JP2021147283A - Composite particle and manufacturing method thereof - Google Patents

Composite particle and manufacturing method thereof Download PDF

Info

Publication number
JP2021147283A
JP2021147283A JP2020049679A JP2020049679A JP2021147283A JP 2021147283 A JP2021147283 A JP 2021147283A JP 2020049679 A JP2020049679 A JP 2020049679A JP 2020049679 A JP2020049679 A JP 2020049679A JP 2021147283 A JP2021147283 A JP 2021147283A
Authority
JP
Japan
Prior art keywords
carbon
silica
particles
mixture
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020049679A
Other languages
Japanese (ja)
Other versions
JP7483192B2 (en
Inventor
幸輝 一坪
Yukiteru Ichinotsubo
幸輝 一坪
賢太 増田
Kenta Masuda
賢太 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2020049679A priority Critical patent/JP7483192B2/en
Publication of JP2021147283A publication Critical patent/JP2021147283A/en
Application granted granted Critical
Publication of JP7483192B2 publication Critical patent/JP7483192B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Silicon Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

To provide a composite particle that has a small content of impurities, is excellent in reactivity between silica and carbon during sintering, and has large specific gravity and its manufacturing method.SOLUTION: A composite particle includes silicate particles 11, and a mixture 12 that covers the silicate particles 11 and is formed of amorphous silica and carbon, in which a true density of silicate particles is 2.2 g/cm3 or larger and smaller than 2.7 g/cm3, the true density of the mixture is 1.6 g/cm3 or larger and smaller than 2.3 g/cm3, and the impurity content is smaller than 200 ppm or smaller. As is described above, the composite particle 10 has a small content of impurities and is excellent in reactivity between silica and carbon during firing, and has a greater specific gravity. Therefore, it is suitable as a production material for silicon carbide or silicon.SELECTED DRAWING: Figure 1

Description

本発明は、炭化ケイ素またはシリコンの製造に用いられる複合粒子およびその製造方法に関する。 The present invention relates to silicon carbide or composite particles used in the production of silicon and a method for producing the same.

近年、省エネ化・省電力化への意識が高まりシリコン、炭化ケイ素などを用いたパワー半導体の需要が高まっている。炭化ケイ素やシリコンは、シリカ(SiO)とカーボン(C)の混合物を焼成することで製造できる。なお、パワー半導体の用途や利用分野の広がりに対応し安価で高品質なシリカを大量に準備するためには、種々知られているシリカの製造方法のうち、ケイ酸アルカリから製造する方法が好ましい。 In recent years, awareness of energy saving and power saving has increased, and the demand for power semiconductors using silicon, silicon carbide, etc. has increased. Silicon carbide and silicon can be produced by firing a mixture of silica (SiO 2) and carbon (C). Of the various known silica manufacturing methods, the method of manufacturing from alkali silicate is preferable in order to prepare a large amount of inexpensive and high-quality silica in response to the widespread use and application fields of power semiconductors. ..

炭化ケイ素またはシリコンの製造方法には、以下のものがある。例えば、安価なシリカとコークスなどの炭素を1500〜1900℃に加熱し、炭素とシリカとを還元反応させ、炭化ケイ素を製造する方法が知られている(特許文献3)。また、ケイ酸ナトリウムをキレート等で純化処理したシリカと可燃性ガスや炭素質物質から得た炭素とをサブマージドアーク炉で1700℃を上回る温度に加熱し、炭素とシリカとを還元反応させてシリコンを製造する方法が知られている(特許文献4)。 Methods for producing silicon carbide or silicon include the following. For example, there is known a method of producing silicon carbide by heating inexpensive silica and carbon such as coke to 1500 to 1900 ° C. and causing a reduction reaction between carbon and silica (Patent Document 3). Further, silica obtained by purifying sodium silicate with a chelate or the like and carbon obtained from a flammable gas or a carbonaceous substance are heated to a temperature exceeding 1700 ° C. in a submerged arc furnace to cause a reduction reaction between carbon and silica. A method for producing silicon is known (Patent Document 4).

また、シリコンの原材料として用い得る純度の一酸化ケイ素を得るための方法が知られている(特許文献5)。一酸化ケイ素(SiO)からシリコンを製造する場合、通常はシリコンの純度は、原材料である一酸化ケイ素の純度に依存する。 Further, a method for obtaining pure silicon monoxide that can be used as a raw material for silicon is known (Patent Document 5). When silicon is produced from silicon monoxide (SiO), the purity of silicon usually depends on the purity of the raw material silicon monoxide.

特許文献5によれば、カーボンと二酸化ケイ素を主成分とする材料の混合物を、5000Pa以下の圧力のもとに1300℃以上1800℃以下の温度範囲で焼成し、一酸化ケイ素を回収する方法が提案されている。この方法では、混合物の両物質間の接触面における反応により一酸化ケイ素ガスおよび一酸化炭素ガスを生成させている。そして、このガスを冷却して一酸化ケイ素の一部をバルク状に固化して回収するとともに、他の一酸化ケイ素を排気している。 According to Patent Document 5, a method of recovering silicon monoxide by firing a mixture of a material containing carbon and silicon dioxide as a main component under a pressure of 5000 Pa or less in a temperature range of 1300 ° C. or higher and 1800 ° C. or lower. Proposed. In this method, silicon monoxide gas and carbon monoxide gas are generated by the reaction at the contact surface between the two substances of the mixture. Then, this gas is cooled to solidify a part of silicon monoxide into a bulk and recover it, and other silicon monoxide is exhausted.

このようにパワー半導体の材料に至るまでには種々の方法があるが、特に炭化ケイ素の製造においてシリカをカーボンと混合する際には、原料の比重差や粒径などの影響で原料が分離しないように手当てすることが好ましい。そのためにシリカとカーボンとを複合化した粉末をあらかじめ製造する方法が知られている(特許文献1、特許文献2)。 As described above, there are various methods for reaching the material of the power semiconductor, but especially when silica is mixed with carbon in the production of silicon carbide, the raw materials are not separated due to the influence of the difference in the specific gravity of the raw materials and the particle size. It is preferable to treat it as such. Therefore, a method of producing a powder in which silica and carbon are composited in advance is known (Patent Document 1 and Patent Document 2).

国際公開第2013/005741号International Publication No. 2013/005741 特開2013−56792号公報Japanese Unexamined Patent Publication No. 2013-567792 特開2000−044223号公報Japanese Unexamined Patent Publication No. 2000-0442223 特開2009−530218号公報JP-A-2009-530218 特開2005−206441号公報Japanese Unexamined Patent Publication No. 2005-206441

しかしながら、上記の特許文献1、2記載のシリカとカーボンとを複合化した粉末は、軽くて嵩高く、破砕や解砕により材料が分離しやすい。また、複合化により不純物の含有率が低下するわけではない。 However, the powder obtained by combining silica and carbon described in Patent Documents 1 and 2 is light and bulky, and the material is easily separated by crushing or crushing. In addition, the compounding does not reduce the content of impurities.

半導体等に用いられる炭化ケイ素およびシリコンには高い純度が求められる。その原料に含まれている不純物の量を同時に(同一プロセスで)減少できれば、製造工程を簡略化できる。 High purity is required for silicon carbide and silicon used in semiconductors and the like. If the amount of impurities contained in the raw material can be reduced at the same time (in the same process), the manufacturing process can be simplified.

通常、シリカ粒子とカーボン粒子を乾式混合して得られる混合原料は、比重の異なる粒子が各々独立に存在しているため、特にこれらの粒子の径が大きい場合には材料分離が起きやすい。上記の特許文献1、2記載の複合化した粉末であっても、酸による洗浄で不純物を除去する際に洗浄効率を高めるために攪拌を強めると、複合化した粉末が破砕、解砕され、シリカとカーボンとが分離する。このようにシリカとカーボンとが分離すると、焼成時の反応性が低下する。 Usually, in the mixed raw material obtained by dry-mixing silica particles and carbon particles, particles having different specific densities are present independently of each other, so that material separation is likely to occur particularly when the diameters of these particles are large. Even in the composite powder described in Patent Documents 1 and 2 described above, when the stirring is strengthened in order to increase the cleaning efficiency when removing impurities by cleaning with an acid, the composite powder is crushed and crushed. Silica and carbon separate. When silica and carbon are separated in this way, the reactivity at the time of firing is lowered.

さらに、焼成時の反応性を高める目的で、混合原料中のシリカ粒子およびカーボン粒子を細粒化すると、粉砕機を構成する金属成分や、粉砕機内に残存していた不純物等が作業中に混合原料に混入することがある。 Furthermore, when the silica particles and carbon particles in the mixing raw material are refined for the purpose of enhancing the reactivity at the time of firing, the metal components constituting the crusher and the impurities remaining in the crusher are mixed during the work. May be mixed with raw materials.

また、細粒化すると、かさ密度が小さくなって製造装置への原料充填量が少なくなる。例えば、一回あたりに洗浄できる量が少なくなったり、焼成炉に入れられる量が少なくなったりする、工程あたりの製造量が限られる。 Further, when the particles are made finer, the bulk density becomes smaller and the amount of raw material charged into the manufacturing apparatus becomes smaller. For example, the amount that can be washed at one time is small, or the amount that can be put into the firing furnace is small, and the production amount per process is limited.

本発明は、このような事情に鑑みてなされたものであり、不純物の含有率が小さく、かつ、焼成時のシリカとカーボンの反応性に優れ、比重が大きい複合粒子およびその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides composite particles having a small impurity content, excellent reactivity between silica and carbon at the time of firing, and a large specific density, and a method for producing the same. The purpose is.

(1)上記の目的を達成するため、本発明の複合粒子は、ケイ酸塩粒子と、前記ケイ酸塩粒子を被覆し、非晶質のシリカおよびカーボンで形成された混合体と、を備え、前記ケイ酸塩粒子の真密度は、2.2g/cm以上2.7g/cm未満であり、前記混合体の真密度は、1.6g/cm以上2.3g/cm未満であり、不純物の含有率が200ppm以下であることを特徴としている。このように、複合粒子は不純物の含有率が小さく、かつ、焼成時のシリカとカーボンの反応性に優れ、比重が大きい。そのため、炭化ケイ素やシリコンの製造原料として好適である。 (1) In order to achieve the above object, the composite particles of the present invention include silicate particles and a mixture obtained by coating the silicate particles and formed of amorphous silica and carbon. , The true density of the silicate particles is 2.2 g / cm 3 or more and less than 2.7 g / cm 3 , and the true density of the mixture is 1.6 g / cm 3 or more and less than 2.3 g / cm 3. It is characterized in that the content of impurities is 200 ppm or less. As described above, the composite particles have a small content of impurities, excellent reactivity between silica and carbon at the time of firing, and a large specific gravity. Therefore, it is suitable as a raw material for producing silicon carbide or silicon.

(2)また、本発明の複合粒子は、みかけ密度が1.1g/cm以上2.1g/cm以下であることを特徴としている。これにより、高密度で複合粒子をるつぼに入れることができ、効率的にSiCを製造できる。 (2) Further, the composite particles of the present invention are characterized in that the apparent density is 1.1 g / cm 3 or more and 2.1 g / cm 3 or less. As a result, the composite particles can be put into the crucible at high density, and SiC can be efficiently produced.

(3)また、本発明の複合粒子の製造方法は、液分中のSi濃度が10質量%以上のケイ酸アルカリ水溶液に、カーボンおよびケイ酸塩粒子を混合して、カーボン含有ケイ酸アルカリ水溶液を得る第1工程と、前記カーボン含有ケイ酸アルカリ水溶液と鉱酸とを混合し、CおよびSiをシリカおよびカーボンからなる粒子として析出させ、粒子含有液状物を得る第2工程と、前記粒子含有液状物を固液分離する第3工程と、を含むことを特徴としている。これにより、不純物の含有率が小さく、かつ、焼成時のシリカとカーボンの反応性に優れ、比重が大きい複合粒子を得ることができる。 (3) Further, in the method for producing composite particles of the present invention, carbon and silicate particles are mixed with an alkaline silicate aqueous solution having a Si concentration of 10% by mass or more in the liquid content, and the carbon-containing alkaline silicate aqueous solution is used. The first step of obtaining the particles, the second step of mixing the carbon-containing alkaline silicate aqueous solution and the mineral acid, and precipitating C and Si as particles composed of silica and carbon to obtain a particle-containing liquid substance, and the particle-containing It is characterized by including a third step of solid-liquid separation of liquid matter. As a result, it is possible to obtain composite particles having a small impurity content, excellent reactivity between silica and carbon during firing, and a large specific density.

(4)また、本発明の複合粒子の製造方法は、前記第2工程で、前記鉱酸に対して前記カーボン含有ケイ酸アルカリ水溶液を添加することを特徴としている。このように、強酸にアルカリ水溶液を入れることで、析出した混合物を均一にし、不純物を酸に溶かすことができる。これにより、不純物を溶かし出すことができる。 (4) Further, the method for producing composite particles of the present invention is characterized in that the carbon-containing alkaline silicate aqueous solution is added to the mineral acid in the second step. By adding an alkaline aqueous solution to the strong acid in this way, the precipitated mixture can be made uniform and impurities can be dissolved in the acid. This makes it possible to dissolve impurities.

(5)また、本発明の複合粒子の製造方法は、前記第2工程で、前記カーボン含有ケイ酸アルカリ水溶液と前記鉱酸とをpH1.0以下に保ちながら混合することを特徴としている。 (5) Further, the method for producing composite particles of the present invention is characterized in that, in the second step, the carbon-containing alkaline silicate aqueous solution and the mineral acid are mixed while keeping the pH at 1.0 or less.

(6)また、本発明の複合粒子の製造方法は、pHが3.0未満の酸水溶液を用いて前記固液分離による固形分の不純物を溶解させる第4工程をさらに含むことを特徴としている。これにより、さらに不純物を溶かし出すことができる。 (6) Further, the method for producing composite particles of the present invention is characterized by further including a fourth step of dissolving solid impurities by the solid-liquid separation using an acid aqueous solution having a pH of less than 3.0. .. As a result, impurities can be further dissolved.

(7)また、本発明の複合粒子の製造方法は、前記第2工程と前記第4工程で、前記酸水溶液に過酸化水素を添加することを特徴としている。これにより、さらに不純物を溶かし出すことができる。 (7) Further, the method for producing composite particles of the present invention is characterized in that hydrogen peroxide is added to the acid aqueous solution in the second step and the fourth step. As a result, impurities can be further dissolved.

本発明によれば、不純物の含有率が小さく、かつ、焼成時のシリカとカーボンの反応性に優れ、比重が大きい複合粒子を実現できる。その結果、簡易な方法で高純度の炭化ケイ素およびシリコンを大量に得ることができる。 According to the present invention, it is possible to realize composite particles having a small impurity content, excellent reactivity between silica and carbon during firing, and a large specific gravity. As a result, high-purity silicon carbide and silicon can be obtained in large quantities by a simple method.

本発明の複合粒子の断面(コア)の一例を表す模式図である。It is a schematic diagram which shows an example of the cross section (core) of the composite particle of this invention. 本発明の複合粒子の断面(分散)の一例を表す模式図である。It is a schematic diagram which shows an example of the cross section (dispersion) of the composite particle of this invention. 本発明の複合粒子の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the composite particle of this invention.

本発明者らは、鋭意研究の結果、シリカとカーボンとケイ酸塩粒子からなり、不純物の含有率が小さく、かつ、焼成時の反応性に優れ、さらに、真密度(かさ密度)が大きい粒子を発明した。本発明の粒子は鉱酸に完全に沈降することため不純物の含有率が小さく、かつ、焼成時のシリカとカーボンの反応性に優れた粒子を、簡易にかつ低コストで製造できる。 As a result of diligent research, the present inventors have made particles composed of silica, carbon and silicate particles, which have a low impurity content, excellent reactivity at the time of firing, and a high true density (bulk density). Invented. Since the particles of the present invention are completely settled in mineral acid, particles having a low impurity content and excellent reactivity between silica and carbon during firing can be produced easily and at low cost.

また、本発明者らは、特定のケイ酸アルカリ水溶液と、ケイ酸塩粒子とカーボンを混合した後、得られた混合物と鉱酸を混合して、シリカとケイ酸塩粒子とカーボンからなる粒子を析出させ、次いで、複合粒子を含む液状物に対して固液分離を行い、複合粒子の集合体を含む固形分を得る方法を見出した。以下に、本発明の実施形態について詳細に説明する。 Further, the present inventors mix a specific alkaline silicate aqueous solution, silicate particles and carbon, and then mix the obtained mixture and mineral acid to form particles composed of silica, silicate particles and carbon. Was then precipitated, and then solid-liquid separation was performed on the liquid material containing the composite particles to obtain a solid content containing an aggregate of the composite particles. Hereinafter, embodiments of the present invention will be described in detail.

[複合粒子の構成]
図1および図2は、それぞれ複合粒子10の断面の一例を表す模式図である。複合粒子10は、ケイ酸塩粒子11および混合体12を備えている。複合粒子10のみかけ密度は、1.1g/cm以上2.1g/cm以下であることが好ましい。また、複合粒子10の集合体は、かさ密度は、0.8g/cm以上1.8g/cm以下であることが好ましい。なお、各密度は、みかけ密度は、JIS R 1620「ファインセラミックス粉末の粒子密度測定方法」の気体置換法、真密度は同JISのピクノメータ法、かさ密度はJIS R 1628「ファインセラミックス粉末のかさ密度測定方法」のタップかさ密度測定法に基づいて測定する(以下同様)。
[Composition of composite particles]
1 and 2 are schematic views showing an example of a cross section of the composite particle 10, respectively. The composite particle 10 includes a silicate particle 11 and a mixture 12. The apparent density of the composite particles 10 is preferably 1.1 g / cm 3 or more and 2.1 g / cm 3 or less. The bulk density of the aggregate of the composite particles 10 is preferably 0.8 g / cm 3 or more and 1.8 g / cm 3 or less. As for each density, the apparent density is the gas substitution method of JIS R 1620 "Particle density measurement method of fine ceramic powder", the true density is the pycnometer method of the same JIS, and the bulk density is JIS R 1628 "bulk density of fine ceramic powder". Measure based on the tap bulk density measurement method in "Measurement method" (the same applies hereinafter).

上記のように、比重が大きいことから、洗浄効率を高くすることができるとともに、高密度で複合粒子10をるつぼに入れることができ、効率的に炭化ケイ素やシリコンを製造できる。複合粒子10の不純物の含有率は、200ppm以下である。このように複合粒子10は不純物の含有率が小さいことから、半導体の製造原料として好適である。 As described above, since the specific gravity is large, the cleaning efficiency can be increased, and the composite particles 10 can be put into the crucible at a high density, so that silicon carbide and silicon can be efficiently produced. The content of impurities in the composite particles 10 is 200 ppm or less. As described above, the composite particle 10 is suitable as a raw material for manufacturing a semiconductor because the content of impurities is small.

ケイ酸塩粒子11は、複合粒子10に内包され、図1に示す例では、コア粒子を構成する。また、図2に示す例では、ケイ酸塩粒子11は、複合粒子10の内部に分散している。ケイ酸塩粒子11の真密度は、2.2g/cm以上である。ケイ酸塩粒子11を含むことで、複合粒子10は、みかけ密度1.1g/cm以上となる。 The silicate particles 11 are included in the composite particles 10 and constitute core particles in the example shown in FIG. Further, in the example shown in FIG. 2, the silicate particles 11 are dispersed inside the composite particles 10. The true density of the silicate particles 11 is 2.2 g / cm 3 or more. By including the silicate particles 11, the composite particles 10 have an apparent density of 1.1 g / cm 3 or more.

ケイ酸塩粒子11は、例えば珪石や珪砂である。ケイ酸塩粒子11は、不純物を含んでいてもよい。ケイ酸塩粒子11は、必ずしも結晶性の粒子である必要はなく、ケイ酸塩ガラスや溶融ケイ酸物であってもよい。 The silicate particles 11 are, for example, silica stone and silica sand. The silicate particles 11 may contain impurities. The silicate particles 11 do not necessarily have to be crystalline particles, and may be silicate glass or a molten silicic acid product.

混合体12は、ケイ酸塩粒子11を被覆し、非晶質のシリカおよびカーボンで形成されている。図1に示す例では、混合体12は、コア粒子の周囲の層を形成している。また、図2に示す例では、混合体12は、分散粒子の間を埋める母材を形成している。 The mixture 12 coats the silicate particles 11 and is made of amorphous silica and carbon. In the example shown in FIG. 1, the mixture 12 forms a layer around the core particles. Further, in the example shown in FIG. 2, the mixture 12 forms a base material that fills the space between the dispersed particles.

上記のように混合体12が各材料に分離されることなくケイ酸塩粒子11に密着することから、焼成時のシリカとカーボンの反応性が向上する。混合体12の真密度は、2.3g/cm未満である。また、このような構成により、複合粒子10の集合体の比重が高くなり、るつぼ等の容器に高い密度で充填可能になる。 Since the mixture 12 adheres to the silicate particles 11 without being separated into each material as described above, the reactivity between silica and carbon at the time of firing is improved. The true density of the mixture 12 is less than 2.3 g / cm 3. Further, with such a configuration, the specific gravity of the aggregate of the composite particles 10 becomes high, and the container such as a crucible can be filled with a high density.

[複合粒子の製造方法]
上記のように構成された複合粒子10の製造方法を説明する。図3は、複合粒子10の製造方法を示すフローチャートである。図3に示すように、液分中のSi濃度が10質量%以上のケイ酸アルカリ水溶液(水ガラス)に、カーボンおよびケイ酸塩粒子を混合して、スラリー状のカーボン含有ケイ酸アルカリ水溶液を得る(第1工程)。この工程では、3つの材料を一度に混合することが好ましい。
[Manufacturing method of composite particles]
A method for producing the composite particles 10 configured as described above will be described. FIG. 3 is a flowchart showing a method for producing the composite particles 10. As shown in FIG. 3, carbon and silicate particles are mixed with an alkaline silicate aqueous solution (water glass) having a Si concentration of 10% by mass or more in the liquid to obtain a slurry-like carbon-containing alkaline silicate aqueous solution. Obtain (first step). In this step, it is preferable to mix the three materials at once.

次に、カーボン含有ケイ酸アルカリ水溶液と鉱酸とを混合し、CおよびSiをシリカおよびカーボンからなる粒子として析出させ、粒子含有液状物を得る(第2工程)。この工程により、3つの固形分が複合化する。なお、鉱酸としては例えば硫酸を用いるのが好ましい。 Next, a carbon-containing alkaline silicate aqueous solution and a mineral acid are mixed, and C and Si are precipitated as particles composed of silica and carbon to obtain a particle-containing liquid substance (second step). By this step, three solids are compounded. As the mineral acid, for example, sulfuric acid is preferably used.

第2工程では、鉱酸に対してカーボン含有ケイ酸アルカリ水溶液を添加することが好ましい。このように、強酸にアルカリ水溶液を入れることで、析出した混合物を均一にし、不純物を酸に溶かすことができる。また、第2工程では、カーボン含有ケイ酸アルカリ水溶液と鉱酸とをpH1.0以下に保ちながら混合することが好ましい。さらに、過酸化水素を添加することが好ましい。これにより、不純物を溶かしだすことができる。 In the second step, it is preferable to add a carbon-containing alkaline silicate aqueous solution to the mineral acid. By adding an alkaline aqueous solution to the strong acid in this way, the precipitated mixture can be made uniform and impurities can be dissolved in the acid. Further, in the second step, it is preferable to mix the carbon-containing alkaline silicate aqueous solution and the mineral acid while keeping the pH at 1.0 or less. Further, it is preferable to add hydrogen peroxide. As a result, impurities can be dissolved.

そして、粒子含有液状物を固液分離する(第3工程)。固液分離により、シリカとカーボンの混合物を含む固形分と、不純物を含む液分とを得ることができる。これにより、不純物の含有率が小さく、かつ、焼成時のシリカとカーボンの反応性に優れ、比重が大きい複合粒子を得ることができる。 Then, the particle-containing liquid material is solid-liquid separated (third step). By solid-liquid separation, a solid content containing a mixture of silica and carbon and a liquid content containing impurities can be obtained. As a result, it is possible to obtain composite particles having a small impurity content, excellent reactivity between silica and carbon during firing, and a large specific density.

このようにして得られた固形分の不純物をpHが3.0未満の酸水溶液を用いて溶解させる(第4工程)。これにより、さらに不純物を溶かし出すことができる。第4工程では、酸水溶液に過酸化水素を添加してもよい。これにより、さらに不純物を溶かし出すことができる。その結果、簡易な方法で高純度の炭化ケイ素およびシリコンを大量に得ることができる。 The solid impurities thus obtained are dissolved using an acid aqueous solution having a pH of less than 3.0 (fourth step). As a result, impurities can be further dissolved. In the fourth step, hydrogen peroxide may be added to the acid aqueous solution. As a result, impurities can be further dissolved. As a result, high-purity silicon carbide and silicon can be obtained in large quantities by a simple method.

この製造方法は、操作が簡易であり、処理効率が高いため、低い製造コストで複合粒子10を得ることができる。また、この製造方法により得られる複合粒子10は、アルミニウム(Al)、鉄(Fe)、マグネシウム(Mg)、カルシウム(Ca)、チタン(Ti)、ホウ素(B)、リン(P)等の不純物の含有率が小さいという特長がある。 Since this manufacturing method is simple in operation and has high processing efficiency, the composite particles 10 can be obtained at a low manufacturing cost. Further, the composite particles 10 obtained by this production method have impurities such as aluminum (Al), iron (Fe), magnesium (Mg), calcium (Ca), titanium (Ti), boron (B) and phosphorus (P). It has the feature that the content of calcium is small.

[実施例、比較例]
以下、本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[Examples, comparative examples]
Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited to these Examples.

[実施例1]天然の珪石30%添加
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)100gに、水25gを加えて混合し、Si濃度10質量%の水ガラス溶液を得た。得られた水ガラス溶液に珪石(三菱商事建材、フラタリーサンド、平均粒径180μm、真密度2.6g/cm3)を12.2gとカーボン(東海カーボン社製、平均粒径:1mm、2mm以下の粒度の粒子の割合:90質量%以上)を27.0g加えて混合し、カーボン含有ケイ酸アルカリ水溶液を得た。
[Example 1] Add 25 g of water to 100 g of a water glass solution containing 30% natural silica stone (manufactured by Fuji Chemical Co., Ltd .: SiO 2 / Na 2 O (molar ratio) = 3.20), and mix them to obtain a Si concentration. A 10 mass% water glass solution was obtained. In the obtained water glass solution, 12.2 g of silicic acid (Mitsubishi Shoji Building Materials, Fratary Sand, average particle size 180 μm, true density 2.6 g / cm 3 ) and carbon (manufactured by Tokai Carbon Co., Ltd., average particle size: 1 mm, 2 mm) 27.0 g of particles having the following particle size (ratio of particles of 90% by mass or more) was added and mixed to obtain a carbon-containing alkaline silicate aqueous solution.

得られたカーボン含有ケイ酸アルカリ水溶液66.2gを硫酸濃度10.7体積%の硫酸(水165.6mlに濃硫酸20mlを混合したもの)200g中に滴下し、常温(25℃)下でシリカとカーボンからなる粒子(カーボン含有沈降性シリカ)を析出させた後、減圧下でブフナー漏斗を用いて固液分離し、シリカとカーボンからなる粒子の集合体であるシリカとカーボンの混合物を含む固形分35.7gと、不純物を含む液分233.3gを得た。なお、pHは滴下終了時まで1.0以下に保った。 66.2 g of the obtained carbon-containing alkaline silicate aqueous solution was added dropwise to 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume (a mixture of 165.6 ml of water and 20 ml of concentrated sulfuric acid), and silica was added at room temperature (25 ° C.). After precipitating particles composed of silica and carbon (carbon-containing precipitated silica), solid-liquid separation is performed using a Buchner funnel under reduced pressure, and a solid containing a mixture of silica and carbon, which is an aggregate of particles composed of silica and carbon. A minute of 35.7 g and a liquid content of 233.3 g containing impurities were obtained. The pH was maintained at 1.0 or less until the end of the dropping.

得られたシリカとカーボンの混合物を含む固形分に対して、常温(25℃)下で硫酸濃度10.7体積%の硫酸を200g添加してpHが3.0未満のスラリーとした(沈降したため攪拌なし)。このスラリーを固液分離した後に、得られた固形分を、蒸留水を用いて水洗した。その後、水洗した固形分を105℃で1日乾燥させ、真密度が1.9g/cm3となるシリカとカーボンの混合物27.5gを得た。 To the obtained solid content containing a mixture of silica and carbon, 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume was added at room temperature (25 ° C.) to prepare a slurry having a pH of less than 3.0 (because it precipitated). No stirring). After solid-liquid separation of this slurry, the obtained solid content was washed with distilled water. Then, the solid content washed with water was dried at 105 ° C. for 1 day to obtain 27.5 g of a mixture of silica and carbon having a true density of 1.9 g / cm 3.

得られたシリカとカーボンの混合物中のアルミニウム(Al)、鉄(Fe)、チタン(Ti)、ホウ素(B)、リン(P)の濃度を測定した。その結果を表1に示す。また、得られたシリカとカーボンの混合物(C/SiOのモル比:3.5)を容積50cmのカーボンるつぼに入れて管状炉により1650℃で5時間、アルゴン雰囲気下で焼成した。焼成前後の物量を表2に示す。 The concentrations of aluminum (Al), iron (Fe), titanium (Ti), boron (B), and phosphorus (P) in the obtained mixture of silica and carbon were measured. The results are shown in Table 1. Further, the obtained mixture of silica and carbon ( molar ratio of C / SiO 2 : 3.5) was placed in a carbon crucible having a volume of 50 cm 3 and calcined in a tubular furnace at 1650 ° C. for 5 hours in an argon atmosphere. Table 2 shows the quantity before and after firing.

[実施例2]珪石10%添加
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)126gに、水32gを加えて混合し、Si濃度10質量%の水ガラス溶液を得た。得られた水ガラス溶液に珪石(三菱商事建材、フラタリーサンド、平均粒径2mm、真密度2.6g/cm3)を4.1gとカーボン(東海カーボン社製、平均粒径:1mm、2mm以下の粒度の粒子の割合:90質量%以上)を27.0g加えて混合し、カーボン含有ケイ酸アルカリ水溶液を得た。
[Example 2] To 126 g of a water glass solution containing 10% silica stone (manufactured by Fuji Chemical Co., Ltd .: SiO 2 / Na 2 O (molar ratio) = 3.20), 32 g of water is added and mixed, and the Si concentration is 10 mass. % Water glass solution was obtained. In the obtained water glass solution, 4.1 g of silicic acid (Mitsubishi Shoji Building Materials, Fratary Sand, average particle size 2 mm, true density 2.6 g / cm 3 ) and carbon (manufactured by Tokai Carbon Co., Ltd., average particle size: 1 mm, 2 mm) 27.0 g of particles having the following particle size (ratio of particles of 90% by mass or more) was added and mixed to obtain a carbon-containing alkaline silicate aqueous solution.

得られたカーボン含有ケイ酸アルカリ水溶液66.2gを硫酸濃度10.7体積%の硫酸(水165.6mlに濃硫酸20mlを混合したもの)200g中に滴下し、常温(25℃)下でシリカとカーボンからなる粒子(カーボン含有沈降性シリカ)を析出させた後、減圧下でブフナー漏斗を用いて固液分離し、シリカとカーボンからなる粒子の集合体であるシリカとカーボンの混合物を含む固形分35.0gと、不純物を含む液分233.3gを得た。なお、pHは滴下終了時まで1.0以下に保った。 66.2 g of the obtained carbon-containing alkaline silicate aqueous solution was added dropwise to 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume (a mixture of 165.6 ml of water and 20 ml of concentrated sulfuric acid), and silica was added at room temperature (25 ° C.). After precipitating particles composed of silica and carbon (carbon-containing precipitated silica), solid-liquid separation is performed using a Buchner funnel under reduced pressure, and a solid containing a mixture of silica and carbon, which is an aggregate of particles composed of silica and carbon. A minute of 35.0 g and a liquid content of 233.3 g containing impurities were obtained. The pH was maintained at 1.0 or less until the end of the dropping.

得られたシリカとカーボンの混合物を含む固形分に対して、常温(25℃)下で硫酸濃度10.7体積%の硫酸を200g添加してpHが3.0未満のスラリーとした(沈降したため攪拌なし)。このスラリーを固液分離した後に、得られた固形分を、蒸留水を用いて水洗した。その後、水洗した固形分を105℃で1日乾燥させ、真密度が1.6g/cm3となるシリカとカーボンの混合物23.7gを得た。 To the obtained solid content containing a mixture of silica and carbon, 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume was added at room temperature (25 ° C.) to prepare a slurry having a pH of less than 3.0 (because it precipitated). No stirring). After solid-liquid separation of this slurry, the obtained solid content was washed with distilled water. Then, the solid content washed with water was dried at 105 ° C. for 1 day to obtain 23.7 g of a mixture of silica and carbon having a true density of 1.6 g / cm 3.

得られたシリカとカーボンの混合物中のアルミニウム(Al)、鉄(Fe)、チタン(Ti)、ホウ素(B)、リン(P)の濃度を測定した。その結果を表1に示す。また、得られたシリカとカーボンの混合物(C/SiOのモル比:3.5)を容積50cmのカーボンるつぼに入れて管状炉により1650℃で5時間、アルゴン雰囲気下で焼成した。焼成前後の物量を表2に示す。 The concentrations of aluminum (Al), iron (Fe), titanium (Ti), boron (B), and phosphorus (P) in the obtained mixture of silica and carbon were measured. The results are shown in Table 1. Further, the obtained mixture of silica and carbon ( molar ratio of C / SiO 2 : 3.5) was placed in a carbon crucible having a volume of 50 cm 3 and fired in a tubular furnace at 1650 ° C. for 5 hours in an argon atmosphere. Table 2 shows the quantity before and after firing.

[実施例3]珪石70%添加
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)42gに、水11gを加えて混合し、Si濃度10質量%の水ガラス溶液を得た。得られた水ガラス溶液に珪石(三菱商事建材、フラタリーサンド、平均粒径500μm、真密度2.6g/cm3)を28.4gとカーボン(東海カーボン社製、平均粒径:1mm、2mm以下の粒度の粒子の割合:90質量%以上)を27.0g加えて混合し、カーボン含有ケイ酸アルカリ水溶液を得た。
[Example 3] To 42 g of a water glass solution containing 70% silica stone (manufactured by Fuji Chemical Co., Ltd .: SiO 2 / Na 2 O (molar ratio) = 3.20), 11 g of water was added and mixed, and the Si concentration was 10 mass. % Water glass solution was obtained. In the obtained water glass solution, 28.4 g of silicic acid (Mitsubishi Shoji Building Materials, Fratary Sand, average particle size 500 μm, true density 2.6 g / cm 3 ) and carbon (manufactured by Tokai Carbon Co., Ltd., average particle size: 1 mm, 2 mm) 27.0 g of particles having the following particle size (ratio of particles of 90% by mass or more) was added and mixed to obtain a carbon-containing alkaline silicate aqueous solution.

得られたカーボン含有ケイ酸アルカリ水溶液66.2gを硫酸濃度10.7体積%の硫酸(水165.6mlに濃硫酸20mlを混合したもの)200g中に滴下し、常温(25℃)下でシリカとカーボンからなる粒子(カーボン含有沈降性シリカ)を析出させた後、減圧下でブフナー漏斗を用いて固液分離し、シリカとカーボンからなる粒子の集合体であるシリカとカーボンの混合物を含む固形分45.0gと、不純物を含む液分233.3gを得た。なお、pHは滴下終了時まで1.0以下に保った。 66.2 g of the obtained carbon-containing alkaline silicate aqueous solution was added dropwise to 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume (a mixture of 165.6 ml of water and 20 ml of concentrated sulfuric acid), and silica was added at room temperature (25 ° C.). After precipitating particles composed of silica and carbon (carbon-containing precipitated silica), solid-liquid separation is performed using a Buchner funnel under reduced pressure, and a solid containing a mixture of silica and carbon, which is an aggregate of particles composed of silica and carbon. 45.0 g of a fraction and 233.3 g of a liquid containing impurities were obtained. The pH was maintained at 1.0 or less until the end of the dropping.

得られたシリカとカーボンの混合物を含む固形分に対して、常温(25℃)下で硫酸濃度10.7体積%の硫酸を200g添加してpHが3.0未満のスラリーとした(沈降したため攪拌なし)。このスラリーを固液分離した後に、得られた固形分を、蒸留水を用いて水洗した。その後、水洗した固形分を105℃で1日乾燥させ、真密度が2.2g/cm3となるシリカとカーボンの混合物41.2gを得た。 To the obtained solid content containing a mixture of silica and carbon, 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume was added at room temperature (25 ° C.) to prepare a slurry having a pH of less than 3.0 (because it precipitated). No stirring). After solid-liquid separation of this slurry, the obtained solid content was washed with distilled water. Then, the solid content washed with water was dried at 105 ° C. for 1 day to obtain 41.2 g of a mixture of silica and carbon having a true density of 2.2 g / cm 3.

得られたシリカとカーボンの混合物中のアルミニウム(Al)、鉄(Fe)、チタン(Ti)、ホウ素(B)、リン(P)の濃度を測定した。その結果を表1に示す。また、得られたシリカとカーボンの混合物(C/SiOのモル比:3.5)を容積50cmのカーボンるつぼに入れて管状炉により1650℃で5時間、アルゴン雰囲気下で焼成した。焼成前後の物量を表2に示す。 The concentrations of aluminum (Al), iron (Fe), titanium (Ti), boron (B), and phosphorus (P) in the obtained mixture of silica and carbon were measured. The results are shown in Table 1. Further, the obtained mixture of silica and carbon ( molar ratio of C / SiO 2 : 3.5) was placed in a carbon crucible having a volume of 50 cm 3 and fired in a tubular furnace at 1650 ° C. for 5 hours in an argon atmosphere. Table 2 shows the quantity before and after firing.

[比較例1]珪石なし
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)140gに、水35gを加えて混合し、Si濃度10質量%の水ガラス溶液を得た。得られた水ガラス溶液にカーボン(東海カーボン社製、平均粒径:1mm、2mm以下の粒度の粒子の割合:90質量%以上)を27.0g加えて混合し、カーボン含有水ガラス溶液を得た。
[Comparative Example 1] 35 g of water is added to 140 g of a silica stone-free water glass solution (manufactured by Fuji Chemical Co., Ltd .: SiO 2 / Na 2 O (molar ratio) = 3.20) and mixed to obtain a Si concentration of 10% by mass. A water glass solution was obtained. 27.0 g of carbon (manufactured by Tokai Carbon Co., Ltd., average particle size: 1 mm, ratio of particles having a particle size of 2 mm or less: 90% by mass or more) was added to the obtained water glass solution and mixed to obtain a carbon-containing water glass solution. rice field.

得られたカーボン含有水ガラス溶液66.2gを硫酸濃度10.7体積%の硫酸(水165.6mlに濃硫酸20mlを混合したもの)200g中に滴下し、常温(25℃)下でシリカとカーボンからなる粒子(カーボン含有沈降性シリカ)を析出させた後、減圧下でブフナー漏斗を用いて固液分離し、シリカとカーボンからなる粒子の集合体であるシリカとカーボンの混合物を含む固形分35.8gと、不純物を含む液分232.3gを得た。なお、pHは滴下終了時まで1.0以下に保った。 66.2 g of the obtained carbon-containing water glass solution was added dropwise to 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume (a mixture of 165.6 ml of water and 20 ml of concentrated sulfuric acid), and silica was added at room temperature (25 ° C.). After precipitating particles made of carbon (carbon-containing precipitated silica), solid-liquid separation is performed using a Buchner funnel under reduced pressure, and the solid content containing a mixture of silica and carbon, which is an aggregate of particles made of silica and carbon. 35.8 g and 232.3 g of a liquid containing impurities were obtained. The pH was maintained at 1.0 or less until the end of the dropping.

得られたシリカとカーボンの混合物を含む固形分に対して、常温(25℃)下で硫酸濃度10.7体積%の硫酸を200g添加してpHが3.0未満のスラリーとしたがシリカとカーボンの混合物は大半が液面に浮上した。このスラリーを固液分離した後に、得られた固形分を、蒸留水を用いて水洗した。その後、水洗した固形分を105℃で1日乾燥させ、真密度が1.5g/cm3となるシリカとカーボンの混合物22.6gを得た。 To the obtained solid content containing a mixture of silica and carbon, 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume was added at room temperature (25 ° C.) to obtain a slurry having a pH of less than 3.0. Most of the carbon mixture surfaced on the liquid surface. After solid-liquid separation of this slurry, the obtained solid content was washed with distilled water. Then, the solid content washed with water was dried at 105 ° C. for 1 day to obtain 22.6 g of a mixture of silica and carbon having a true density of 1.5 g / cm 3.

得られたシリカとカーボンの混合物中のアルミニウム(Al)、鉄(Fe)、チタン(Ti)、ホウ素(B)、リン(P)の濃度を測定した。その結果を表1に示す。また、得られたシリカとカーボンの混合物(C/SiOのモル比:3.5)を容積50cmのカーボンるつぼに入れて管状炉により1650℃で5時間、アルゴン雰囲気下で焼成した。焼成前後の物量を表2に示す。 The concentrations of aluminum (Al), iron (Fe), titanium (Ti), boron (B), and phosphorus (P) in the obtained mixture of silica and carbon were measured. The results are shown in Table 1. Further, the obtained mixture of silica and carbon ( molar ratio of C / SiO 2 : 3.5) was placed in a carbon crucible having a volume of 50 cm 3 and fired in a tubular furnace at 1650 ° C. for 5 hours in an argon atmosphere. Table 2 shows the quantity before and after firing.

[比較例2]珪石後添加30%
水ガラス溶液(富士化学(株)製:SiO/NaO(モル比)=3.20)140gに、水35gを加えて混合し、Si濃度10質量%の水ガラス溶液を得た。得られた水ガラス水溶液66.2gを硫酸濃度10.7体積%の硫酸(水165.6mlに濃硫酸20mlを混合したもの)200g中に滴下し、常温(25℃)下で沈降性シリカを析出させた後、減圧下でブフナー漏斗を用いて固液分離し、SiOを含む固形分(沈降性シリカ)28.9gと、不純物を含む液分237.3gを得た。なお、pHは滴下終了時まで1.0以下に保った。
[Comparative Example 2] 30% added after silica stone
To 140 g of a water glass solution (manufactured by Fuji Chemical Co., Ltd .: SiO 2 / Na 2 O (molar ratio) = 3.20), 35 g of water was added and mixed to obtain a water glass solution having a Si concentration of 10% by mass. 66.2 g of the obtained water glass aqueous solution was added dropwise to 200 g of sulfuric acid (a mixture of 165.6 ml of water and 20 ml of concentrated sulfuric acid) having a sulfuric acid concentration of 10.7% by volume, and precipitated silica was added at room temperature (25 ° C.). After precipitation, solid-liquid separation was performed using a Buchner funnel under reduced pressure to obtain 28.9 g of solid content (precipitated silica) containing SiO 2 and 237.3 g of liquid content containing impurities. The pH was maintained at 1.0 or less until the end of the dropping.

得られたSiOを含む固形分に対して、常温(25℃)下で硫酸濃度10.7体積%の硫酸を200g添加してpHが3.0未満のスラリーとした。このスラリーを固液分離した後に、得られた固形分を、蒸留水を用いて水洗した。その後、水洗した固形分を105℃で1日乾燥させ、高純度シリカ18.5gを得た。 To the obtained solid content containing SiO 2 , 200 g of sulfuric acid having a sulfuric acid concentration of 10.7% by volume was added at room temperature (25 ° C.) to prepare a slurry having a pH of less than 3.0. After solid-liquid separation of this slurry, the obtained solid content was washed with distilled water. Then, the solid content washed with water was dried at 105 ° C. for 1 day to obtain 18.5 g of high-purity silica.

得られた高純度シリカ11.7gに珪石(三菱商事建材、フラタリーサンド、平均粒径180μm、真密度2.6g/cm3)4.9gとカーボン(東海カーボン社製、平均粒径:1mm、2mm以下の粒度の粒子の割合:90質量%以上)を10.9g加えて混合し、高純度シリカ、珪石とカーボンの混合物を得た。 In addition to 11.7 g of the obtained high-purity silica, 4.9 g of silica stone (Mitsubishi Corporation building materials, flattery sand, average particle size 180 μm, true density 2.6 g / cm 3 ) and carbon (manufactured by Tokai Carbon Co., Ltd., average particle size: 1 mm) 10.9 g of particles having a particle size of 2 mm or less: 90% by mass or more) was added and mixed to obtain a mixture of high-purity silica, silica stone and carbon.

高純度シリカ、珪石とカーボンの粉末の混合により得られた高純度シリカ、珪石とカーボンの混合物は、みかけ密度、真密度およびかさ密度の測定中にそれぞれの粉末が分離をした。そのため、高純度シリカ、珪石とカーボンの混合物としてのみかけ密度、真密度およびかさ密度の測定はできなかった。 The high-purity silica, silica stone and carbon mixture obtained by mixing the high-purity silica, silica stone and carbon powders separated each powder during the measurement of apparent density, true density and bulk density. Therefore, it was not possible to measure the apparent density, true density and bulk density as a mixture of high-purity silica, silica stone and carbon.

得られた高純度シリカとカーボンの混合物中のアルミニウム(Al)、鉄(Fe)、チタン(Ti)、ホウ素(B)、リン(P)の濃度を測定した。その結果を表1に示す。また、得られた高純度シリカとカーボンの混合物(C/SiOのモル比:3.5)を容積50cmのカーボンるつぼに入れて管状炉により1650℃で5時間、アルゴン雰囲気下で焼成した。焼成前後の物量を表2に示す。 The concentrations of aluminum (Al), iron (Fe), titanium (Ti), boron (B), and phosphorus (P) in the obtained mixture of high-purity silica and carbon were measured. The results are shown in Table 1. Further, the obtained mixture of high-purity silica and carbon ( molar ratio of C / SiO 2 : 3.5) was placed in a carbon crucible having a volume of 50 cm 3 and fired in a tubular furnace at 1650 ° C. for 5 hours in an argon atmosphere. .. Table 2 shows the quantity before and after firing.

Figure 2021147283
Figure 2021147283

Figure 2021147283
Figure 2021147283

Figure 2021147283
Figure 2021147283

表1は、各複合粒子の不純物量を示している。表1に示すように、珪石を混合体に内包させた複合粒子を形成した実施例1の方が、珪石を混合体とは別に添加した比較例2に比べて不純物量が低減している。 Table 1 shows the amount of impurities in each composite particle. As shown in Table 1, the amount of impurities in Example 1 in which the composite particles in which silica stone was contained in the mixture was formed was smaller than that in Comparative Example 2 in which silica stone was added separately from the mixture.

表2は、焼成前の原料(複合粒子の集合体またはシリカとカーボンの混合体)について、密度とるつぼに充填した重量とを示している。また、表2は、焼成後の製造物(SiC)の重量を示している。焼成前の重量は、るつぼに可能な限り充填したときの原料の重量を表している。 Table 2 shows the weight of the raw material (aggregate of composite particles or mixture of silica and carbon) before firing in a density crucible. Table 2 shows the weight of the product (SiC) after firing. The weight before firing represents the weight of the raw material when the crucible is filled as much as possible.

珪石を混合体に内包させた実施例1の方が、珪石なしの比較例1に比べ焼成後のSiC生成量が増加している。また、実施例1,2,3と比較例1とを比較すると、珪石を混合体に内包させることで、かさ密度が大きくなり、SiCの収量が増えることが分かる。 In Example 1 in which silica stone was included in the mixture, the amount of SiC produced after firing was increased as compared with Comparative Example 1 without silica stone. Further, comparing Examples 1, 2 and 3 with Comparative Example 1, it can be seen that by incorporating silica stone in the mixture, the bulk density is increased and the yield of SiC is increased.

表3は、珪石の不純物の含有率を測定した結果を示している。複合粒子では、洗浄工程を経ているため、複合粒子の不純物量は、この不純物量を下回ることになる。また、複合粒子の不純物量は、比較例1の不純物量よりは多くなる。上記の通り、本発明の製造方法を行うことで、複合粒子の純度を高くするとともに、SiCの収率を高くすることができる。 Table 3 shows the results of measuring the impurity content of silica stone. Since the composite particles have undergone the cleaning step, the amount of impurities in the composite particles is less than this amount of impurities. Further, the amount of impurities in the composite particles is larger than the amount of impurities in Comparative Example 1. As described above, by carrying out the production method of the present invention, the purity of the composite particles can be increased and the yield of SiC can be increased.

10 複合粒子
11 ケイ酸塩粒子
12 混合体
10 Composite particles 11 Silicate particles 12 Mixture

Claims (7)

ケイ酸塩粒子と、
前記ケイ酸塩粒子を被覆し、非晶質のシリカおよびカーボンで形成された混合体と、を備え、
前記ケイ酸塩粒子の真密度は、2.2g/cm以上2.7g/cm未満であり、
前記混合体の真密度は、1.6g/cm以上2.3g/cm未満であり、
不純物の含有率が200ppm以下であることを特徴とする複合粒子。
With silicate particles,
A mixture coated with the silicate particles and formed of amorphous silica and carbon.
The true density of the silicate particles is 2.2 g / cm 3 or more and less than 2.7 g / cm 3.
The true density of the mixture is 1.6 g / cm 3 or more and less than 2.3 g / cm 3.
A composite particle characterized by having an impurity content of 200 ppm or less.
みかけ密度が1.1g/cm以上2.1g/cm以下であることを特徴とする請求項1に記載の複合粒子。 The composite particle according to claim 1, wherein the apparent density is 1.1 g / cm 3 or more and 2.1 g / cm 3 or less. 液分中のSi濃度が10質量%以上のケイ酸アルカリ水溶液に、カーボンおよびケイ酸塩粒子を混合して、カーボン含有ケイ酸アルカリ水溶液を得る第1工程と、
前記カーボン含有ケイ酸アルカリ水溶液と鉱酸とを混合し、CおよびSiをシリカおよびカーボンからなる粒子として析出させ、粒子含有液状物を得る第2工程と、
前記粒子含有液状物を固液分離する第3工程と、を含むことを特徴とする複合粒子の製造方法。
The first step of mixing carbon and silicate particles with an alkaline silicate aqueous solution having a Si concentration of 10% by mass or more in the liquid to obtain a carbon-containing alkaline silicate aqueous solution.
The second step of mixing the carbon-containing alkaline silicate aqueous solution and the mineral acid and precipitating C and Si as particles composed of silica and carbon to obtain a particle-containing liquid substance.
A method for producing composite particles, which comprises a third step of solid-liquid separation of the particle-containing liquid material.
前記第2工程では、前記鉱酸に対して前記カーボン含有ケイ酸アルカリ水溶液を添加することを特徴とする請求項3記載の複合粒子の製造方法。 The method for producing composite particles according to claim 3, wherein in the second step, the carbon-containing alkaline silicate aqueous solution is added to the mineral acid. 前記第2工程では、前記カーボン含有ケイ酸アルカリ水溶液と前記鉱酸とをpH1.0以下に保ちながら混合することを特徴とする請求項3または請求項4記載の複合粒子の製造方法。 The method for producing a composite particle according to claim 3 or 4, wherein in the second step, the carbon-containing alkaline silicate aqueous solution and the mineral acid are mixed while maintaining the pH at 1.0 or less. pHが3.0未満の酸水溶液を用いて前記固液分離による固形分の不純物を溶解させる第4工程をさらに含むことを特徴とする請求項3から請求項5のいずれかに記載の複合粒子の製造方法。 The composite particle according to any one of claims 3 to 5, further comprising a fourth step of dissolving solid impurities by solid-liquid separation using an acid aqueous solution having a pH of less than 3.0. Manufacturing method. 前記第2工程と前記第4工程では、前記酸水溶液に過酸化水素を添加することを特徴とする請求項6記載の複合粒子の製造方法。 The method for producing composite particles according to claim 6, wherein hydrogen peroxide is added to the acid aqueous solution in the second step and the fourth step.
JP2020049679A 2020-03-19 2020-03-19 Composite particles and method for producing same Active JP7483192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020049679A JP7483192B2 (en) 2020-03-19 2020-03-19 Composite particles and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020049679A JP7483192B2 (en) 2020-03-19 2020-03-19 Composite particles and method for producing same

Publications (2)

Publication Number Publication Date
JP2021147283A true JP2021147283A (en) 2021-09-27
JP7483192B2 JP7483192B2 (en) 2024-05-15

Family

ID=77850902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020049679A Active JP7483192B2 (en) 2020-03-19 2020-03-19 Composite particles and method for producing same

Country Status (1)

Country Link
JP (1) JP7483192B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5223281B2 (en) 2007-09-28 2013-06-26 Tdk株式会社 Lithium ion secondary battery or composite particle for positive electrode of lithium secondary battery, and lithium ion secondary battery or lithium secondary battery
CN103857622A (en) 2011-08-24 2014-06-11 太平洋水泥株式会社 Silicon carbide powder and method for producing same
EP2936586B1 (en) 2012-12-20 2016-07-13 Umicore Negative electrode material for a rechargeable battery and method for producing the same
JP2014141400A (en) 2012-12-28 2014-08-07 Taiheiyo Cement Corp Method for preparing mixture of silica with carbon
KR20150006703A (en) 2013-07-09 2015-01-19 삼성정밀화학 주식회사 Negative active material for rechargeabl lithium battery, composition for negative electrode including the same, and rechargeabl lithium battery
JP6153198B2 (en) 2013-08-05 2017-06-28 株式会社豊田自動織機 All solid state secondary battery
JP2016219408A (en) 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017027772A (en) 2015-07-22 2017-02-02 株式会社豊田自動織機 Lithium ion secondary battery and method for manufacturing the same
JP6749230B2 (en) 2016-12-27 2020-09-02 太平洋セメント株式会社 Method for producing silicon carbide
JP7098144B2 (en) 2018-06-20 2022-07-11 株式会社ダイネンマテリアル Negative electrode material for lithium-ion batteries, negative electrode for lithium-ion batteries and lithium-ion batteries

Also Published As

Publication number Publication date
JP7483192B2 (en) 2024-05-15

Similar Documents

Publication Publication Date Title
Yuan et al. Co-treatment of spent cathode carbon in caustic and acid leaching process under ultrasonic assisted for preparation of SiC
US7922989B2 (en) Method for making silicon for solar cells and other applications
CN105793002B (en) Method for recycling powder formed carbon SiClx waste
JPWO2013027790A1 (en) Silicon carbide powder and method for producing the same
CN105174974B (en) Alumina fused cast refractory and method for producing same
TW201829299A (en) Method for producing high-purity silicon nitride powder
JP2617822B2 (en) Method for producing non-sintered cristobalite particles
JP2014122131A (en) Production method of high-purity silicon carbide powder
JP2004051453A (en) METHOD OF MANUFACTURING Si
JP3827459B2 (en) Silicon nitride powder and method for producing the same
RU2394764C1 (en) Method of producing silicon dioxide
JP2021147283A (en) Composite particle and manufacturing method thereof
JPH08290914A (en) Alpha-alumina and its production
CN101555010A (en) Carborundum
JP2014125407A (en) Method for manufacturing high-purity silicon carbide
JP4253907B2 (en) Method for producing indium oxide-tin oxide powder
JPS6227316A (en) Production of fine power of high purity silicon carbide
RU2327639C2 (en) Method of producing high purity silicon
JP6707407B6 (en) Method for producing silicon carbide powder
JP2013095635A (en) Method for producing high-purity silicon carbide powder
CN110713380A (en) Preparation method of high-purity compact forsterite
JP2010030873A (en) High purity silicon and production method thereof
Grishin et al. Thermit-type SiO 2-Al reaction in arc discharge
JP2015086100A (en) Method of producing silicon carbide
FR2638733A1 (en) PROCESS FOR PRODUCING MICRONIC SILICON CARBIDE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240401

R150 Certificate of patent or registration of utility model

Ref document number: 7483192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150