、Arバブリング等を単独或いは幾つかを組み合わせた操業条件である。
得られた鋼塊は、質量%で、C:0.02%、Al:0.053%、Si:0.08%、Mn:0.27%、Cr:24.05%、Ni:0.59%、Cu:0.9%、W:2.02%、Zr:0.21%、La:0.06%、残部Fe及び不可避的不純物であり、不可避的不純物のうち、Mo、P、B、HはそれぞれMo≦0.2%、P≦0.04%、B<0.001%、H≦0.0003%の範囲であった。
その後、鋼塊を熱間鍛造、熱間圧延、冷間圧延などの塑性加工によって1mm厚の寸法に加工した後、950℃で数分の焼鈍を行って焼鈍材とした。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
A steel ingot was produced from the metal substrate of the present invention using a vacuum induction furnace or a vacuum smelting furnace. During vacuum melting or vacuum refining, melting was performed under controlled operating conditions in order to keep C, Si, Al and impurity elements within the specified range. The operating conditions referred to here are, for example, operating conditions in which the raw materials are carefully selected, the vacuum atmosphere in the furnace is increased, Ar bubbling, etc. are used alone or in combination.
The obtained ingots in mass% were C: 0.02%, Al: 0.053%, Si: 0.08%, Mn: 0.27%, Cr: 24.05%, Ni: 0. 59%, Cu: 0.9%, W: 2.02%, Zr: 0.21%, La: 0.06%, balance Fe and unavoidable impurities. Among the unavoidable impurities, Mo, P, B and H were in the ranges of Mo ≦ 0.2%, P ≦ 0.04%, B <0.001%, and H ≦ 0.0003%, respectively.
Then, the ingot was processed into a size of 1 mm by plastic working such as hot forging, hot rolling, and cold rolling, and then annealed at 950 ° C. for several minutes to obtain an annealed material.

上記の焼鈍材から10mm(w)×10mm(l)×1mm(t)の板状試験片を切り出し、板状試験片の表面をサンドペーパーを用いて♯1000まで研磨した。その後、板状試験片の表面に、厚さが0.5μm、1.0μm、4.0μmのCo被膜をめっきし、表1に示す被覆鋼材を得た。この時、比較例としてCoメッキを実施しない板状試験片を用意した。 A 10 mm (w) × 10 mm (l) × 1 mm (t) plate-shaped test piece was cut out from the above-mentioned annealed material, and the surface of the plate-shaped test piece was polished to # 1000 using sandpaper. Then, the surface of the plate-shaped test piece was plated with a Co coating having a thickness of 0.5 μm, 1.0 μm, and 4.0 μm to obtain a coated steel material shown in Table 1. At this time, as a comparative example, a plate-shaped test piece without Co-plating was prepared.

Figure 2021150207
Figure 2021150207

上記板状試験片を用いて、各種試験を行った。
まず、大気中において、板状試験片を850℃で500〜5000時間の加熱処理を行った後、酸化前後の重量を測定した。また、850℃で5000時間加熱した試験片について、目視により酸化被膜の剥離の有無を観察した。
次に、表1に示す試験片について、次の試験方法によりCr蒸発の抑制度合いを確認した。試験片にアルミナリングを乗せ、アルミナリングの中に固体酸化物形燃料電池の空気極に好適に用いられるLa−xSrxMnO(以下、LSMと呼ぶ)粉末を入れた状態で、絶対湿度10%に制御し加熱温度850℃に固定した雰囲気で、30時間の加熱を行った。その後、ICP分析によりLSM粉末中に含有するCr量を測定した。以上の測定における酸化増量、酸化被膜の剥離の有無及びCr蒸発量を表2に示す。
Various tests were performed using the above plate-shaped test piece.
First, the plate-shaped test piece was heat-treated at 850 ° C. for 500 to 5000 hours in the air, and then the weight before and after oxidation was measured. Further, with respect to the test piece heated at 850 ° C. for 5000 hours, the presence or absence of peeling of the oxide film was visually observed.
Next, with respect to the test pieces shown in Table 1, the degree of suppression of Cr evaporation was confirmed by the following test method. An alumina ring is placed on the test piece, and La 1- xSrxMnO 3 (hereinafter referred to as LSM) powder, which is preferably used for the air electrode of a solid oxide fuel cell, is contained in the alumina ring, and the absolute humidity is 10%. The heating was carried out for 30 hours in an atmosphere in which the heating temperature was fixed at 850 ° C. Then, the amount of Cr contained in the LSM powder was measured by ICP analysis. Table 2 shows the amount of oxidation increase, the presence or absence of peeling of the oxide film, and the amount of Cr evaporation in the above measurements.

Figure 2021150207
Figure 2021150207

本発明で規定するNo.1〜3の固体酸化物形燃料電池部材用被覆鋼材は、比較例のNo.4に対して、500時間における酸化増量が多い。これは、酸化初期に被覆鋼材が有するCo被膜が、スピネル型酸化物被膜に変化する際における酸化増量が含まれるためである。固体酸化物形燃料電池において、長時間の高温酸化雰囲気に晒される鋼材の耐酸化性を議論するにあたっては、この酸化初期の酸化増量分を無視するほうが妥当である。そこで、500時間時点における重量を基準とし、5000時間までの酸化増量を見ると、No.1〜3の固体酸化物形燃料電池用被覆鋼材は、比較例のNo.4に比べて酸化増量が少なく、耐酸化性が向上していることが分かる。また、いずれの試験片においても加熱処理後の酸化被膜の剥離は見られなかった。但し、No.1〜3の被覆鋼材の中では、No.2の厚さ1.0μmのCo被覆鋼材は、500時間時点を基準とした5000時間後の酸化増量が最も大きい。これは、No.1の0.5μmのCo被覆鋼材はCo被覆層が薄いため、Coの酸化増量が小さく、一方でNo.3の4.0μmのCo被覆鋼材はCo被覆層が厚いため、初期に安定な厚さのスピネル型酸化物層が形成され、成長速度が遅くなるため、酸化増量が低くなるのに対して、No.2の1.0μmのCo被覆鋼材は、やや厚めのスピネル型酸化物層が形成されるものの、成長速度が十分に低下するには不十分な厚さであるため、酸化増量が多くなったものと考えられる。 No. defined in the present invention. The coated steel materials for solid oxide fuel cell members 1 to 3 are No. 1 of Comparative Example. Compared to 4, the amount of oxidation increased in 500 hours. This is because the Co coating contained in the coated steel material at the initial stage of oxidation includes an increase in oxidation when it changes to a spinel-type oxide coating. In discussing the oxidation resistance of a steel material exposed to a high-temperature oxidation atmosphere for a long time in a solid oxide fuel cell, it is appropriate to ignore this oxidation increase at the initial stage of oxidation. Therefore, looking at the increase in oxidation up to 5000 hours based on the weight at 500 hours, No. The coated steel materials for solid oxide fuel cells 1 to 3 are No. 1 of Comparative Example. It can be seen that the amount of oxidation increase is smaller than that of No. 4 and the oxidation resistance is improved. In addition, no peeling of the oxide film was observed after the heat treatment in any of the test pieces. However, No. Among the coated steel materials 1 to 3, No. The Co-coated steel material having a thickness of 1.0 μm in No. 2 has the largest increase in oxidation after 5000 hours based on the time of 500 hours. This is No. Since the Co-coated layer of the 0.5 μm Co-coated steel material of No. 1 is thin, the increase in the amount of Oxidation of Co is small, while No. In the 4.0 μm Co-coated steel material of No. 3, since the Co-coated layer is thick, a spinel-type oxide layer having a stable thickness is formed at the initial stage, and the growth rate is slowed down. No. In the 1.0 μm Co-coated steel material of 2, a slightly thick spinel-type oxide layer is formed, but the thickness is insufficient to sufficiently reduce the growth rate, so that the amount of oxidation increase is large. it is conceivable that.

表2より、本発明で規定するNo.1〜3の固体酸化物形燃料電池用被覆鋼材は、比較例のNo.4に対して、酸化初期及び高温長時間酸化後において、クロム蒸発量を大幅に抑制していることが明らかである。但し、最も薄い0.5μmのCo被覆鋼材No.1は、わずかながらもCr蒸発が検出されており、No.1〜3の被覆鋼材の中では、Cr蒸発抑制の点ではやや劣る結果となっている。
以上の結果から、耐酸化性、Cr蒸発抑制を高いレベルで両立するためには、Co被覆厚さは、1.5μm以上であることが好ましい。
From Table 2, No. 2 specified in the present invention. The coated steel materials for solid oxide fuel cells 1 to 3 are No. 1 of Comparative Example. On the other hand, it is clear that the amount of chromium evaporation is significantly suppressed at the initial stage of oxidation and after high-temperature long-term oxidation. However, the thinnest 0.5 μm Co-coated steel material No. In No. 1, Cr evaporation was detected, albeit slightly. Among the coated steel materials 1 to 3, the result is slightly inferior in terms of suppressing Cr evaporation.
From the above results, the Co coating thickness is preferably 1.5 μm or more in order to achieve both oxidation resistance and Cr evaporation suppression at a high level.

表1のNo.3の試験片について、金属基材と金属被膜の透過電子顕微鏡観察を行った。得られた写真を図1に示す。金属被膜は金属基板に対して垂直となる方向に結晶粒界を有している。また、図3は金属被膜領域から得られた[001]入射の電子回折像であるが、電子回折シミュレーション像との一致から、金属被膜は稠密六方構造を有することが分かる。 No. in Table 1 A transmission electron microscope observation of a metal base material and a metal coating was performed on the test piece of No. 3. The obtained photograph is shown in FIG. The metal film has grain boundaries in the direction perpendicular to the metal substrate. Further, FIG. 3 shows an electron diffraction image of [001] incident obtained from the metal film region, and it can be seen from the agreement with the electron diffraction simulation image that the metal film has a dense hexagonal structure.

表1のNo.3の試験片について、850℃×4000時間加熱後の金属基材と酸化物被膜の透過電子顕微鏡観察を行った。得られた写真を図2に示す。大気中における加熱により、金属基材側から順にクロミア系酸化物層、スピネル型酸化物層となる2層の酸化物被膜が形成されている。この時、図4は図2の符号5の領域となる金属基材における[111]入射の電子回折像であるが、電子回折シミュレーション像との一致から加熱後においても金属基材はフェライト組織を保持していることが分かる。また、図2の符号3の領域から得られた[110]入射の電子回折像を図5に示すが、電子回折シミュレーション像との一致からスピネル型構造を有していることが確認できる。 No. in Table 1 With respect to the test piece of No. 3, the metal substrate and the oxide film after heating at 850 ° C. × 4000 hours were observed with a transmission electron microscope. The obtained photograph is shown in FIG. By heating in the atmosphere, two oxide films, which are a chromia-based oxide layer and a spinel-type oxide layer, are formed in this order from the metal substrate side. At this time, FIG. 4 shows an electron diffraction image of [111] incident on the metal substrate which is the region of reference numeral 5 in FIG. 2. However, from the agreement with the electron diffraction simulation image, the metal substrate has a ferrite structure even after heating. You can see that it is holding. Further, the electron diffraction image of [110] incident obtained from the region of reference numeral 3 in FIG. 2 is shown in FIG. 5, and it can be confirmed from the agreement with the electron diffraction simulation image that the electron diffraction image has a spinel-type structure.

表1のNo.3の試験片について、850℃×4000時間加熱後、加工による酸化物層剥離を防止するためNiメッキを施し、金属基材と酸化物被膜の走査電子顕微鏡観察及び電子線マイクロアナライザーによるCo、Mn、Cuの面分析を行った。得られた写真を図6に示す。反射電子像と各元素の面分析を比較することで、スピネル型酸化物層の領域にはCoの他、Mn及びCuを含有していることが確認できる。 No. in Table 1 After heating the test piece 3 at 850 ° C. for 4000 hours, Ni plating was applied to prevent the oxide layer from peeling off due to processing, and the metal substrate and the oxide film were observed by scanning electron microscopy and Co, Mn by an electron probe microanalyzer. , Cu surface analysis was performed. The obtained photograph is shown in FIG. By comparing the reflected electron image with the surface analysis of each element, it can be confirmed that the region of the spinel-type oxide layer contains Mn and Cu in addition to Co.

1 金属被膜
2 金属基材
3 スピネル型酸化物層
4 クロミア系酸化物層
5 金属基材
6 Niメッキ
1 Metal coating 2 Metal base material 3 Spinel type oxide layer 4 Chromia-based oxide layer 5 Metal base material 6 Ni plating

Claims (5)

金属基材の表層に金属被膜を有する、固体酸化物形燃料電池部材用被覆鋼材であって、
前記金属基材は、質量%でC:0%超0.1%以下、Al:0.2%以下、Si:0.2%以下、Mn:0.1%以上1.0%以下、Cr:20.0%以上26.0%以下、Ni:0.1%以上1.0%以下、Cu:0.3%以上%4.0%以下、W:1.0%以上3.0%以下、La:0.02%以上0.12%以下、Zr:0.01%以上0.5%以下、La+Zr:0.03%以上0.52%以下、残部Fe及び不可避的不純物からなり、
前記金属被膜は、厚さ0.5μm以上5.0μm以下のCo層を備えることを特徴とする、固体酸化物形燃料電池部材用被覆鋼材。
A coated steel material for a solid oxide fuel cell member having a metal coating on the surface layer of a metal base material.
The metal base material contains C: more than 0% and 0.1% or less, Al: 0.2% or less, Si: 0.2% or less, Mn: 0.1% or more and 1.0% or less, Cr in mass%. : 20.0% or more and 26.0% or less, Ni: 0.1% or more and 1.0% or less, Cu: 0.3% or more and 4.0% or less, W: 1.0% or more and 3.0% Below, La: 0.02% or more and 0.12% or less, Zr: 0.01% or more and 0.5% or less, La + Zr: 0.03% or more and 0.52% or less, the balance Fe and unavoidable impurities.
The metal coating is a coated steel material for a solid oxide fuel cell member, which comprises a Co layer having a thickness of 0.5 μm or more and 5.0 μm or less.
前記MnおよびCuが、質量%でMn:0.1%以上0.5%以下、Cu:0.3%以上2.0%以下であることを特徴とする請求項1に記載の固体酸化物形燃料電池部材用被覆鋼材。 The solid oxide according to claim 1, wherein the Mn and Cu are Mn: 0.1% or more and 0.5% or less and Cu: 0.3% or more and 2.0% or less in mass%. Coated steel material for fuel cell members. 前記金属基材は、厚さ1.5mm以下の板形状であることを特徴とする、請求項1または2に記載の固体酸化物形燃料電池部材用被覆鋼材。 The coated steel material for a solid oxide fuel cell member according to claim 1 or 2, wherein the metal base material has a plate shape having a thickness of 1.5 mm or less. 請求項1〜3に記載の固体酸化物形燃料電池部材用被覆鋼材を用いた、固体酸化物形燃料電池部材であって、
前記固体酸化物形燃料電池部材は、前記金属基材の表層に酸化物被膜を有し、
前記酸化物被膜は、クロミア系酸化物層であるA層と、
前記A層の直上に形成され、Co、MnおよびCuを含むスピネル型酸化物層であるB層と、から構成されることを特徴とする、固体酸化物形燃料電池用部材。
A solid oxide fuel cell member using the coated steel material for the solid oxide fuel cell member according to claims 1 to 3.
The solid oxide fuel cell member has an oxide film on the surface layer of the metal base material.
The oxide film includes a layer A, which is a chromia-based oxide layer, and a layer A.
A member for a solid oxide fuel cell, which is formed directly above the layer A and is composed of a layer B, which is a spinel-type oxide layer containing Co, Mn, and Cu.
請求項1〜3に記載の固体酸化物形燃料電池部材用被覆鋼材を固体酸化物形燃料電池に適用し、
前記固体酸化物形燃料電池の動作環境下において、前記固体酸化物形燃料電池部材用被覆鋼材に形成されている金属被膜を酸化物被膜に変化させて固体酸化物形燃料電池用部材とし、
前記酸化物被膜は、クロミア系酸化物層であるA層と、
前記A層の直上に形成され、Co、MnおよびCuを含むスピネル型酸化物層であるB層と、から構成される、固体酸化物形燃料電池部材の製造方法。
The coated steel material for a solid oxide fuel cell member according to claims 1 to 3 is applied to a solid oxide fuel cell.
Under the operating environment of the solid oxide fuel cell, the metal film formed on the coated steel material for the solid oxide fuel cell member is changed to an oxide film to form a member for the solid oxide fuel cell.
The oxide film includes a layer A, which is a chromia-based oxide layer, and a layer A.
A method for producing a solid oxide fuel cell member, which is formed directly above the A layer and is composed of a B layer, which is a spinel-type oxide layer containing Co, Mn, and Cu.
JP2020049870A 2020-03-19 2020-03-19 Coated steel material for solid oxide fuel cell components, solid oxide fuel cell components and manufacturing method thereof Active JP7413867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020049870A JP7413867B2 (en) 2020-03-19 2020-03-19 Coated steel material for solid oxide fuel cell components, solid oxide fuel cell components and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020049870A JP7413867B2 (en) 2020-03-19 2020-03-19 Coated steel material for solid oxide fuel cell components, solid oxide fuel cell components and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2021150207A true JP2021150207A (en) 2021-09-27
JP7413867B2 JP7413867B2 (en) 2024-01-16

Family

ID=77849284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020049870A Active JP7413867B2 (en) 2020-03-19 2020-03-19 Coated steel material for solid oxide fuel cell components, solid oxide fuel cell components and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP7413867B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE528379C2 (en) 2004-11-30 2006-10-31 Sandvik Intellectual Property Fuel cell component with a complex oxide-forming coating, devices comprising the component and method of preparing the component
US20130004881A1 (en) 2010-03-15 2013-01-03 Nima Shaigan Composite coatings for oxidation protection
JP5257803B2 (en) 2011-04-22 2013-08-07 日立金属株式会社 Steel for solid oxide fuel cell excellent in oxidation resistance and member for solid oxide fuel cell using the same

Also Published As

Publication number Publication date
JP7413867B2 (en) 2024-01-16

Similar Documents

Publication Publication Date Title
JP5419465B2 (en) Creep-resistant ferritic steel
JP5133695B2 (en) Fuel cell components
JP4310723B2 (en) Steel for solid oxide fuel cell separator
KR101258799B1 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells
JP5133988B2 (en) Ferritic chromium steel
JP5257803B2 (en) Steel for solid oxide fuel cell excellent in oxidation resistance and member for solid oxide fuel cell using the same
JP5660331B2 (en) Solid oxide fuel cell steel with excellent oxidation resistance
JP2007538157A (en) Heat resistant steel
US6776956B2 (en) Steel for separators of solid-oxide type fuel cells
JP3321888B2 (en) Metal materials for solid oxide fuel cells
JP2005320625A (en) Steel for solid oxide type fuel cell separator
JP5306631B2 (en) Ferritic steel for solid oxide fuel cells and other high temperature applications
JP7413867B2 (en) Coated steel material for solid oxide fuel cell components, solid oxide fuel cell components and manufacturing method thereof
JP6418362B1 (en) Stainless steel materials, components, cells and fuel cell stacks
JP4524760B2 (en) Oxidation resistant steel and solid oxide fuel cell parts using the same
JP6395037B2 (en) Steel strip for solid oxide fuel cell
JP2003105503A (en) Steel for solid oxide type fuel battery separator
WO2019163674A1 (en) Stainless steel member having heat-resistant cover layer or coating film, and method for producing same
EP4334503A1 (en) Interconnect for solid oxide cell (soc)
JP2021150093A (en) Metal member and manufacturing method of the same
AU2014201714A1 (en) Interconnects for solid oxide fuel cells and ferritic stainless steels adapted for use with solid oxide fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230830

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7413867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150