JP2021149156A5 - - Google Patents

Download PDF

Info

Publication number
JP2021149156A5
JP2021149156A5 JP2020045294A JP2020045294A JP2021149156A5 JP 2021149156 A5 JP2021149156 A5 JP 2021149156A5 JP 2020045294 A JP2020045294 A JP 2020045294A JP 2020045294 A JP2020045294 A JP 2020045294A JP 2021149156 A5 JP2021149156 A5 JP 2021149156A5
Authority
JP
Japan
Prior art keywords
data
abnormality
equipment
sensor
monitored
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020045294A
Other languages
English (en)
Other versions
JP7333284B2 (ja
JP2021149156A (ja
Filing date
Publication date
Application filed filed Critical
Priority to JP2020045294A priority Critical patent/JP7333284B2/ja
Priority claimed from JP2020045294A external-priority patent/JP7333284B2/ja
Priority to PCT/JP2020/031618 priority patent/WO2021186762A1/ja
Priority to EP20925308.7A priority patent/EP4016408A4/en
Publication of JP2021149156A publication Critical patent/JP2021149156A/ja
Publication of JP2021149156A5 publication Critical patent/JP2021149156A5/ja
Application granted granted Critical
Publication of JP7333284B2 publication Critical patent/JP7333284B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、保守支援システム及び保守支援方法に関する。
近年、電力、鉄道、上下水道、都市交通等の社会インフラにおいて、現場の設備にセンサを取り付け、これらのセンサによって取得された値を予め定められた閾値等のパラメータと比較することで、監視対象の設備が正常に作動しているか、異常が発生しているかを判定する設備保守システムが知られている。
こうした設備保守システムで用いられる設備が多様化するにつれて、これらの設備の状態を正確に把握するために必要なセンサの種類、数、及び機能が共に多様化している。しかし、センサの種類、数、及び機能が多様化すると、監視対象の設備について異常が発生しているか否かを判定するために用いる異常判定用パラメータを適切な値に設定することが困難となる。
従って、特定の設備について異常が発生しているか否かを判定するための異常判定用パラメータを効率良く決定する手段が求められており、いくつかの提案がなされている。
例えば、特許文献1には、「情報処理装置(101)は、時系列の信号から成る監視対象データの正常な値の範囲を示す正常域を上限値と下限値とから設定する設定部(105)と、監視対象データが正常域を外れたか否かを判定し、外れたと判定した場合に監視対象データが正常域から外れたと判定した時刻である判定時刻を出力する判定部(107)と、既知の監視対象データのうち正常な値の信号から成る複数の学習データの平均値と監視対象データとの差を示す外れ度合いに基づいて、判定部(107)から入力された判定時刻より前であって監視対象データが異常を示し始めた開始時刻を検出する検出部(108)と、を備えた」技術が記載されている。
また、近年、センサ等の設備から取得された業務データ間の因果関係を検出する手段や、検出した因果関係を学習するアルゴリズム等が提案されている。
例えば、特許文献2には、「業務改善支援装置100において、業務データ群5における各業務データ4に関して非線形値を計算し、当該非線形値を業務データ群5に追加する非線形項追加部111と、業務データ4それぞれに関する回帰式を線形重回帰により算出する重回帰分析部112と、ここで算出した回帰式において線形項の有無を判定し、当該線形項を構成する所定データと回帰式の目的変数とを同一のグループに設定するデータグループ設定部113と、前記所定データを除く業務データ4を、線形重回帰分析の説明変数候補として選別する説明変数候補選別部114を含む」技術が記載されている。
国際公開第2016/116961号 特開2018-156346号広報
上記の特許文献1には、複数のセンサからの信号の標準偏差に基づいた計算により、設備について異常が発生しているか否かを判定するための閾値を算出することが記載されている。これにより、信号が異常を示し始めた時刻をより正確に求めることができる。
しかし、特許文献1に記載の手段では、最適な設定値を決定するのに時間を要するパラメータが存在するため、迅速なパラメータ決定が求められるリアルタイム監視については、適用が難しい。
また、上記の特許文献2には、業務データにおける因果関係を示す因果構造モデル(以下、「CLD式」;Causal Loop Diagram Formulaという)を用いて、当該データ間の非線形性を考慮することで、所定データ間の因果関係を推定することが記載されている。
しかし、特許文献2に記載の手段では、設備について異常が発生しているか否かを判定するための閾値を判定することが想定されていない。
そこで、本発明は、センサ間の因果関係を示すCLDモデルを用いて、監視対象の設備について異常が発生しているか否かを判定するための異常判定用パラメータを効率良く決定し、決定した異常判定用パラメータを用いてリアルタイムにセンサから取得されたデータを分析することで、当該データを正常、ノイズ、及び異常等のカテゴリーに分類する保守支援手段を提供することを目的とする。
上記の課題を解決するために、代表的な本発明の1つは、監視対象の設備の状態に関する状態データを取得するセンサのセットと、前記監視対象の設備について異常が発生したか否かを判定する保守支援装置と、少なくとも前記状態データを格納するストレージ装置と、を含む保守支援システムであって、前記保守支援装置は、前記監視対象の設備の異常判定に用いられる異常判定用パラメータを生成するパラメータ生成部を含み、前記パラメータ生成部は、前記センサのセットから取得され、監視対象の設備の状態に関する第1の状態データのセットと、前記センサのセットに対応する因果構造モデルを用いて、前記センサのセットに含まれるそれぞれのセンサの精度を示す精度値のセットを推定する精度推定部と、前記精度値のセットから抽出した値を含む異常判定用パラメータの候補を用いて前記第1の状態データのセットを分析することで、所定の異常検出率基準及び所定の誤警報率基準を満たす異常判定用パラメータを前記異常判定用パラメータの候補から特定し、前記ストレージ装置に格納するパラメータ特定部と、を含む。
本発明によれば、センサ間の因果関係を示すCLDモデルを用いて、監視対象の設備について異常が発生しているか否かを判定するための異常判定用パラメータを効率良く決定し、決定した異常判定用パラメータを用いてリアルタイム監視でセンサから取得されたデータを分析することで、当該データを正常、ノイズ、及び異常等のカテゴリーに分類する保守支援手段を提供することができる。
図1は、本発明の実施形態を実施するためのコンピュータシステムを示す図である。 図2は、本発明の実施形態に係る保守支援システムのハードウェア構成の一例を示す図である。 図3は、本発明の実施形態に係る保守支援システムの論理構成の一例を示す図である。 図4は、本発明の実施形態に係るセンサによって取得された監視データの一例を示す図である。 図5は、本発明の実施形態に係る過去の異常データの一例を示す図である。 図6は、本発明の実施形態に係るCLD式及び異常判定用パラメータDBの構成の一例を示す図である。 図7は、本発明の実施形態に係るリアルタイム監視データDBの構成の一例を示す図である。 図8は、本発明の実施形態に係る設備状態画面の一例を示す図である。 図9は、本発明の実施形態に係る異常確認画面の一例を示す図である。 図10は、本発明の実施形態に係るデータ分析画面の一例を示す図である。 図11は、本発明の実施形態に係る異常検出性能の指標の一例を説明するための図である。 図12は、本発明の実施形態に係る異常判定用パラメータを説明するための図である。 図13は、本発明の実施形態に係るノイズ判定方法の一例を示す図である。 図14は、本発明の実施形態に係る異常判定用パラメータ決定処理の流れを示す図である。 図15は、本発明の実施形態に係る精度リストの一例を示す図である。 図16は、本発明の実施形態に係る異常検証処理の流れの一例を示す図である。 図17は、本発明の実施形態に係るリアルタイム異常判定処理の流れの一例を示す図である。 図18は、本発明の実施形態に係る異常判定の一例を示す図である。 図19は、本発明の実施形態に係る保守作業の流れの一例を示す図である。
以下、図面を参照して、本発明の実施形態について説明する。なお、この実施形態により本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
(ハードウェア構成)
まず、図1を参照して、本開示の実施形態を実施するためのコンピュータシステム300について説明する。本明細書で開示される様々な実施形態の機構及び装置は、任意の適切なコンピューティングシステムに適用されてもよい。コンピュータシステム300の主要コンポーネントは、1つ以上のプロセッサ302、メモリ304、端末インターフェース312、ストレージインタフェース314、I/O(入出力)デバイスインタフェース316、及びネットワークインターフェース318を含む。これらのコンポーネントは、メモリバス306、I/Oバス308、バスインターフェースユニット309、及びI/Oバスインターフェースユニット310を介して、相互的に接続されてもよい。
コンピュータシステム300は、プロセッサ302と総称される1つ又は複数の汎用プログラマブル中央処理装置(CPU)302A及び302Bを含んでもよい。ある実施形態では、コンピュータシステム300は複数のプロセッサを備えてもよく、また別の実施形態では、コンピュータシステム300は単一のCPUシステムであってもよい。各プロセッサ302は、メモリ304に格納された命令を実行し、オンボードキャッシュを含んでもよい。
ある実施形態では、メモリ304は、データ及びプログラムを記憶するためのランダムアクセス半導体メモリ、記憶装置、又は記憶媒体(揮発性又は不揮発性のいずれか)を含んでもよい。メモリ304は、本明細書で説明する機能を実施するプログラム、モジュール、及びデータ構造のすべて又は一部を格納してもよい。例えば、メモリ304は、保守支援アプリケーション350を格納していてもよい。ある実施形態では、保守支援アプリケーション350は、後述する機能をプロセッサ302上で実行する命令又は記述を含んでもよい。
ある実施形態では、保守支援アプリケーション350は、プロセッサベースのシステムの代わりに、またはプロセッサベースのシステムに加えて、半導体デバイス、チップ、論理ゲート、回路、回路カード、および/または他の物理ハードウェアデバイスを介してハードウェアで実施されてもよい。ある実施形態では、保守支援アプリケーション350は、命令又は記述以外のデータを含んでもよい。ある実施形態では、カメラ、センサ、または他のデータ入力デバイス(図示せず)が、バスインターフェースユニット309、プロセッサ302、またはコンピュータシステム300の他のハードウェアと直接通信するように提供されてもよい。
コンピュータシステム300は、プロセッサ302、メモリ304、表示システム324、及びI/Oバスインターフェースユニット310間の通信を行うバスインターフェースユニット309を含んでもよい。I/Oバスインターフェースユニット310は、様々なI/Oユニットとの間でデータを転送するためのI/Oバス308と連結していてもよい。I/Oバスインターフェースユニット310は、I/Oバス308を介して、I/Oプロセッサ(IOP)又はI/Oアダプタ(IOA)としても知られる複数のI/Oインタフェースユニット312,314,316、及び318と通信してもよい。
表示システム324は、表示コントローラ、表示メモリ、又はその両方を含んでもよい。表示コントローラは、ビデオ、オーディオ、又はその両方のデータを表示装置326に提供することができる。また、コンピュータシステム300は、データを収集し、プロセッサ302に当該データを提供するように構成された1つまたは複数のセンサ等のデバイスを含んでもよい。
例えば、コンピュータシステム300は、心拍数データやストレスレベルデータ等を収集するバイオメトリックセンサ、湿度データ、温度データ、圧力データ等を収集する環境センサ、及び加速度データ、運動データ等を収集するモーションセンサ等を含んでもよい。これ以外のタイプのセンサも使用可能である。表示システム324は、単独のディスプレイ画面、テレビ、タブレット、又は携帯型デバイスなどの表示装置326に接続されてもよい。
I/Oインタフェースユニットは、様々なストレージ又はI/Oデバイスと通信する機能を備える。例えば、端末インタフェースユニット312は、ビデオ表示装置、スピーカテレビ等のユーザ出力デバイスや、キーボード、マウス、キーパッド、タッチパッド、トラックボール、ボタン、ライトペン、又は他のポインティングデバイス等のユーザ入力デバイスのようなユーザI/Oデバイス320の取り付けが可能である。ユーザは、ユーザインターフェースを使用して、ユーザ入力デバイスを操作することで、ユーザI/Oデバイス320及びコンピュータシステム300に対して入力データや指示を入力し、コンピュータシステム300からの出力データを受け取ってもよい。ユーザインターフェースは例えば、ユーザI/Oデバイス320を介して、表示装置に表示されたり、スピーカによって再生されたり、プリンタを介して印刷されたりしてもよい。
ストレージインタフェース314は、1つ又は複数のディスクドライブや直接アクセスストレージ装置322(通常は磁気ディスクドライブストレージ装置であるが、単一のディスクドライブとして見えるように構成されたディスクドライブのアレイ又は他のストレージ装置であってもよい)の取り付けが可能である。ある実施形態では、ストレージ装置322は、任意の二次記憶装置として実装されてもよい。メモリ304の内容は、ストレージ装置322に記憶され、必要に応じてストレージ装置322から読み出されてもよい。I/Oデバイスインタフェース316は、プリンタ、ファックスマシン等の他のI/Oデバイスに対するインターフェースを提供してもよい。ネットワークインターフェース318は、コンピュータシステム300と他のデバイスが相互的に通信できるように、通信経路を提供してもよい。この通信経路は、例えば、ネットワーク330であってもよい。
ある実施形態では、コンピュータシステム300は、マルチユーザメインフレームコンピュータシステム、シングルユーザシステム、又はサーバコンピュータ等の、直接的ユーザインターフェースを有しない、他のコンピュータシステム(クライアント)からの要求を受信するデバイスであってもよい。他の実施形態では、コンピュータシステム300は、デスクトップコンピュータ、携帯型コンピュータ、ノートパソコン、タブレットコンピュータ、ポケットコンピュータ、電話、スマートフォン、又は任意の他の適切な電子機器であってもよい。
次に、図2を参照して、本発明の実施形態に係る保守支援システムのハードウェア構成について説明する。
図2は、本発明の実施形態に係る保守支援システムのハードウェア構成の一例を示す図である。図2に示すように、保守支援システム360は、主に通信ネットワーク365、監視対象の設備370、センサ375、ストレージ装置380、及び保守支援装置385からなる。監視対象の設備370、センサ375、ストレージ装置380、及び保守支援装置385は、通信ネットワーク365を介して互いに接続されている。
通信ネットワーク365は、例えばローカルエリアネットワーク(LAN)、ワイドエリアネットワーク(WAN)、衛星ネットワーク、ケーブルネットワーク、WiFiネットワーク、またはそれらの任意の組み合わせを含むものであってもよい。また、監視対象の設備370、センサ375、ストレージ装置380、及び保守支援装置385の接続は、有線であってもよく、無線であってもよい。
監視対象の設備370は、電力、鉄道、上下水道、都市交通等の社会インフラにおいて、特定の目的を果たすための機器である。監視対象の設備370は、例えば空調機、エスカレーター、昇降機、プラント装置、工作機械等の制御システムであってもよい。監視対象の設備370は、1つ以上の制御システムを連結、または分散して構成されていてもよい。また、監視対象の設備370は、後述するセンサ375を備えていてもよい。
なお、監視対象の設備370は直接に通信ネットワーク365に接続せず、監視対象の設備370が備えるセンサ375のみが通信ネットワーク365に接続する構成も可能である。
センサ375は、上述した監視対象の設備370に関する情報を取得するための装置である。ここでのセンサ375の種類は特に限定されず、監視対象の設備370の
用途、機能、及び種類に応じて適宜に選択されて配置されてもよい。例えば、監視対象の設備370が空調機の場合には、センサ375は、空調機の内部に配置されているコンプレッサー等の部品の状態に関するデータを取得するように構成されたセンサであってもよい。他の例としては、センサ375は、例えば湿度データ、温度データ、圧力データ等を収集する環境センサであってもよく、加速度データ、運動データ等を収集するモーションセンサであってもよく、特に限定されない。
ストレージ装置380は、通信ネットワーク365を介して監視対象の設備370、センサ375、及び保守支援装置385に用いられる各種データを管理し、記憶するためのストレージ部である。このストレージ装置380は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)等のローカルストレージであってもよく、保守支援装置385にアクセス可能なクラウド型ストレージ領域であってもよい。
図2に示すように、ストレージ装置380は、過去のデータDB381、リアルタイム監視データDB382、及びCLD式及びパラメータDB383を格納してもよい。これらの各種データの詳細については後述する。
保守支援装置385は、監視対象の設備370について異常が発生しているか否かを判定し、異常が検出された場合に、当該異常の迅速な対応を支援するための装置である。図2に示すように、保守支援装置385は、主にパラメータ生成部386、異常判定部389、及び警告管理部392とを含む。
パラメータ生成部386は、監視対象の設備370について異常が発生しているか否かを判定するために用いる異常判定用パラメータを生成するための機能部である。
図2に示すように、パラメータ生成部386は、センサ375から取得され、監視対象の設備370の状態に関する第1の状態データ(例えば、過去のデータDB381のデータ)と、センサ375に対応する因果構造モデル(例えば、CLD式及びパラメータDB382に格納されている因果構造モデル)を用いて、センサ375の精度を示す精度値のセットを推定する精度推定部387と、精度値のセットから抽出した値を含む異常判定用パラメータの候補を用いて第1の状態データのセットを分析することで、所定の異常検出率基準及び所定の誤警報率基準を満たす異常判定用パラメータを異常判定用パラメータの候補から特定し、ストレージ装置380に格納するパラメータ特定部388とを含む。
異常判定部389は、パラメータ生成部386によって決定された異常判定用パラメータを用いて、センサ375から送信される第2の状態(例えば、リアルタイム監視データDB382のデータ)を分析することで監視対象の設備370について異常が発生しているか否かを判定する機能部である。
図2に示すように、異常判定部389は、センサ375から、監視対象の設備370の状態に関する第2の状態データのセット(例えば、リアルタイム監視データDB382のデータ)と、センサ375に対応する因果構造モデル(例えば、CLD式及びパラメータDB382に格納されている因果構造モデル)を用いて、センサ375の精度を示す精度値のセットを推定する精度推定部390と、異常判定用パラメータを用いて第2の状態データのセットを分析することで、第2の状態データのセットを正常、異常、ノイズ等のカテゴリーに分類したデータ分類結果を生成し、当該データ分類結果を出力するデータ分類部391とを含む。
警告管理部392は、監視対象の設備370について異常が検出された場合に、当該異常に関する警告を通知する機能部である。
図2に示すように、警告管理部392は、異常判定部389によって生成されたデータ分類結果に基づいて、監視対象の設備370について検出された異常に関する警告を生成する警告生成部393と、当該警告を所定の第三者(監視対象の設備370の管理者、作業員など)に通知する警告送信部394とを含む。
なお、保守支援システム360に含まれるそれぞれの機能部は、図1に示す保守支援アプリケーション350を構成するソフトウエアモジュールであってもよく、独立した専用ハードウェアデバイスであってもよい。また、上記の機能部は、同一のコンピューティング環境に実施されてもよく、分散されたコンピューティング環境に実施されてもよい。例えば、警告管理部392を遠隔のサーバに実装し、それ以外の機能部を保守支援装置385に実装する構成であってもよい。
次に、図3を参照して、本発明の実施形態に係る保守支援システムの論理構成について説明する。
図3は、本発明の実施形態に係る保守支援システム360の論理構成の一例を示す図である。図3に示すように、保守支援システム360は、監視対象の設備370、センサ375、ストレージ装置380、及び保守支援装置におけるパラメータ生成部386、異常判定部389、及び警告管理部392を含む。
本発明の実施形態に係る保守支援システム360の基本的な流れとしては、パラメータ生成部386は、センサ375から取得した監視対象の設備370に関する過去のデータ(例えば、図中の「過去のデータDB381」)に基づいて異常判定用パラメータを生成し、その後、異常判定部389は、センサ375から取得した監視対象の設備370に関するリアルタイム監視データ(例えば、図中の「リアルタイム監視データDB382」)を、当該異常判定用パラメータによって分析することにより、分析したデータを正常、異常、ノイズなどのカテゴリーに分類する。以下、この流れの詳細について説明する。
上述したように、本発明の実施形態に係る保守支援システム360は、ストレージ装置380を含み、当該ストレージ装置380は、過去のデータDB381、リアルタイム監視データDB382、及びCLD式及びパラメータDB383を含む。
過去のデータDB381は、センサ375を介して監視対象の設備370について取得した過去のデータであり、本発明の実施形態に係る異常判定用パラメータを決定するための学習用データである。この過去のデータDB381は、例えば過去の1カ月、過去の6カ月、過去の1年間等、任意の期間で取得されたデータであってもよい。
また、この過去のデータDB381は、過去の異常の記録を示す異常データDB405と、過去の異常の記録を取り除いたデータを示す正常データDB407と、過去の異常、ノイズ、及び過去の正常のデータを全て含む全監視データDB406とを含む。
CLD式及びパラメータDB383は、監視対象の設備370に対応する因果構造モデルから導出した因果構造式(以下、「CLD式」;Causal Loop Diagram Formulaという)と、それぞれのCLD式について生成した異常判定用パラメータとを含む。なお、これらのCLD式及びパラメータについては後述する。
リアルタイム監視データDB382は、センサ375を介して監視対象の設備370について取得したリアルタイムの監視データである。このリアルタイムのデータは、例えば、以前に取得した過去のデータDB381と異なり、現在(例えば、所定の時間以内に)センサ375から取得され、保守支援装置に配信されているデータであってもよい。
まず、ステップS401では、パラメータ生成部386において、監視対象の設備370に備えられている各センサについて、CLD式(C[i])を取得する。ここで取得される各センサのCLD式は、監視対象の設備370に備えられている各センサについて、当該センサが測定するデータの予測値を計算するための式である。各センサについてCLD式が既に生成されてCLD式及びパラメータDB383に格納されている場合には、ステップS401では、パラメータ生成部386は、各センサに対応するCLD式をCLD式及びパラメータDB383から取得してもよい。また、各センサに対応するCLD式がまだ生成されていない場合には、ステップS401では、パラメータ生成部386は、各センサに対応するCLD式を新たに生成してもよい。
ステップS402では、パラメータ生成部386は、ステップS401で取得したCLD式と、全監視データDB406とを用いて、監視対象の設備370に備えられている各センサについて、当該センサの精度値P[j]を計算する。特定のセンサ[j]の精度値P[j]は、以下の数式1から求められる。
Figure 2021149156000001
ここでは、cは、CLD式から求められるセンサの予測値であり、rは、全監視データDB406から取得される当該センサの実際の測定値である。
ステップS403では、パラメータ生成部386は、ステップS401で取得したCLD式と、全監視データDB406とを用いて、各センサについて、精度値の標準誤差σ[j]を計算する。ここでの標準誤差の計算は、既存の手段によって計算されてもよく、特に限定されない。
ステップS404では、パラメータ生成部386は、異常データDB405、ステップS402で計算された各センサの精度値P[j]、及びステップS403で計算された各センサの精度値の標準誤差σ[j]とに基づいて、各センサの異常判定用パラメータを決定する。
なお、ここでの異常判定用パラメータは、特定のセンサ[j]の精度の閾値Th[j]と、当該精度の標準誤差σ[j]と、所定の間隔Mと、所定の間隔において、当該精度の閾値を満たすデータ点の数Nとを含む。異常判定用パラメータを決定する処理の詳細については後述する。
ステップS405では、パラメータ生成部386は、ステップS404で決定した異常判定用パラメータによる異常判定の性能を表す検出率(DR)及び誤警報率(FAR)を計算する。
以上の処理により、特定の監視対象の設備370について、異常が発生しているか否かを効率良く判定するためのパラメータを決定することができる。ここで決定した異常判定用パラメータを用いて、センサ375を介して監視対象の設備370について取得したリアルタイム監視データを分析することにより、分析したデータを正常、異常、ノイズなどのカテゴリーに分類することができる。以下、この流れの詳細について説明する。
次に、ステップS406では、異常判定部389は、センサ375を介して取得されたリアルタイム監視データDB382を用いて、各センサについて、当該センサのリアルタイム精度値PR[j]を計算する。
ステップS407では、異常判定部389は、ステップS404で決定した異常判定用パラメータを用いてリアルタイム監視データDB382を分析することにより、当該リアルタイム監視データにおける正常の値、ノイズの値、及び異常の値を識別する。
ステップS408では、異常判定部389は、ステップS407の判定結果として、分析されたリアルタイム監視データDB382を、正常、ノイズ、異常などのカテゴリーに分類したデータ分類結果を、警告管理部392に出力する。
ステップS409では、警告管理部392は、ステップS408で生成されたデータ分類結果に基づいて、監視対象の設備370について検出された異常に関する警告を生成する。
ステップS410では、警告管理部392は、ステップS409で生成された警告を所定の第三者(監視対象の設備370の管理者、作業員など)に通知する。
以上の処理により、センサ間の因果関係を示すCLDモデルを用いて、監視対象の設備について異常が発生しているか否かを判定するための異常判定用パラメータを効率良く決定し、決定した異常判定用パラメータを用いてリアルタイム監視でセンサから取得されたデータを分析することで、当該データを正常、ノイズ、及び異常等のカテゴリーに分類する保守支援手段を提供することができる。
次に、図4を参照して、本発明の実施形態に係るセンサによって取得された監視データの一例を示す図である。
図4は、本発明の実施形態に係るセンサによって取得された全監視データDB406の一例を示す図である。図4に示される全監視データDB406は、例えば図2及び図3を参照して説明したセンサ375によって取得される生データ(つまり、未処理)のデータの一例である。
図4に示すように、この全監視データDB406は、例えば測定日時を示す測定日時情報422、センサを一意に識別するセンサ識別子424、及びセンサの測定値426等を含む。
なお、この全監視データDB406には、ノイズに該当する値と、正常の値と、異常の値とが混在している。従って、このような全監視データDB406を本発明の実施形態に係る保守支援手段によって処理することにより、ノイズの値、正常の値、及び異常の値をそれぞれ識別し、監視対象の設備370の保守作業を促進することができる。
次に、図5を参照して、本発明の実施形態に係る過去の異常データについて説明する。
図5は、本発明の実施形態に係る過去の異常データDB405の一例を示す図である。図5に示される過去の異常データDB405は、図2及び図3に示されるストレージ装置380に格納される過去のデータDB381の一部であり、図4を参照して説明した全監視データDB406から、異常として判定された値に該当するものである。
図5に示すように、過去の異常データDB405は、それぞれの異常を一意に識別するID430、異常が発生した日時を示す異常発生日時431、異常が解決された日時を示す異常解決日時432、及び異常を解決するために行われた保守動作の内容を示す保守動作433を含む。
例えば、図5に示すように、「A8」に対応する異常は、2018年10月11日の21時に発生し、2018年10月12日の2時30分にコンプレッサー交換との保守動作により解決された。
上述したように、異常が発生しているか否かを判定するための異常判定用パラメータを決定する処理において、図5に示す過去の異常データDB405に基づいて、センサの精度値P[j]及び当該センサの精度値の標準誤差σ[j]を計算することができる。
次に、図6を参照して、本発明の実施形態に係る設備と、CLD式及び異常判定用パラメータについて説明する。
図6は、本発明の実施形態に係るCLD式及びパラメータDB383の構成の一例を示す図である。図6に示すCLD式及びパラメータDB383は、例えば図2及び図3に示されるストレージ装置380内に格納されるCLD式及びパラメータDB383に対応する。
図6に示すように、CLD式及びパラメータDB383は、監視対象の設備の名前を示す設備名601、CLD式602、閾値604、標準誤差606、所定の間隔Mと610、及び所定の間隔において、当該精度の閾値を満たすデータ点の数N608を含む。
上述したように、CLD式とは、監視対象の設備(例えば、図2及び図3に示す監視対象の設備370)を監視するように構成された多数のセンサから取得された業務データ間の因果関係を有指向グラフで表現した因果構造モデルから導出した回帰式である。この回帰式におけるそれぞれの項は、所定の結果に影響を与える原因を表す。これらのCLD式を用いることにより、監視対象の設備に備えられている各センサについて、他の業務データとの因果関係を考慮に入れた上で当該センサが測定するデータの予測値を計算することができる。
なお、ここでのCLD式は、事前に監視対象の設備について生成された因果構造モデルから取得した回帰式であってもよいが、CLD式の生成手段は特に限定されない。この因果構造モデルの生成方法の1つとして、例えば、所定の業務データ(例えば、監視対象の設備に備えられているセンサによって取得した過去のデータ)に基づいて当該業務データの間の因果構造モデルを推定する業務改善支援装置(図示せず)が、当該業務データに関して非線形値を計算し、当該非線形値を業務データに追加する処理と、業務データそれぞれに関する回帰式を線形重回帰により算出する処理と、算出した回帰式において線形項の有無を判定し、線形項を構成する所定データと回帰式の目的変数とを同一のグループに設定する処理と、所定データを除く業務データを、線形重回帰分析の説明変数候補として選別する処理とを実施することを含んでもよい(特許文献2参照)。
図6に示すように、1つの監視対象の設備名601は、複数のCLD式602に対応付けられてもよい。例えば、監視対象の設備に備えられている各センサ毎に、当該センサが測定するデータの予測値を計算するCLD式602は生成されてもよい。また、図6に示すように、それぞれのCLD式602は、当該CLD式の精度の閾値604及び標準誤差606に対応付けられている。後述するように、あるセンサの精度が閾値604を満たす(つまり、下回る)場合には、当該センサに異常が現れている可能性がある。
また、それぞれの設備名601について、後述する異常判定処理に用いられる、所定の間隔M610と、所定の間隔M610において、当該精度の閾値を満たすデータ点の数N608とが定められている。これらの所定の間隔M610とデータ点の数N608は、同種の設備について同一である(例えば、同じ品番の空調機が複数設置されている場合、それぞれの空調機の異常判定に用いられる所定の間隔M610とデータ点の数N608は同一である)。
なお、所定の間隔M610とデータ点の数N608を決定する処理については後述する。
次に、図7を参照して、本発明の実施形態に係るリアルタイム監視データDBの構成について説明する。
図7は、本発明の実施形態に係るリアルタイム監視データDB382の構成の一例を示す図である。図7に示すリアルタイム監視データDB382は、上述した監視対象の設備を監視するセンサによってリアルタイムで取得される監視データと、当該監視データに対する分類結果(正常、ノイズ、異常)を示すものであり、図2及び図3に示されるストレージ装置380内に格納されるリアルタイム監視データDB382に対応する。
図7に示すように、リアルタイム監視データDB382は、監視対象の設備の名前を示す設備名701、CLD式702、閾値704、標準誤差706、所定の間隔Mと710、所定の間隔において、当該精度の閾値を満たすデータ点の数N708、及び特定の日時での設備の状態を示す日時・状態712を含む。
なお、設備名701、CLD式702、閾値704、標準誤差706、所定の間隔Mと710、及び所定の間隔において、当該精度の閾値を満たすデータ点の数N708は、図6を参照して説明した設備名601、CLD式602、閾値604、標準誤差606、所定の間隔Mと610、及び所定の間隔において、当該精度の閾値を満たすデータ点の数N608に実質的に対応するため、ここではその説明を省略する。
日時・状態712は、監視対象の設備の、特定の日時での状態を示す情報である。また、図7に示すように、この状態は、それぞれのCLD式702毎の状態712aと、設備の全体状態712bとを含む。
CLD式702毎の状態712aは、例えば上述した異常判定部(例えば、図2に示す異常判定部389)によって生成されるデータ分類結果に基づくものであり、それぞれのCLD式について、設備の状態を「正常」、「ノイズ」、「異常」等のカテゴリーに指定する。
設備の全体状態712bは、それぞれのCLD式702毎の状態712aに基づいて決定された設備の全体状態である。1つの設備について、全てのCLD式702毎の状態712aが「正常」であれば、全体状態712bも「正常」となる。ただし、1つの設備について、1つ以上のCLD式702毎の状態712aが「ノイズ」であれば、全体状態712bが「ノイズ」となる。また、1つの設備について、1つ以上のCLD式702毎の状態712aが「異常」であれば、全体状態712bが「異常」となる。
上述したリアルタイム監視データDB382のように、監視対象の設備に該当するそれぞれのCLD式毎に状態を管理することにより、異常が発生した場合には、異常の原因を迅速に特定し、対応することができる。
次に、図8~図9を参照して、本発明の実施形態に係る表示画面の具体例について説明する。
図8は、本発明の実施形態に係る設備状態画面800の一例を示す図である。上述したように、本発明の実施形態では、監視対象の設備から取得された監視データを、図2に示す異常判定部389によって分析することにより、当該監視対象の設備に対応するCLD式毎に、設備の状態をリアルタイムで判定することができる。したがって、ここで判定した設備の状態を可視化し、設備状態画面800に示すことにより、監視対象の設備の管理者が設備の状態を容易に確認することができる。
図8に示すように、設備状態画面800では、1つの設備について、CLD式702毎に、特定の時刻801における当該設備の状態712aと、それぞれのCLD式702の標準誤差706と、所定の間隔Mと710と、所定の間隔において、当該精度の閾値を満たすデータ点の数N708と、それぞれのCLD式702毎の状態712aに基づいて決定された設備の全体状態712bとが表示される。
また、監視対象の設備について異常が検出された場合に、管理者や作業員等のユーザは、警告ボタン811を押すことにより、検出された異常に関する詳細情報を示す異常確認画面900(図9参照)を確認することができる。
図9は、本発明の実施形態に係る異常確認画面900の一例を示す図である。異常確認画面900は、監視対象の設備について異常が検出された場合に、当該異常の詳細情報を表示する画面である。
図9に示すように、異常確認画面900では、異常が検出された設備について、CLD式702に対応する設備の日時・状態712と、CLD式702の標準誤差706と、所定の間隔Mと710と、所定の間隔において、当該精度の閾値を満たすデータ点の数N708とが表示される。
また、異常確認画面900では、CLD式702を構成する項において、異常の原因を表す要素802と、それぞれの原因が確認済みか否かを示す確認チェックボックス803と、保守が完了したか否かを示す保守完了ボタン804と、追加の異常情報をアップロードするための追加情報アップロードボタン805とが表示される。
例えば、図9に示すように、「空調機2」という設備について検出された異常に関する情報が表示されており、異常の原因を表す要素802「X12、X27、X114」が示されている。したがって、異常確認画面900を確認したユーザ(管理者、作業員等)は、例えば、異常の原因となった要素に該当する箇所である「コンプレッサー交換圧力、暖房機電流、設定温度」を現場で点検した後、確認した項目に該当する確認チェックボックス803をクリックする。また、検出された異常を解決する保守作業が行われた後、ユーザは保守完了ボタン804をクリックする。
また、現場で異常を調査したユーザは、追加情報アップロードボタン805を押すことにより、異常に関する追加情報(写真、説明、保守作業を実施した後で取得したデータ等)をアップロードすることができる。
これにより、ある監視対象の設備について異常が検出された場合、管理者や作業員等のユーザが、異常に関する詳細情報、異常の原因となった要素等を容易に確認し、対応することができる。
次に、図10を参照して、本発明の実施形態に係るデータ分析画面1000の一例を示す図である。監視対象の設備の管理者や作業員等のユーザは、図10に示すデータ分析画面1000を介して、監視対象の設備について異常が発生しているか否かを判定するための異常判定用パラメータを決定するために用いられるデータをアップロードしたり、センサによってリアルタイムで取得されるデータを分析(正常、異常、ノイズ等のカテゴリーに分類)したりすることができる。
図10に示すように、データ分析画面1000は、全監視データ1010をアップロードするためのアップロードボタン1030、異常データ1020をアップロードするためのアップロードボタン1040、分析開始ボタン1050、分析結果確認ボタン1060、異常検出性能確認ボタン1070、及びリアルタイム監視適用ボタン1080を含む。
アップロードボタン1030は、例えば図2に示す全監視データDB406に格納される、監視対象の設備について以前にセンサによって取得された過去の監視データ(つまり、異常、ノイズ、及び正常のデータを全部含む)である全監視データ1010をアップロードするためのボタンである。
ここで、ユーザは異常判定用パラメータを決定する処理において学習データとして用いられる過去の監視データを選択することができる。
アップロードボタン1040は、例えば図2に示す異常データDB405に格納される、監視対象の設備について以前にセンサによって取得された過去の監視データ(つまり、異常、ノイズ、及び正常のデータを全部含む)から抽出した異常の記録を示す異常データ1020をアップロードするためのボタンである。
ここで、ユーザは異常判定用パラメータを決定する処理において用いられる過去の監視データを選択することができる。
分析開始ボタン1050は、アップロードされた全監視データ1010と、異常データ1020とを分析することにより、監視対象の設備に備えられている各センサについて、
センサの精度の閾値Th[j]と、当該精度の標準誤差と、所定の間隔Mと、所定の間隔において、当該精度の閾値を満たすデータ点の数N等の異常判定用パラメータを決定する処理を実施するためのボタンである。
分析結果確認ボタン1060は、分析開始ボタン1050により実施された分析の結果を示すためのボタンである。監視対象の設備の管理者や作業員等のユーザは、分析結果確認ボタン1060をクリックすることにより、監視対象の設備に対応するCLD式毎に決定された異常判定用パラメータ(つまり、センサの精度の閾値Th[j]と、当該精度の標準誤差と、所定の間隔Mと、所定の間隔において、当該精度の閾値を満たすデータ点の数N)を確認することができる。
異常検出性能確認ボタン1070は、アップロードされた全監視データ1010と、異常データ1020とを分析することによって決定された異常判定用パラメータによる検出率及び誤警報率等の異常検出性能を表す指標を確認することができる。
なお、これらの異常検出性能の指標については後述する(図11参照)。
リアルタイム監視適用ボタン1080は、アップロードされた全監視データ1010と、異常データ1020とを分析することによって決定された異常判定用パラメータを、センサによって取得されたリアルタイム監視データに適用するためのボタンである。監視対象の設備の管理者や作業員等のユーザは、例えば所定の検出率基準及び誤警報率基準を満たす異常判定用パラメータをリアルタイム監視データに対して適用することにより、監視対象の設備について異常が発生しているか否かをリアルタイムで判定し、原因を特定することができる。
次に、図11を参照して、本発明の実施形態に係る異常検出性能について説明する。
図11は、本発明の実施形態に係る異常検出性能の指標の一例を説明するための図である。上述したように、本発明の実施形態に係る異常判定の目的は、異常が発生した設備を正しく判定することにあり、異常が発生した設備を「陽性」、異常のない設備を「陰性」と正しく判定する能力が分析の性能である。しかし、異常判定用パラメータによっては、異常が必ずしも正しく判定されるとは限らない。したがって、異常を正しく判定する性能を向上させるためには、異常判定用パラメータの候補の中から、所定の検出率基準及び誤警報率基準を満たす異常判定用パラメータを決定することが望ましい。
以下、異常検出性能の指標について説明する。
図11には、異常検出性能の指標である真陽性率1110、偽陽性率1120、偽陰性率1130、及び真陰性率1140の関係が示されている。
真陽性率1110(True Positive Rate;TP)は、実際に異常が設備について発生した場合に、当該異常を正しく判定することができた割合である。また、偽陽性率1120(False Positive Rate;FP)は、実際に異常が設備について発生していないのに関わらず、異常があると誤って判定した割合である。偽陰性率1130(False Negative Rate;FN)は、実際に異常が設備について発生しているのに関わらず、異常がないと誤って判定した割合である。また、真陰性率1140(True Negative Rate;TN)は、実際に異常が設備について発生していない場合に、異常がないと正しく判定することができた割合である。
上述した異常検出性能の指標から、異常判定の誤警報率(False Alarm Rate;FAR)1150及び検出率(Detection Rate;DR)1160を計算することができる。ここでは、誤警報率1150とは、警告を通知する必要がないもののうち、誤って警告を通知してしまう確率であり、以下の数式2により計算される。
Figure 2021149156000002
また、ここでは、検出率とは、警告を通知する必要があるもののうち、正しく警告を通知することができた確率であり、以下の数式3により計算される。
Figure 2021149156000003
上述したように、異常を正しく判定する性能を向上するためには、異常判定用パラメータの候補の中から、所定の検出率基準及び誤警報率基準を満たす異常判定用パラメータを決定することが望ましい。この検出率基準及び誤警報率基準は、例えば監視対象の設備の管理者等が予め設定する所望の値であってもよい。例えば、一例として、検出率基準は「95%以上」に設定され、誤警報率基準は「0.1%以下」に設定されてもよい。
なお、これらの検出率基準及び誤警報率基準を満たす異常判定用パラメータを決定する手段については後述する。
次に、図12を参照して、本発明の実施形態に係る異常判定用パラメータについて説明する。
図12は、本発明の実施形態に係る異常判定用パラメータの関係を示す図である。図12に示すグラフ1200では、特定の時間で計算されたセンサの精度が表されている。
上述したように、本発明の実施形態に係る保守支援手段においては、異常を正しく判定する性能を向上するためには、異常判定用パラメータの候補の中から、所定の検出率基準及び誤警報率基準を満たす異常判定用パラメータを決定することが望ましい。また、ここでの異常判定用パラメータは、少なくとも図12において水平の破線によって表されるセンサの精度の閾値1205と、所定の間隔M1203と、所定の間隔M1203において、当該精度の閾値1205を満たすデータ点の数Nとを含む。
ある測定値のセット1201、1202、1204を異常として判定するためには、当該測定値のセット1201、1202、1204は、所定の間隔M1203以内に、閾値1205を満たす(この場合には、下回る)点を少なくともN点含まなければならない。ここでの所定の間隔M1203は、時間(3秒、4秒、5秒の期間等)であってもよく、データ点の数(5点、10点等)であってもよい。
なお、以下の説明では、説明の便宜上、所定の間隔Mの単位(秒、点等)を指定しないことがあるが、所定の間隔の単位は任意に選択されてもよい。
したがって、一例として、例えば精度の閾値はグラフ1200に示されている水平の破線であり、Nが「3」であり、Mが「4」秒である場合には、特定の測定値のセットを異常として判定するためには、当該測定値のセットは、4秒以内に、閾値1205を満たす点を少なくとも点含まなければならない。そのため、測定値のセット1201、1202、1204の内、これらの条件を満たすのは測定値のセット1204のみであり、測定値のセット1201、1202はノイズとして判定される。
次に、図13を参照して、本発明の実施形態に係るノイズ判定方法について説明する。
図13は、本発明の実施形態に係るノイズ判定方法の一例を示す図である。上述したように、本発明では、センサによって取得された監視データを分析することにより、分析したデータを正常、異常、ノイズなどのカテゴリーに分類することができる。以下では、本発明の実施形態に係るノイズ判定方法の一例について説明する。
図13に示すグラフ1300では、特定の時間で計算されたセンサの精度が表されている。ここでのノイズ判定方法では、特定の判定対象のデータ点P(1301)と、当該判定対象のデータ点P(1301)に隣接している所定の数のデータ点(P1―2、P1―1、P1+1、P1+2)との参照差分D(1305)を、(例えば、図3に示すステップS403で)CLD式について計算された標準誤差に比較することで判定対象のデータ点Pがノイズであるか否かを判定する。
ここでは、図13に示すn1(1302)は、特定の判定対象のデータ点P(1301)と比較するデータ点の数であり、n2(1303)は、所定の測定値のセットを異常として判定するために必要なデータ点の数である。
なお、ここでは、n1、n2、及びDは、以下の数式4~6に示される関係に従う。
Figure 2021149156000004
Figure 2021149156000005
Figure 2021149156000006
例えば、一例として、n2が「3」であり、n1が「4」である場合には、当該判定対象のデータ点P(1301)と、当該判定対象のデータ点P(1301)に隣接している4点のデータ点(P1―2、P1―1、P1+1、P1+2)との間の参照差分Dがそれぞれ(例えば、図3に示すステップS403で)CLD式について計算された標準誤差より大きい場合(つまり、P1―2>標準誤差、P1―1>標準誤差、P1+1>標準誤差、P1+2>標準誤差)には、当該判定対象のデータ点P(1301)がノイズとして判定される。
次に、図14を参照して、本発明の実施形態に係る保守支援手段において、監視対象の設備について異常が発生しているか否かを判定するための異常判定用パラメータを判定する処理について説明する。
図14は、本発明の実施形態に係る保守支援手段において、監視対象の設備について異常が発生しているか否かを判定するための異常判定用パラメータを決定する処理1400の流れを示す図である。異常判定用パラメータを判定する処理1400を行うことにより、所定の異常検出率基準及び所定の誤警報率基準を満たす異常判定用パラメータを決定することができる。また、この異常判定用パラメータを判定する処理1400は、例えば図2~3を参照して説明したパラメータ生成部386によって実施されてもよい。
まず、ステップS1401では、パラメータ生成部は、各センサの過去の正常データ(例えば、図3に示す正常データDB407に格納されているデータ)を取得する。
次に、ステップS1402では、パラメータ生成部は、監視対象の設備370におけるセンサについて、CLD式(C[i])を取得する。上述したように、各センサについてCLD式が既に生成されてCLD式及びパラメータDBに格納されている場合には、ステップS1402では、パラメータ生成部は、各センサに対応するCLD式をCLD式及びパラメータDBから取得してもよい。また、各センサに対応するCLD式がまだ生成されていない場合には、ステップS1402では、パラメータ生成部は、各センサに対応するCLD式を上述した手段により新たに生成してもよい。
次に、ステップS1403では、パラメータ生成部は、ステップS1402で取得したCLD式と、ステップS1401で取得した各センサの過去の正常データとを用いて、監視対象の設備370に備えられている各センサについて、当該センサの精度値P[j]と、当該精度値P[j]の標準誤差σ[j]を計算する。
ここでの精度値P[j]は、上述した数式1から求められる。
次に、ステップS1404では、パラメータ生成部は、ステップS1403で生成された精度値P[j]において、ステップS1403で計算された標準誤差(σ[j])の3倍(つまり3σ)を超える精度値があるか否かを判定する。
次に、ステップS1405では、ステップS1404で標準誤差(σ[j])の3倍(つまり3σ)を超える精度値があると判定された場合には、パラメータ生成部は、標準誤差(σ[j])の3倍(つまり3σ)を超える精度値をステップS1401で用いた過去の正常データ(例えば、図3に示す正常データDB407に格納されているデータ)から除外する。その後、本処理はステップS1402に戻り、修正した過去の正常データを用いてステップS1402以降の処理を行う。
次に、ステップS1406では、パラメータ生成部は、ステップS1402で取得したCLD式と、過去の異常、ノイズ、及び過去の正常のデータを全て含む全監視データ(例えば、図3に示す全監視データDB406)とを用いて、監視対象の設備に備えられている各センサについて、当該センサの精度値P[j]を計算し、図15に示す精度リストを作成する。
なお、このステップS1406で計算される精度値P[j]は、ステップS1403で過去の正常データのみに基づいて計算された精度値と異なり、過去の異常、ノイズ、及び過去の正常のデータを全て含む全監視データに基づいて計算されている。
また、ここでの精度値P[j]は、上述した数式1から求められる。
図15は、ステップ1406で計算されたCLD式毎のセンサの精度値P[j]及び標準誤差を管理するための精度リスト1500の一例を示す図である。図15に示すように、この精度リスト1500は、監視対象の設備の名前を示す設備名1501、CLD式1502、時間1503、精度値P(j,i)1504、精度値1505、標準誤差1506、所定の間隔M1508と、所定の間隔M1508において、当該精度の閾値を満たすデータ点の数N1507とを含む。
なお、ここでの精度値P(j,i)の「j」は特定のセンサを表し、「i」は、当該センサ「j」がある時間tで取得したデータ点を表す。
図15に示すように、監視対象の設備(例えば、空調機1)に対応付けられているCLD式1502毎に、様々な時間1503で計算された精度値1505及び標準誤差1506が示されている。なお、図14におけるステップS1406の段階では、各CLD式の標準誤差、Mの値、及びNの値が未決定であるため、図15に示す精度リスト1500においては、標準誤差1506、間隔M1508、及びデータ点の数N1507の欄が空白となっている。
後述する処理により、精度リスト1500に示されている情報に基づいて、CLD式毎に、監視対象の設備について異常が発生しているか否かを判定するための異常判定用パラメータを決定することができる。
次に、ステップS1407では、パラメータ生成部は、上述した精度リストにおいて、各CLD式について、間隔Mを「1」とし、標準誤差をステップS1403で計算された値σ[j]とする。
次に、ステップS1408では、パラメータ生成部は、上述した精度リストにおいて、精度の閾値を満たすデータ点の数Nを「1」とする。
次に、ステップS1409では、パラメータ生成部は、上述した精度リストにおいて、精度値の最小値を閾値Th[j]に設定する。
次に、ステップS1410では、パラメータ生成部は、上述した閾値Th[j](例えばステップS1409で設定した値)と、精度リストにおいて設定されているM、N、及び標準誤差等を異常判定用パラメータの候補として、過去のデータ(例えば、図3に示す全監視データDB406)を分析する。具体的には、ここでは、パラメータ生成部は、異常判定用パラメータの候補を用いて、図12に示す手段によって過去のデータを分析することで、当該過去のデータに存在する異常の値、正常の値、及びノイズの値を分類しようとする。
次に、ステップS1411では、パラメータ生成部は、1つ以上の異常が判定されたか否かを確認する。1つ以上の異常が判定された場合には、本処理はステップS1413へと進み、異常が判定されなかった場合には、本処理はステップS1412へと進む。
ステップS1412では、パラメータ生成部は、上述した精度リストから、精度値の最小値(つまり、ステップS1409で閾値Th[j]として設定した値)を除外(削除)する。その後、本処理はステップS1409に戻り、修正した精度リストの中から、精度値の最小値を閾値Th[j]として設定し、ステップS1410以降の処理を行う。
ステップS1413では、パラメータ生成部は、異常が判定されたCLD式について、異常の履歴が過去の異常データ(例えば、図3に示す異常データDB405)に存在するか否かを判定する。異常が判定されたCLD式について、異常の履歴が過去の異常データに存在する場合には、本処理はステップS1414へと進み、異常の履歴が過去の異常データに存在しない場合には、本処理はステップS1416へと進む。
ステップS1414では、パラメータ生成部は、ステップS1410での分析によって判定された異常を検証する処理を行う。この処理の詳細については後述する(図16参照)。
ステップS1415では、パラメータ生成部は、ステップS1414の処理において計算される、当該異常判定用パラメータの候補による検出率が予め設定された検出率基準を達成するか否かを判定する。当該異常判定用パラメータの候補による検出率が予め設定された検出率基準を達成する場合には、本処理はステップS1420へと進み、当該異常判定用パラメータの候補による検出率が予め設定された検出率基準を達成しない場合には、本処理はステップS1412へと進む。
ステップS1416では、ステップS1413において異常が判定されたCLD式について異常の履歴が過去の異常データに存在しないと判定された場合には、パラメータ生成部は、以前に行われたS1410の分析で用いられた(前回の)閾値について、1つ以上の異常が判定されたか否かを判定する。前回の閾値について異常が1つ以上判定された場合、又はS1410の分析が以前に行われていない場合(つまり、今回の処理が初回であり、以前に用いられた閾値がない場合等)には、本処理はステップS1417へと進み、前回の閾値について異常が1つ以上判定されていない場合には、本処理はステップS1421へと進む。
ステップS1417では、パラメータ生成部は、現在の精度リストにおいてNの値とMの値が同一の値となっているか(つまり、N=Mか否か)を判定する。Nの値とMの値が同一の値となっている場合には、本処理はステップS1419へと進み、Nの値とMの値が同一の値でない場合には、本処理はステップS1418へと進む。
ステップS1418では、パラメータ生成部は、精度リストにおいて、Nの値を1つ増加させる(つまり、NをN+1とする)。その後、本処理はステップS1409に戻る。
ステップS1419では、パラメータ生成部は、精度リストにおいて、Mの値を1つ増加させる(つまり、MをM+1とする)。その後、本処理はステップS1408に戻る。
ステップS1420では、パラメータ生成部は、ステップS1414の処理において計算される、当該異常判定用パラメータの候補による誤警報率が予め設定された誤警報率基準を達成するか否かを判定する。当該異常判定用パラメータの候補による誤警報率が予め設定された誤警報率基準を達成する場合には、本処理はステップS1421へと進み、当該異常判定用パラメータの候補による誤警報率が予め設定された誤警報率基準を達成しない場合には、本処理はステップS1417へと戻る。
ステップS1421では、パラメータ生成部は、当該異常判定用パラメータの候補(つまり、ステップS1410で設定した閾値、標準誤差、M、及びN)をリアルタイムで取得された監視データの異常判定に用いる異常判定用パラメータとして決定し、これらのパラメータを出力する。ここでは、パラメータ生成部は、ここで決定した異常判定用パラメータを上述したCLD式及びパラメータDB(例えば、図3に示すCLD式及びパラメータDB383)に保存してもよい。
以上説明した異常判定用パラメータ決定処理を行うことにより、監視対象の設備について取得された監視データを正常、ノイズ、及び異常等のカテゴリーに分類するための最適な異常判定用パラメータを決定することができる。
次に、図16を参照して、本発明の実施形態に係る異常検証処理について説明する。
図16は、本発明の実施形態に係る異常検証処理1600の流れの一例を示す図である。上述したように、本発明の実施形態に係る異常判定用パラメータ決定処理において、ある異常判定用パラメータの候補を用いて過去のデータを分析した結果、異常が判定された場合には、当該異常を検証することが望ましい。以下、この異常検証処理1600について説明する。
まず、ステップS1601では、パラメータ生成部は、各センサの過去の正常データ(例えば、図3に示す正常データDB407に格納されているデータ)を取得する。
なお、図16におけるステップS1601は、上述した図14におけるステップS1401と実質的に対応する。
次に、ステップS1602では、パラメータ生成部は、監視対象の設備370におけるセンサについて、CLD式(C[i])を取得する。
なお、図16におけるステップS1602は、上述した図14におけるステップS1402と実質的に対応するため、ここでの説明を省略する
次に、ステップS160では、パラメータ生成部は、ステップS1601で取得した各センサの過去の正常データと、ステップS1602で取得したCLD式とを用いて、監視対象の設備に備えられている各センサについて、当該センサの精度値P[j]を計算し、上述した精度リスト(例えば、図15に示す精度リスト1500)を作成する。
次に、ステップS1604では、パラメータ生成部は、ステップS160で生成された精度リストにおけるあるデータ点P[j,i]を選択する。ここでの「i」は、以下の数式7に示される関係に従う。
Figure 2021149156000007
なお、ここでのMは、上述した図14におけるステップS1410の分析で用いられた値である。
次に、ステップS1605では、パラメータ生成部は、上述した精度リストにおけるM点の精度値を選択する(あるいは、過去の4秒におけるデータ点)。ここで選択されるM点の精度値は、P(j,i)、P(j,i-1)...P(j,i-(M-1))を含む。
次に、ステップS1606では、パラメータ生成部は、各センサについて、ステップS1605で選択したM点のデータ点においてノイズが存在するかを判定する。ここでのノイズの確認は、例えば図13を参照して説明したノイズ判定手段によって行われてもよい。ステップS1605で選択したM点のデータ点においてノイズが存在する場合には、本処理はステップS1607へと進み、ステップS1605で選択したM点のデータ点においてノイズが存在しない場合には、本処理はステップS1608へと進む。
ステップS1607では、ステップS1606で選択したM点のデータ点においてノイズが存在すると判定された場合、又は後述するステップS1608でM点のデータ点において、閾値Th[i]を達成するN点のデータ点がない場合には、パラメータ生成部は、選択されたデータ点P(j,i)を「正常」と判定し、精度リストにおいてP(j,i)が正常であることを示すラベルを付与する。
ステップS1608では、ステップS1606で、選択したM点のデータ点においてノイズが存在しないと判定された場合には、パラメータ生成部は、M点のデータ点において、閾値Th[i]を達成するN点のデータ点があるか否かを判定する。M点のデータ点において、閾値Th[i]を達成するN点のデータ点がある場合には、本処理はステップS1609へと進み、M点のデータ点において、閾値Th[i]を達成するN点のデータ点がない場合には、本処理はステップ1607へと進む。
ステップS1609では、ステップS1608でM点のデータ点において、閾値Th[i]を達成するN点のデータ点があると判定された場合には、パラメータ生成部は、当該データ点P(j,i)を「異常」と判定し、精度リストにおいてP(j,i)が異常であることを示すラベルを付与する。
次に、ステップS1610では、パラメータ生成部は、精度リストにおける全てのデータ点について異常検証処理が終了しているか否かを判定する。精度リストにおける全てのデータ点について異常検証処理が終了していない場合には、本処理はステップS1611へと進み、精度リストにおける全てのデータ点について異常検証処理が終了している場合には、本処理はステップS1612へと進む。
ステップS1611では、パラメータ生成部は、ステップS1603で選択したデータ点精度値P[i]を1つ増加させ(つまり、iをi+1とする)、本処理はステップS1605へ戻り、ステップS1605以降の処理を実施することで次のデータ点P[i+1]についての検証を行う。
ステップS1612では、パラメータ生成部は、過去の異常データ(例えば、図3に示す異常データDB405)と、ステップS1607及びステップS1609で付与されたラベルとに基づいて、今回の異常検証に用いられた異常判定用パラメータの候補(つまり、ステップS1410で設定した閾値、標準誤差、M、及びN)による検出率及び誤警報率を計算し、出力する。ここで計算された検出率及び誤警報率は、例えば上述したCLD式及びパラメータDB(例えば、図2に示すCLD式及びパラメータDB383)に格納されてもよい。
次に、図17を参照して、本発明の実施形態に係るリアルタイム異常判定処理について説明する。
図17は、本発明の実施形態に係るリアルタイム異常判定処理1700の流れの一例を示す図である。上述したように、図14に示される異常判定用パラメータ決定処理1400によって決定された異常判定用パラメータを用いて、リアルタイム監視データを分析することにより、分析したデータを正常、異常、ノイズなどのカテゴリーに分類する。以下、このリアルタイム異常判定処理1700の流れについて説明する。
なお、以下説明するリアルタイム異常判定処理1700は、例えば上述した図2に示す異常判定部389によって行われてもよい。
まず、ステップS1701では、異常判定部は、各センサからのリアルタイム監視データ(例えば、図3に示すリアルタイム監視データDB382に格納されているデータ)を取得する。上述したように、ここでのリアルタイム監視データは、例えば監視対象の設備に備えられている各センサによって取得され、保守支援装置に動的に送信されているデータであってもよい。
次に、ステップS1702では、異常判定部は、監視対象の設備における各センサについて、CLD式(C[i])を取得する。
なお、図17におけるステップS1702は、上述した図14におけるステップS1402と実質的に対応するため、ここでの説明を省略する。
次に、ステップS1703では、異常判定部は、センサを介して取得されたリアルタイム監視データを用いて、各センサについて、当該センサのリアルタイム精度値PR[j,i]を計算し、リアルタイム精度ストを作成する。ここでの精度リストは、図15を参照して説明した精度リストに実質的に対応するが、ここで作成されるリアルタイム精度リストの精度値は、過去のデータではなく、現在リアルタイムで取得されたリアルタイムデータに基づいて計算される点において図15に示される精度リストと異なる。
次に、ステップS1704では、異常判定部は、上述したリアルタイム精度リストにおいて、対象のデータ点P(j,i)を含むM点の精度値を選択する。ここで選択されるM点の精度値は、P(j,i)、P(j,i-1)...P(j,i-(M-1))を含む。
なお、ここでのMは、上述した図14の異常判定用パラメータ決定処理によって決定されたMの値である。
次に、ステップS1705では、異常判定部は、上述したリアルタイム精度リストにおいて、異常判定用パラメータM,N,閾値、及び標準誤差をそれぞれ設定する。
なお、ここで設定される異常判定用パラメータM,N,閾値、及び標準誤差は、上述した図14の異常判定用パラメータ決定処理によって決定された値である。
次に、ステップS1706では、異常判定部は、各センサについて、ステップS1704で選択したM点のデータ点においてノイズが存在するかを判定する。ここでのノイズの確認は、例えば図13を参照して説明したノイズ判定手段によって行われてもよい。ステップS170で選択したM点のデータ点においてノイズが存在する場合には、本処理はステップS1708へと進み、ステップS170で選択したM点のデータ点においてノイズが存在しない場合には、本処理はステップS1707へと進む。
次に、ステップS1707では、ステップS1706で、選択したM点のデータ点においてノイズが存在しないと判定された場合には、異常判定部は、M点のデータ点において、閾値Th[i]を達成するN点のデータ点があるか否かを判定する。M点のデータ点において、閾値Th[i]を達成するN点のデータ点がある場合には、本処理はステップS1710へと進み、M点のデータ点において、閾値Th[i]を達成するN点のデータ点がない場合には、本処理はステップ1709へと進む。
図18は、例えば上述したステップS1706~S1717で行われる、本発明の実施形態に係る異常判定の一例を示す図である。図18に示す一例では、水平の破線は閾値1730を表し、Nが「2」であり、Mが「3」である。対象のデータ点P1(1732)が異常か否かを判定する場合には、まず、最後のM(3)点(つまり、P1,P2,P3)においてノイズがあるかが判定される。ノイズがない場合には、次は、これらのM(3)点の内、閾値1730を満たす(つまり、下回る)点が少なくともN(2)点あるか否かが判定される。
図18に示す例では、M(3)点の内、閾値を満たす点がP3の1点のみであるため、P1が正常であると判定される。
ステップS1708では、ステップS1706で、選択したM点のデータ点P(j,i)においてノイズが存在すると判定された場合には、異常判定部は、選択されたデータ点P(j,i)を「ノイズ」と判定し、精度リストにおいてP(j,i)がノイズであることを示すラベルを付与する。
ステップS1709では、S1707でM点のデータ点において、閾値Th[i]を達成するN点のデータ点がないと判定された場合には、異常判定部は、選択されたデータ点P(j,i)を「正常」と判定し、精度リストにおいてP(j,i)が正常であることを示すラベルを付与する。
ステップS1710では、ステップS1707でM点のデータ点において、閾値Th[i]を達成するN点のデータ点があると判定された場合には、異常判定部は、当該データ点P(j,i)を「異常」と判定し、精度リストにおいてP(j,i)が異常であることを示すラベルを付与する。
ステップS1711では、警告管理部は、ステップS1710で異常のラベルが付与されたデータ点についての警告を生成し、所定のユーザ(監視対象の設備の管理者、作業員等)に出力する。また、ここで検出された異常に関する詳細情報を示す異常確認画面(図9参照)は、所定のユーザの端末に表示されてもよい。
ステップS1712では、異常が検出されていないため、異常の対策が不要となる。ここでは、異常判定部は、監視対象の設備が正常に作動している旨を示す通知を所定のユーザに送信してもよい。
以上説明したように、本発明の実施形態に係る異常判定用パラメータ決定処理によって決定した異常判定用パラメータをリアルタイム監視データの分析に適用することにより、監視対象の設備の異常を速やかに検出し、原因を特定し、対応することができる。
次に、図1を参照し、本発明の実施形態に係る保守作業の流れについて説明する。
図1は、本発明の実施形態に係る保守作業1800の流れの一例を示す図である。図1に示す保守作業1800は、例えば、監視対象の設備について異常を示す警告が通知された後に行われる手順である。
まず、ステップS1801では、警告管理部は、(例えば上述した図17の異常判定処理により)検出された異常に関する警告を所定のユーザ(監視対象の設備の管理者、作業員等)に出力する。この警告は、例えば、異常が発生した設備名E[b]及び当該異常に関連するCLD式の要素X[i]を含んでもよい。
次に、ステップS1802では、ステップS1801で出力された警告を受信したユーザは、当該警告の情報に基づいて、異常が検出された設備の点検を行う。ここでの設備の点検の内容は、設備の種類や異常の性質によって適宜に選択されてもよい。
次に、ステップS1803では、ステップS1802の作業員による点検の結果、監視対象の設備について実際に異常はあったか否かが判定される。実際に異常があった場合には、本処理はステップS1805へと進み、実際に異常がなかった場合には、本処理はステップS1804へと進む。
ステップS1804では、ステップS1802の作業員による点検の結果、異常がなかったと判定された場合には、作業員は当該異常の警告を(例えば、上述した図9で示す異常確認画面により)誤警報として報告する。
ステップS1805では、作業員等のユーザは、監視対象の設備E[b]の異常を適切な手段により解決する。
ステップS1806では、ステップS1804で報告された誤警報を踏まえて、異常の判定に用いられた異常判定用パラメータによる検出率及び誤警報率を改めて計算する。
ステップS1807では、ステップS1806で計算された検出率及び誤警報率が予め定まった基準(所定の検出率基準及び誤警報率基準)に比較され、当該基準を満たすか否かが判定される。検出率及び誤警報率が両方とも所定の基準を満たす場合には、本処理はステップS1811へと進み、検出率又は誤警報率のいずれかが所定の基準を満たさない場合には、本処理はステップS1808へと進む。
ステップS1808では、各センサのCLD式及び異常判定用パラメータが例えば図14に示される異常判定用パラメータ決定処理1400によって改めて生成される。
ステップS1809では、ステップS1805で異常が解決された監視対象の設備について、CLD式及び異常判定用パラメータが改めて生成される。
ステップS1810では、ステップ1808又はステップ1809で生成された新たなCLD式及び異常判定用パラメータがCLD式及びパラメータDB(例えば図2に示すCLD式及びパラメータDB383)に格納される。
以上説明した保守作業1800により、監視対象の設備について異常が発生した場合に、当該異常を対応した後、監視対象の設備に対応するCLD式及び異常判定用パラメータが更新されるため、保守支援装置の異常判定性能を更に向上させることができる。
上述したように、本発明によれば、センサ間の因果関係を示すCLDモデルを用いて、監視対象の設備について異常が発生しているか否かを判定するための異常判定用パラメータを効率良く決定し、決定した異常判定用パラメータを用いてリアルタイム監視でセンサから取得されたデータを分析することで、当該データを正常、ノイズ、及び異常等のカテゴリーに分類する保守支援手段を提供することができる。
以上、本発明の実施の形態について説明したが、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
360 保守支援システム
365 通信ネットワーク
370 監視対象の設備
375 センサ
380 ストレージ装置
381 過去のデータDB
382 リアルタイムデータ
383 CLD式及びパラメータDB
385 保守支援装置
386 パラメータ生成部
387 精度推定部
388 パラメータ特定部
389 異常判定部
390 精度推定部
391 データ分類部
392 警告管理部
393 警告生成部
394 警告送信部
JP2020045294A 2020-03-16 2020-03-16 保守支援システム及び保守支援方法 Active JP7333284B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020045294A JP7333284B2 (ja) 2020-03-16 2020-03-16 保守支援システム及び保守支援方法
PCT/JP2020/031618 WO2021186762A1 (ja) 2020-03-16 2020-08-21 保守支援システム及び保守支援方法
EP20925308.7A EP4016408A4 (en) 2020-03-16 2020-08-21 MAINTENANCE ASSIST DEVICE AND MAINTENANCE ASSIST METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020045294A JP7333284B2 (ja) 2020-03-16 2020-03-16 保守支援システム及び保守支援方法

Publications (3)

Publication Number Publication Date
JP2021149156A JP2021149156A (ja) 2021-09-27
JP2021149156A5 true JP2021149156A5 (ja) 2022-05-25
JP7333284B2 JP7333284B2 (ja) 2023-08-24

Family

ID=77768145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020045294A Active JP7333284B2 (ja) 2020-03-16 2020-03-16 保守支援システム及び保守支援方法

Country Status (3)

Country Link
EP (1) EP4016408A4 (ja)
JP (1) JP7333284B2 (ja)
WO (1) WO2021186762A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023058124A1 (ja) * 2021-10-05 2023-04-13 三菱電機ビルソリューションズ株式会社 情報収集システム、エレベーターシステム、認証システム、情報収集方法、および情報収集プログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1724717A3 (en) * 2001-03-08 2009-07-22 California Institute Of Technology Real-time spatio-temporal coherence estimation for autonomous mode identification and invariance tracking
EP1967996A1 (en) * 2007-03-09 2008-09-10 Omron Corporation Factor estimating support device and method of controlling the same, and factor estimating support program
US7696866B2 (en) 2007-06-28 2010-04-13 Microsoft Corporation Learning and reasoning about the context-sensitive reliability of sensors
US8190543B2 (en) * 2008-03-08 2012-05-29 Tokyo Electron Limited Autonomous biologically based learning tool
CN104120282B (zh) 2014-07-21 2015-12-30 东北大学 一种快速连续炼镁的方法
JP2016146020A (ja) 2015-02-06 2016-08-12 キヤノン株式会社 データ分析システム及び分析方法
WO2017094267A1 (ja) 2015-12-01 2017-06-08 株式会社Preferred Networks 異常検出システム、異常検出方法、異常検出プログラム及び学習済モデル生成方法
US20190275672A1 (en) 2016-11-30 2019-09-12 Sony Corporation Information processing apparatus and information processing method
JP2018120487A (ja) 2017-01-26 2018-08-02 東芝情報システム株式会社 事象分類装置、事象分類プログラム、故障・不良判定装置
JP6723946B2 (ja) 2017-03-17 2020-07-15 株式会社日立製作所 業務改善支援装置および業務改善支援方法
US20200051038A1 (en) 2017-03-28 2020-02-13 Signify Holding B.V. Calibration of cloud-based information for lifetime prediction of luminaires
CN107392258B (zh) 2017-08-04 2018-08-31 合肥工业大学 一种设备故障元件排查方法及系统
JP7133315B2 (ja) 2018-02-07 2022-09-08 株式会社Ye Digital 故障予知システム

Similar Documents

Publication Publication Date Title
US20210241544A1 (en) Platform for analyzing health of heavy electric machine and analysis method using the same
EP3902992B1 (en) Scalable system and engine for forecasting wind turbine failure
Aboulian et al. NILM dashboard: A power system monitor for electromechanical equipment diagnostics
KR102011620B1 (ko) 이상 데이터의 중요도 판정 장치 및 이상 데이터의 중요도 판정 방법
CN111539550B (zh) 光伏阵列工作状态的确定方法、装置、设备及存储介质
JP5855036B2 (ja) 設備点検順位設定装置
CN108667666A (zh) 一种基于可视化技术的智能运维方法及其系统
JP2012137934A (ja) 異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム並びに企業資産管理・設備資産管理システム
CN109948877B (zh) 一种基于异常事件组合的用电异常精准分析方法
CN109141528A (zh) 一种城市轨道交通土建设施智能实时监控系统
US11755007B2 (en) System and method for determining a health condition and an anomaly of an equipment using one or more sensors
WO2021186762A1 (ja) 保守支援システム及び保守支援方法
CN113312200A (zh) 一种事件处理方法、装置、计算机设备及存储介质
JP2021149156A5 (ja)
CN117114206A (zh) 一种煤矿水害指标数据趋势的计算方法
CN115146230A (zh) 一种古建筑健康监测系统、方法及设备
US20220014146A1 (en) Method and system of repairing a solar station
Coccia et al. An Application of Data-Driven Analysis in Road Tunnels Monitoring
CN117875946A (zh) 一种用于变电站设备运维的人机协同自主红外巡检方法
CN117952318A (zh) 基于大数据的产业园碳排放数据管理系统及方法
CN116989802B (zh) 一种基于gis与bim模型的idc机房巡检计划配置策略方法
CN117172139B (zh) 通信用铜包铝合金电缆的性能测试方法及系统
RU2699825C1 (ru) Способ учета и контроля рабочего времени на основе применения энергосберегающего режима электрического паяльного оборудования
CN116633026B (zh) 清洁能源感知监控方法、装置、计算机设备及存储介质
Simon et al. Enhancing the diagnostic performance of condition based maintenance through the fusion of sensor with maintenance data