JP2021144833A - プラズマ計測装置、及びプラズマ計測方法 - Google Patents

プラズマ計測装置、及びプラズマ計測方法 Download PDF

Info

Publication number
JP2021144833A
JP2021144833A JP2020041977A JP2020041977A JP2021144833A JP 2021144833 A JP2021144833 A JP 2021144833A JP 2020041977 A JP2020041977 A JP 2020041977A JP 2020041977 A JP2020041977 A JP 2020041977A JP 2021144833 A JP2021144833 A JP 2021144833A
Authority
JP
Japan
Prior art keywords
substrate
plasma
inorganic
chamber
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020041977A
Other languages
English (en)
Inventor
紳治 久保田
Shinji Kubota
紳治 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2020041977A priority Critical patent/JP2021144833A/ja
Priority to US17/186,140 priority patent/US20210287887A1/en
Publication of JP2021144833A publication Critical patent/JP2021144833A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24585Other variables, e.g. energy, mass, velocity, time, temperature

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】プラズマ処理のイオンエネルギーを測定すること。【解決手段】載置台は、チャンバー内に設けられる。プラズマ発生源は、チャンバー内にプラズマを生成する。無機EL基板は、載置台に載置され、電界が印加されることにより発光する。透過窓は、チャンバーに設けられ、光を透過する。分光器は、チャンバー外に配置され、透過窓を介して無機EL基板の発光を測定する。制御部は、分光器による測定結果からイオンエネルギーを計測する。【選択図】図1

Description

本開示は、プラズマ計測装置、及びプラズマ計測方法に関する。
特許文献1は、イオンエネルギーを計測する方法として、測定用基板を用いてイオン電流を測定する方法を開示する。
特表2014−513390号公報
本開示は、プラズマ処理のイオンエネルギーを計測する技術を提供する。
本開示の一態様によるプラズマ計測装置は、チャンバーと、載置台と、プラズマ発生源と、無機EL(Electroluminescence)基板と、透過窓と、分光器と、制御部を有する。載置台は、チャンバー内に設けられる。プラズマ発生源は、チャンバー内にプラズマを生成する。無機EL基板は、載置台に載置され、電界が印加されることにより発光する。透過窓は、チャンバーに設けられ、光を透過する。分光器は、チャンバー外に配置され、透過窓を介して無機EL基板の発光を測定する。制御部は、分光器による測定結果からイオンエネルギーを計測する。
本開示によれば、プラズマ処理のイオンエネルギーを計測できる。
図1は、実施形態に係るプラズマ処理装置の一例を示す概略断面図である。 図2は、実施形態に係る無機EL基板の構成の一例を示す概略断面図である。 図3は、実施形態に係る基板をエッチングする際の表面の電気的な状態を模式的に示した図である。 図4は、実施形態に係る発光層の発光の強さと電界の強さの関係の一例を示した図である。 図5は、実施形態に係るイオンエネルギーの分布の一例を示す図である。 図6は、実施形態に係るプラズマ測定方法の流れの一例を示すフローチャートである。 図7は、実施形態に係る測定される発光強度の一例を示す図である。 図8は、実施形態に係るプラズマ測定方法の流れの他の一例を示すフローチャートである。 図9は、実施形態に係る無機EL基板の構成の他の一例を示す概略断面図である。 図10は、実施形態に係る無機EL基板の構成の他の一例を示す概略断面図である。
以下、図面を参照して本願の開示するプラズマ計測装置、及びプラズマ計測方法の実施形態について詳細に説明する。なお、本実施形態により、開示するプラズマ計測装置、及びプラズマ計測方法が限定されるものではない。
測定用基板を用いてプラズマ処理空間のイオンエネルギーを計測する場合、プラズマ処理空間内(チャンバー内)にある測定用基板とプラズマ処理空間外(チャンバー外)にある電圧計および電流計とを接続する配線が必要となる。この配線は、プラズマ生成のために印加した高周波電力が外部に漏れて他のシステムに誤動作を与えるおそれがあるため、ローパスフィルターを介して直流電流のみを抽出する必要がある。しかしながら、ローパスフィルターにより高周波電流を完全に除去することは難しく、基板からGNDに高周波電流が流れ、測定上の誤差要因となりうる。また、測定用基板上の電位は−数KVに達することがあることから、GNDと耐圧を取る必要がある。しかしながら、配線に数KVの高耐圧を持たせることは極めて難しい。したがって、実際のプロセスで使用するような、高バイアス条件においてこの計測方法により測定を行うと、配線の耐圧がもたずに絶縁破壊が生じ、異常放電が生じうる。また、異常放電により測定系が破壊されるおそれもあった。このため、高パワー領域のイオンエネルギーを計測するのは困難であった。
そこで、プラズマ処理のイオンエネルギーを計測する新たな技術が期待されている。
[実施形態]
[装置構成]
実施形態について説明する。以下では、本開示のプラズマ測定装置の構成を、プラズマ処理装置に適用とした場合を例に説明する。図1は、実施形態に係るプラズマ処理装置1の一例を示す概略断面図である。実施形態に係るプラズマ処理装置1は、例えば平行平板の電極を備える容量結合プラズマ(CCP:Capacitively Coupled Plasma)タイプのプラズマエッチング装置である。プラズマ処理装置1は、プラズマ処理チャンバー10、ガス供給部20、RF(Radio Frequency)電力供給部30及び排気システム40を含む。また、プラズマ処理装置1は、支持部11及び上部電極シャワーヘッド12を含む。また、プラズマ処理装置1は、制御部51を更に備える。
プラズマ処理チャンバー10は、例えばアルミニウム等の材料により構成され、例えば略円筒形状に形成されている。プラズマ処理チャンバー10は、内壁面に陽極酸化処理が施されている。また、プラズマ処理チャンバー10は、保安接地されている。支持部11は、プラズマ処理チャンバー10内のプラズマ処理空間10sの下部領域に配置される。上部電極シャワーヘッド12は、支持部11の上方に配置され、プラズマ処理チャンバー10の天部(ceiling)の一部として機能し得る。
支持部11は、プラズマ処理空間10sにおいて基板W1を支持するように構成される。一実施形態において、支持部11は、下部電極111、静電チャック112、及びエッジリング113を含む。静電チャック112は、下部電極111上に配置され、静電チャック112の上面で基板W1を支持するように構成される。エッジリング113は、下部電極111の周縁部上面において基板W1を囲むように配置される。また、図示は省略するが、一実施形態において、支持部11は、静電チャック112及び基板W1のうち少なくとも1つをターゲット温度に調節するように構成される温調モジュールを含んでもよい。温調モジュールは、ヒータ、流路、又はこれらの組み合わせを含んでもよい。流路には、冷媒、伝熱ガスのような温調流体が流れる。支持部11は、プラズマ処理チャンバー10の底面に設けられた支持部材114によって支持されている。支持部材114は、絶縁材料により構成される。プラズマ処理チャンバー10と支持部11は、支持部材114により絶縁される。
上部電極シャワーヘッド12は、不図示の絶縁性の遮蔽部材を介して、プラズマ処理チャンバー10の上部に支持されている。上部電極シャワーヘッド12は、電極板14、及び電極支持体15を有する。電極板14は、下面がプラズマ処理空間10sに面している。電極板14には複数のガス吐出口14aが形成されている。電極板14は、例えばシリコンを含む材料により構成される。
電極支持体15は、例えば、アルミニウム等の導電性材料により構成されている。電極支持体15は、電極板14を上方から着脱自在に支持する。電極支持体15は、保安接地されている。電極支持体15は、図示しない水冷構造を有し得る。電極支持体15の内部には、拡散室15aが形成されている。拡散室15aからは、電極板14のガス吐出口14aに連通する複数のガス流通口15bが下方に(支持部11に向けて)延びている。電極支持体15には、拡散室15aに処理ガスを導くガス入口15cが設けられており、ガス入口15cには、配管を介して、ガス供給部20が接続されている。
上部電極シャワーヘッド12は、ガス供給部20からの1又はそれ以上の処理ガスをプラズマ処理空間10sに供給するように構成される。一実施形態において、上部電極シャワーヘッド12は、1又はそれ以上の処理ガスをガス入口15cからガス拡散室12b、ガス出口12c、ガス吐出口14aを介してプラズマ処理空間10sに供給するように構成される。
ガス供給部20は、1又はそれ以上のガスソース21及び1又はそれ以上の流量制御器22を含んでもよい。一実施形態において、ガス供給部20は、1又はそれ以上の処理ガスを、それぞれに対応のガスソース21からそれぞれに対応の流量制御器22を介してガス入口15cに供給するように構成される。各流量制御器22は、例えばマスフローコントローラ又は圧力制御式の流量制御器を含んでもよい。さらに、ガス供給部20は、1又はそれ以上の処理ガスの流量を変調又はパルス化する1又はそれ以上の流量変調デバイスを含んでもよい。
RF電力供給部30は、RF電力、例えば1又はそれ以上のRF信号を、下部電極111、上部電極シャワーヘッド12、又は、下部電極111及び上部電極シャワーヘッド12の双方のような1又はそれ以上の電極に供給するように構成される。これにより、プラズマ処理空間10sに供給された1又はそれ以上の処理ガスからプラズマが生成される。従って、RF電力供給部30は、プラズマ処理チャンバー10において1又はそれ以上の処理ガスからプラズマを生成するように構成されるプラズマ生成部の少なくとも一部として機能し得る。一実施形態において、RF電力供給部30は、2つのRF生成部31a,31b及び2つの整合回路32a,32bを含む。一実施形態において、RF電力供給部30は、第1のRF信号を第1のRF生成部31aから第1の整合回路32aを介して下部電極111に供給するように構成される。例えば、第1のRF信号は、27MHz〜100MHzの範囲内の周波数を有してもよい。
また、一実施形態において、RF電力供給部30は、第2のRF信号を第2のRF生成部31bから第2の整合回路32bを介して下部電極111に供給するように構成される。例えば、第2のRF信号は、400kHz〜13.56MHzの範囲内の周波数を有してもよい。代わりに、第2のRF生成部31bに代えて、DC(Direct Current)パルス生成部を用いてもよい。
さらに、図示は省略するが、本開示においては他の実施形態が考えられる。例えば、RF電力供給部30は、第1のRF信号をRF生成部から下部電極111に供給し、第2のRF信号を他のRF生成部から下部電極111に供給し、第3のRF信号をさらに他のRF生成部から下部電極111に供給するように構成されてもよい。加えて、他の代替実施形態において、DC電圧が上部電極シャワーヘッド12に印加されてもよい。
またさらに、種々の実施形態において、1又はそれ以上のRF信号(即ち、第1のRF信号、第2のRF信号等)の振幅がパルス化又は変調されてもよい。振幅変調は、オン状態とオフ状態との間、あるいは、2又はそれ以上の異なるオン状態の間でRF信号振幅をパルス化することを含んでもよい。
排気システム40は、例えばプラズマ処理チャンバー10の底部に設けられた排気口10eに接続され得る。排気システム40は、圧力弁及び真空ポンプを含んでもよい。真空ポンプは、ターボ分子ポンプ、粗引きポンプ又はこれらの組み合わせを含んでもよい。
プラズマ処理チャンバー10の側壁には、基板W1を搬入又は搬出するための開口10aが設けられている。開口10aは、ゲートバルブ10bにより開閉可能とされている。
また、プラズマ処理チャンバー10の側面には、光を透過する透過窓60が設けられている。本実施形態では、開口10aの反対側となるプラズマ処理チャンバー10の側面に透過窓60が設けられている。透過窓60は、例えば、石英基板により構成され、光(可視光)を透過する透過性を有する。
計測を行う際に、支持部11には、基板Wに代えて、無機EL(Electroluminescence)基板W2が配置される。無機EL基板W2は、基板W1と同様のサイズに形成されており、電界が印加されることにより発光する。
図2は、実施形態に係る無機EL基板W2の構成の一例を示す概略断面図である。図2には、無機EL基板W2の一例が示されている。図2では、上側が上部電極シャワーヘッド12側であり、下側が支持部11側である。無機EL基板W2は、誘電体層70と、発光層71と、誘電体層70および発光層71を支持するシリコン基板72とを有する。無機EL基板W2は、シリコン基板72上に発光層71が積層され、発光層71上に誘電体層70が積層されている。シリコン基板72は、例えば、12インチ(直径300mm)で厚さが775umとする。発光層71は、蛍光体によりシリコン基板72の上面の全面に形成されており、厚さが数十nm(例えば、60nm)とされている。発光層71の蛍光体は、電界の強度に応じて発光の強度が変化する材料であればよい。発光層71の蛍光体としては、例えば、SrS:Ce、ZnS:Tm、ZnS:Mo、SnS:Tm、SnS:Sm、CaS:Eu、CaS:Seが挙げられる。蛍光体として示した物質について、「:」の左側は蛍光体の主な材料を示し、「:」の右側は例えば、1%以下で添加された少量の材料を示している。例えば、SrS:Ceは、SrSが主な材料であり、Ceが1%以下で添加されている。誘電体層70は、誘電体によりシリコン基板72の上面の全面に形成されており、厚さが数百nm(例えば、650nm)とされている。誘電体としては、例えば、SiO、SiN、Y、Al、Taが挙げられる。
無機EL基板W2は、電界が印加されることにより発光層71が発光する。
図1に戻る。プラズマ処理チャンバー10の透過窓60の外側には、分光器62が配置されている。分光器62と透過窓60との間には、複数枚のレンズ63が設けられている。複数枚のレンズ63は、無機EL基板W2の発光領域のうちの一部の領域に焦点を合うように配置されている。複数枚のレンズ63は、駆動機構64により移動可能とされている。駆動機構64は、モータなどのアクチュエータや、ギヤー、ロッドなどの動力伝達部品を含み、制御部51の制御に基づき、複数枚のレンズ63をそれぞれ移動する。複数枚のレンズ63は、駆動機構64により移動することで、無機EL基板W2の発光領域内で焦点の位置を移動できる。なお、駆動機構64は、無機EL基板W2の発光領域内で焦点の位置が移動するようにレンズ63及び分光器62の両方を駆動させてもよく、また、分光器62のみを駆動させてもよい。
分光器62は、複数枚のレンズ63により焦点が合った領域の無機EL基板W2が発光した光の波長及び発光強度を測定する。分光器62は、駆動機構64により複数枚のレンズ63を移動させて無機EL基板W2の発光領域内で焦点の位置を移動させることで、無機EL基板W2の発光領域の発光を領域ごとに測定できる。分光器62は、測定された波長及び発光強度の測定データを制御部51へ出力する。
制御部51は、本開示において述べられる種々の工程をプラズマ処理装置1に実行させるコンピュータ実行可能な命令を処理する。制御部51は、ここで述べられる種々の工程を実行するようにプラズマ処理装置1の各要素を制御するように構成され得る。制御部51は、例えばコンピュータを含んでもよい。コンピュータは、例えば、処理部(CPU:Central Processing Unit)511、記憶部512、及び通信インターフェース513を含んでもよい。処理部511は、記憶部512に格納されたプログラムに基づいて種々の制御動作を行うように構成され得る。記憶部512は、RAM(Random Access Memory)、ROM(Read Only Memory)、HDD(Hard Disk Drive)、SSD(Solid State Drive)、又はこれらの組み合わせを含んでもよい。通信インターフェース513は、LAN(Local Area Network)等の通信回線を介して他のプラズマ処理装置1など他の装置との間で通信してもよい。
次に、実施形態に係るプラズマ処理装置1により、プラズマ処理中のイオンエネルギーを測定する際の動作の流れを簡単に説明する。プラズマ処理チャンバー10内には、ゲートバルブ10bから、搬送アーム上に保持された無機EL基板W2が搬入され、静電チャック112上に無機EL基板W2が載置される。
ガス供給部20は、プラズマの生成に用いるプロセスガスを所定の流量及び流量比でプラズマ処理チャンバー10内に導入する。また、排気システム40は、プラズマ処理チャンバー10内の圧力を設定値に減圧する。さらに、RF電力供給部30は、2つのRF生成部31a,31bからそれぞれ所定のパワーの第1のRF信号及び第2のRF信号の高周波電力を下部電極111に供給する。上部電極シャワーヘッド12からシャワー状にプラズマ処理空間10sに導入されたプロセスガスは、RF電力供給部30の第1のRF信号の高周波電力によりプラズマ化される。これにより、プラズマ処理空間10sにプラズマが生成される。プラズマ中には、プロセスガスのラジカルやイオンが含まれる。プラズマ中のプラスのイオンは、第2のRF信号の高周波電力により生じた高周波電力の電界によって支持部11側に向かって加速される。プラズマ処理では、この加速されたプラスのイオンが支持部11に載置された基板W1や無機EL基板W2に入射することにより、エッチングされる。
図3は、実施形態に係る基板Wの表面の電気的な状態を模式的に示した図である。下部電極に第1のRF信号および第2のRF信号を印加した場合、基板Wの近傍にはプラズマシースが形成される。基板Wは、セルフバイアスによりプラズマに対しマイナスの電位となる。このマイナスの電位の大きさは下部電極に印加する第1のRF信号および第2のRF信号のパワーによって変わる。基板Wにかかる負のセルフバイアスにより、シースに電界が生じこの電界により基板方向にプラスのイオンは加速される。基板Wは、加速されたプラスのイオン80が入射することにより、エッチングされる。
無機EL基板W2は、RF生成部31a,31bから下部電極111に供給される第1のRF信号及び第2のRF信号の高周波電力による基板近傍のシース電圧によって電界が生じる。無機EL基板W2は、生じた電界に応じて発光層71が発光する。第1のRF信号は、例えば、40MHzとする。第2のRF信号は、例えば、400kHzとする。無機EL基板W2の電界は、第1のRF信号及び第2のRF信号の2つの高周波電力が重畳された波形で変化する。無機EL基板W2の電界は、第2のRF信号の高周波電力に第1のRF信号の高周波電力が重畳されていることで、低周波の第2のRF信号の周期で大きく変動する。つまり、無機EL基板W2の発光層71は、無機EL基板W2に印加される低周波の電界強度に応じて発光強度が大きく変化する。
図4は、実施形態に係る発光層71の発光の強さと電界の強さの関係の一例を示した図である。図4の横軸は、発光層71にかかる電界強度(電界の強さ)を示している。図4の縦軸は、発光層71の発光強度(発光の強さ)を示している。発光層71は、電界が強くなるほど発光の強さが増す傾向がある。よって、無機EL基板W2の発光層71の発光強度を測定することで、無機EL基板W2上に生じる、電界強度を計測することができる。
分光器62は、透過窓60を介して無機EL基板W2が発光した光の波長及び発光強度を測定する。分光器62は、測定された波長及び発光強度の測定データを制御部51へ出力する。
制御部51は、分光器62による測定結果からイオンエネルギーを計測する。例えば、制御部51は、分光器62から入力した測定データから、無機EL基板W2に生じる電界強度を計測することで、間接的にイオンエネルギーを計測する。制御部51は、駆動機構64により複数枚のレンズ63を移動させて無機EL基板W2の発光領域内で焦点の位置を変え、発光領域内を網羅的に走査させて分光器62により無機EL基板W2の発光を測定する。分光器62は、移動させた位置ごと測定データを制御部51へ出力する。制御部51は、分光器62から入力した測定データから、無機EL基板W2に生じる電界強度を計測する。例えば、制御部51は、無機EL基板W2の波長及び発光強度と電界強度との対応関係を求めたデータを記憶部512に記憶する。制御部51は、記憶部512に記憶したデータに基づき、測定データから、無機EL基板W2に生じる電界強度を計測する。一例として、制御部51は、電界強度に応じて無機EL基板W2の発光強度が変化する特定の波長について、発光強度と電界強度との対応関係を求めたデータを記憶部512に記憶する。制御部51は、入力した測定データから特定の波長の発光強度を求める。制御部51は、記憶部512に記憶したデータから、求めた発光強度に対応する電界強度を求める。制御部51は、測定データから、無機EL基板W2の発光領域内の部分ごとに無機EL基板W2に生じる電界強度を求める。制御部51は、求めた電界強度からイオンエネルギーを計測する。
図3に示したように、プラズマ中のプラスのイオン80は、シース中の電界によって加速される。このため、イオン80のイオンエネルギーは、シース中の電界と関係性があり、基板近傍の無機EL基板W2に生じる電界強度からシース電圧を計測できる。よって、無機EL基板W2の電界強度を求めることで、基板近傍のシース電圧やイオンエネルギーを計測できる。例えば、制御部51は、無機EL基板W2の電界強度とイオンエネルギーとの対応関係を求めたデータを記憶部512に記憶する。制御部51は、記憶部512に記憶したデータに基づき、求めた電界強度から、イオンエネルギーを計測する。制御部51は、無機EL基板W2の発光領域内の部分ごとの電界強度から、発光領域内の部分ごとにイオンエネルギーを計測する。これにより、エネルギー分布を計測できる。なお、制御部51は、発光強度とシース電圧やイオンエネルギーとの対応関係を求めたデータを記憶し、記憶したデータから、発光強度に対応するシース電圧やイオンエネルギーを求めてもよい。
ここで、半導体装置の製造では、形成されるパターンのアスペクト比が高くなっている。例えば、3D NANDの製造では、高アスペクト比のコンタクトホールエッチングが要求される。高アスペクト比のコンタクトホールエッチングは、高いイオンエネルギーが必要になる。イオンのイオンエネルギーは、プロセス形状に大きな影響を与える。プラズマ中のイオンエネルギーを計測するためには、例えば、特許文献1のように、測定用基板を用いて電位を直接測定する方法がある。しかし、実際のプラズマ処理の対象となる基板W1には、配線が存在しない。このため、配線を有する測定用基板で計測したイオンエネルギーは、配線を有しない基板W1におけるイオンエネルギーとは異なるおそれがある。また、測定用基板の電位が−1000V以上の高電圧となる場合、ショートや異常放電が発生して測定用基板から配線を引き回して測定するのは困難である場合がある。
一方、実施形態に係るプラズマ処理装置1は、プラズマ処理の対象となる基板W1と同様のシリコン基板72上に発光層71、誘電体層70を積層した無機EL基板W2を作成する。プラズマ処理装置1は、作成した無機EL基板W2のプラズマ処理チャンバー10内の支持部11に載置し、プラズマを生成した際の無機EL基板W2の発光の発光強度を測定する。これにより、プラズマ処理装置1は、プラズマ処理の対象となる基板W1におけるイオンエネルギーを計測できる。また、実施形態に係るプラズマ処理装置1は、実際のプラズマ処理の対象となる基板W1におけるイオンエネルギーをリアルタイムに測定できる。また、実施形態に係るプラズマ処理装置1は、基板W1の電位が−1000V以上の高電圧となる場合でも、イオンエネルギーを測定できる。
図5は、実施形態に係るイオンエネルギーの分布の一例を示す図である。図5では、イオンエネルギーが高い領域ほど濃いパターンでイオンエネルギーの分布を示している。このように実施形態に係るプラズマ処理装置1は、プラズマ処理空間10sでのイオンエネルギーの面内分布を計測できる。
[プラズマ測定の流れ]
次に、実施形態に係るプラズマ処理装置1が実施するプラズマ計測方法の流れを説明する。図6は、実施形態に係るプラズマ計測方法の流れの一例を示すフローチャートである。
制御部51は、プラズマ処理装置1の各要素を制御してプラズマ処理チャンバー10内にプラズマを生成する(ステップS10)。例えば、制御部51は、ガス供給部20を制御して、プラズマの生成に用いるプロセスガスを所定の流量及び流量比でプラズマ処理チャンバー10内に導入する。また、制御部51は、排気システム40を制御して、プラズマ処理チャンバー10内の圧力を設定値に減圧する。さらに、制御部51は、RF電力供給部30を制御して、2つのRF生成部31a,31bからそれぞれ所定のパワーの第1のRF信号及び第2のRF信号の高周波電力を下部電極111に供給する。これにより、プラズマ処理空間10sにプラズマが生成される。
制御部51は、分光器62及び駆動機構64を制御し、分光器62により、透過窓60を介してプラズマの発光を測定する(ステップS1)。例えば、制御部51は、駆動機構64により複数枚のレンズ63を移動させて、無機EL基板W2において発光領域となる領域内で焦点の位置を変え、発光領域となる領域内を網羅的に走査させて分光器62によりプラズマの発光を測定する。分光器62は、測定された波長及び発光強度の測定データを制御部51へ出力する。
制御部51は、分光器62から入力した測定データからイオンエネルギーを計測し(ステップS12)、処理を終了する。例えば、制御部51は、測定データから、無機EL基板W2の発光領域内の位置ごとに、無機EL基板W2に生じる電界強度を求める。制御部51は、求めた電界強度からイオンエネルギーを計測する。
ところで、実施形態に係るプラズマ処理装置1は、無機EL基板W2が発光した光と共に、プラズマが発光する光も分光器62で測定される。図7は、実施形態に係る測定される発光強度の一例を示す図である。図7には、無機EL基板W2の発光による発光波長ごと発光強度の分布L1と、プラズマの発光による発光波長ごと発光強度の分布L2が示されている。分光器62では、無機EL基板W2が発光した光と共に、プラズマが発光する光も測定される。そこで、実施形態に係るプラズマ処理装置1は、以下のように構成してもよい。
実施形態に係るプラズマ処理装置1は、プラズマ処理チャンバー10の内部に無機EL基板W2が未配置の状態と、無機EL基板W2を配置した状態とでそれぞれ個別に発光を測定する。例えば、プラズマ処理装置1は、プラズマ処理の対象となる通常の基板W1を支持部11に載置した状態でプラズマを生成し、無機EL基板W2が未配置の状態でのプラズマの発光を分光器62により測定する。プラズマ処理装置1は、搬送アームにより基板W1と無機EL基板W2とを交換して無機EL基板W2を支持部11に載置する。そして、プラズマ処理装置1は、無機EL基板W2を支持部11に載置した状態でプラズマを生成し、無機EL基板W2を配置した状態でのプラズマと無機EL基板W2の発光を分光器62により測定する。制御部51は、無機EL基板W2が未配置の状態で測定された測定データと、無機EL基板W2を配置した状態で測定された測定データとを比較する。制御部51は、比較結果から、無機EL基板W2に生じる電界強度を求める。無機EL基板W2を配置した状態で測定された測定データと無機EL基板W2を配置していない状態で測定された測定データとの差分を求めることで、無機EL基板W2の発光分のデータを求めることができる。制御部51は、無機EL基板W2を配置した状態で測定された測定データと無機EL基板W2を配置していない状態で測定された測定データとの差分のデータを求める。制御部51は、差分のデータから無機EL基板W2に生じる電界強度を求める。そして、制御部51は、求めた電界強度からイオンエネルギーを計測する。例えば、制御部51は、電界強度とイオンエネルギーとの対応関係を求めたデータを記憶部512に記憶する。制御部51は、記憶部512に記憶したデータに基づき、求めた電界強度から、イオンエネルギーを計測する。
この場合、実施形態に係るプラズマ処理装置1は、例えば、以下ようにプラズマの測定を実施する。図8は、実施形態に係るプラズマ計測方法の流れの他の一例を示すフローチャートである。
プラズマ処理装置1では、搬送アームによりプラズマ処理の対象となる通常の基板W1を支持部11に載置する(ステップS20)。
制御部51は、プラズマ処理装置1の各要素を制御し、プラズマ処理チャンバー10の内部に基板W1を配置した状態(無機EL基板W2が未配置の状態)でプラズマ処理チャンバー10内にプラズマを生成する(ステップS21)。例えば、制御部51は、ガス供給部20を制御して、プラズマの生成に用いるプロセスガスを所定の流量及び流量比でプラズマ処理チャンバー10内に導入する。また、制御部51は、排気システム40を制御して、プラズマ処理チャンバー10内の圧力を設定値に減圧する。また、制御部51は、RF電力供給部30を制御して、2つのRF生成部31a,31bからそれぞれ所定のパワーの第1のRF信号及び第2のRF信号の高周波電力を下部電極111に供給する。これにより、プラズマ処理空間10sにプラズマが生成される。
制御部51は、分光器62及び駆動機構64を制御し、分光器62により、透過窓60を介してプラズマの発光を測定する(ステップS22)。例えば、制御部51は、駆動機構64により複数枚のレンズ63を移動させて、無機EL基板W2の場合において発光領域となる領域内で焦点の位置を変え、発光領域となる領域内を網羅的に走査させて分光器62によりプラズマの発光を測定する。分光器62は、測定された波長及び発光強度の測定データを制御部51へ出力する。
プラズマ処理装置1では、プラズマ処理チャンバー10の内部に無機EL基板W2を配置する(ステップS23)。例えば、プラズマ処理装置1では、搬送アームにより支持部11から基板W1を取り出し、無機EL基板W2を支持部11に載置する。
制御部51は、プラズマ処理装置1の各要素を制御し、プラズマ処理チャンバー10の内部に無機EL基板W2を配置した状態でプラズマ処理チャンバー10内にプラズマを生成する(ステップS24)。このプラズマを生成する条件は、上述のステップS21と同じであることが好ましい。例えば、制御部51は、ステップS21と同種のガス、同じ圧力、同じ周波数、電力のパワーでプラズマを生成する。
制御部51は、分光器62及び駆動機構64を制御し、分光器62により、透過窓60を介してプラズマ及び無機EL基板W2の発光を測定する(ステップS25)。例えば、制御部51は、駆動機構64により複数枚のレンズ63を移動させて、無機EL基板W2の発光領域内で焦点の位置を変え、発光領域内を網羅的に走査させて分光器62により発光領域の発光を測定する。分光器62は、測定された波長及び発光強度の測定データを制御部51へ出力する。
制御部51は、無機EL基板W2が未配置の状態で測定された測定データと、無機EL基板W2を配置した状態で測定された測定データとを比較し、比較結果から、イオンエネルギーを計測し(ステップS26)、処理を終了する。例えば、制御部51は、無機EL基板W2の発光領域内の位置ごとに、同じ位置で測定された無機EL基板W2を配置した状態の測定データと無機EL基板W2が未配置の状態の測定データとの差分のデータを求める。制御部51は、求めた差分のデータから、発光領域内の位置ごとに無機EL基板W2の発光分のデータを求める。制御部51は、求めた発光分のデータから発光領域内の位置ごとに、無機EL基板W2に生じる電界強度を求める。制御部51は、求めた電界強度からイオンエネルギーを計測する。
なお、制御部51は、プラズマの発光強度のデータが別途得られている場合、無機EL基板W2を配置した状態の測定データとプラズマの発光強度のデータとの差分のデータを求めて、電界強度を求めてもよい。また、制御部51は、プラズマの発光量が小さい場合、無機EL基板W2を配置した状態で測定された測定データから電界強度を求めてもよい。
以上のように、実施形態に係るプラズマ処理装置1は、プラズマ処理チャンバー10と、支持部11(載置台)と、RF電力供給部30(プラズマ発生源)と、無機EL基板W2と、透過窓60と、分光器62と、制御部51とを有する。支持部11は、プラズマ処理チャンバー10内に設けられる。RF電力供給部30は、プラズマ処理チャンバー10内にプラズマを生成する。無機EL基板W2は、支持部11に載置され、電界が印加されることにより発光する。透過窓60は、プラズマ処理チャンバー10に設けられ、光を透過する。分光器62は、プラズマ処理チャンバー10外に配置され、透過窓60を介して無機EL基板W2の発光を測定する。制御部51は、分光器62による測定結果からイオンエネルギーを計測する。これにより、プラズマ処理装置1は、プラズマ処理のイオンエネルギーを計測できる。
また、透過窓60は、プラズマ処理チャンバー10の側壁に設けられている。レンズ63は、透過窓60と分光器62との間に配置され、無機EL基板W2の発光する発光領域のうちの一部の領域に焦点を合わせる。これにより、プラズマ処理装置1は、無機EL基板W2の発光する発光領域内のレンズ63で焦点を合わせた位置のイオンエネルギーを計測できる。
また、駆動機構64は、発光領域内で焦点の位置が移動するようにレンズ63又は分光器62の何れか一方又は両方を駆動させる。これにより、プラズマ処理装置1は、駆動機構64によりレンズ63を駆動させることで、発光領域内の部分ごとにイオンエネルギーを計測でき、エネルギー分布を計測できる。
また、無機EL基板W2は、誘電体層70と、発光層71と、誘電体層70および発光層71を支持するシリコン基板72とを有する。また、発光層71は、SrS:Ce、ZnS:Tm、ZnS:Mo、SnS:Tm、SnS:Sm、CaS:Eu、CaS:Seの何れかを含む。これにより、無機EL基板W2は、電界が印加されることにより発光層71が発光する。
以上、実施形態について説明してきたが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。実に、上述した実施形態は、多様な形態で具現され得る。また、上述した実施形態は、請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
例えば、上述した実施形態では、駆動機構64によりレンズ63又は分光器62の何れか一方又は両方を駆動させることで、焦点の位置を移動させる場合を例に説明した。しかし、これに限定されるものではない。焦点の位置を移動させることができれば、何れの構成を用いてもよい。例えば、レンズやミラーなどの光学部品を駆動させることで、焦点の位置を移動させてもよい。また、例えば、複数のレンズを光軸が異なるように配置し、これら複数のレンズで収集した光を光ファイバを介して分光器62に供給して走査してもよい。
また、無機EL基板W2は、その他層を有してもよい。図9は、実施形態に係る無機EL基板W2の構成の他の一例を示す概略断面図である。図9に示す無機EL基板W2は、誘電体層70と、発光層71とに加え、発光層71とシリコン基板72との間に反射防止膜73が形成されている。誘電体層70は、厚さを数百nm(例えば、650nm)とし、例えば、SiOにより形成する。発光層71は、厚さを数十nm(例えば、60nm)とし、例えば、ZnS:Moにより形成する。反射防止膜73は、厚さを数十から数百nm(例えば、100nm)とし、例えば、アルミニウム等の金属材料により形成する。反射防止膜73は、発光層71の光を反射する。これにより、無機EL基板W2は、誘電体層70側がより強く発光する。図10は、実施形態に係る無機EL基板W2の構成の他の一例を示す概略断面図である。図10に示す無機EL基板W2は、誘電体層70と、発光層71とに加え、発光層71とシリコン基板72との間に、反射防止膜73及び誘電体層74が形成されている。シリコン基板72上には反射防止膜73が形成されている。反射防止膜73上には誘電体層74が形成されている。誘電体層70は、厚さを数百nm(例えば、650nm)とし、例えば、SiOにより形成する。発光層71は、厚さを数十nm(例えば、60nm)とし、例えば、ZnS:Moにより形成する。誘電体層74は、厚さを数百nm(例えば、650nm)とし、例えば、SiOにより形成する。反射防止膜73は、厚さを数十から数百nm(例えば、100nm)とし、例えば、アルミニウム等の金属材料により形成する。反射防止膜73は、発光層71の光を反射する。この場合も、無機EL基板W2は、誘電体層70側がより強く発光する。
本開示の技術は、任意のプラズマ処理装置に採用され得る。例えば、プラズマ処理装置1は、誘導結合型プラズマ(ICP:Inductively-coupled plasma)タイプや、マイクロ波といった表面波によってガスを励起させるプラズマ処理装置のように、任意のタイプのプラズマ処理装置であってもよい。
また、上記した実施形態では、プラズマ処理装置1として、プラズマエッチング処理装置を例に説明したが、開示の技術はこれに限られない。プラズマを用いる成膜装置や、改質装置等に対しても、開示の技術を適用することができる。
また、上述した実施形態では、基板を半導体ウエハとした場合を例に説明したが、これに限定されるものではない。基板は、ガラス基板など、他の基板であってもよい。
なお、今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の特許請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
W1 基板
W2 無機EL基板
1 プラズマ処理装置
10 プラズマ処理チャンバー
11 支持部
12 上部電極シャワーヘッド
30 RF電力供給部
60、61 透過窓
62 分光器
63 レンズ
64 駆動機構

Claims (11)

  1. チャンバーと、
    前記チャンバー内に設けられた載置台と、
    前記チャンバー内にプラズマを生成するプラズマ発生源と、
    前記載置台に載置され、電界が印加されることにより発光する無機EL(Electroluminescence)基板と、
    前記チャンバーに設けられ、光を透過する透過窓と、
    前記チャンバー外に配置され、前記透過窓を介して前記無機EL基板の発光を測定する分光器と、
    分光器による測定結果からイオンエネルギーを計測する制御部と、
    を有するプラズマ計測装置。
  2. 前記透過窓は、前記チャンバーの側壁に設けられ、
    前記透過窓と前記分光器との間に配置され、前記無機EL基板の発光する発光領域のうちの一部の領域に焦点を合わせるレンズを更に有する
    請求項1に記載のプラズマ計測装置。
  3. 前記発光領域内で焦点の位置が移動するように前記レンズ又は前記分光器の何れか一方又は両方を駆動させる駆動機構を更に有する
    請求項2に記載のプラズマ計測装置。
  4. 前記無機EL基板は、誘電体層と、発光層と、前記誘電体層および前記発光層を支持するシリコン基板とを有する
    請求項1〜3の何れか1項に記載のプラズマ計測装置。
  5. 前記発光層は、SrS:Ce、ZnS:Tm、ZnS:Mo、SnS:Tm、SnS:Sm、CaS:Eu、CaS:Seの何れかを含む
    請求項4に記載のプラズマ計測装置。
  6. 電界が印加されることにより発光する無機EL基板が内部に設けられた載置台に配置され、光を透過する透過窓が設けられたチャンバー内にプラズマを生成する工程と、
    前記チャンバー外に配置された分光器により、前記透過窓を介して前記無機EL基板の発光を測定する工程と、
    測定結果から、イオンエネルギーを計測する工程と、
    を有するプラズマ計測方法。
  7. 前記無機EL基板を前記載置台に配置する工程を含み、
    前記プラズマを生成する工程は、前記チャンバーの内部に前記無機EL基板が未配置の状態で前記チャンバー内に第1のプラズマを生成する工程と、前記チャンバーの内部に前記無機EL基板を配置した状態で前記チャンバー内に第2のプラズマを生成する工程とを有し、
    前記測定する工程は、前記第1のプラズマを生成した際に前記透過窓を介して前記無機EL基板の発光を測定する工程と、前記第2のプラズマを生成した際に前記透過窓を介して前記無機EL基板の発光を測定する工程とを有し、
    前記計測する工程は、前記第1のプラズマを生成した際に測定された第1データと前記第2のプラズマを生成した際に測定された第2データとを比較し、比較結果から、前記無機EL基板に生じた電界強度を求め、求めた電界強度からイオンエネルギーを計測する
    請求項6に記載のプラズマ計測方法。
  8. 前記無機EL基板は、誘電体層と、発光層と、前記誘電体層および前記発光層を支持するシリコン基板とを有する
    請求項6または7に記載のプラズマ計測方法。
  9. 前記第1のプラズマを生成する工程は、無機ELが無い基板を配置した状態でプラズマを生成する
    請求項7に記載のプラズマ計測方法。
  10. 前記第1のプラズマ及び前記第2のプラズマは、同種のガスで生成される
    請求項7または9に記載のプラズマ計測方法。
  11. 前記測定する工程は、前記透過窓と前記分光器との間に配置され、前記無機EL基板の発光する発光領域のうちの一部の領域に焦点を合わせるレンズ、又は、前記分光器の何れか一方又は両方を前記発光領域内で焦点の位置が移動するように駆動機構により駆動させて、前記第1のプラズマを生成した際と前記第2のプラズマを生成した際に前記無機EL基板の発光をそれぞれ測定し、
    前記計測する工程は、前記発光領域内の同じ位置で測定された前記第1データと前記第2データとを比較し、比較結果から、位置ごとにイオンエネルギーを計測する
    請求項10に記載のプラズマ計測方法。
JP2020041977A 2020-03-11 2020-03-11 プラズマ計測装置、及びプラズマ計測方法 Pending JP2021144833A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020041977A JP2021144833A (ja) 2020-03-11 2020-03-11 プラズマ計測装置、及びプラズマ計測方法
US17/186,140 US20210287887A1 (en) 2020-03-11 2021-02-26 Plasma measuring apparatus and plasma measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020041977A JP2021144833A (ja) 2020-03-11 2020-03-11 プラズマ計測装置、及びプラズマ計測方法

Publications (1)

Publication Number Publication Date
JP2021144833A true JP2021144833A (ja) 2021-09-24

Family

ID=77663781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020041977A Pending JP2021144833A (ja) 2020-03-11 2020-03-11 プラズマ計測装置、及びプラズマ計測方法

Country Status (2)

Country Link
US (1) US20210287887A1 (ja)
JP (1) JP2021144833A (ja)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936967A (en) * 1987-01-05 1990-06-26 Hitachi, Ltd. Method of detecting an end point of plasma treatment
JP3255469B2 (ja) * 1992-11-30 2002-02-12 三菱電機株式会社 レーザ薄膜形成装置
US5565114A (en) * 1993-03-04 1996-10-15 Tokyo Electron Limited Method and device for detecting the end point of plasma process
US5958258A (en) * 1997-08-04 1999-09-28 Tokyo Electron Yamanashi Limited Plasma processing method in semiconductor processing system
JP2009212346A (ja) * 2008-03-05 2009-09-17 Panasonic Corp プラズマドーピング方法及び装置
JP5526712B2 (ja) * 2009-11-05 2014-06-18 豊田合成株式会社 半導体発光素子
US9997652B2 (en) * 2015-03-23 2018-06-12 Sunpower Corporation Deposition approaches for emitter layers of solar cells

Also Published As

Publication number Publication date
US20210287887A1 (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP7055054B2 (ja) プラズマ処理装置、プラズマ制御方法、及びプラズマ制御プログラム
JP7455174B2 (ja) Rf発生器及び方法
US11476089B2 (en) Control method and plasma processing apparatus
US10998244B2 (en) System and method for temperature control in plasma processing system
TWI593016B (zh) Plasma treatment method
US8409459B2 (en) Hollow cathode device and method for using the device to control the uniformity of a plasma process
KR101333924B1 (ko) 에칭 방법, 컴퓨터 판독 가능한 기록 매체, 및 플라즈마 처리 시스템
TWI528868B (zh) Substrate processing device
KR20140124762A (ko) 전원 시스템, 플라즈마 에칭 장치 및 플라즈마 에칭 방법
JP2018107202A (ja) プラズマ処理装置及びプラズマ制御方法
JP2020092036A (ja) 制御方法及びプラズマ処理装置
KR100218836B1 (ko) 플라스마 처리장치
JP2021144833A (ja) プラズマ計測装置、及びプラズマ計測方法
US20210289612A1 (en) Plasma measuring apparatus and plasma measuring method
KR20210009295A (ko) 부품의 형성 방법 및 기판 처리 시스템
CN115497801A (zh) 基板处理装置及基板处理方法
JP5559505B2 (ja) プラズマ処理装置
KR20220058777A (ko) 기판 처리 장치 및 기판 처리 방법
KR20210117348A (ko) 반도체 프로세싱에서 이상 플라즈마 이벤트 (anomalous plasma event) 검출 및 완화
KR20210003984A (ko) 기판 처리 장치 및 기판 처리 방법
KR102603429B1 (ko) 임피던스 제어 장치 및 이를 구비하는 기판 처리 시스템
JP7479207B2 (ja) エッチング方法及び基板処理装置
WO2024018960A1 (ja) プラズマ処理装置及びプラズマ処理方法
JP2023127323A (ja) 膜の厚さを測定する方法、及び、処理装置
KR20230163115A (ko) 플라즈마 처리 장치 및 이를 이용한 반도체 장치 제조 방법