WO2019163674A1 - Stainless steel member having heat-resistant cover layer or coating film, and method for producing same - Google Patents

Stainless steel member having heat-resistant cover layer or coating film, and method for producing same Download PDF

Info

Publication number
WO2019163674A1
WO2019163674A1 PCT/JP2019/005626 JP2019005626W WO2019163674A1 WO 2019163674 A1 WO2019163674 A1 WO 2019163674A1 JP 2019005626 W JP2019005626 W JP 2019005626W WO 2019163674 A1 WO2019163674 A1 WO 2019163674A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
less
oxide
mass
layer
Prior art date
Application number
PCT/JP2019/005626
Other languages
French (fr)
Japanese (ja)
Inventor
ル ガン
村上 秀之
功 佐伯
Original Assignee
国立研究開発法人物質・材料研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人物質・材料研究機構 filed Critical 国立研究開発法人物質・材料研究機構
Publication of WO2019163674A1 publication Critical patent/WO2019163674A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/04Alloys based on tungsten or molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/16Oxidising using oxygen-containing compounds, e.g. water, carbon dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0206Metals or alloys
    • H01M8/0208Alloys
    • H01M8/021Alloys based on iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a cobalt-tungsten (Co—W) -coated ferritic stainless steel member that has excellent oxidation resistance at a high temperature range of 600 to 850 ° C. and suppresses elution of chromium in a water vapor environment.
  • Co—W cobalt-tungsten
  • a fuel cell is a power generation system that can be used as a power source for automobiles and the like.
  • fuel cells There are several types of fuel cells. Among them, a solid oxide fuel cell (SOFC) is one of power generation systems that have high energy efficiency and are expected to be put to practical use.
  • SOFC solid oxide fuel cell
  • the operating temperature of a solid oxide fuel cell has conventionally been as high as about 1000 ° C., and ceramics are mainly used for its constituent members, making it difficult to use metal materials such as stainless steel.
  • the operating temperature has been lowered to about 600 to 850 ° C. by improving the solid electrolyte membrane. This is a temperature range in which a heat-resistant metal material can be applied to the constituent members.
  • SOFC solid oxide fuel cell
  • a heat-resistant metal material for a current collecting member (separator, interconnector, current collector plate, etc.).
  • the characteristics required for such a heat-resistant metal material are good electrical conductivity (temperature of 30 m ⁇ ⁇ cm 2 or less) in the temperature range of 600 to 850 ° C., steam oxidation resistance, and equivalent to ceramic solid oxide
  • the coefficient of thermal expansion is about 13 ⁇ 10 ⁇ 6 (1 / K) from room temperature to 800 ° C.
  • thermal fatigue resistance is also required when starting and stopping are frequently repeated.
  • High Cr, high Ni austenitic stainless steel has excellent resistance to steam oxidation, but has a high thermal expansion coefficient. Therefore, in solid oxide fuel cells (SOFCs) such as automobile applications that frequently start and stop, expansion and contraction are required. By repeating the above, the oxide scale is easily peeled off and is difficult to apply. On the other hand, since ferritic stainless steel has a low thermal expansion coefficient equivalent to that of ceramic solid oxide, it is suitable as a constituent member of a solid oxide fuel cell (SOFC).
  • Patent Document 1 discloses a steel for a solid oxide fuel cell separator made of ferritic stainless steel containing Cr: 15 to 30% by mass. This steel forms an oxide film with good electrical conductivity at about 700 to 950 ° C., and has good oxidation resistance and scale peeling resistance over a long period of use, and a difference in thermal expansion from the electrolyte. Is said to be small.
  • Patent Documents 2 and 3 As a technique for preventing poisoning by chromium, use of stainless steel containing Al as a base material has been proposed (Patent Documents 2 and 3).
  • SOFC solid oxide fuel cell
  • the current collector is heated to a high temperature when the current collector is joined to the solid electrolyte and the electrode catalyst material in the manufacturing stage, or during actual use.
  • insulating Al 2 O 3 is generated on the surface of the stainless steel during the heating, and the surface conductivity is further lowered.
  • a conductive film eg, Ag
  • an oxide film of Al 2 O 3 is generated between the base material and the coating layer during heating.
  • Patent Document 4 As another method for preventing poisoning by chromium, it is also conceivable to use stainless steel having a nickel coating layer as a base material (Patent Document 4). However, since the ferritic stainless steel used as a base material needs to contain 1% or more of Al as an essential element, there is a disadvantage that a ferritic stainless steel defined in JIS such as general-purpose SUS430 stainless steel cannot be used. It was.
  • the present invention is a solid electrolyte that can sufficiently cope with applications exposed to high temperatures, such as current collecting members (separators, interconnectors, current collecting plates) of solid oxide fuel cells (SOFC). And it aims at providing the stainless steel member which can prevent the chromium poisoning of an electrode catalyst material.
  • the present invention employs the following means. (1) Based on a ferritic stainless steel containing Cr: 11 to 40% by mass, As a coating layer formed on the substrate, a Co—W coating layer comprising a thickness of 1 to 100 ⁇ m, a W content of 3 to 67.5% by mass (1 to 40 atom%), the remainder Co and unavoidable impurities. A stainless steel member provided.
  • (2) Cr Ferritic stainless steel containing 11 to 40% by mass is used as a base material, and the coating formed on the base material has a layer containing Co oxide on the outermost surface, and the Co oxide A stainless steel member comprising a laminate having a thickness of 0.5 to 50 ⁇ m and having a layer containing CoWO 4 on the substrate side of the layer containing.
  • (3) The coating includes a layer containing Cr 2 O 3 and a layer containing (Co, Fe, Cr) 3 O 4 in this order from the substrate side to the substrate side of the layer containing CoWO 4.
  • Ferritic stainless steel of the base material is in mass%, Cr: 11 to 40%, Si: 1.5% or less, Mn: 1.5% or less, C: 0.12% or less, P: The stainless steel member according to any one of (1) to (3) above, having a composition comprising 0.1% or less, S: 0.01% or less, N: 0.1% or less, the balance Fe and inevitable impurities.
  • the ferritic stainless steel of the base material is mass%, and further Al: 6% or less, Mo: 4% or less, W: 4% or less, Cu: 2% or less, Nb: 0.8% or less, Containing at least one of Ti: 0.5% or less, Zr: 0.5% or less, V: 0.5% or less, Ta: 0.5% or less, Ni: 2% or less Stainless steel member.
  • Ferritic stainless steel of the base material is mass%, Y: 0.1% or less, other REM (rare earth element): 0.1% or less, Ca: 0.01% or less, B: The stainless steel member according to (4) or (5) above, containing one or more of 0.01% or less and Mg: 0.01% or less.
  • the Co—W coating layer further contains one or more selected from Fe, Ni, Ti, Nb, Zr, Ta, V, Mo, P, and B within a total range of 10% by mass or less.
  • SOFC solid oxide fuel cell
  • the base material on which the Co—W coating layer is formed is heat-treated in a range of 600 ° C. to 850 ° C., and the surface of the base material has a layer containing a Co oxide on the outermost surface.
  • the laminate film includes a layer containing Cr 2 O 3 in this order from the substrate side and (Co, Fe, Cr) 3 O 4 on the substrate side relative to the layer containing CoWO 4.
  • chromium vaporization solid electrolyte and electrode catalyst
  • a stainless steel member having a heat-resistant coating layer that solves the problem of material poisoning can be provided.
  • the heat-resistant coating layer can be formed simply by performing a heat treatment under a predetermined condition after forming the Co—W coating layer. Even a steel member can easily form a heat-resistant coating layer and can easily upgrade and upgrade existing equipment.
  • FIG. 4 is a diagram showing how an X-ray diffraction spectrum is changed by isothermal oxidation at 800 ° C. for a test piece electroplated with Co-2.4 W (atomic%) according to an embodiment of the present invention.
  • (c) is after 15 minutes,
  • (d) is after 30 minutes,
  • (e) is after 250 hours ( f) shows after 1000 hours, respectively.
  • FIG. 7 is a micrograph of a cross section of a test piece electroplated with Co-2.4 W (atomic%) after isothermal oxidation at 800 ° C. and a diagram showing element distribution in the cross section, where (a) shows the start, (b ) After 15 minutes, (c) after 30 minutes, (d) after 1 hour, (e) after 3 hours, (f) after 25 hours, (g) after 250 hours Later, (h) shows after 1000 hours.
  • FIG. 6 shows an Ellingham-Richardson diagram constructed using NIST standard database number 69. A parabolic plot (a) of mass change and a long-term oxidation rate (b) when SUS430 stainless steel is oxidized with and without a Co—W electroplating layer having a thickness of 10 ⁇ m. ).
  • FIG. 5 is a diagram showing evaporation index ⁇ W at different oxidation times calculated from the mass balance of W in SUS430 stainless steel with a Co-2.4 W (atomic%) electroplating layer.
  • ferritic stainless steel containing 11 to 40% by mass of Cr is used as the base material.
  • a Co—W coating layer is formed on the surface of the substrate.
  • a base material having a Co—W coating layer is heated to a high temperature and subjected to diffusion treatment to form a heat resistant coating.
  • Co and W contained in the Co—W coating layer react with each other during high temperature heating to form an intermediate layer containing CoWO 4 in the heat resistant coating.
  • a member composed of the ferritic stainless steel substrate and the old Co—W coating layer including the intermediate layer is a stainless steel member having a heat resistant coating.
  • CoWO 4 in the heat resistant coating is very stable, and by preventing the Cr from diffusing from the base material side to the old Co—W coating layer surface side, the evaporation of Cr from the surface can be suppressed. Further, since CoWO 4 has conductivity at 600 to 850 ° C., it is expected that the electric conductivity of the heat resistant coating is increased.
  • a Co—W coating layer can be formed using a continuous line when the base stainless steel is in the state of a steel strip (pre-coating). ). For this reason, productivity improves markedly compared with the case where it coats to each member after forming in a predetermined shape (post coat).
  • Refractory coating comprising CoWO 4 is a layer containing a CoWO 4 formed in film shape.
  • the total thickness of the heat-resistant coating film needs to be 0.5 ⁇ m or more, and is preferably 1 ⁇ m or more.
  • the thickness of the intermediate layer is preferably 50 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the average thickness of the Co—W coating layer formed on the substrate must be 1 ⁇ m or more, and should be 2 ⁇ m or more. Is preferred. In order to obtain a Co—W coating layer with few defects, an average thickness of 5 ⁇ m or more is effective. However, when the Co—W coating layer becomes excessively thick, stress due to the difference in thermal expansion occurs between the base material and the Co—W coating layer, and the solid oxide fuel cell (SOFC) is repeatedly started and stopped. In addition, voids are easily generated between the two, which causes the coating layer to peel off. As a result of various studies, the average thickness of the Co—W coating layer is preferably 100 ⁇ m or less, and more preferably 50 ⁇ m or less.
  • the Cr content in the Co—W coating layer is preferably 0 to 2% by mass. If the Cr content is higher than that, diffusion or evaporation of Cr into the battery cell becomes a problem.
  • the Co—W coating layer can contain one or more of Fe, Ni, Ti, Nb, Zr, Ta, V, and Mo as other elements. These metal elements have the effect of improving the oxidation resistance and scale peeling resistance of the Co—W coating layer. In addition, these elements diffuse to the base material side, and an intermetallic compound is formed at the interface and grain boundary, so that there is an effect of increasing the electrical conductivity. Further, the Co—W coating layer may contain P and B.
  • P and B are effective additive elements particularly when a Co—W coating layer is formed as electroless cobalt plating or cobalt brazing. That is, it is added as a reducing agent for a cobalt plating bath in the case of electroless plating and as an element for lowering the melting point of the brazing material in the case of brazing.
  • the total content of these Fe, Ni, Ti, Nb, Zr, Ta, V, Mo, P, and B contained in the Co—W coating layer is preferably 10% by mass or less.
  • the W content in the Co—W coating layer needs to be 3 to 67.5 mass% (1 to 40 atomic%).
  • the W content in the Co—W coating layer is preferably 6 to 44 mass% (2 to 20 atomic%), more preferably 7.1 to 25.7 mass% (2.4 to 10 atomic%). It is.
  • a method for forming the Co—W coating layer a method of applying electro-Co—W plating to the surface of a ferritic stainless steel can be adopted.
  • various methods such as a method of coating a foil by a clad method can be applied.
  • a method for forming the tungsten coating layer for example, a sputtering deposition method, a plasma spraying method, or the like can be used.
  • heating conditions of holding at 600 to 850 ° C. for 10 to 3600 minutes can be applied, and the holding time is preferably 1 to 3 hours.
  • the heating condition is more preferably a condition of holding at 700 to 800 ° C. for 60 to 540 minutes.
  • This heating may be combined with heat treatment for joining the current collecting member, the solid electrolyte, and the electrode catalyst material in the manufacturing stage of the solid oxide fuel cell (SOFC), or by heating when the fuel cell device is started up. it can.
  • SOFC solid oxide fuel cell
  • the component composition of the ferritic stainless steel base material is preferably within the following range, for example.
  • “%” in the component composition of the substrate means “% by mass” unless otherwise specified.
  • Cr is a component necessary for imparting corrosion resistance, oxidation resistance, and electrical conductivity necessary for stainless steel.
  • a Cr content 11% or more is necessary.
  • the Cr content is 40% or less and preferably 35% or less.
  • Si has the effect of stabilizing the Cr-based oxide and is effective in improving the steam oxidation resistance.
  • excessive Si content becomes a factor for generating SiO 2 having high electrical resistance in the surface layer.
  • the Si content is preferably in the range of 1.5% or less.
  • Al is an alloy element that forms an Al 2 O 3 oxide film on the surface of a stainless steel substrate.
  • This Al 2 O 3 coating brings about a significant improvement in high-temperature oxidation resistance, and also evaporates chromium from the steel substrate exposed at the cut end face, particularly in a current collecting member of a solid oxide fuel cell (SOFC). It works effectively in suppressing
  • SOFC solid oxide fuel cell
  • the Al content is preferably 6% or less.
  • a more preferable Al content is less than 1%.
  • Mn has the effect of improving the scale peel resistance of ferritic stainless steel, but the excessive Mn content hardens the steel and causes a decrease in workability and low temperature toughness.
  • the Mn content is preferably in the range of 1.5% or less.
  • Mo and W are elements that improve high temperature strength and heat fatigue resistance by solid solution strengthening and Cu by solid solution strengthening or precipitation strengthening, respectively, and one or more of these can be added as necessary.
  • the addition of these elements is effective in applications where creep strength due to stacking in a stack and thermal fatigue properties due to repeated starting and stopping are problematic.
  • Mo, W, and Cu it is more effective to secure a content of 0.1% or more.
  • the content range of Mo and W is 4% or less and Cu is 2% or less. It is preferable.
  • Nb, Ti, Zr, V, and Ta are elements that further improve the high temperature strength of the ferritic stainless steel by solid solution strengthening or precipitation strengthening, and can contain one or more of these as required. It is more effective to set these elements to a content of 0.03% or more. However, excessive content hardens the steel, so when one or more of these are included, Nb is 0.8% or less, and Ti, Zr, V, and Ta are all 0.5% or less. It is preferable to be in the range.
  • C and N are elements that improve the high-temperature strength, especially creep properties, of the base stainless steel, but if added excessively to ferritic stainless steel, the workability and low-temperature toughness are reduced.
  • carbonitrides are easily generated by reaction with Ti and Nb, and solid solution Ti and solid solution Nb effective in improving high temperature strength are reduced.
  • the target steel of the present invention preferably has C of 0.12% or less and N of 0.1% or less.
  • Y, other REMs are elements that are dissolved in the oxide film and are effective in strengthening the oxide film and improving the oxidation resistance.
  • one or more of these elements are required. It can be contained according to. In order to fully exhibit these actions, it is more effective to set the content of 0.0005% or more for Y, other REMs, and Ca. However, these elements harden steel and cause surface flaws. Therefore, when one or more of these elements are contained, Y and other REMs are each 0.1% or less, and Ca is 0.01%.
  • the content range is preferably as follows.
  • B and Mg are elements that improve the hot workability of stainless steel, and in the present invention, one or more of these may be contained as necessary. It is more effective to secure a content of B of 0.0002% or more and Mg of 0.0005% or more. However, excessive content adversely decreases hot workability. Therefore, when one or more of these are included, it is preferable that both B and Mg have a content range of 0.01% or less.
  • S is allowed to contain up to 0.1%.
  • S has an adverse effect on hot workability and weld hot cracking resistance, and also serves as a starting point for abnormal oxidation, so it is preferably made 0.01% or less.
  • Ni mixed in steel in the steelmaking process is allowed up to 2%, but is preferably 0.6% or less.
  • O is 0.02% or less
  • Re is 2% or less
  • Sn is 1% or less
  • Co is 2% or less
  • Hf is 1% or less
  • Sc is 0.1% or less. It is preferable to manage so as to suppress it.
  • a commercially available SUS430 stainless steel was prepared.
  • the chemical composition of the stainless steel was 16.2Cr-1.0Mn-0.7Si-0.12C-0.02S-0.04P (mass%).
  • the stainless steel was cut into small test pieces having dimensions of 20 ⁇ 15 ⁇ 0.5 mm 3 .
  • the test piece was wet-polished with SiC paper up to # 2000 grade while adding distilled water, and then ultrasonically cleaned with acetone.
  • the washed test piece was used as a cathode, and thin Co was deposited on the test piece in a strike electroplating solution having the composition shown in Table 1 at a cathode current density ic of 20 A / dm 2 for 60 seconds.
  • the strike plating is a base plating performed for improving the adhesion of the plating after removing and activating the passive film on the substrate.
  • an acidic bath having the composition shown in Table 1, a Co—W alloy electrodeposition layer (Co—W coating layer) was formed.
  • the cathode current density ic was 3 A / dm 2 , and the electroplating time was adjusted so that a Co—W layer (85 g / m 2 ) having a thickness of 10 ⁇ m was obtained. All solutions were prepared with analytical grade reagents and deionized water.
  • the electroplating cell is composed of two graphite anode rods (diameter 6 mm) and a cathode disposed between the two anodes.
  • the solution temperatures of the Co strike plating and Co—W alloy electroplating baths were room temperature and 40 ° C., respectively.
  • the composition of Co—W electroplating was measured using an energy dispersive X-ray fluorescence analyzer (XRF).
  • the test piece after the plating was formed was inserted into a reaction tube maintained at a temperature of 800 ° C. and held for a certain time.
  • the gas flow rate in the reaction tube was 100 cm 3 / min.
  • the mass change of the test piece before and after the oxidation treatment was calculated from the mass of the sample before and after the oxidation.
  • the structure of the oxide formed was confirmed by X-ray diffraction (XRD) using 50 kV and 45 mA CuK ⁇ radiation and a graphite monochromator.
  • XRD X-ray diffraction
  • the form of the sample was observed with a scanning electron microscope (SEM), and the element distribution in the depth (thickness) direction was analyzed with an energy dispersive X-ray spectrometer (EDS).
  • Co-W coating layer The content of W in the Co—W electroplating (coating layer) was estimated to be 2.4 atomic% (7.1% by mass) by XRF. Henceforth, this coating layer was referred to as a Co-2.4W coating layer. I will call it.
  • a micrograph of a cross section of a test piece having a Co-2.4W coating layer is shown in FIG.
  • the Co-2.4W coating layer is firmly adhered to the substrate surface and is a dense layer. Moreover, it is confirmed from the element distribution of this cross section shown as (B) in FIG. 1 that W is uniformly distributed throughout the coating layer.
  • the layer thickness is about 10 ⁇ m as designed.
  • the X-ray diffraction spectrum of the Co-2.4W coating layer is shown as (a) in FIG. In the coating layer, only the Co peak is confirmed.
  • FIG. 3 shows a micrograph of a cross section of a test piece having a heat resistant film after isothermal oxidation at 800 ° C. in an oxidation time t ox of 0 minutes to 1000 hours and element distribution in the cross section.
  • a region a is a Co diffusion region in the substrate
  • a region b is Cr 2 O 3
  • a region c is (Co, Fe, Cr) 3 O 4
  • a region d is a coating layer
  • a region e is also a coating layer.
  • Region f is a W-enriched region
  • region g is an iron-containing oxide region
  • region h is a Co oxide region.
  • the coating layer is completely converted to oxide as seen in (d) of FIG.
  • the amount of the region f which is located under the region g which is CoFe 2 O 4 and which is a W-enriched region including CoWO 4 is increased, and the region b and the region c which are formed Cr oxides form CoWO 4 . Facing the region f which is a W-enriched region.
  • the structure of the oxide layer is similar to the structure after oxidation for 1 hour as seen in (e) and (f) of FIG. The interface becomes clear.
  • the outer Cr-enriched layer contains Cr, Co, Fe and O, possibly in the form of (Co, Fe, Cr) 3 O 4 in region c.
  • the oxide (heat resistant coating) is Cr 2 O 3 , (Co, Fe, Cr) 3 O 4 , CoWO 4 , FeCo 2 O 4 , and Co 3 O 4 from the substrate side to the outside. It consists of five layers. It is important that Cr is not found on the top side of the CoWO 4 layer (opposite the substrate), which means that CoWO 4 acts as a barrier to Cr ion outdiffusion.
  • FIG. 4 shows an Ellingham-Richardson diagram constructed using NIST standard database number 69 (NIST Chemistry webbook).
  • the kinks in some curves reflect discontinuities in the heat capacity used to calculate the Gibbs energy produced.
  • the formation and location of the Cr 2 O 3 , CoWO 4 , FeCo 2 O 4 and Co 3 O 4 layers is reasonable.
  • the Gibbs generation energy of (Co, Fe, Cr) 3 O 4 itself could not be used, when (Co, Fe, Cr) 3 O 4 is recognized as CoCr 2 O 4 containing a small amount of dissolved Fe, Cr 2 Generation of (Co, Fe, Cr) 3 O 4 is expected between O 3 and CoWO 4 .
  • the formation of CoO, FeO, and WO 3 is predicted from FIG. 4, but these oxides were not detected in FIG. This seems to be due to the reaction of these three compounds.
  • FIG. 5A shows a parabola plot when SUS430 stainless steel having a Co—W coating layer having a thickness of 10 ⁇ m and SUS430 stainless steel not having the coating layer are oxidized.
  • the parabola plot shows the relationship between the mass increase ⁇ W and the parabolic law ( ⁇ W 2 ⁇ t ox ) with respect to the oxidation time t ox .
  • the mass increase ⁇ W increases rapidly with increasing square root of the oxidation time t ox and then the slope of the curve decreases after 10 minutes.
  • the parabolic rate constant (straight line) up to 10 minutes is 2 ⁇ 10 ⁇ 3 g 2 m ⁇ 4 s ⁇ 1 , which is two orders of magnitude greater than that of the Fe-25Cr alloy at 800 ° C.
  • both Fe and Cr are oxidized.
  • preferential oxidation of Cr is performed. Oxidation prior to 10 minutes in specimens without a coating layer appears to be a temporary step prior to diffusion controlled growth of Cr 2 O 3 .
  • the increase in mass of the test piece having the coating layer was 29 to 38 g / m 2 .
  • the mass gain of the specimen can be calculated as follows: According to the Gibbs free energy ⁇ ⁇ G 0 800 ° C. of the reaction at 800 ° C. that can be read from FIG. 4, Co ionizes to Co 2+ or Co 3+ and W ionizes to W 4+ or W 6+ . At this time, assuming that Co 3+ and W 6+ are preferentially formed, the maximum mass increase ⁇ W calc, max can be estimated by Equation (1).
  • m plating is the mass of the coating layer
  • f W is the atomic fraction of W in the coating layer (0.024)
  • M O , M Co and MW are the molar masses of O, Co and W, respectively.
  • the calculated ⁇ W calc, max is 28.4 g / m 2
  • the difference between ⁇ W calc, max and the actual mass increase may correspond to the mass of oxygen used to oxidize Fe and Cr in the SUS430 stainless steel substrate.
  • the mass loss rate is estimated to be 8 ⁇ 10 ⁇ 8 g / m 2 s, which is slightly higher than the evaporation rate of Cr 2 O 3 in 760 ° C. air + H 2 O atmosphere.
  • the Co-2.4W coating layer first reacts with oxygen in the atmosphere to generate several types of oxides (step 1).
  • a multilayer oxide is formed after the coating layer is consumed (step 2).
  • the formation mechanism of the multilayer oxide based on both steps is demonstrated based on a thermodynamic viewpoint.
  • This phenomenon is similar to the phenomenon that Cr forms an internal oxide under the continuous Fe oxide layer during the oxidation of the Fe—Cr alloy having a low Cr content. From the viewpoint of free energy, WO 3 (s) should also be formed in the coating, but its formation could not be confirmed from the XRD results. The reason is understood that the formed WO 3 reacted immediately with CoO according to the formula (2) to produce CoWO 4 .
  • Co is first oxidized to generate CoO at the remaining coating layer / Co oxide region interface.
  • Co ions in CoO move outward through the p-type CoO and Co 3 O 4 layers, forming oxide nuclei at the Co oxide / gas interface.
  • Co ion vacancy has two negative charges and can accommodate only divalent ions.
  • CoWO there is no Cr in 4 by the fact that there are Fe, which can be a divalent ion four layers in CoWO, immiscible with trivalent Cr ions on CoWO 4, and the possible substitution of divalent ions described Is done.
  • FIG. 1 A plot of the calculated evaporation index ⁇ W against the oxidation time is shown in FIG.
  • the evaporation index ⁇ W was almost constant at 1 regardless of the oxidation time. This indicates that the evaporation index ⁇ W is independent of the oxidation time and W vaporization does not occur.
  • WO 3 (g) may evaporate from the sample before the continuous Co 3 O 4 layer covers the surface, but if the W metal is not exposed to the atmosphere, It is understood that there is no fear. Therefore, as an aspect capable of further suppressing the evaporation of W, a two-layer coating comprising a Co—W inner layer and a pure Co outer layer is applied to the base material.
  • Co-W alloy electroplating was applied to SUS430 type stainless steel.
  • the alloy coated steel was then oxidized in air + 3% by volume H 2 O at 800 ° C. for up to 1000 hours. From the analysis and observation of oxidized samples, the following conclusions can be drawn: (1) Using an electroplating bath containing citric acid, a coating layer formed of a Co—W alloy having a W content of 3 to 67.5 mass% (1 to 40 atomic%) was obtained. (2) The oxidation treatment of the coating layer formed of the Co—W alloy effectively forms a continuous CoWO 4 layer that effectively blocks the diffusion of Cr ions and does not cause Cr vaporization from the interconnects. .
  • generated on stainless steel by the oxidation process for 3 hours or more was comprised by five layers.
  • the stacking order of these oxides is thermodynamically valid. Further oxidation after the formation of the five-layer oxide proceeds slowly, showing the diffusion barrier properties of Cr from stainless steel over time.
  • the ferritic stainless steel having the Co—W coating layer or laminate film of the present invention is applied to, for example, a current collecting member of a solid oxide fuel cell (SOFC), thereby improving the durability of the current collecting member, Expected to improve performance and environmental problems, and lead to the spread of fuel cells.
  • SOFC solid oxide fuel cell

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

Provided, as a stainless steel member having chromium poisoning prevention performance, which is sufficiently suited to applications such as collector members of solid oxide fuel cells (SOFC) to be exposed to high temperatures, is a stainless steel member which uses a ferritic stainless steel sheet containing 11-40% by mass of Cr as the base material and has a laminate as a coating film that is formed on the base material, said laminate having a thickness of 0.5-50 μm. The laminate comprises a layer that contains an Co oxide in the outermost surface, while having a layer that contains CoWO4 at a position closer to the base material than the layer that contains an Co oxide.

Description

耐熱性の被覆層ないし被膜を有するステンレス鋼部材およびその製造方法Stainless steel member having heat-resistant coating layer or coating and method for producing the same
 本発明は、600~850℃の高温域で、耐酸化性に優れ、かつ水蒸気環境でのクロムの溶出が抑制されるコバルト-タングステン(Co-W)被覆フェライト系ステンレス鋼部材に関する。 The present invention relates to a cobalt-tungsten (Co—W) -coated ferritic stainless steel member that has excellent oxidation resistance at a high temperature range of 600 to 850 ° C. and suppresses elution of chromium in a water vapor environment.
 近年、石油を代表とする化石燃料の枯渇化、CO排出による地球温暖化現象等の問題から、新しい発電システムの実用化が求められている。自動車等の動力源として使える発電システムとしては燃料電池がある。燃料電池にはいくつかの種類があるが、その中でも固体酸化物形燃料電池(SOFC)はエネルギー効率が高く、実用化が期待されている発電システムの一つである。 In recent years, there has been a demand for practical use of a new power generation system due to problems such as depletion of fossil fuels represented by petroleum and global warming due to CO 2 emissions. A fuel cell is a power generation system that can be used as a power source for automobiles and the like. There are several types of fuel cells. Among them, a solid oxide fuel cell (SOFC) is one of power generation systems that have high energy efficiency and are expected to be put to practical use.
 固体酸化物形燃料電池(SOFC)の作動温度は従来1000℃程度と高く、その構成部材には主にセラミックスが使用されており、ステンレス鋼等の金属材料の使用は困難であった。しかし、近年になって固体電解質膜の改良により作動温度が600~850℃程度まで引き下げられるようになった。これは構成部材に耐熱性金属材料の適用が可能な温度域である。 The operating temperature of a solid oxide fuel cell (SOFC) has conventionally been as high as about 1000 ° C., and ceramics are mainly used for its constituent members, making it difficult to use metal materials such as stainless steel. However, in recent years, the operating temperature has been lowered to about 600 to 850 ° C. by improving the solid electrolyte membrane. This is a temperature range in which a heat-resistant metal material can be applied to the constituent members.
 このような低温作動形の固体酸化物形燃料電池(SOFC)では、集電部材(セパレータ、インターコネクタ、集電板など)に耐熱性金属材料を使用することがコスト面で有利である。そのような耐熱性金属材料に要求される特性は、600~850℃の温度域での良好な電気伝導度(30mΩ・cm以下)、耐水蒸気酸化性、およびセラミックス系の固体酸化物と同等の低い熱膨張係数(常温~800℃で13×10-6(1/K)程度)である。加えて、起動・停止を頻繁に繰り返す場合は耐熱疲労性も要求される。 In such a low-temperature operation type solid oxide fuel cell (SOFC), it is advantageous in terms of cost to use a heat-resistant metal material for a current collecting member (separator, interconnector, current collector plate, etc.). The characteristics required for such a heat-resistant metal material are good electrical conductivity (temperature of 30 mΩ · cm 2 or less) in the temperature range of 600 to 850 ° C., steam oxidation resistance, and equivalent to ceramic solid oxide The coefficient of thermal expansion is about 13 × 10 −6 (1 / K) from room temperature to 800 ° C. In addition, thermal fatigue resistance is also required when starting and stopping are frequently repeated.
 高Cr高Niオーステナイト系ステンレス鋼は、耐水蒸気酸化性に優れる反面、熱膨張係数が高いため、頻繁な起動・停止を行う自動車用途などの固体酸化物形燃料電池(SOFC)では、膨張・収縮の繰り返しによって酸化スケールが剥離しやすく、適用は困難である。一方、フェライト系ステンレス鋼は、セラミックス系固体酸化物と同等の低い熱膨張係数を有するため、固体酸化物形燃料電池(SOFC)の構成部材には適している。 High Cr, high Ni austenitic stainless steel has excellent resistance to steam oxidation, but has a high thermal expansion coefficient. Therefore, in solid oxide fuel cells (SOFCs) such as automobile applications that frequently start and stop, expansion and contraction are required. By repeating the above, the oxide scale is easily peeled off and is difficult to apply. On the other hand, since ferritic stainless steel has a low thermal expansion coefficient equivalent to that of ceramic solid oxide, it is suitable as a constituent member of a solid oxide fuel cell (SOFC).
 また、ステンレス鋼は、表面に導電性の乏しい酸化物被膜が形成されると、固体酸化物形燃料電池(SOFC)の集電部材に適用した場合に電池の内部抵抗が大きくなり、電池性能を向上させる上でマイナス要因となる。このため、酸化物被膜の導電性を向上させる手法を検討する必要も生じてきた。 In addition, when an oxide film with poor conductivity is formed on the surface of stainless steel, the internal resistance of the battery increases when applied to a current collecting member of a solid oxide fuel cell (SOFC), and battery performance is reduced. It becomes a negative factor in improving. For this reason, it has become necessary to study a method for improving the conductivity of the oxide film.
 特許文献1には、Cr:15~30質量%を含有するフェライト系ステンレス鋼からなる固体酸化物形燃料電池セパレータ用鋼が開示されている。この鋼は、700~950℃程度で良好な電気伝導度を有する酸化被膜を形成するとともに、長時間の使用において良好な耐酸化性、耐スケール剥離性を有し、かつ電解質との熱膨張差が小さいという。 Patent Document 1 discloses a steel for a solid oxide fuel cell separator made of ferritic stainless steel containing Cr: 15 to 30% by mass. This steel forms an oxide film with good electrical conductivity at about 700 to 950 ° C., and has good oxidation resistance and scale peeling resistance over a long period of use, and a difference in thermal expansion from the electrolyte. Is said to be small.
 しかし、ステンレス鋼の表面に生成するスケールには、鋼成分に由来するクロムが高濃度で含まれるため、600~850℃の水蒸気雰囲気に曝される固体酸化物形燃料電池(SOFC)のセパレータ環境では、このクロムが水蒸気と反応して蒸発し、固体電解質および電極触媒材料を被毒してしまうという問題がある。この問題を解決する手段として、ステンレス鋼の表層に高価な銀などを塗布して使用する方法等があるが、これはコスト高を招来する。 However, since the scale generated on the surface of stainless steel contains a high concentration of chromium derived from the steel components, the separator environment of a solid oxide fuel cell (SOFC) that is exposed to a steam atmosphere at 600 to 850 ° C. Then, there is a problem that this chromium reacts with water vapor and evaporates, poisoning the solid electrolyte and the electrode catalyst material. As a means for solving this problem, there is a method in which expensive silver or the like is applied to the surface layer of stainless steel, and this causes an increase in cost.
 クロムによる被毒を防止する手法としては、Alを含有するステンレス鋼を基材に使用することが提案されている(特許文献2、3)。しかし、固体酸化物形燃料電池(SOFC)においては、製造段階で集電部材と固体電解質および電極触媒材料とを接合するときや、実際の使用中に、部材が高温に加熱されるため、集電部材にAl含有ステンレス鋼を使用すれば、その加熱時にステンレス鋼表面に絶縁性のAlが生成し、表面電気伝導度は一層低下してしまう。また、Al含有ステンレス鋼基材の表面に導電性被膜(例えばAg)をコーティングしたとしても、加熱時に基材とコーティング層の間にAlの酸化被膜が生成してしまい、切断端面からのクロム蒸発は防止できるものの、表面電気伝導度の改善には至らない。 As a technique for preventing poisoning by chromium, use of stainless steel containing Al as a base material has been proposed (Patent Documents 2 and 3). However, in a solid oxide fuel cell (SOFC), the current collector is heated to a high temperature when the current collector is joined to the solid electrolyte and the electrode catalyst material in the manufacturing stage, or during actual use. If Al-containing stainless steel is used for the electric member, insulating Al 2 O 3 is generated on the surface of the stainless steel during the heating, and the surface conductivity is further lowered. Moreover, even if the surface of the Al-containing stainless steel base material is coated with a conductive film (eg, Ag), an oxide film of Al 2 O 3 is generated between the base material and the coating layer during heating. Although it is possible to prevent the evaporation of chromium, the surface conductivity cannot be improved.
 クロムによる被毒を防止する他の手法としては、ニッケル被覆層を有するステンレス鋼を基材に使用することも考えられる(特許文献4)。しかし、基材として用いるフェライト系ステンレス鋼が、必須元素としてAlを1%以上含有する必要があるため、汎用のSUS430ステンレス鋼等のJISに規定されるフェライト系ステンレス鋼が使用できないという不都合があった。 As another method for preventing poisoning by chromium, it is also conceivable to use stainless steel having a nickel coating layer as a base material (Patent Document 4). However, since the ferritic stainless steel used as a base material needs to contain 1% or more of Al as an essential element, there is a disadvantage that a ferritic stainless steel defined in JIS such as general-purpose SUS430 stainless steel cannot be used. It was.
特開2003-105503号公報JP 2003-105503 A 特開2003-187828号公報JP 2003-187828 A 特開2006-107936号公報JP 2006-107936 A 特開2010-236012号公報JP 2010-2336012 A
 本発明はこのような現状に鑑み、固体酸化物形燃料電池(SOFC)の集電部材(セパレータ、インターコネクタ、集電板)などの高温に曝される用途に十分対応できるような、固体電解質および電極触媒材料のクロム被毒を防止できるステンレス鋼部材を提供することを目的とする。 In view of the current situation, the present invention is a solid electrolyte that can sufficiently cope with applications exposed to high temperatures, such as current collecting members (separators, interconnectors, current collecting plates) of solid oxide fuel cells (SOFC). And it aims at providing the stainless steel member which can prevent the chromium poisoning of an electrode catalyst material.
 前記課題を解決するために、本発明では、以下の手段を採用する。
(1)Cr:11~40質量%を含有するフェライト系ステンレス鋼を基材とし、
 該基材上に形成された被覆層として、厚さ1~100μm、W含有量3~67.5質量%(1~40原子%)、残部Coおよび不可避的不純物からなるCo-W被覆層を備える、ステンレス鋼部材。
(2)Cr:11~40質量%を含有するフェライト系ステンレス鋼を基材とし、該基材上に形成された被膜として、最表面にCo酸化物を含む層を有すると共に、該Co酸化物を含む層よりも前記基材側にCoWOを含む層を有する、厚さ0.5~50μmの積層体を備える、ステンレス鋼部材。
(3)前記被膜が、前記CoWOを含む層よりも前記基材側に、該基材側から順にCrを含む層、および(Co,Fe,Cr)を含む層をさらに備えると共に、前記Co酸化物を含む層がCoを含む、前記(2)のステンレス鋼部材。
(4)前記基材のフェライト系ステンレス鋼が、質量%で、Cr:11~40%、Si:1.5%以下、Mn:1.5%以下、C:0.12%以下、P:0.1%以下、S:0.01%以下、N:0.1%以下、残部Feおよび不可避的不純物からなる組成を有する、前記(1)~(3)のいずれかのステンレス鋼部材。
(5)前記基材のフェライト系ステンレス鋼が、質量%で、さらにAl:6%以下、Mo:4%以下、W:4%以下、Cu:2%以下、Nb:0.8%以下、Ti:0.5%以下、Zr:0.5%以下、V:0.5%以下、Ta:0.5%以下、Ni:2%以下の1種以上を含有する、前記(4)のステンレス鋼部材。
(6)前記基材のフェライト系ステンレス鋼が、質量%で、さらにY:0.1%以下、他のREM(希土類元素):0.1%以下、Ca:0.01%以下、B:0.01%以下、Mg:0.01%以下の1種以上を含有する、前記(4)または(5)のステンレス鋼部材。
(7)前記Co-W被覆層が、Fe、Ni、Ti、Nb、Zr、Ta、V、Mo、P、およびBから選択される1種以上を、合計10質量%以下の範囲でさらに含有し、該Co-W被覆層のCr含有量が0~2質量%である、前記(1)または(4)~(6)のいずれかのステンレス鋼部材。
(8)前記ステンレス鋼部材が、固体酸化物形燃料電池(SOFC)の集電部材である、前記(1)~(7)のいずれかのステンレス鋼部材。
(9)Cr:11~40質量%を含有するフェライト系ステンレス鋼を基材として準備する工程と、当該基材の表面に、厚さ1~100μm、W含有量3~67.5質量%(1~40原子%)のCo-W被覆層を形成する工程と、を有することを特徴とする、ステンレス鋼部材の製造方法。
(10)前記Co-W被覆層が表面に形成された前記基材を、600℃~850℃の範囲で熱処理して、該基材の表面に、最表面にCo酸化物を含む層を有すると共に、該Co酸化物を含む層よりも前記基材側にCoWOを含む層を有する、厚さ0.5~50μmの積層体被膜を形成する工程をさらに含むことを特徴とする、前記(9)のステンレス鋼部材の製造方法。
(11)前記積層体被膜を、前記CoWOを含む層よりも前記基材側に、該基材側から順にCrを含む層、および(Co,Fe,Cr)を含む層をさらに備えると共に、前記Co酸化物を含む層がCoを含む積層体とする、前記(10)のステンレス鋼部材の製造方法。
In order to solve the above problems, the present invention employs the following means.
(1) Based on a ferritic stainless steel containing Cr: 11 to 40% by mass,
As a coating layer formed on the substrate, a Co—W coating layer comprising a thickness of 1 to 100 μm, a W content of 3 to 67.5% by mass (1 to 40 atom%), the remainder Co and unavoidable impurities. A stainless steel member provided.
(2) Cr: Ferritic stainless steel containing 11 to 40% by mass is used as a base material, and the coating formed on the base material has a layer containing Co oxide on the outermost surface, and the Co oxide A stainless steel member comprising a laminate having a thickness of 0.5 to 50 μm and having a layer containing CoWO 4 on the substrate side of the layer containing.
(3) The coating includes a layer containing Cr 2 O 3 and a layer containing (Co, Fe, Cr) 3 O 4 in this order from the substrate side to the substrate side of the layer containing CoWO 4. The stainless steel member according to (2), further including: the Co oxide layer including Co 3 O 4 .
(4) Ferritic stainless steel of the base material is in mass%, Cr: 11 to 40%, Si: 1.5% or less, Mn: 1.5% or less, C: 0.12% or less, P: The stainless steel member according to any one of (1) to (3) above, having a composition comprising 0.1% or less, S: 0.01% or less, N: 0.1% or less, the balance Fe and inevitable impurities.
(5) The ferritic stainless steel of the base material is mass%, and further Al: 6% or less, Mo: 4% or less, W: 4% or less, Cu: 2% or less, Nb: 0.8% or less, Containing at least one of Ti: 0.5% or less, Zr: 0.5% or less, V: 0.5% or less, Ta: 0.5% or less, Ni: 2% or less Stainless steel member.
(6) Ferritic stainless steel of the base material is mass%, Y: 0.1% or less, other REM (rare earth element): 0.1% or less, Ca: 0.01% or less, B: The stainless steel member according to (4) or (5) above, containing one or more of 0.01% or less and Mg: 0.01% or less.
(7) The Co—W coating layer further contains one or more selected from Fe, Ni, Ti, Nb, Zr, Ta, V, Mo, P, and B within a total range of 10% by mass or less. The stainless steel member according to any one of (1) and (4) to (6), wherein the Co—W coating layer has a Cr content of 0 to 2 mass%.
(8) The stainless steel member according to any one of (1) to (7), wherein the stainless steel member is a current collecting member of a solid oxide fuel cell (SOFC).
(9) A step of preparing ferritic stainless steel containing Cr: 11 to 40% by mass as a substrate, and a thickness of 1 to 100 μm and a W content of 3 to 67.5% by mass on the surface of the substrate ( Forming a Co—W coating layer of 1 to 40 atomic%).
(10) The base material on which the Co—W coating layer is formed is heat-treated in a range of 600 ° C. to 850 ° C., and the surface of the base material has a layer containing a Co oxide on the outermost surface. And a step of forming a laminate film having a thickness of 0.5 to 50 μm having a layer containing CoWO 4 on the substrate side of the layer containing the Co oxide, 9) A method for producing a stainless steel member.
(11) The laminate film includes a layer containing Cr 2 O 3 in this order from the substrate side and (Co, Fe, Cr) 3 O 4 on the substrate side relative to the layer containing CoWO 4. The method for producing a stainless steel member according to (10), further including a layer, wherein the Co oxide layer includes a Co 3 O 4 layer.
 本発明の耐熱性被覆層を有するステンレス鋼部材によれば、高温で良好な耐水蒸気酸化性を有し、コーティングに銀のような高価な金属を用いることなくクロムの蒸発(固体電解質および電極触媒材料の被毒)の問題を解決した、耐熱性被覆層を有するステンレス鋼部材を提供できる。
 また、本発明の耐熱性被覆層を有するステンレス鋼部材の製造方法によれば、Co-W被覆層を形成してから所定条件の熱処理を行うだけで耐熱性被覆層を形成でき、既設のステンレス鋼部材であっても、容易に耐熱性被覆層を形成でき、既存設備の高度化改修が容易にできる。
According to the stainless steel member having the heat-resistant coating layer of the present invention, chromium vaporization (solid electrolyte and electrode catalyst) has good steam oxidation resistance at high temperatures without using an expensive metal such as silver for coating. A stainless steel member having a heat-resistant coating layer that solves the problem of material poisoning can be provided.
In addition, according to the method for producing a stainless steel member having a heat-resistant coating layer of the present invention, the heat-resistant coating layer can be formed simply by performing a heat treatment under a predetermined condition after forming the Co—W coating layer. Even a steel member can easily form a heat-resistant coating layer and can easily upgrade and upgrade existing equipment.
本発明の一実施形態にかかる、Co-2.4W(原子%)が電気めっきされた試験片断面の顕微鏡写真(A)、および該断面の元素分布(B)を示す図である。It is a figure which shows the micrograph (A) of the cross section of the test piece electroplated with Co-2.4W (atomic%), and the element distribution (B) of the cross section according to one embodiment of the present invention. 本発明の一実施形態にかかる、Co-2.4W(原子%)が電気めっきされた試験片について、X線回折スペクトルが800℃での等温酸化によって変化する様子を示す図で、(a)は開始前即ちめっき直後、(b)は酸化試験開始時(tox=0s)、(c)は15分経過後、(d)は30分経過後、(e)は250時間経過後、(f)は1000時間経過後、をそれぞれ示している。FIG. 4 is a diagram showing how an X-ray diffraction spectrum is changed by isothermal oxidation at 800 ° C. for a test piece electroplated with Co-2.4 W (atomic%) according to an embodiment of the present invention. (B) is at the start of the oxidation test (t ox = 0s), (c) is after 15 minutes, (d) is after 30 minutes, (e) is after 250 hours ( f) shows after 1000 hours, respectively. 800℃での等温酸化後のCo-2.4W(原子%)が電気めっきされた試験片について、断面の顕微鏡写真および該断面における元素分布を示す図で、(a)は開始時、(b)は15分経過後、(c)は30分経過後、(d)は1時間経過後、(e)は3時間経過後、(f)は25時間経過後、(g)は250時間経過後、(h)は1000時間経過後、をそれぞれ示している。FIG. 7 is a micrograph of a cross section of a test piece electroplated with Co-2.4 W (atomic%) after isothermal oxidation at 800 ° C. and a diagram showing element distribution in the cross section, where (a) shows the start, (b ) After 15 minutes, (c) after 30 minutes, (d) after 1 hour, (e) after 3 hours, (f) after 25 hours, (g) after 250 hours Later, (h) shows after 1000 hours. NIST標準データベース番号69を用いて構築されたEllingham-Richardsonダイアグラムを示す図である。FIG. 6 shows an Ellingham-Richardson diagram constructed using NIST standard database number 69. 厚さ10μmのCo-W電気めっき層を有する場合と、該電気めっき層が無い場合とについて、SUS430ステンレス鋼を酸化処理した際の、質量変化の放物線プロット(a)、および長期酸化速度(b)を示す図である。A parabolic plot (a) of mass change and a long-term oxidation rate (b) when SUS430 stainless steel is oxidized with and without a Co—W electroplating layer having a thickness of 10 μm. ). 各サンプルの被覆層ないし耐熱性被膜の構造を示す模式図である。It is a schematic diagram which shows the structure of the coating layer thru | or heat resistant film of each sample. 3容量%の水分を含有する800℃の空気中での等温酸化中に、Co-2.4W(原子%)電気めっき層を伴うSUS430ステンレス鋼上に形成された各酸化物層の厚さの割合の時間変化を示す図である。The thickness of each oxide layer formed on SUS430 stainless steel with a Co-2.4W (atomic%) electroplating layer during isothermal oxidation in air at 800 ° C. containing 3% by volume of water. It is a figure which shows the time change of a ratio. Co-2.4W(原子%)電気めっき層を伴うSUS430ステンレス鋼において、Wの質量収支から計算された、異なる酸化時間での蒸発指数ηを示す図である。FIG. 5 is a diagram showing evaporation index η W at different oxidation times calculated from the mass balance of W in SUS430 stainless steel with a Co-2.4 W (atomic%) electroplating layer.
 本発明では、基材に、Crを11~40質量%含有するフェライト系ステンレス鋼を用いる。その基材表面にCo-W被覆層を形成する。Co-W被覆層を有する基材を高温に加熱して拡散処理することで、耐熱性被膜を形成する。高温加熱時にCo-W被覆層に含まれるCoとWとが反応して、耐熱性被膜中にCoWOを含む中間層が形成される。フェライト系ステンレス鋼基材と、当該中間層を含む旧Co-W被覆層とで構成された部材は、耐熱性被膜を有するステンレス鋼部材となる。耐熱性被膜中のCoWOは非常に安定であり、基材側から旧Co-W被覆層表面側へのCrの拡散を防止することで、表面からのCrの蒸発を抑えることができる。さらに、CoWOは600~850℃で導電性を有することから、耐熱性被膜の電気伝導度が高まることも期待される。前述の耐熱性被膜を有するステンレス鋼を製造する際には、基材のステンレス鋼が素材鋼帯の状態にあるときに、連続ラインを用いてCo-W被覆層を形成することができる(プレコート)。このため、所定形状に成形された後に個々の部材にコーティングを施す場合(ポストコート)と比較して、生産性が格段に向上する。 In the present invention, ferritic stainless steel containing 11 to 40% by mass of Cr is used as the base material. A Co—W coating layer is formed on the surface of the substrate. A base material having a Co—W coating layer is heated to a high temperature and subjected to diffusion treatment to form a heat resistant coating. Co and W contained in the Co—W coating layer react with each other during high temperature heating to form an intermediate layer containing CoWO 4 in the heat resistant coating. A member composed of the ferritic stainless steel substrate and the old Co—W coating layer including the intermediate layer is a stainless steel member having a heat resistant coating. CoWO 4 in the heat resistant coating is very stable, and by preventing the Cr from diffusing from the base material side to the old Co—W coating layer surface side, the evaporation of Cr from the surface can be suppressed. Further, since CoWO 4 has conductivity at 600 to 850 ° C., it is expected that the electric conductivity of the heat resistant coating is increased. When producing stainless steel having the above-mentioned heat-resistant coating, a Co—W coating layer can be formed using a continuous line when the base stainless steel is in the state of a steel strip (pre-coating). ). For this reason, productivity improves markedly compared with the case where it coats to each member after forming in a predetermined shape (post coat).
 CoWOを含む耐熱性被膜は、被膜状に形成されたCoWOを含む層である。耐熱性被膜全体の厚さは、0.5μm以上であることが必要であり、1μm以上の厚さであることが好ましい。ただし、過剰に厚くなると材料の硬化、脆化を招くので、中間層の厚さは50μm以下であることが好ましく、20μm以下であることがより好ましい。 Refractory coating comprising CoWO 4 is a layer containing a CoWO 4 formed in film shape. The total thickness of the heat-resistant coating film needs to be 0.5 μm or more, and is preferably 1 μm or more. However, since an excessive thickness leads to hardening and embrittlement of the material, the thickness of the intermediate layer is preferably 50 μm or less, and more preferably 20 μm or less.
 上記のような十分な厚さの耐熱性被膜を生成させるためには、基材上に形成するCo-W被覆層の平均厚さを1μm以上とすることが必要であり、2μm以上とすることが好ましい。欠陥の少ないCo-W被覆層とするためには平均厚さ5μm以上とすることが効果的である。ただしCo-W被覆層が過剰に厚くなると、基材とCo-W被覆層との間に熱膨張差による応力が発生し、固体酸化物形燃料電池(SOFC)の起動・停止を繰り返した際に、両者の間にボイドが発生しやすくなり、被覆層が剥離する要因となる。種々検討の結果、Co-W被覆層の平均厚さは100μm以下であることが好ましく、50μm以下であることがより好ましい。 In order to produce a heat-resistant film having a sufficient thickness as described above, the average thickness of the Co—W coating layer formed on the substrate must be 1 μm or more, and should be 2 μm or more. Is preferred. In order to obtain a Co—W coating layer with few defects, an average thickness of 5 μm or more is effective. However, when the Co—W coating layer becomes excessively thick, stress due to the difference in thermal expansion occurs between the base material and the Co—W coating layer, and the solid oxide fuel cell (SOFC) is repeatedly started and stopped. In addition, voids are easily generated between the two, which causes the coating layer to peel off. As a result of various studies, the average thickness of the Co—W coating layer is preferably 100 μm or less, and more preferably 50 μm or less.
 Co-W被覆層中のCr含有量は0~2質量%とすることが好ましい。それよりCr含有量が多くなると、電池セルへのCrの拡散または蒸発が問題となる。Co-W被覆層中には、その他の元素として、Fe、Ni、Ti、Nb、Zr、Ta、V、Moの1種以上を含有させることができる。これらの金属元素はCo-W被覆層の耐酸化性、耐スケール剥離性を高める作用を有する。また、基材側へこれらの元素が拡散し、界面および粒界に金属間化合物を形成することにより、電気伝導度を高める効果もある。また、Co-W被覆層中にはP、Bが含まれていてもよい。P、Bは特に無電解コバルトめっきまたはコバルトろうとしてCo-W被覆層を形成する場合に有効な添加元素となる。すなわち、無電解めっきの場合はコバルトめっき浴の還元剤として、また、ろう付けの場合はろう材の融点を下げるための元素として、それぞれ添加される。種々検討の結果、Co-W被覆層中に含有されるこれらFe、Ni、Ti、Nb、Zr、Ta、V、Mo、P、Bの合計含有量は10質量%以下とすることが好ましい。 The Cr content in the Co—W coating layer is preferably 0 to 2% by mass. If the Cr content is higher than that, diffusion or evaporation of Cr into the battery cell becomes a problem. The Co—W coating layer can contain one or more of Fe, Ni, Ti, Nb, Zr, Ta, V, and Mo as other elements. These metal elements have the effect of improving the oxidation resistance and scale peeling resistance of the Co—W coating layer. In addition, these elements diffuse to the base material side, and an intermetallic compound is formed at the interface and grain boundary, so that there is an effect of increasing the electrical conductivity. Further, the Co—W coating layer may contain P and B. P and B are effective additive elements particularly when a Co—W coating layer is formed as electroless cobalt plating or cobalt brazing. That is, it is added as a reducing agent for a cobalt plating bath in the case of electroless plating and as an element for lowering the melting point of the brazing material in the case of brazing. As a result of various studies, the total content of these Fe, Ni, Ti, Nb, Zr, Ta, V, Mo, P, and B contained in the Co—W coating layer is preferably 10% by mass or less.
 Co-W被覆層中のW含有量は、3~67.5質量%(1~40原子%)とする必要がある。W含有量が3質量%未満の場合には、熱処理後に耐熱性被膜中に現れるCoWOが少なくなり、基材からCrが蒸発することを防止する効果が十分に得られない。W含有量が67.5質量%超の場合には、Coが不足して、CoWOを覆うFeCo、Coが現れなくなり、耐熱性被膜からWが気化する虞がある。Co-W被覆層中のW含有量は、好ましくは6~44質量%(2~20原子%)であり、より好ましくは7.1~25.7質量%(2.4~10原子%)である。 The W content in the Co—W coating layer needs to be 3 to 67.5 mass% (1 to 40 atomic%). When the W content is less than 3% by mass, CoWO 4 appearing in the heat-resistant film after heat treatment is reduced, and the effect of preventing Cr from evaporating from the substrate cannot be obtained sufficiently. When the W content exceeds 67.5 mass%, Co is insufficient, FeCo 2 O 4 and Co 3 O 4 covering CoWO 4 do not appear, and W may be vaporized from the heat resistant coating. The W content in the Co—W coating layer is preferably 6 to 44 mass% (2 to 20 atomic%), more preferably 7.1 to 25.7 mass% (2.4 to 10 atomic%). It is.
 Co-W被覆層の形成方法は、フェライト系ステンレス鋼の表面に電気Co-Wめっきを施す手法が採用できる他、無電解コバルトめっき法、コバルトろうを被覆する方法、コバルトまたはコバルト基合金の板または箔をクラッド法により被覆する方法など、種々の手法が適用できる。タングステン被覆層の形成方法は、例えばスパッタによる蒸着法、プラズマ溶射法等が利用できる。 As a method for forming the Co—W coating layer, a method of applying electro-Co—W plating to the surface of a ferritic stainless steel can be adopted. Alternatively, various methods such as a method of coating a foil by a clad method can be applied. As a method for forming the tungsten coating layer, for example, a sputtering deposition method, a plasma spraying method, or the like can be used.
 CoWOを含む耐熱性被膜を形成するための熱処理は、例えば、600~850℃で10~3600分保持する加熱条件が適用でき、該保持時間は1~3時間とすることが好ましい。また、該加熱条件は、より好ましくは、700~800℃で60~540分保持する条件である。この加熱は、固体酸化物形燃料電池(SOFC)の製造段階で集電部材と固体電解質および電極触媒材料を接合させるための熱処理や、燃料電池の装置立ち上げ時の稼働による加熱によって兼ねることもできる。 For the heat treatment for forming the heat-resistant film containing CoWO 4 , for example, heating conditions of holding at 600 to 850 ° C. for 10 to 3600 minutes can be applied, and the holding time is preferably 1 to 3 hours. The heating condition is more preferably a condition of holding at 700 to 800 ° C. for 60 to 540 minutes. This heating may be combined with heat treatment for joining the current collecting member, the solid electrolyte, and the electrode catalyst material in the manufacturing stage of the solid oxide fuel cell (SOFC), or by heating when the fuel cell device is started up. it can.
 フェライト系ステンレス鋼基材の成分組成は、例えば以下の範囲とすることが好ましい。以下、基材の成分組成における「%」は、特に断らない限り「質量%」を意味する。 The component composition of the ferritic stainless steel base material is preferably within the following range, for example. Hereinafter, “%” in the component composition of the substrate means “% by mass” unless otherwise specified.
 Crは、ステンレス鋼に必要な耐食性、耐酸化性、電気伝導度を付与するうえで必要な成分である。600℃前後での耐水蒸気酸化性および良好な電気伝導度を確保するためには、11%以上のCr含有量が必要である。特に水蒸気雰囲気に曝される際の耐久性を重視する場合、15%以上のCr含有量を確保することが好ましい。ただし、40%を超えるCrの含有は、フェライト系ステンレス鋼の加工性の低下、低温靭性の低下および475℃脆化感受性の増大を招く。したがって、Cr含有量は40%以下とし、35%以下とすることが好ましい。 Cr is a component necessary for imparting corrosion resistance, oxidation resistance, and electrical conductivity necessary for stainless steel. In order to ensure steam oxidation resistance at around 600 ° C. and good electrical conductivity, a Cr content of 11% or more is necessary. In particular, when emphasizing durability when exposed to a water vapor atmosphere, it is preferable to secure a Cr content of 15% or more. However, the Cr content exceeding 40% leads to a decrease in workability of ferritic stainless steel, a decrease in low temperature toughness, and an increase in 475 ° C embrittlement sensitivity. Therefore, the Cr content is 40% or less and preferably 35% or less.
 Siは、Cr系酸化物を安定化させる作用を有し、耐水蒸気酸化性の向上に有効である。しかし、過剰のSi含有は、表層に電気抵抗の高いSiOを生成させる要因となる。また、低温靱性の低下、表面疵の発生、製造性の低下を招く要因となる。Si含有量は1.5%以下の範囲とすることが好ましい。 Si has the effect of stabilizing the Cr-based oxide and is effective in improving the steam oxidation resistance. However, excessive Si content becomes a factor for generating SiO 2 having high electrical resistance in the surface layer. Moreover, it becomes a factor which causes the fall of low-temperature toughness, generation | occurrence | production of surface flaws, and a productivity fall. The Si content is preferably in the range of 1.5% or less.
 Alは、ステンレス鋼の鋼素地表面にAl酸化被膜を形成する合金元素である。このAl被膜は、耐高温酸化性の顕著な向上をもたらすとともに、特に固体酸化物形燃料電池(SOFC)の集電部材において、切断端面で剥き出しとなっている鋼素地からのクロム蒸発を抑止する上で有効に機能する。しかし、過剰のAl含有は、鋼の加工性・靱性を低下させ、また製造性を損なう要因となる。種々検討の結果、Al含有量は、6%以下とすることが好ましい。より好ましいAl含有量は、1%未満である。 Al is an alloy element that forms an Al 2 O 3 oxide film on the surface of a stainless steel substrate. This Al 2 O 3 coating brings about a significant improvement in high-temperature oxidation resistance, and also evaporates chromium from the steel substrate exposed at the cut end face, particularly in a current collecting member of a solid oxide fuel cell (SOFC). It works effectively in suppressing However, excessive Al content decreases the workability and toughness of the steel, and impairs manufacturability. As a result of various studies, the Al content is preferably 6% or less. A more preferable Al content is less than 1%.
 Mnは、フェライト系ステンレス鋼の耐スケール剥離性を改善する作用を有するが、過剰のMn含有は鋼を硬質化し、加工性、低温靱性を低下させる要因となる。Mn含有量は1.5%以下の範囲とすることが好ましい。 Mn has the effect of improving the scale peel resistance of ferritic stainless steel, but the excessive Mn content hardens the steel and causes a decrease in workability and low temperature toughness. The Mn content is preferably in the range of 1.5% or less.
 Mo、Wは、固溶強化により、Cuは固溶強化または析出強化により、それぞれ高温強度および耐熱疲労特性を向上させる元素であり、これらの1種以上を必要に応じて添加することができる。特に、スタックに積層することによるクリープ強度、および起動・停止の繰り返しによる熱疲労特性が問題となる用途では、これらの元素の添加が有効である。Mo、W、Cuとも、0.1%以上の含有量を確保することがより効果的である。ただし、これらの元素の含有量が多くなると鋼が硬質化するので、これらの1種以上を含有させる場合は、Mo、Wはいずれも4%以下、Cuは2%以下の含有量範囲とすることが好ましい。 Mo and W are elements that improve high temperature strength and heat fatigue resistance by solid solution strengthening and Cu by solid solution strengthening or precipitation strengthening, respectively, and one or more of these can be added as necessary. In particular, the addition of these elements is effective in applications where creep strength due to stacking in a stack and thermal fatigue properties due to repeated starting and stopping are problematic. For Mo, W, and Cu, it is more effective to secure a content of 0.1% or more. However, since the steel hardens when the content of these elements increases, when one or more of these elements are contained, the content range of Mo and W is 4% or less and Cu is 2% or less. It is preferable.
 Nb、Ti、Zr、V、Taは、固溶強化または析出強化によりフェライト系ステンレス鋼の高温強度を更に向上させる元素であり、必要に応じてこれらの1種以上を含有させることができる。これらいずれの元素も、0.03%以上の含有量とすることがより効果的である。ただし、過剰の含有は鋼を硬質化させるので、これらの1種以上を含有させる場合は、Nbは0.8%以下、Ti、Zr、V、Taはいずれも0.5%以下の含有量範囲とすることが好ましい。 Nb, Ti, Zr, V, and Ta are elements that further improve the high temperature strength of the ferritic stainless steel by solid solution strengthening or precipitation strengthening, and can contain one or more of these as required. It is more effective to set these elements to a content of 0.03% or more. However, excessive content hardens the steel, so when one or more of these are included, Nb is 0.8% or less, and Ti, Zr, V, and Ta are all 0.5% or less. It is preferable to be in the range.
 C、Nは、基材ステンレス鋼の高温強度、特にクリープ特性を改善する元素であるが、フェライト系ステンレス鋼に過剰添加すると加工性、低温靱性を低下させる。また、Ti、Nbとの反応によって炭窒化物を生成しやすく、高温強度の改善に有効な固溶Tiや固溶Nbを減少させる。検討の結果、本発明の対象鋼は、Cが0.12%以下、Nが0.1%以下であることが好ましい。 C and N are elements that improve the high-temperature strength, especially creep properties, of the base stainless steel, but if added excessively to ferritic stainless steel, the workability and low-temperature toughness are reduced. In addition, carbonitrides are easily generated by reaction with Ti and Nb, and solid solution Ti and solid solution Nb effective in improving high temperature strength are reduced. As a result of the study, the target steel of the present invention preferably has C of 0.12% or less and N of 0.1% or less.
 Y、他のREM(希土類元素)、Caは、酸化物被膜中に固溶し、酸化物被膜の強化および耐酸化性の向上に有効な元素であり、本発明ではこれらの1種以上を必要に応じて含有させることができる。それらの作用を十分に発揮させるためには、Y、他のREM、Caとも0.0005%以上の含有量とすることがより効果的である。ただし、これらの元素は鋼を硬化させ、また表面疵の原因ともなるので、これらの1種以上を含有させる場合は、Y、他のREMはそれぞれ0.1%以下、Caは0.01%以下の含有量範囲とすることが好ましい。 Y, other REMs (rare earth elements), and Ca are elements that are dissolved in the oxide film and are effective in strengthening the oxide film and improving the oxidation resistance. In the present invention, one or more of these elements are required. It can be contained according to. In order to fully exhibit these actions, it is more effective to set the content of 0.0005% or more for Y, other REMs, and Ca. However, these elements harden steel and cause surface flaws. Therefore, when one or more of these elements are contained, Y and other REMs are each 0.1% or less, and Ca is 0.01%. The content range is preferably as follows.
 B、Mgはステンレス鋼の熱間加工性を向上させる元素であり、本発明ではこれらの1種以上を必要に応じて含有させることができる。Bは0.0002%以上、Mgは0.0005%以上の含有量を確保することがより効果的である。ただし、過剰の含有は逆に熱間加工性を低下させるので、これらの1種以上を含有させる場合は、B、Mgとも0.01%以下の含有量範囲とすることが好ましい。 B and Mg are elements that improve the hot workability of stainless steel, and in the present invention, one or more of these may be contained as necessary. It is more effective to secure a content of B of 0.0002% or more and Mg of 0.0005% or more. However, excessive content adversely decreases hot workability. Therefore, when one or more of these are included, it is preferable that both B and Mg have a content range of 0.01% or less.
 Pは、0.1%までの含有が許容される。
 Sは、熱間加工性、耐溶接高温割れ性に悪影響を及ぼし、また異常酸化の起点にもなるので、0.01%以下とすることが好ましい。
P is allowed to contain up to 0.1%.
S has an adverse effect on hot workability and weld hot cracking resistance, and also serves as a starting point for abnormal oxidation, so it is preferably made 0.01% or less.
 製鋼工程において鋼中に混入されるNiは2%まで許容されるが、0.6%以下であることが好ましい。その他の混入元素として、Oは0.02%以下、Reは2%以下、Snは1%以下、Coは2%以下、Hfは1%以下、Scは0.1%以下の含有量範囲に抑えるように管理することが好ましい。 Ni mixed in steel in the steelmaking process is allowed up to 2%, but is preferably 0.6% or less. As other mixed elements, O is 0.02% or less, Re is 2% or less, Sn is 1% or less, Co is 2% or less, Hf is 1% or less, and Sc is 0.1% or less. It is preferable to manage so as to suppress it.
 以下に、本発明の実施例を説明するが、本発明はこれに限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited thereto.
 市販のSUS430ステンレス鋼を準備した。当該ステンレス鋼の化学組成は、16.2Cr-1.0Mn-0.7Si-0.12C-0.02S-0.04P(質量%)であった。当該ステンレス鋼を20×15×0.5mmの寸法を有する小さな試験片に切断した。 A commercially available SUS430 stainless steel was prepared. The chemical composition of the stainless steel was 16.2Cr-1.0Mn-0.7Si-0.12C-0.02S-0.04P (mass%). The stainless steel was cut into small test pieces having dimensions of 20 × 15 × 0.5 mm 3 .
 試験片を、#2000グレードまでのSiC紙で、蒸留水を加えつつ湿式研磨した後、アセトンで超音波洗浄した。洗浄後の試験片をカソードとし、表1に示す組成のストライク電気めっき溶液中で、カソード電流密度iが20A/dmで60秒間の条件で、薄いCoを試験片上に堆積させた。ここで、ストライクめっきとは、素地の不働態被膜を除去、活性化した後に、めっきの密着を良くするために行われる下地めっきのことである。次いで、表1に示す組成の酸性浴を用いて、Co-W合金の電着層(Co-W被覆層)の形成を行った。カソード電流密度iは3A/dmであり、厚さ10μmのCo-W層(85g/m)が得られるように電気めっき時間を調整した。すべての溶液は、分析等級の試薬および脱イオン水で調製した。電気めっきセルは、2本のグラファイトアノードロッド(直径6mm)と、2つのアノードの間に配置されたカソードとから構成されている。CoのストライクめっきおよびCo-W合金の電気めっき浴の溶液温度はそれぞれ、室温および40℃であった。Co-W電気めっきの組成は、エネルギー分散型X線蛍光分析器(XRF)を用いて測定した。 The test piece was wet-polished with SiC paper up to # 2000 grade while adding distilled water, and then ultrasonically cleaned with acetone. The washed test piece was used as a cathode, and thin Co was deposited on the test piece in a strike electroplating solution having the composition shown in Table 1 at a cathode current density ic of 20 A / dm 2 for 60 seconds. Here, the strike plating is a base plating performed for improving the adhesion of the plating after removing and activating the passive film on the substrate. Next, using an acidic bath having the composition shown in Table 1, a Co—W alloy electrodeposition layer (Co—W coating layer) was formed. The cathode current density ic was 3 A / dm 2 , and the electroplating time was adjusted so that a Co—W layer (85 g / m 2 ) having a thickness of 10 μm was obtained. All solutions were prepared with analytical grade reagents and deionized water. The electroplating cell is composed of two graphite anode rods (diameter 6 mm) and a cathode disposed between the two anodes. The solution temperatures of the Co strike plating and Co—W alloy electroplating baths were room temperature and 40 ° C., respectively. The composition of Co—W electroplating was measured using an energy dispersive X-ray fluorescence analyzer (XRF).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 めっき形成後の試験片を、温度が800℃に維持されている反応管に挿入し、一定時間保持した。酸化時間tox=0sは、挿入してから167秒後に試料の温度が800℃に達したときと定義した。試験片は、酸化時間tox=1000時間迄の種々の時間、3体積%の水蒸気を含む空気中にて800℃で酸化された。反応管中のガスの流量は、100cm/minであった。 The test piece after the plating was formed was inserted into a reaction tube maintained at a temperature of 800 ° C. and held for a certain time. Oxidation time t ox = 0s was defined as when the sample temperature reached 800 ° C. 167 seconds after insertion. The specimens were oxidized at 800 ° C. in air containing 3% by volume of water vapor for various times up to the oxidation time t ox = 1000 hours. The gas flow rate in the reaction tube was 100 cm 3 / min.
 酸化処理前後の試験片の質量変化は、酸化の前後における試料の質量から計算した。形成された酸化物の構造は、50kVおよび45mAのCuKα放射線とグラファイトモノクロメーターとを用いたX線回折(XRD)によって確認した。試料の形態は走査型電子顕微鏡(SEM)で観察し、深さ(厚さ)方向の元素分布をエネルギー分散型X線分光器(EDS)で分析した。 The mass change of the test piece before and after the oxidation treatment was calculated from the mass of the sample before and after the oxidation. The structure of the oxide formed was confirmed by X-ray diffraction (XRD) using 50 kV and 45 mA CuKα radiation and a graphite monochromator. The form of the sample was observed with a scanning electron microscope (SEM), and the element distribution in the depth (thickness) direction was analyzed with an energy dispersive X-ray spectrometer (EDS).
 <Co-W被覆層>
 Co-W電気めっき(被覆層)におけるWの含有量は、XRFにより2.4原子%(7.1質量%)と推定されたので、以後、この被覆層をCo-2.4W被覆層と呼ぶこととする。Co-2.4W被覆層を有する試験片の断面の顕微鏡写真を図1中に(A)として示す。Co-2.4W被覆層は、基材表面に強固に接着しており、緻密な層となっている。また、図1中に(B)として示す該断面の元素分布からは、Wが被覆層全体に均一に分布していることが確認される。層の厚さは、設計通りに約10μmである。Co-2.4W被覆層のX線回折スペクトルを図2中に(a)として示す。被覆層では、Coのピークのみが確認される。
<Co-W coating layer>
The content of W in the Co—W electroplating (coating layer) was estimated to be 2.4 atomic% (7.1% by mass) by XRF. Henceforth, this coating layer was referred to as a Co-2.4W coating layer. I will call it. A micrograph of a cross section of a test piece having a Co-2.4W coating layer is shown in FIG. The Co-2.4W coating layer is firmly adhered to the substrate surface and is a dense layer. Moreover, it is confirmed from the element distribution of this cross section shown as (B) in FIG. 1 that W is uniformly distributed throughout the coating layer. The layer thickness is about 10 μm as designed. The X-ray diffraction spectrum of the Co-2.4W coating layer is shown as (a) in FIG. In the coating layer, only the Co peak is confirmed.
 <酸化物構造>
 酸化時間toxが0分から1000時間における、800℃での等温酸化後の耐熱性被膜を有する試験片の断面の顕微鏡写真および該断面における元素分布を図3に示す。図中の(a)は酸化時間toxが0分(以下、「tox=0分」のように表記する)、(b)はtox=15分、(c)はtox=30分、(d)はtox=1時間、(e)はtox=3時間、(f)はtox=25時間、(g)はtox=250時間、(h)はtox=1000時間を示している。また、図3において、領域aは基材内のCo拡散領域、領域bはCr、領域cは(Co,Fe,Cr)、領域dは被覆層、領域eも被覆層、領域fはW富化領域、領域gは鉄含有酸化物領域、領域hはCo酸化物領域である。
<Oxide structure>
FIG. 3 shows a micrograph of a cross section of a test piece having a heat resistant film after isothermal oxidation at 800 ° C. in an oxidation time t ox of 0 minutes to 1000 hours and element distribution in the cross section. In the figure, (a) shows an oxidation time t ox of 0 minutes (hereinafter expressed as “t ox = 0 minutes”), (b) shows t ox = 15 minutes, and (c) shows t ox = 30 minutes. , (D) is t ox = 1 hour, (e) is t ox = 3 hours, (f) is t ox = 25 hours, (g) is t ox = 250 hours, (h) is t ox = 1000 hours. Is shown. In FIG. 3, a region a is a Co diffusion region in the substrate, a region b is Cr 2 O 3 , a region c is (Co, Fe, Cr) 3 O 4 , a region d is a coating layer, and a region e is also a coating layer. , Region f is a W-enriched region, region g is an iron-containing oxide region, and region h is a Co oxide region.
 酸化時間tox=0sでは、図3中の(a)に見られるように、Co-2.4W被覆層である領域dおよびeの上部に、Co酸化物である領域hが形成される。このCo酸化物には、図2中に(b)として示すように、XRDによってCoとCoOとが割り当てられる。タングステンはCo酸化物の下に位置する領域fに蓄積し、該領域はCoWOを含むと思われる。被覆層である領域eの外側には少量の酸素が含まれている。被覆層と基材との間の界面は、2つの層の主成分の相互拡散のために、図1に示すような酸化前に観察されるものに比べて不鮮明であった。 In the oxidation time t ox = 0s, as seen in (a) of FIG. 3, a region h made of Co oxide is formed above the regions d and e which are Co-2.4W coating layers. As shown in FIG. 2 as (b), Co 3 O 4 and CoO are assigned to this Co oxide by XRD. Tungsten accumulates in a region f located below the Co oxide, the region is likely to contain CoWO 4. A small amount of oxygen is contained outside the region e which is the coating layer. The interface between the coating layer and the substrate was smeared compared to that observed before oxidation as shown in FIG. 1 due to interdiffusion of the main components of the two layers.
 酸化時間tox=15分では、鉄の外側への拡散が進行し、図3中の(b)に見られるように、鉄含有酸化物である領域gが、Co酸化物である領域hとW富化領域である領域fとの間に観察される。酸化時間tox=30分では、図3中の(c)に見られるように、最上層のCo層である領域hの厚さが増加し、Coの下に、FeCoOの酸化物である領域gが観察される。この酸化物は、図2中に(d)として示すように、XRD分析結果から、CoFeであることが判明した。また、図3中の(c)からは、tox=30分では、被覆層である領域dが少量残存していることが確認される。残存する被覆層の内部では、OおよびCrの富化が観察され、これは、基材である領域aと被覆層である領域dとの界面でCrが酸化することを意味する。 In the oxidation time t ox = 15 minutes, the diffusion of iron to the outside proceeds, and as shown in (b) of FIG. 3, the region g that is an iron-containing oxide is changed to the region h that is a Co oxide. It is observed between the region f which is a W-enriched region. The oxidation time t ox = 30 min, as seen in (c) in FIG. 3, the thickness of the region h which is Co 3 O 4 layer of the uppermost layer is increased, under the Co 3 O 4, Fe A region g which is an oxide of 2 CoO 4 is observed. As shown in FIG. 2 as (d), this oxide was found to be CoFe 2 O 4 from the XRD analysis results. Further, from (c) in FIG. 3, it is confirmed that a small amount of the region d which is the coating layer remains at t ox = 30 minutes. Inside the remaining coating layer, enrichment of O and Cr is observed, which means that Cr is oxidized at the interface between the substrate region a and the coating layer region d.
 酸化時間tox=1時間では、図3中の(d)に見られるように、被覆層が完全に酸化物に変換される。CoFeである領域gの下に位置し、CoWOを含むW富化領域である領域fの量が増加し、形成されたCr酸化物である領域bおよび領域cが、CoWOを含むW富化領域である領域fに面する。
 酸化時間tox=3、25時間では、図3中の(e)および(f)に見られるように、酸化物層の構造は1時間の酸化後の構造と類似しているが、層間の界面が鮮明になる。
At the oxidation time t ox = 1 hour, the coating layer is completely converted to oxide as seen in (d) of FIG. The amount of the region f which is located under the region g which is CoFe 2 O 4 and which is a W-enriched region including CoWO 4 is increased, and the region b and the region c which are formed Cr oxides form CoWO 4 . Facing the region f which is a W-enriched region.
At oxidation time t ox = 3, 25 hours, the structure of the oxide layer is similar to the structure after oxidation for 1 hour as seen in (e) and (f) of FIG. The interface becomes clear.
 基材内のCo拡散領域である領域aにおけるCo量は、酸化時間tox=30分で増加し、tox=25時間で減少するが、これは被覆層が消失する30分から1時間までに、被覆層と基材との間の相互拡散が終了することを意味する。tox=250時間では、図3中の(g)に見られるように、Crが基材/酸化物の界面に蓄積するが、このCrは領域bにおいてCrを形成すると思われる。CrとCoWOとの間に位置する領域cにもCrの蓄積が観察される。この特徴は、図3中の(h)に見られるように、tox=1000時間で明らかになる。外側のCr富化層は、おそらく領域cにおいて(Co,Fe,Cr)の形でCr、Co、FeおよびOを含む。1000時間の酸化後、酸化物(耐熱性被膜)は、基材側から外側へCr、(Co,Fe,Cr)、CoWO、FeCo、およびCoの5層からなる。CrがCoWO層の上側(基材と反対側)では確認されていないことは重要であり、これはCoWOがCrイオンの外方拡散に対する障壁として作用することを意味する。 The amount of Co in the region a, which is a Co diffusion region in the substrate, increases at the oxidation time t ox = 30 minutes and decreases at t ox = 25 hours, which is from 30 minutes to 1 hour when the coating layer disappears. This means that the interdiffusion between the coating layer and the substrate ends. At t ox = 250 hours, Cr accumulates at the substrate / oxide interface as seen in (g) in FIG. 3, but this Cr appears to form Cr 2 O 3 in region b. Accumulation of Cr is also observed in the region c located between Cr 2 O 3 and CoWO 4 . This feature becomes apparent at t ox = 1000 hours, as can be seen in (h) in FIG. The outer Cr-enriched layer contains Cr, Co, Fe and O, possibly in the form of (Co, Fe, Cr) 3 O 4 in region c. After 1000 hours of oxidation, the oxide (heat resistant coating) is Cr 2 O 3 , (Co, Fe, Cr) 3 O 4 , CoWO 4 , FeCo 2 O 4 , and Co 3 O 4 from the substrate side to the outside. It consists of five layers. It is important that Cr is not found on the top side of the CoWO 4 layer (opposite the substrate), which means that CoWO 4 acts as a barrier to Cr ion outdiffusion.
 図4は、NIST標準データベース番号69(NIST Chemistry webbook)を用いて構築されたEllingham-Richardsonダイアグラムを示す。いくつかの曲線でのキンク(ねじれ)は、生成ギブズエネルギーを計算するために使用される熱容量の不連続性を反映する。Cr、CoWO、FeCoおよびCo層の形成および位置は妥当である。(Co,Fe,Cr)自体のギブスの生成エネルギーは利用できなかったが、少量の溶存Feを含むCoCrとして(Co,Fe,Cr)を認識すると、CrとCoWOの間で(Co,Fe,Cr)の生成が見込まれる。CoO、FeO、WOの生成は図4から予測されるが、これらの酸化物は図3では検出されなかった。これは、これら三化合物が反応したことによると思われる。 FIG. 4 shows an Ellingham-Richardson diagram constructed using NIST standard database number 69 (NIST Chemistry webbook). The kinks in some curves reflect discontinuities in the heat capacity used to calculate the Gibbs energy produced. The formation and location of the Cr 2 O 3 , CoWO 4 , FeCo 2 O 4 and Co 3 O 4 layers is reasonable. Although the Gibbs generation energy of (Co, Fe, Cr) 3 O 4 itself could not be used, when (Co, Fe, Cr) 3 O 4 is recognized as CoCr 2 O 4 containing a small amount of dissolved Fe, Cr 2 Generation of (Co, Fe, Cr) 3 O 4 is expected between O 3 and CoWO 4 . The formation of CoO, FeO, and WO 3 is predicted from FIG. 4, but these oxides were not detected in FIG. This seems to be due to the reaction of these three compounds.
 <酸化反応速度論>
 図5中の(a)は、厚さ10μmのCo-W被覆層を有するSUS430ステンレス鋼と、該被覆層を有しないSUS430ステンレス鋼とを、それぞれ酸化処理した際の放物線プロットを示す。放物線プロットは、質量増加ΔWが酸化時間toxに対して放物線則(ΔW∝tox)に従う場合の両者の関係を示すものである。
 被覆層を有しない試験片では、質量増加ΔWは酸化時間toxの平方根の増加に伴って急速に増加し、その後、曲線の傾きは10分後に減少する。10分までの放物線速度定数(直線の傾き)は、2×10-3-4s-1であるが、これは800℃でのFe-25Cr合金のそれよりも2桁大きい。FeCr合金の酸化の開始時に、FeおよびCrの両方が酸化する。その後、表面に均一なCr酸化物を形成した後に、Crの優先酸化が行われる。被覆層を有しない試験片における10分より前の酸化は、Crの拡散制御成長の前の一時的な段階であると思われる。
<Oxidation kinetics>
FIG. 5A shows a parabola plot when SUS430 stainless steel having a Co—W coating layer having a thickness of 10 μm and SUS430 stainless steel not having the coating layer are oxidized. The parabola plot shows the relationship between the mass increase ΔW and the parabolic law (ΔW 2 ∝t ox ) with respect to the oxidation time t ox .
For specimens without a coating layer, the mass increase ΔW increases rapidly with increasing square root of the oxidation time t ox and then the slope of the curve decreases after 10 minutes. The parabolic rate constant (straight line) up to 10 minutes is 2 × 10 −3 g 2 m −4 s −1 , which is two orders of magnitude greater than that of the Fe-25Cr alloy at 800 ° C. At the start of the oxidation of the FeCr alloy, both Fe and Cr are oxidized. Then, after forming a uniform Cr 2 O 3 oxide on the surface, preferential oxidation of Cr is performed. Oxidation prior to 10 minutes in specimens without a coating layer appears to be a temporary step prior to diffusion controlled growth of Cr 2 O 3 .
 他方、Co-2.4W被覆層を有する試験片では、酸化時間tox=180分(tox 0.5=13.4min1/2)で、ΔWが約30g/mに達すると、酸化曲線はほぼ平坦になる。180分より前の推定された放物線速度定数は4×10-2-4s-1であり、800℃の空気中でのCo酸化のそれに匹敵する。 On the other hand, in the test piece having the Co-2.4W coating layer, when the oxidation time t ox = 180 minutes (t ox 0.5 = 13.4 min 1/2 ) and ΔW reaches about 30 g / m 2 , The curve is almost flat. The estimated parabolic rate constant before 180 minutes is 4 × 10 −2 g 2 m −4 s −1 , comparable to that of Co oxidation in air at 800 ° C.
 図5中の(b)は、酸化時間tox=160時間より後の長期酸化反応速度を示す。被覆層を有する試験片の質量増加は29~38g/mであった。Co-2.4W被覆層の85g/mが完全に酸化された場合、試験片の質量増加は以下のように計算することができる。図4から読み取れる800℃での反応のギブス自由エネルギーΔγ 800℃によると、CoはCo2+またはCo3+にイオン化し、WはW4+またはW6+にイオン化する。このとき、Co3+およびW6+が優先的に形成されると仮定すると、最大質量増加ΔWcalc,maxは、式(1)によって推定することができる。 (B) in FIG. 5 shows the long-term oxidation reaction rate after the oxidation time t ox = 160 hours. The increase in mass of the test piece having the coating layer was 29 to 38 g / m 2 . When 85 g / m 2 of the Co-2.4W coating layer is fully oxidized, the mass gain of the specimen can be calculated as follows: According to the Gibbs free energy Δ γ G 0 800 ° C. of the reaction at 800 ° C. that can be read from FIG. 4, Co ionizes to Co 2+ or Co 3+ and W ionizes to W 4+ or W 6+ . At this time, assuming that Co 3+ and W 6+ are preferentially formed, the maximum mass increase ΔW calc, max can be estimated by Equation (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 ここで、mplatingは被覆層の質量、fは被覆層におけるWの原子分率(0.024)であり、M、MCoおよびMはそれぞれO、CoおよびWのモル質量である。計算されたΔWcalc,maxは28.4g/mであり、図5の(b)に示される実際の質量増加の方が大きくなっていることから、電気めっき層が酸化時間tox=160時間までに酸化物に変換されたといえる。ΔWcalc,maxと実際の質量増加との差は、SUS430ステンレス鋼の基材中のFeおよびCrの酸化に使用される酸素の質量に対応し得る。酸化時間tox=160時間以降の質量変化は、いずれの実験についてもtox=1000時間まで小さく、図3に示すように、CoWO層によってCrの外方拡散が防止されたことに対応するものと思われる。一方、被覆層を有しない試験片では、おそらくCrからのCrの蒸発のために、酸化時間tox=160時間後に質量が減少し始めた。質量損失率は8×10-8g/msと推定され、これは760℃の空気+HO雰囲気中でのCrの蒸発速度よりもわずかに高い。 Here, m plating is the mass of the coating layer, f W is the atomic fraction of W in the coating layer (0.024), and M O , M Co and MW are the molar masses of O, Co and W, respectively. . The calculated ΔW calc, max is 28.4 g / m 2 , and since the actual mass increase shown in FIG. 5B is larger, the electroplating layer has an oxidation time t ox = 160. It can be said that it has been converted to oxide by time. The difference between ΔW calc, max and the actual mass increase may correspond to the mass of oxygen used to oxidize Fe and Cr in the SUS430 stainless steel substrate. The mass change after the oxidation time t ox = 160 hours is small for all experiments up to t ox = 1000 hours, corresponding to the prevention of Cr outdiffusion by the CoWO 4 layer, as shown in FIG. It seems to be. On the other hand, in the specimen without the coating layer, the mass began to decrease after the oxidation time t ox = 160 hours, possibly due to the evaporation of Cr from Cr 2 O 3 . The mass loss rate is estimated to be 8 × 10 −8 g / m 2 s, which is slightly higher than the evaporation rate of Cr 2 O 3 in 760 ° C. air + H 2 O atmosphere.
 <多層酸化物の形成メカニズム>
 上述したように、Co-2.4W被覆層は、まず、大気中の酸素と反応して数種類の酸化物を生成する(ステップ1)。次に、被覆層が消費された後に多層酸化物が形成される(ステップ2)。以下では、両ステップに基づく多層酸化物の形成メカニズムを、熱力学的観点に基づいて説明する。
<Multilayer oxide formation mechanism>
As described above, the Co-2.4W coating layer first reacts with oxygen in the atmosphere to generate several types of oxides (step 1). Next, a multilayer oxide is formed after the coating layer is consumed (step 2). Below, the formation mechanism of the multilayer oxide based on both steps is demonstrated based on a thermodynamic viewpoint.
 ステップ1は過渡酸化段階である。それは、図6中の(a)から(c)に示すような酸化時間tox=0、15分および30分までの3つの小さな副段階によって進行する。図6中の(a)のように、酸化時間tox=0分で外部Co層と内部CoO層とが形成される。図4によれば、サンプルの温度が800℃に達する迄の間に、CoとWの両方が酸化する可能性があり、W酸化物の800℃でのギブス生成自由エネルギーΔγ 800℃は、Co酸化物のそれよりも負であるが、めっきのW含有量が低いために、Coが外部酸化物層を形成すると考えられる。この現象は、低Cr含量のFe-Cr合金の酸化時に、連続Fe酸化物層の下にCrが内部酸化物を形成する現象と同様である。自由エネルギーから見ると、被膜中にWO(s)も形成されるはずであるが、XRD結果からはその形成は確認できなかった。その理由は、形成されたWOが式(2)に従ってCoOと直ちに反応してCoWOを生成したためと解される。 Step 1 is a transient oxidation stage. It proceeds by three small sub-stages with oxidation times t ox = 0, 15 minutes and 30 minutes as shown in FIGS. 6 (a) to (c). As shown in FIG. 6A , the external Co 3 O 4 layer and the internal CoO layer are formed in the oxidation time t ox = 0 minutes. According to FIG. 4, both Co and W may be oxidized until the temperature of the sample reaches 800 ° C., and the Gibbs formation free energy at 800 ° C. of the W oxide Δ γ G 0 800 ° C. Is more negative than that of Co oxide, but it is believed that Co forms an outer oxide layer due to the lower W content of the plating. This phenomenon is similar to the phenomenon that Cr forms an internal oxide under the continuous Fe oxide layer during the oxidation of the Fe—Cr alloy having a low Cr content. From the viewpoint of free energy, WO 3 (s) should also be formed in the coating, but its formation could not be confirmed from the XRD results. The reason is understood that the formed WO 3 reacted immediately with CoO according to the formula (2) to produce CoWO 4 .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、式(2)中のギブス生成エネルギーΔγ 800℃は、図4から得られた値である。 Incidentally, formula (2) Gibbs energy Δ γ G 0 800 ℃ in is a value obtained from Figure 4.
 また、XRDによりWO(s)が形成されていないことも確認された。酸化物イオン(O2-)は、被覆層中のCoWOおよび酸化されたW金属を通って内側に移動し、その後、生成したW酸化物が連続的にCoWOに転化することで、内部CoWOは基材に向かって成長したと解される。図6中の(b)に示される酸化時間tox=15分でのCoWO量の増加は、このことを表している。過渡酸化段階である図3中の(a)-(c)において、被覆層である領域eで観察された酸素は、このCoWO内部酸化物に起因するものと解される。また、図3中の(a)-(c)に見られるように、過渡酸化段階では、基材からFeの外向き拡散が起こり、拡散前面が被覆層の中央にまで達したことが確認された。拡散したFeは、被覆層/酸化物の界面に到達し、負のギブス生成自由エネルギーを有する式(3)に従って、CoOと反応してFeCoを形成したと解される。 It was also confirmed by XRD that WO 2 (s) was not formed. Oxide ions (O 2− ) migrate inward through CoWO 4 and oxidized W metal in the coating layer, and then the generated W oxide is continuously converted to CoWO 4 , It is understood that CoWO 4 has grown towards the substrate. The increase in the amount of CoWO 4 at the oxidation time t ox = 15 minutes shown in (b) of FIG. 6 represents this. In (a) to (c) in FIG. 3 which is the transient oxidation stage, it is understood that the oxygen observed in the region e which is the coating layer is caused by this CoWO 4 internal oxide. In addition, as can be seen from (a) to (c) in FIG. 3, in the transient oxidation stage, it was confirmed that outward diffusion of Fe occurred from the base material and the diffusion front surface reached the center of the coating layer. It was. It is understood that the diffused Fe reaches the coating layer / oxide interface and reacts with CoO to form FeCo 2 O 4 according to the equation (3) having negative Gibbs formation free energy.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 すなわち、この過渡酸化段階では、大量のCo-W被覆層が残っているため、はじめにCoが酸化して、残存被覆層/Co酸化物領域界面にCoOを生成する。次に、CoO中のCoイオンは、p型CoOおよびCo層を通って外側に移動し、Co酸化物/ガス界面で酸化物核を形成する。また、CoWO内部酸化物の基材方向への成長に伴い、いくつかの酸化物が最終的に基材/残存被覆層界面に到達する。該界面におけるCrの酸化は、図6中の(c)に示すように、CoWOを通って輸送された酸素イオンの消費によってtox=30分で開始される。この系では、図4に示すように、Crが最も安定な酸化物であるため、この界面でのCrの優先的酸化が妥当である。Crが優先的に酸化されるにつれて、図3中の(c)-(d)に見られるように、基材中のCo含有量が増加する。CoとFeの両方が被覆層を通って外側に拡散する。このとき、残存被覆層中のCoの量が少ないため、Feの拡散がCoの拡散よりも速くなる結果、FeがCoO層に達して酸化され、連続FeCo層を形成する。このように、過渡酸化段階における酸化物構造の変化は合理的に説明される。なお、基材として概ね22質量%以上のCrを含むステンレス鋼を用いると、基材からのFeの拡散が起こらなくなり、FeCoは生成しなくなると考えられる。 That is, since a large amount of Co—W coating layer remains in this transient oxidation stage, Co is first oxidized to generate CoO at the remaining coating layer / Co oxide region interface. Next, Co ions in CoO move outward through the p-type CoO and Co 3 O 4 layers, forming oxide nuclei at the Co oxide / gas interface. Further, as the CoWO 4 internal oxide grows in the direction of the base material, some oxide finally reaches the base material / residual coating layer interface. Oxidation of Cr at the interface is initiated at t ox = 30 minutes by consumption of oxygen ions transported through CoWO 4 as shown in (c) of FIG. In this system, as shown in FIG. 4, since Cr 2 O 3 is the most stable oxide, preferential oxidation of Cr at this interface is appropriate. As Cr is preferentially oxidized, the Co content in the substrate increases as seen in (c)-(d) in FIG. Both Co and Fe diffuse outward through the coating layer. At this time, since the amount of Co in the remaining coating layer is small, Fe diffusion becomes faster than Co diffusion. As a result, Fe reaches the CoO layer and is oxidized to form a continuous FeCo 2 O 4 layer. Thus, the change in oxide structure during the transient oxidation stage can be reasonably explained. If stainless steel containing approximately 22% by mass or more of Cr is used as the base material, Fe diffusion from the base material does not occur and FeCo 2 O 4 is not generated.
 ステップ2は、定常状態における酸化過程として特徴付けられる。被覆層全体が酸化時間tox=1時間で消費されたので、金属種の外方への拡散は不可能となった。その結果、FeCoおよびCo層の厚さは、tox=30分で形成された層の厚さからほとんど変化しない。基材/酸化物被膜(耐熱性被膜)界面近傍では、図3中の(d)に見られるように、基材中のCr含有量が低すぎて連続Cr層を形成できないため、図6中の(d)に示すように、一部のCrは、基材表面で酸化したFeおよびCoと共に(Co,Fe,Cr)を形成する。しかし、図3中の(e)に見られるように、基材表面近傍のCr含有量は、酸化時間の経過とともに増加するため、図6中の(e)に示すように、最終的にはtox=3時間で連続Cr層を形成できるようになる。その後、図3中の(g)に見られるように、tox=250時間で(Co,Fe,Cr)とCrとの界面が明らかになる。前述した深さ方向に沿った層の順序は、図4から見て、熱力学的に妥当である。 Step 2 is characterized as an oxidation process in steady state. Since the entire coating layer was consumed in the oxidation time t ox = 1 hour, diffusion of the metal species to the outside became impossible. As a result, the thicknesses of the FeCo 2 O 4 and Co 3 O 4 layers hardly change from the thickness of the layer formed at t ox = 30 minutes. In the vicinity of the substrate / oxide coating (heat resistant coating) interface, as seen in (d) of FIG. 3, the Cr content in the substrate is too low to form a continuous Cr 2 O 3 layer. As shown in (d) of FIG. 6, a part of Cr forms (Co, Fe, Cr) 3 O 4 together with Fe and Co oxidized on the substrate surface. However, as can be seen from (e) in FIG. 3, the Cr content in the vicinity of the substrate surface increases with the lapse of the oxidation time, so as shown in (e) in FIG. A continuous Cr 2 O 3 layer can be formed in t ox = 3 hours. Thereafter, as can be seen in (g) of FIG. 3, the interface between (Co, Fe, Cr) 3 O 4 and Cr 2 O 3 becomes clear at t ox = 250 hours. The order of the layers along the depth direction described above is thermodynamically valid as seen from FIG.
 Co-2.4W被覆層を伴うSUS430ステンレス鋼を800℃で等温酸化した際の、形成された酸化物層(耐熱性被膜)の厚さの割合を図7に示す。酸化時間tox=1時間後、層の割合は多少のばらつきはあるもののtox=1000時間までのものと概ね同様であった。Crイオンの拡散がCoWO層によって阻止されたため、酸化はCoWO層の下で進行した可能性がある。このとき、Crの酸化のためには、酸素イオンが耐熱性被膜中の固相拡散によって供給される必要があるため、Crの酸化速度は、大気中の酸化速度より遅くなると予想される。したがって、図7に示す5層酸化物は、基材金属中のCr含有量がCrを維持するのに必要な臨界レベルより低くなるまで残ると解される。 FIG. 7 shows the ratio of the thickness of the formed oxide layer (heat resistant coating) when SUS430 stainless steel with a Co-2.4W coating layer is isothermally oxidized at 800 ° C. After the oxidation time t ox = 1 hour, the ratio of the layers was almost the same as that up to t ox = 1000 hours with some variation. Since the diffusion of Cr ions is prevented by CoWO 4-layer, oxidation may progressed under CoWO 4 layers. At this time, since oxygen ions need to be supplied by solid phase diffusion in the heat resistant coating for the oxidation of Cr, the oxidation rate of Cr is expected to be slower than the oxidation rate in the atmosphere. Accordingly, it is understood that the five-layer oxide shown in FIG. 7 remains until the Cr content in the base metal is lower than the critical level necessary to maintain Cr 2 O 3 .
 <CoWOによるCr拡散ブロックのメカニズムとその安定性>
 本発明では、CrイオンがCoWO層を貫通しないことが重要である。拡散防止の理由は、この酸化物の安定性および結晶構造に基づくと解される。
 CoWOは、a=0.4670nm、b=0.55687nm、c=0.54951nmの格子定数を持つ単斜晶系構造を持ち、ユニットセル内に2個のCo2+イオンと4個のW6+イオンを含む。
 800℃において安定なCrイオンはCr3+のみであるため、CoWOにおけるCo2+イオンをCr3+イオンと置換したり、Coイオン空孔にCr3+イオンを収容したりすることは不可能である。これは、Coイオン空孔が2つの負電荷を持ち、2価イオンしか収容できないためである。CoWO中にCrが存在せず、CoWO層中に2価イオンとなりうるFeが存在する事実により、CoWOに対する3価Crイオンの非混和性と、2価イオンの置換可能性とが説明される。
<Mechanism and stability of Cr diffusion block by CoWO 4 >
In the present invention, it is important that Cr ions do not penetrate the CoWO 4 layer. It is understood that the reason for preventing diffusion is based on the stability and crystal structure of the oxide.
CoWO 4 has a monoclinic structure having lattice constants of a = 0.4670 nm, b = 0.55687 nm, and c = 0.54951 nm, and includes two Co 2+ ions and four W 6+ in a unit cell. Contains ions.
Since Cr 3+ is the only stable Cr ion at 800 ° C., it is impossible to replace Co 2+ ions in CoWO 4 with Cr 3+ ions or to accommodate Cr 3+ ions in Co ion vacancies. This is because the Co ion vacancy has two negative charges and can accommodate only divalent ions. CoWO there is no Cr in 4, by the fact that there are Fe, which can be a divalent ion four layers in CoWO, immiscible with trivalent Cr ions on CoWO 4, and the possible substitution of divalent ions described Is done.
 上記の議論から明らかなように、CoWOは、3価Crイオンの拡散を効果的に阻止し、その効果は800℃で酸化時間1000時間まで持続した。しかし、固体酸化物形燃料電池(SOFC)の推定寿命は一万時間以上であるため、この実験結果に示されているよりも10倍長い時間ブロックする必要がある。そこで、熱力学に基づいて、CoWOの隣接材料との反応性を調べた。具体的には、CrとCoWOとの間の反応についてのギブス自由エネルギーを、以下の式に従って計算した。安定な化合物でなければならないCoWOとCrの可能な生成物は、Cr-Co-O系とCr-W-O系で調査した。 As is clear from the above discussion, CoWO 4 effectively blocked the diffusion of trivalent Cr ions, and the effect persisted at 800 ° C. for an oxidation time of 1000 hours. However, since the estimated lifetime of a solid oxide fuel cell (SOFC) is 10,000 hours or more, it is necessary to block for 10 times longer than that shown in the experimental results. Then, based on thermodynamics, the reactivity with the adjacent material of CoWO 4 was investigated. Specifically, the Gibbs free energy for the reaction between Cr 2 O 3 and CoWO 4 was calculated according to the following equation: Possible products of CoWO 4 and Cr 2 O 3 which must be stable compounds were investigated in the Cr—Co—O and Cr—W—O systems.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 これらの反応のΔγ 1073K値は両方とも正であるため、800℃ではCoWOとCrとの反応が不可能であり、これはCoWOが安定であり、800℃で長時間にわたって気相へのCrイオンの輸送を効果的に遮断することを意味する。
 上記の議論から、供用開始前のCo-2.4W被覆層によって、HO含有雰囲気中でのCr種の拡散および蒸発に伴う固体電解質および電極触媒材料の被毒が、固体酸化物形燃料電池(SOFC)の供用期間を通して防止され得るといえる。
Since both delta gamma G 0 1073 K value of these reactions are positive, it is impossible to reaction between CoWO 4 and Cr 2 O 3 at 800 ° C., which CoWO 4 is stable, long at 800 ° C. It means effectively blocking the transport of Cr ions into the gas phase over time.
From the above discussion, the Co-2.4W coating layer before the start of service can cause poisoning of the solid electrolyte and the electrocatalyst material accompanying the diffusion and evaporation of Cr species in the H 2 O-containing atmosphere. It can be said that it can be prevented throughout the service period of the battery (SOFC).
 <タングステン種の気化>
 図3から、CoWO層の厚さδCoWO4を知ることによって、蒸発指数ηが式(6)によって得られる。
<Vaporization of tungsten species>
From FIG. 3, knowing the thickness δ CoWO4 of the CoWO 4 layer, the evaporation index η W is obtained by equation (6).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 式(6)において、Sは試料の表面積であり、CoWOの密度ρCoWO4=8.42g/cmであり、CoWOのモル質量MCoWO4=306.77g/molである。 In formula (6), S is the surface area of the sample, the density of CoWO 4 ρ CoWO 4 = 8.42 g / cm 3 , and the molar mass of CoWO 4 M CoWO 4 = 306.77 g / mol.
 算出された蒸発指数ηの酸化時間に対するプロットを図8に示す。蒸発指数ηは酸化時間によらず1とほぼ一定であった。このことは、蒸発指数ηが酸化時間とは無関係であり、Wの気化は起こらないことを示している。高温酸化の開始時に、連続したCo層が表面を覆う前に、WO(g)が試料から気化する可能性はあるが、W金属が大気に曝されていなければ、W揮発の虞はないと解される。そこで、Wの蒸発を更に抑制可能な態様として、基材に対してCo-Wの内層と純粋なCoの外層とからなる二層被覆を施すことが挙げられる。 A plot of the calculated evaporation index η W against the oxidation time is shown in FIG. The evaporation index η W was almost constant at 1 regardless of the oxidation time. This indicates that the evaporation index η W is independent of the oxidation time and W vaporization does not occur. At the start of high temperature oxidation, WO 3 (g) may evaporate from the sample before the continuous Co 3 O 4 layer covers the surface, but if the W metal is not exposed to the atmosphere, It is understood that there is no fear. Therefore, as an aspect capable of further suppressing the evaporation of W, a two-layer coating comprising a Co—W inner layer and a pure Co outer layer is applied to the base material.
<実施例のまとめ>
 Co-W合金電気めっきをSUS430型ステンレス鋼に施した。次いで、該合金被覆鋼を、空気+3体積%HO中で800℃で1000時間迄酸化させた。酸化された試料の分析および観察から、以下の結論を引き出すことができる。
(1)クエン酸を含有する電気めっき浴を用いて、W含有量3~67.5質量%(1~40原子%)のCo-W合金で形成される被覆層を得た。
(2)Co-W合金で形成される被覆層の酸化処理により、Crイオンの拡散を効果的に遮断して、相互接続部からのCr気化を生じさせない連続的なCoWO層が形成される。
(3)3時間以上の酸化処理でステンレス鋼上に生成した酸化物は、5層で構成されていた。これらの酸化物の積層順序は熱力学的に妥当である。5層酸化物の形成後のさらなる酸化は、ゆっくり進行し、ステンレス鋼からのCrの拡散遮断特性を長期に亘って示す。
<Summary of Examples>
Co-W alloy electroplating was applied to SUS430 type stainless steel. The alloy coated steel was then oxidized in air + 3% by volume H 2 O at 800 ° C. for up to 1000 hours. From the analysis and observation of oxidized samples, the following conclusions can be drawn:
(1) Using an electroplating bath containing citric acid, a coating layer formed of a Co—W alloy having a W content of 3 to 67.5 mass% (1 to 40 atomic%) was obtained.
(2) The oxidation treatment of the coating layer formed of the Co—W alloy effectively forms a continuous CoWO 4 layer that effectively blocks the diffusion of Cr ions and does not cause Cr vaporization from the interconnects. .
(3) The oxide produced | generated on stainless steel by the oxidation process for 3 hours or more was comprised by five layers. The stacking order of these oxides is thermodynamically valid. Further oxidation after the formation of the five-layer oxide proceeds slowly, showing the diffusion barrier properties of Cr from stainless steel over time.
 本発明のCo-W被覆層ないし積層体被膜を有するフェライト系ステンレス鋼は、例えば固体酸化物形燃料電池(SOFC)の集電部材に適用することにより、集電部材の耐久性向上、電池の性能向上、環境問題の改善が見込まれ、燃料電池の普及につながるものと期待される。
 
The ferritic stainless steel having the Co—W coating layer or laminate film of the present invention is applied to, for example, a current collecting member of a solid oxide fuel cell (SOFC), thereby improving the durability of the current collecting member, Expected to improve performance and environmental problems, and lead to the spread of fuel cells.

Claims (11)

  1.  Cr:11~40質量%を含有するフェライト系ステンレス鋼を基材とし、
     該基材上に形成された被覆層として、厚さ1~100μm、W含有量3~67.5質量%(1~40原子%)、残部Coおよび不可避的不純物からなるCo-W被覆層を備える、ステンレス鋼部材。
    Based on a ferritic stainless steel containing Cr: 11 to 40% by mass,
    As a coating layer formed on the substrate, a Co—W coating layer comprising a thickness of 1 to 100 μm, a W content of 3 to 67.5% by mass (1 to 40 atom%), the remainder Co and unavoidable impurities. A stainless steel member provided.
  2.  Cr:11~40質量%を含有するフェライト系ステンレス鋼を基材とし、
     該基材上に形成された被膜として、最表面にCo酸化物を含む層を有すると共に、該Co酸化物を含む層よりも前記基材側にCoWOを含む層を有する、厚さ0.5~50μmの積層体を備える、ステンレス鋼部材。
    Based on a ferritic stainless steel containing Cr: 11 to 40% by mass,
    The coating formed on the substrate has a layer containing Co oxide on the outermost surface, and has a layer containing CoWO 4 on the substrate side than the layer containing Co oxide. A stainless steel member comprising a laminate of 5 to 50 μm.
  3.  前記被膜が、前記CoWOを含む層よりも前記基材側に、該基材側から順にCrを含む層、および(Co,Fe,Cr)を含む層をさらに備えると共に、前記Co酸化物を含む層がCoを含む、請求項2に記載のステンレス鋼部材。 The coating further includes a layer containing Cr 2 O 3 and a layer containing (Co, Fe, Cr) 3 O 4 in that order from the base material side on the base material side relative to the layer containing CoWO 4. The stainless steel member according to claim 2, wherein the layer containing Co oxide contains Co 3 O 4 .
  4.  前記基材のフェライト系ステンレス鋼が、質量%で、Cr:11~40%、Si:1.5%以下、Mn:1.5%以下、C:0.12%以下、P:0.1%以下、S:0.01%以下、N:0.1%以下、残部Feおよび不可避的不純物からなる組成を有する、請求項1~3のいずれか1項に記載のステンレス鋼部材。 The ferritic stainless steel of the base material is, in mass%, Cr: 11 to 40%, Si: 1.5% or less, Mn: 1.5% or less, C: 0.12% or less, P: 0.1 The stainless steel member according to any one of claims 1 to 3, having a composition comprising:% or less, S: 0.01% or less, N: 0.1% or less, balance Fe and inevitable impurities.
  5.  前記基材のフェライト系ステンレス鋼が、質量%で、さらにAl:6%以下、Mo:4%以下、W:4%以下、Cu:2%以下、Nb:0.8%以下、Ti:0.5%以下、Zr:0.5%以下、V:0.5%以下、Ta:0.5%以下、Ni:2%以下の1種以上を含有する、請求項4に記載のステンレス鋼部材。 Ferritic stainless steel of the base material is in mass%, further Al: 6% or less, Mo: 4% or less, W: 4% or less, Cu: 2% or less, Nb: 0.8% or less, Ti: 0 The stainless steel according to claim 4, comprising at least one of 0.5% or less, Zr: 0.5% or less, V: 0.5% or less, Ta: 0.5% or less, Ni: 2% or less. Element.
  6.  前記基材のフェライト系ステンレス鋼が、質量%で、さらにY:0.1%以下、他のREM(希土類元素):0.1%以下、Ca:0.01%以下、B:0.01%以下、Mg:0.01%以下の1種以上を含有する、請求項4または5に記載のステンレス鋼部材。 The ferritic stainless steel of the base material is mass%, further Y: 0.1% or less, other REM (rare earth element): 0.1% or less, Ca: 0.01% or less, B: 0.01 The stainless steel member according to claim 4 or 5, which contains at least one element of not more than% and Mg: not more than 0.01%.
  7.  前記Co-W被覆層が、Fe、Ni、Ti、Nb、Zr、Ta、V、Mo、P、およびBから選択される1種以上を、合計10質量%以下の範囲でさらに含有し、該Co-W被覆層のCr含有量が0~2質量%である、請求項1または4~6のいずれか1項に記載のステンレス鋼部材。 The Co—W coating layer further contains one or more selected from Fe, Ni, Ti, Nb, Zr, Ta, V, Mo, P, and B in a total amount of 10% by mass or less, The stainless steel member according to any one of claims 1 and 4 to 6, wherein the Co-W coating layer has a Cr content of 0 to 2 mass%.
  8.  前記ステンレス鋼部材が、固体酸化物形燃料電池(SOFC)の集電部材である、請求項1~7のいずれか1項に記載のステンレス鋼部材。 The stainless steel member according to any one of claims 1 to 7, wherein the stainless steel member is a current collecting member of a solid oxide fuel cell (SOFC).
  9.  Cr:11~40質量%を含有するフェライト系ステンレス鋼を基材として準備する工程と、
     当該基材の表面に、厚さ1~100μm、W含有量3~67.5質量%(1~40原子%)のCo-W被覆層を形成する工程と、
     を有することを特徴とする、ステンレス鋼部材の製造方法。
    Preparing a ferritic stainless steel containing Cr: 11 to 40% by mass as a base material;
    Forming a Co—W coating layer having a thickness of 1 to 100 μm and a W content of 3 to 67.5 mass% (1 to 40 atom%) on the surface of the substrate;
    A method for producing a stainless steel member, comprising:
  10.  前記Co-W被覆層が表面に形成された前記基材を、600℃~850℃の範囲で熱処理して、該基材の表面に、最表面にCo酸化物を含む層を有すると共に、該Co酸化物を含む層よりも前記基材側にCoWOを含む層を有する、厚さ0.5~50μmの積層体被膜を形成する工程をさらに含むことを特徴とする、請求項9に記載のステンレス鋼部材の製造方法。 The substrate on which the Co—W coating layer is formed is heat-treated at a temperature in the range of 600 ° C. to 850 ° C., and has a layer containing a Co oxide on the outermost surface. 10. The method according to claim 9, further comprising a step of forming a laminate film having a thickness of 0.5 to 50 μm, which has a layer containing CoWO 4 on the base side of a layer containing Co oxide. Manufacturing method of stainless steel member.
  11.  前記積層体被膜を、前記CoWOを含む層よりも前記基材側に、該基材側から順にCrを含む層、および(Co,Fe,Cr)を含む層をさらに備えると共に、前記Co酸化物を含む層がCoを含む積層体とする、請求項10に記載のステンレス鋼部材の製造方法。
     
    The laminate film further includes a layer containing Cr 2 O 3 and a layer containing (Co, Fe, Cr) 3 O 4 in this order from the substrate side to the substrate side of the layer containing CoWO 4. The method for producing a stainless steel member according to claim 10, wherein the layer containing Co oxide is a laminate including Co 3 O 4 .
PCT/JP2019/005626 2018-02-21 2019-02-15 Stainless steel member having heat-resistant cover layer or coating film, and method for producing same WO2019163674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018028920A JP2019143203A (en) 2018-02-21 2018-02-21 Stainless steel member having coated layer or coated film with heat resistance, and manufacturing method therefor
JP2018-028920 2018-02-21

Publications (1)

Publication Number Publication Date
WO2019163674A1 true WO2019163674A1 (en) 2019-08-29

Family

ID=67687326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005626 WO2019163674A1 (en) 2018-02-21 2019-02-15 Stainless steel member having heat-resistant cover layer or coating film, and method for producing same

Country Status (2)

Country Link
JP (1) JP2019143203A (en)
WO (1) WO2019163674A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524467A (en) * 2008-06-12 2011-09-01 エクソンモービル リサーチ アンド エンジニアリング カンパニー High performance coatings and surfaces to reduce corrosion and contamination in furnace tubes
JP2012166237A (en) * 2011-02-15 2012-09-06 Kubota Corp Coated member, and overlaying structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524467A (en) * 2008-06-12 2011-09-01 エクソンモービル リサーチ アンド エンジニアリング カンパニー High performance coatings and surfaces to reduce corrosion and contamination in furnace tubes
JP2012166237A (en) * 2011-02-15 2012-09-06 Kubota Corp Coated member, and overlaying structure

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAEKI, ISAO ET AL.: "Cobalt Plating to Prevent Chromium Evaporation from SUS430 Stainless Steel", MEETING MATERIALS OF THE COMMITTEE ON CORROSION AND PROTECTION OF THE SOCIETY OF MATERIALS SCIENCE , JAPAN, vol. 56, no. 314, 23 January 2017 (2017-01-23), pages 1 - 10 *
SAEKI, ISAO ET AL.: "Suppressing Chromium Diffusion in Stainless Steel High-Temperature Oxidation Using Co-W Alloy Plating: Effects of Plating Composition and Base Material Type", COLLECTED ABSTRACTS OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 1 March 2017 (2017-03-01), pages 258, ISSN: 1342-5730 *

Also Published As

Publication number Publication date
JP2019143203A (en) 2019-08-29

Similar Documents

Publication Publication Date Title
Talic et al. Effect of pre-oxidation on the oxidation resistance of Crofer 22 APU
Talic et al. Comparison of MnCo2O4 coated Crofer 22 H, 441, 430 as interconnects for intermediate-temperature solid oxide fuel cell stacks
Shaigan et al. A review of recent progress in coatings, surface modifications and alloy developments for solid oxide fuel cell ferritic stainless steel interconnects
JP5460101B2 (en) High temperature conductive member
JP5209320B2 (en) Strip products that form perovskite or spinel surface coatings for electrical contacts
JP5614931B2 (en) Interconnects for solid oxide fuel cells and ferritic stainless steel adapted for use with solid oxide fuel cells
EP2136427A1 (en) Fuel Cell Interconnect Structures, And Related Devices And Processes
US11552306B2 (en) Contact between interconnect and electrode
Gan et al. High temperature oxidation of Co-W electroplated type 430 stainless steel for the interconnect of solid oxide fuel cells
JP2010182593A (en) Corrosion resistant film for fuel cell separator, and fuel cell separator
You et al. Effect of Nb additions on the high-temperature performances of NiFe2O4 spinel coatings fabricated on ferritic stainless steel
Ryter et al. Effect of electrical current on the oxidation behavior of electroless nickel-plated ferritic stainless steel in solid oxide fuel cell operating conditions
Gan et al. Effect of W content on the oxidation and electrical behaviors of Co–W coatings for SOFC interconnects fabricated by electrodeposition
JP2008121113A (en) Ferritic steel for solid oxide fuel cell and other high temperature application
WO2019163674A1 (en) Stainless steel member having heat-resistant cover layer or coating film, and method for producing same
Hansson et al. Inter-diffusion between Co3O4 coatings and the oxide scale on Fe-22Cr
Zhou Minimizing Cr-evaporation from balance of plant components by utilizing cost-effective alumina-forming austenitic steels
JP2015122303A (en) Metal member for solid oxide type fuel battery
Hall et al. Electrodeposition of CoMn onto stainless steels interconnects for increased lifetimes in SOFCs
Lundberg et al. Novel multilayered PVD-coating in a roll to roll mass production process
Lundberg et al. Multilayered Precoated AISI 441 for Solid Oxide Fuel Cell Interconnects
US20240191370A1 (en) Interconnect for Solid Oxide Cell (SOC)
JP7413867B2 (en) Coated steel material for solid oxide fuel cell components, solid oxide fuel cell components and manufacturing method thereof
Wang Investigation of Highly Corrosion Resistant and Electrically Conductive Coatings on Metal Bipolar Plates Used in Polymer Electrolyte Membrane Fuel Cell
Hayes The Performance of Mn-Co Spinel Cathode-Side Contact Layer and Interconnect Coating for Solid Oxide Fuel Cell Application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757044

Country of ref document: EP

Kind code of ref document: A1