JP2021142778A - Lighting device - Google Patents

Lighting device Download PDF

Info

Publication number
JP2021142778A
JP2021142778A JP2020040849A JP2020040849A JP2021142778A JP 2021142778 A JP2021142778 A JP 2021142778A JP 2020040849 A JP2020040849 A JP 2020040849A JP 2020040849 A JP2020040849 A JP 2020040849A JP 2021142778 A JP2021142778 A JP 2021142778A
Authority
JP
Japan
Prior art keywords
phosphor
led
led device
light
containing led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020040849A
Other languages
Japanese (ja)
Inventor
文泰 佐藤
Fumiyasu Sato
文泰 佐藤
武 川口
Takeshi Kawaguchi
武 川口
啓一 綿貫
Keiichi Watanuki
啓一 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Rubber Inc
Saitama University NUC
Original Assignee
Asahi Rubber Inc
Saitama University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Rubber Inc, Saitama University NUC filed Critical Asahi Rubber Inc
Priority to JP2020040849A priority Critical patent/JP2021142778A/en
Publication of JP2021142778A publication Critical patent/JP2021142778A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Arrangements Of Lighting Devices For Vehicle Interiors, Mounting And Supporting Thereof, Circuits Therefore (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Led Device Packages (AREA)

Abstract

To provide a lighting device capable of adjusting a spectral distribution of illumination light and being adjustable to light of various colors having a continuous spectral distribution.SOLUTION: A luminaire includes a first fluorescent-body containing LED device, a second fluorescent body-containing LED device, and an electric power control unit for controlling electric power supplied to each of the first fluorescent body-containing LED device and the second fluorescent body-containing LED device. The first fluorescent body-containing LED device includes one kind of an LED element selected from a blue LED element or a near ultraviolet LED element and a first fluorescent body, and the second fluorescent body-containing LED device includes an LED element and a second fluorescent body. The second fluorescent body-containing LED device and the first fluorescent body-containing LED device have fluorescence peak wavelengths contained in the distribution of their respective light emissions being separated by 10nm or more from each other, with a half value width of the fluorescence peak wavelength being 50 nm or more.SELECTED DRAWING: Figure 3

Description

本発明は、照明光の分光分布を調整でき、連続した分光分布を有する多様な色の光に調整できる照明装置に関する。 The present invention relates to a lighting device capable of adjusting the spectral distribution of illumination light and adjusting the light of various colors having a continuous spectral distribution.

従来、作業時の疲労感を低減したり、視認性を向上させたり、良質な睡眠を促したりする照明装置が提案されている。具体的には、照射される光の色座標の範囲を調整したり、発光スペクトルの形状を調整したりして、各作用を有する光を発する照明装置が提案されている。 Conventionally, lighting devices that reduce fatigue during work, improve visibility, and promote good quality sleep have been proposed. Specifically, an illuminating device that emits light having each action by adjusting the range of the color coordinates of the irradiated light or adjusting the shape of the emission spectrum has been proposed.

下記特許文献1は、人に自然で良質な睡眠を促すことが可能な照明装置として、LED素子の発光により、国際照明委員会が定めるxy色度図上の点A(0.555,0.394)を通る等色温度線及び黒体輻射軌跡に対する等偏差線と、点B(0.419,0.343)を通る等色温度線及び黒体輻射軌跡に対する等偏差線とで囲まれる領域内の照明色の照明光を出射することを特徴とする照明装置を開示する。 The following Patent Document 1 is a lighting device capable of promoting a natural and high-quality sleep to a person. Area surrounded by the isobaric temperature line passing through 394) and the isobaric line with respect to the black body radiation locus, and the isobaric temperature line passing through the point B (0.419, 0.343) and the isobaric line with respect to the black body radiation locus. Disclosed is a lighting device characterized by emitting the illumination light of the illumination color inside.

また、下記特許文献2は、快適性を向上させて作業時の疲労感を低減させるLED素子の発光により照明光を出射して照明を行う照明装置として、照明光のスペクトルの400nmから800nmの面積に対して、600nmから700nmの面積が30%以上70%以下であるとともに、400nmから500nmの面積が20%以下であり、照明光のスペクトルが600nmから700nmの間に最大値を有し、該最大値に対して500nmから600nmのスペクトルの最大値が70%以下である照明装置を開示する。 Further, Patent Document 2 below describes an area of 400 nm to 800 nm in the spectrum of the illumination light as an illumination device that emits illumination light by emitting light of an LED element that improves comfort and reduces fatigue during work. On the other hand, the area of 600 nm to 700 nm is 30% or more and 70% or less, the area of 400 nm to 500 nm is 20% or less, and the spectrum of the illumination light has a maximum value between 600 nm and 700 nm. A lighting device in which the maximum value of a spectrum of 500 nm to 600 nm is 70% or less of the maximum value is disclosed.

また、下記特許文献3は、ディスプレイの文字の読みやすさ感を向上させることができる照明装置として、ディスプレイ用照明として第1照明光を照射する発光部を備え、第1照明光の光特性は、相関色温度が3800K以上6500K以下の範囲で、色偏差Duvが−9以上0以下の範囲で、内因性光感受性網膜神経節細胞(ipRGC)刺激量がD65光源から照射される光で規格化した値で0.6以上である 照明装置を開示する。 Further, Patent Document 3 below includes a light emitting unit that irradiates the first illumination light as the illumination for the display as an illumination device capable of improving the readability of characters on the display, and the optical characteristics of the first illumination light are as follows. , Correlated color temperature is in the range of 3800K or more and 6500K or less, color deviation Duv is in the range of -9 or more and 0 or less, and the amount of intrinsic light sensitive retinal ganglion cell (ipRGC) stimulation is standardized by the light emitted from the D65 light source. A lighting device having a value of 0.6 or more is disclosed.

また、下記特許文献4は、暗所において明るく感じさせて高い視認性を与え、かつ疲労感を与えにくい光を発する光源、LED装置及び発光表示構造として、CIE1931の色度図の座標において、無彩色を示す座標W(0.33,0.33)とスペクトル軌跡上の480nmの座標B(0.091,0.133)と、560nmの座標G(0.373,0.624)とを結ぶ線分WB及び線分WGとスペクトル軌跡に囲まれる領域における、色純度が2〜50の領域に含まれ、かつ、波長領域480〜540nmにおいて連続した分光波長が占める面積が380〜780nmの光源全体の分光波長面積に対して15%以上である光を発する光源を開示する。 Further, the following Patent Document 4 is a light source, an LED device, and a light emitting display structure that emit light that makes the person feel bright in a dark place to give high visibility and is less likely to cause fatigue, in the coordinates of the chromaticity diagram of CIE1931. The coordinate W (0.33, 0.33) indicating coloring, the coordinate B (0.091, 0.133) at 480 nm on the spectral locus, and the coordinate G (0.373, 0.624) at 560 nm are connected. The entire light source in which the color purity is 2 to 50 in the region surrounded by the line segment WB and the linear segment WG and the spectral locus, and the area occupied by the continuous spectral wavelengths in the wavelength region 480 to 540 nm is 380 to 780 nm. Discloses a light source that emits light that is 15% or more of the spectral wavelength area of the above.

ここで、赤色LED素子,緑色LED素子,青色LED素子の異なる色の光を発するLEDを組み合わせて構成されたLED装置は、フルカラーLED装置またはRGB3in1LED装置、として知られている。フルカラーLED装置を用いて発光色を調整する技術も知られている。 Here, an LED device configured by combining LEDs that emit light of different colors such as a red LED element, a green LED element, and a blue LED element is known as a full-color LED device or an RGB3in1 LED device. A technique for adjusting the emission color using a full-color LED device is also known.

例えば、下記特許文献5は、光の3原色の各色の発光ダイオードを搭載した発光色可変LED装置と、発光ダイオードへ流す電流を各色毎に制御する電流制御回路とを具えたLED発光色制御装置を開示する。このようなLED発光色制御装置によれば、発光の色及び強さを制御することにより、発光する色の種類が可変できる発光色可変LED装置が得られる。 For example, Patent Document 5 below provides an LED emission color control device including a light emitting color variable LED device equipped with light emitting diodes of each of the three primary colors of light and a current control circuit for controlling the current flowing through the light emitting diode for each color. To disclose. According to such an LED emission color control device, an emission color variable LED device capable of varying the type of emission color can be obtained by controlling the emission color and intensity.

また、下記特許文献6は、例えば、赤色(R),緑色(G),青色(B)の異なるLED素子を複数組み合わせて発光体を構成し、各色のLEDへ送る電力を電力制御部で制御することにより、出力する光色を任意の色となるように電力制御を行うLED光源を開示する。 Further, in Patent Document 6 below, for example, a plurality of LED elements having different red (R), green (G), and blue (B) are combined to form a light emitting body, and the power sent to the LED of each color is controlled by the power control unit. By doing so, the LED light source that controls the power so that the output light color becomes an arbitrary color is disclosed.

また、下記特許文献7は、赤色の波長を含む光、緑色の波長を含む光及び青色の波長を含む光を、特定色の混色光を生成するようにそれぞれ発する赤色LED、緑色LED及び青色LEDと、赤色LEDに流れる電流を電流制御信号に従って調整する赤色用電流駆動手段と、緑色LEDに流れる電流を一定の設定電流に調整する緑色用電流駆動手段と、青色LEDに流れる電流を一定の設定電流に調整する青色用電流駆動手段と、赤色LEDの発光量に関連する検出信号を出力する検出手段と、この検出手段から出力される検出信号から得られる値が予め決定された発光量の値に等しくなるように、電流制御信号を赤色用電流駆動手段に出力する制御手段と を備えるLED光源を開示する。 Further, Patent Document 7 below describes a red LED, a green LED, and a blue LED that emit light including a red wavelength, light containing a green wavelength, and light containing a blue wavelength so as to generate mixed color light of a specific color, respectively. A red current driving means that adjusts the current flowing through the red LED according to the current control signal, a green current driving means that adjusts the current flowing through the green LED to a constant set current, and a constant setting of the current flowing through the blue LED. A blue current driving means that adjusts to a current, a detection means that outputs a detection signal related to the light emission amount of the red LED, and a value of the light emission amount in which a value obtained from the detection signal output from the detection means is predetermined. Disclosed is an LED light source including a control means for outputting a current control signal to a red current drive means so as to be equal to.

また、下記特許文献8は、出射する光の輝度に応じて光の色温度が変化するLED照明装置が開示されている。具体的には、360nm以上480nm以下に発光ピーク波長を有する半導体発光素子を有する第1LEDと、360nm以上480nm以下に発光ピーク波長を有する半導体発光素子を有し、所定の色温度の白色光を出射する第2LEDと、第1LEDの光射出方向に配置されており、第1LEDから出射される光を赤色光〜オレンジ色光に変換する光変換部材を有する非レンズ部、及び前記第2LEDの光射出方向に配置されたレンズ部を有するレンズモジュールと、外部から供給される駆動信号が供給される期間において、第1LEDに供給される駆動電流を一定値で制御するとともに、第2LEDに供給される駆動電流を前記駆動信号に応じて可変電流で制御する電流制御部とを備えるLED照明装置を開示する。 Further, Patent Document 8 below discloses an LED lighting device in which the color temperature of light changes according to the brightness of the emitted light. Specifically, it has a first LED having a semiconductor light emitting element having an emission peak wavelength of 360 nm or more and 480 nm or less, and a semiconductor light emitting element having an emission peak wavelength of 360 nm or more and 480 nm or less, and emits white light having a predetermined color temperature. A non-lens portion that is arranged in the light emitting direction of the second LED and the light emitting direction of the first LED and has a light conversion member that converts the light emitted from the first LED into red light to orange light, and the light emitting direction of the second LED. The drive current supplied to the first LED is controlled by a constant value during the period in which the drive signal supplied from the outside is supplied to the lens module having the lens unit arranged in the light, and the drive current supplied to the second LED is controlled. Discloses an LED lighting device including a current control unit that controls a variable current according to the drive signal.

特開2013−171686号公報Japanese Unexamined Patent Publication No. 2013-171686 特開2013−171689号公報Japanese Unexamined Patent Publication No. 2013-171689 特開2018−088374号公報Japanese Unexamined Patent Publication No. 2018-08374 特開2019−125577号公報JP-A-2019-125777 特開平8−250771号公報Japanese Unexamined Patent Publication No. 8-250771 特開平11−162660号公報Japanese Unexamined Patent Publication No. 11-162660 特開2007−080865号公報Japanese Unexamined Patent Publication No. 2007-080865 特開2014−197501号公報Japanese Unexamined Patent Publication No. 2014-197501

特許文献1〜4に開示された各照明装置はそれぞれ、人に自然で良質な睡眠を促したり、疲労感を低減させたり、文字を読みやすくさせたり、暗所において明るく感じさせて高い視認性を与える効果を有する照明光を得られる。しかしながら、それらの各照明装置は、それぞれの目的に合うようにあらかじめ調光されているために、人の体調や状況に応じて、光の種類を選択することができなかった。具体的には、人が睡眠を促したいときには睡眠を促す光に調整し、疲労感を低減させたいときには疲労感を低減させる光に調整し、文字を読みやすくさせたいときには文字を読みやすくして疲労感を低減させる光に調整したりすることができなかった。 Each of the lighting devices disclosed in Patent Documents 1 to 4 promotes a natural and good quality sleep for a person, reduces a feeling of fatigue, makes characters easier to read, and makes a person feel bright in a dark place for high visibility. It is possible to obtain an illumination light having the effect of giving. However, since each of these lighting devices is pre-dimmed to suit their respective purposes, it is not possible to select the type of light according to the physical condition and situation of the person. Specifically, when a person wants to promote sleep, adjust the light to promote sleep, when he / she wants to reduce fatigue, adjust the light to reduce fatigue, and when he / she wants to make the characters easier to read, make the characters easier to read. It was not possible to adjust the light to reduce the feeling of fatigue.

また、特許文献5〜8に開示された各照明装置は、赤色LED素子,緑色LED素子,青色LED素子の各LED素子へ流れる電流値を制御することにより、各LED素子から発せられる光を混色することによって光色を変化させる照明装置である。このような、赤色LED素子,緑色LED素子,青色LED素子からの発光をそのまま混合して調光した場合、青色LED素子は470nm付近、緑色LED素子は530nm付近,赤色LED素子は630nm付近に、それぞれ大きいシャープの波長ピークを有するだけの分光分布を示すために、これらが発する光を混合して得られる光も三原色を呈する鋭い各波長ピークを組み合わせただけの調色しかできず、自然光のような連続した分光波長を有する発光に調整できなかった。 Further, each of the lighting devices disclosed in Patent Documents 5 to 8 mixes the light emitted from each LED element by controlling the current value flowing through each LED element of the red LED element, the green LED element, and the blue LED element. It is a lighting device that changes the light color by doing so. When the light emitted from the red LED element, the green LED element, and the blue LED element is mixed and dimmed as it is, the blue LED element is around 470 nm, the green LED element is around 530 nm, and the red LED element is around 630 nm. In order to show a spectral distribution that only has a large sharp wavelength peak, the light obtained by mixing the light emitted by these can only be toned by combining the sharp wavelength peaks that exhibit the three primary colors, like natural light. It was not possible to adjust the light emission to have a continuous spectral wavelength.

また、従来のフルカラーLED装置は、赤色(R)、緑色(G)、青色(B)の異なるLED素子から構成されているために、各LED素子への順電圧が異なることにより供給電力の制御が難しかった。また、赤色LED素子の寿命が青色LED素子及び緑色LED素子の寿命よりも短いことにより、結果としてフルカラーLED装置全体の寿命が短かった。また、赤色LED素子は、緑色LED素子と青色LED素子よりも高温になると発光効率が低下するために、高温環境では設定した色に対して発光色がずれるという問題もあった。 Further, since the conventional full-color LED device is composed of different LED elements of red (R), green (G), and blue (B), the power supply is controlled by different forward voltages to each LED element. Was difficult. Further, the life of the red LED element is shorter than the life of the blue LED element and the green LED element, and as a result, the life of the entire full-color LED device is short. Further, since the luminous efficiency of the red LED element decreases when the temperature becomes higher than that of the green LED element and the blue LED element, there is a problem that the emitted color deviates from the set color in the high temperature environment.

本発明は上述のような問題を解決できる、照明光の分光分布を調整でき、連続した分光分布を有する多様な色の光に調整できる照明装置を提供することを目的とする。 An object of the present invention is to provide an illuminating device capable of adjusting the spectral distribution of illumination light and adjusting to various colors of light having a continuous spectral distribution, which can solve the above-mentioned problems.

本発明の一局面は、第1の蛍光体含有LED装置と、第2の蛍光体含有LED装置と、第1の蛍光体含有LED装置に供給される電力及び第2の蛍光体含有LED装置に供給される電力を制御する電力制御部とを備え、第1の蛍光体含有LED装置は、青色LED素子または近紫外LED素子から選ばれる1種のLED素子と第1の蛍光体とを含み、第2の蛍光体含有LED装置は、LED素子と第2の蛍光体とを含み、第2の蛍光体含有LED装置と第1の蛍光体含有LED装置とは、それぞれの発光の分光分布に含まれる蛍光ピーク波長が互いに10nm以上離れており、蛍光ピーク波長の半値幅が50nm以上である照明装置である。このような照明装置においては、それぞれ異なる分光分布となる光を出射する2種類の蛍光体含有LED装置の蛍光ピーク波長の半値幅が何れも50nm以上であることにより、照明装置から出射される光がブロードで連続した分光分布を有する発光になる。また、異なる発光分布を有する蛍光体含有LED装置に供給される電力をそれぞれ独立して制御する電力制御部を備えるために、出射される光の分光分布の特定の波長領域の発光強度を調整してブロードで連続した分光分布に調整することができる。その結果、連続した分光分布を有する、多様な色の光に調整できる照明装置が得られる。 One aspect of the present invention includes a first phosphor-containing LED device, a second phosphor-containing LED device, power supplied to the first phosphor-containing LED device, and a second phosphor-containing LED device. The first phosphor-containing LED device includes a power control unit for controlling the supplied power, and includes one type of LED element selected from a blue LED element or a near-ultraviolet LED element and a first phosphor. The second phosphor-containing LED device includes an LED element and a second phosphor, and the second phosphor-containing LED device and the first phosphor-containing LED device are included in the spectral distribution of their respective luminescence. This is an illumination device in which the fluorescence peak wavelengths are separated from each other by 10 nm or more, and the half-value width of the fluorescence peak wavelength is 50 nm or more. In such a lighting device, the light emitted from the lighting device is emitted from the lighting device because the half-value width of the fluorescence peak wavelength of the two types of phosphor-containing LED devices that emit light having different spectral distributions is 50 nm or more. Is broad and emits light with a continuous spectral distribution. Further, in order to include a power control unit that independently controls the power supplied to the phosphor-containing LED devices having different emission distributions, the emission intensity in a specific wavelength region of the spectral distribution of the emitted light is adjusted. It can be adjusted to a broad and continuous spectral distribution. The result is a lighting device that has a continuous spectral distribution and can be adjusted to light of various colors.

照明装置は、第3の蛍光体含有LED装置をさらに備え、電力制御部は第3の蛍光体含有LED装置に供給される電力を制御し、第3の蛍光体含有LED装置は、LED素子と、第3の蛍光体と、を含み、第3の蛍光体含有LED装置の発光の分光分布に含まれる最大の蛍光ピーク波長は、第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置の少なくとも何れか1つの各蛍光ピーク波長と10nm以上離れており、蛍光ピーク波長の半値幅が50nm以上であることが好ましい。このような照明装置においては、それぞれ異なる分光分布となる光を出射する3種類の蛍光体含有LED装置が実装されていることにより、さらに、照明光の分光分布を調整でき、ブロードで連続した分光分布を有する多様な色の光に調整できる照明装置が得られる。また、照明装置が、さらに、第4の蛍光体含有LED装置をさらに備え、電力制御部が第4の蛍光体含有LED装置に供給される電力を制御する場合には、さらに、照明光の分光分布を調整でき、ブロードで連続した分光分布を有する多様な色の光に調整できる照明装置が得られる。 The lighting device further includes a third phosphor-containing LED device, the power control unit controls the power supplied to the third phosphor-containing LED device, and the third phosphor-containing LED device includes an LED element. The maximum fluorescence peak wavelength included in the spectral distribution of the emission of the third phosphor-containing LED device is the first phosphor-containing LED device and the second phosphor-containing LED. It is preferable that the fluorescence peak wavelength of at least one of the devices is separated from each fluorescence peak wavelength by 10 nm or more, and the half-value width of the fluorescence peak wavelength is 50 nm or more. In such a lighting device, by mounting three types of phosphor-containing LED devices that emit light having different spectral distributions, the spectral distribution of the illumination light can be further adjusted, and the spectral distribution is broad and continuous. A lighting device that can be adjusted to various colors of light having a distribution can be obtained. Further, when the lighting device further includes a fourth phosphor-containing LED device and the power control unit controls the power supplied to the fourth phosphor-containing LED device, the spectral light of the illumination light is further dispersed. A lighting device that can adjust the distribution and can adjust to various colors of light having a broad and continuous spectral distribution can be obtained.

また、照明装置においては、蛍光体含有LED装置のそれぞれに含まれる各蛍光体は、410〜470nmの範囲に蛍光ピーク波長を有する蛍光体,430〜490nmの範囲に蛍光ピーク波長を有する蛍光体,490〜530nmの範囲に蛍光ピーク波長を有する蛍光体、500〜590nmの範囲にピーク波長を有する蛍光体、580〜680nmの範囲に蛍光ピーク波長を有する蛍光体から選ばれることが、幅広い色座標の範囲の調光が可能になる点から好ましい。なお、例えば、第2蛍光体と第3蛍光体において、蛍光ピーク波長の範囲が重複する場合には、低波長側の蛍光ピーク波長を有する蛍光体を第2蛍光体とする。同様に、例えば、第3蛍光体と第4蛍光体において、蛍光ピーク波長の範囲が重複する場合には、低波長側の蛍光ピーク波長を有する蛍光体を第3蛍光体とする。 Further, in the lighting device, each phosphor contained in each of the phosphor-containing LED devices is a phosphor having a fluorescence peak wavelength in the range of 410 to 470 nm, and a phosphor having a fluorescence peak wavelength in the range of 430 to 490 nm. A wide range of color coordinates can be selected from phosphors having a fluorescence peak wavelength in the range of 490 to 530 nm, phosphors having a peak wavelength in the range of 500 to 590 nm, and phosphors having a fluorescence peak wavelength in the range of 580 to 680 nm. It is preferable because it enables dimming in a range. For example, when the ranges of the fluorescence peak wavelengths overlap between the second phosphor and the third phosphor, the phosphor having the fluorescence peak wavelength on the lower wavelength side is referred to as the second phosphor. Similarly, for example, when the ranges of the fluorescence peak wavelengths overlap in the third phosphor and the fourth phosphor, the phosphor having the fluorescence peak wavelength on the lower wavelength side is designated as the third phosphor.

また、照明装置は、蛍光体を含まないLED装置をさらに備え、電力制御部は蛍光体を含まないLED装置に供給される電力を制御する場合には、より幅広い色座標の範囲の調光が可能になる点から好ましい。さらに、蛍光体を含まないLED装置は、青色LED装置であることが、再現できる色度範囲が広がり、照明装置の長期信頼性が高まることから好ましい。 Further, the lighting device further includes an LED device that does not contain a phosphor, and when the power control unit controls the power supplied to the LED device that does not contain a phosphor, dimming in a wider range of color coordinates is possible. It is preferable because it is possible. Further, the LED device containing no phosphor is preferably a blue LED device because the reproducible chromaticity range is widened and the long-term reliability of the lighting device is enhanced.

また、前記照明装置は、自動車の内部照明として好ましく用いられる。 In addition, the lighting device is preferably used as internal lighting for automobiles.

また、電力制御部でPWM制御により、照明光を1/fゆらぎとなるようにすることにより、人に対してよりリラックス感を与えることができる光となるため好ましい。 Further, it is preferable that the power control unit performs PWM control to change the illumination light to 1 / f fluctuation, so that the light can give a more relaxed feeling to a person.

また、人工知能により照明光の分光分布を自動調整することにより、照明装置のユーザーが求める最適な照明光を過去の分光分布の設定や好み、その場の環境に応じて照明光を最適化できるため好ましい。 In addition, by automatically adjusting the spectral distribution of the illumination light by artificial intelligence, the optimum illumination light required by the user of the lighting device can be optimized according to the past spectral distribution settings and preferences, and the environment of the place. Therefore, it is preferable.

また、照明光に連動して音又は/及び匂いを発する機能を有することで、人に対してより照明光が与えるリラックス感などの効果を高めることができることから好ましい。 Further, it is preferable to have a function of emitting a sound or / or an odor in conjunction with the illumination light because it is possible to enhance the effect such as a feeling of relaxation given by the illumination light to a person.

本発明によれば、照明光の分光分布を調整でき、連続した分光分布を有する多様な色の光に調整できる照明装置が得られる。 According to the present invention, it is possible to obtain an illumination device capable of adjusting the spectral distribution of the illumination light and adjusting the light of various colors having a continuous spectral distribution.

図1は、実施形態の照明装置100で用いられる蛍光体含有LED装置10の上面模式図である。FIG. 1 is a schematic top view of a phosphor-containing LED device 10 used in the lighting device 100 of the embodiment. 図2は、蛍光体含有LED装置10の断面模式図である。FIG. 2 is a schematic cross-sectional view of the phosphor-containing LED device 10. 図3は、実施形態の照明装置100の模式説明図である。FIG. 3 is a schematic explanatory view of the lighting device 100 of the embodiment. 図4は、照明装置本体20に組み込まれたLED実装基板11の上面模式図である。FIG. 4 is a schematic top view of the LED mounting substrate 11 incorporated in the lighting device main body 20. 図5は、照明装置本体20に組み込まれた照明制御機構40の回路構成図である。FIG. 5 is a circuit configuration diagram of the lighting control mechanism 40 incorporated in the lighting device main body 20. 図6は、照明制御機構の他の例である照明制御機構41の回路構成図である。FIG. 6 is a circuit configuration diagram of the lighting control mechanism 41, which is another example of the lighting control mechanism. 図7は、照明制御機構の他の例である照明制御機構42の回路構成図である。FIG. 7 is a circuit configuration diagram of the lighting control mechanism 42, which is another example of the lighting control mechanism. 図8は、実施例で用いた各LED装置が発する光の発光スペクトルである。FIG. 8 is an emission spectrum of light emitted by each LED device used in the examples. 図9は、実験番号1〜9で得られた照明装置の発する光の発光スペクトルである。FIG. 9 is an emission spectrum of the light emitted by the lighting device obtained in Experiment Nos. 1 to 9. 図10は、実験番号1〜9で得られた照明装置の発する光のCIE表色系の色度図の座標である。FIG. 10 is the coordinates of the chromaticity diagram of the CIE color system of the light emitted by the lighting device obtained in Experiment Nos. 1 to 9. 図11は、実験番号10〜13で得られた照明装置の発する光の発光スペクトルである。FIG. 11 is an emission spectrum of the light emitted by the lighting device obtained in Experiment Nos. 10 to 13. 図12は、実験番号10〜13で得られた光のCIE表色系の色度図の座標である。FIG. 12 shows the coordinates of the chromaticity diagram of the CIE color system of the light obtained in Experiment Nos. 10 to 13. 図13は、実験番号14〜20で得られた照明装置の発する光の発光スペクトルである。FIG. 13 is an emission spectrum of the light emitted by the illuminating device obtained in Experiment Nos. 14 to 20. 図14は、実験番号14〜20で得られた照明装置の発する光のCIE表色系の色度図の座標である。FIG. 14 is the coordinates of the chromaticity diagram of the CIE color system of the light emitted by the illuminating device obtained in Experiment Nos. 14 to 20. 図15は、比較実験番号1〜5で得られた照明装置の発する光の発光スペクトルである。FIG. 15 is an emission spectrum of the light emitted by the lighting device obtained in Comparative Experiment Nos. 1 to 5. 図16は、比較実験番号1〜5で得られた光のCIE表色系の色度図の座標である。FIG. 16 shows the coordinates of the chromaticity diagram of the CIE color system of the light obtained in Comparative Experiment Nos. 1 to 5.

本発明に係る一実施形態の照明装置は、第1の蛍光体含有LED装置と、第2の蛍光体含有LED装置と、第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置のそれぞれに供給される電力を制御する電力制御部とを備え、第1の蛍光体含有LED装置は、青色LED素子または近紫外LED素子から選ばれる1種のLED素子と第1の蛍光体とを含み、第2の蛍光体含有LED装置は、LED素子と第2の蛍光体とを含み、第2の蛍光体含有LED装置と第1の蛍光体含有LED装置とは、それぞれの発光の分光分布に含まれる蛍光ピーク波長が互いに10nm以上離れており、蛍光ピーク波長の半値幅が50nm以上である照明装置である。また、照明装置は、さらに、第3の蛍光体含有LED装置、第4の蛍光体含有LED装置等の、異なる発光の分光分布を示す、他の種類の蛍光体含有LED装置をさらに含んでもよい。また、青色LED装置等の蛍光体を含まないLED装置を含んでもよい。 The illumination device of one embodiment according to the present invention includes a first phosphor-containing LED device, a second phosphor-containing LED device, a first phosphor-containing LED device, and a second phosphor-containing LED device. The first phosphor-containing LED device includes a power control unit that controls the power supplied to each of them, and the first phosphor-containing LED device includes one type of LED element selected from a blue LED element or a near-ultraviolet LED element and a first phosphor. The second phosphor-containing LED device includes an LED element and a second phosphor, and the second phosphor-containing LED device and the first phosphor-containing LED device have their respective emission spectral distributions. This is an illumination device in which the fluorescence peak wavelengths contained in the above are separated from each other by 10 nm or more, and the half-value width of the fluorescence peak wavelength is 50 nm or more. In addition, the lighting device may further include other types of phosphor-containing LED devices that exhibit different spectral distributions of light emission, such as a third phosphor-containing LED device, a fourth phosphor-containing LED device, and the like. .. Further, an LED device that does not contain a phosphor such as a blue LED device may be included.

以下、本発明に係る照明装置の実施形態について説明する。 Hereinafter, embodiments of the lighting device according to the present invention will be described.

[LED装置]
本実施形態の照明装置は、青色LED素子または近紫外LED素子から選ばれる1種のLED素子と蛍光体とを含み、互いに異なる分光分布を有する発光をする少なくとも2種の蛍光体含有LED装置を備える。少なくとも2種の蛍光体含有LED装置は、それぞれ第1の蛍光体含有LED装置と第2の蛍光体含有LED装置とを含む。そして、各蛍光体含有LED装置は、各LED素子からの発光に励起されて蛍光を発する蛍光体を含む。そして、第1の蛍光体含有LED装置と第2の蛍光体含有LED装置とは、各発光の分光分布に含まれる蛍光ピーク波長が互いに10nm以上離れている。そして、各蛍光ピーク波長の半値幅が50nm以上である。また、照明装置は、さらに、第3の蛍光体含有LED装置、第4の蛍光体含有LED装置等、または、それ以上の、異なる発光の分光分布を示す、他の種類の蛍光体含有LED装置を備えてもよい。また、照明装置は、第1の蛍光体含有LED装置と第2の蛍光体含有LED装置を備える限り、蛍光体を含まない青色LED装置等のLED装置を備えてもよい。なお、第1の蛍光体、第2の蛍光体、第3の蛍光体、第4の蛍光体等の表現は異なる種類の蛍光体を区別するための表現である。
[LED device]
The lighting device of the present embodiment includes at least two kinds of phosphor-containing LED devices that include one kind of LED element selected from a blue LED element or a near-ultraviolet LED element and a phosphor and emit light having different spectral distributions from each other. Be prepared. The at least two types of phosphor-containing LED devices include a first phosphor-containing LED device and a second phosphor-containing LED device, respectively. Then, each phosphor-containing LED device includes a phosphor that is excited by light emission from each LED element to emit fluorescence. The fluorescence peak wavelengths included in the spectral distributions of the first phosphor-containing LED device and the second phosphor-containing LED device are separated from each other by 10 nm or more. The half width of each fluorescence peak wavelength is 50 nm or more. Further, the lighting device further includes another type of phosphor-containing LED device that exhibits a different emission spectral distribution, such as a third phosphor-containing LED device, a fourth phosphor-containing LED device, or the like. May be provided. Further, as long as the lighting device includes the first phosphor-containing LED device and the second phosphor-containing LED device, the lighting device may include an LED device such as a blue LED device that does not contain a phosphor. The expressions of the first phosphor, the second phosphor, the third phosphor, the fourth phosphor, and the like are expressions for distinguishing different types of phosphors.

以下に、一例として、4種の蛍光体含有LED装置について詳しく説明する。図1は本実施形態で用いられる4種の蛍光体含有LED装置10(10BG,10G,10Y,10R)の上面模式図である。また、図2は、図1に示した蛍光体含有LED装置10のB−B’断面における断面模式図である。蛍光体含有LED装置10は、430〜490nmの範囲に蛍光ピーク波長を有する蛍光体3BGを含む蛍光体含有LED装置10BG,490〜530nmの範囲に蛍光ピーク波長を有する蛍光体3Gを含む蛍光体含有LED装置10G,500〜590nmの範囲にピーク波長を有する蛍光体3Yを含む蛍光体含有LED装置10Y,または580〜680nmの範囲に蛍光ピーク波長を有する蛍光体3Rを含む蛍光体含有LED装置10Rの何れかである。さらに具体的には、蛍光体含有LED装置10は、LED装置本体5を、蛍光体である、蛍光体3BG,蛍光体3G,蛍光体3Y,または蛍光体3Rを含む蛍光体含有キャップ9(9BG,9G,9Y,9R)で覆うように形成された構成体である。 Hereinafter, as an example, four types of phosphor-containing LED devices will be described in detail. FIG. 1 is a schematic top view of four types of phosphor-containing LED devices 10 (10BG, 10G, 10Y, 10R) used in the present embodiment. Further, FIG. 2 is a schematic cross-sectional view of the phosphor-containing LED device 10 shown in FIG. 1 in a BB'cross section. The phosphor-containing LED device 10 includes a phosphor-containing LED device 10BG containing a phosphor 3BG having a fluorescence peak wavelength in the range of 430 to 490 nm, and a phosphor containing a phosphor 3G having a fluorescence peak wavelength in the range of 490 to 530 nm. LED device 10G, phosphor-containing LED device 10Y containing a phosphor 3Y having a peak wavelength in the range of 500 to 590 nm, or a phosphor-containing LED device 10R containing a fluorescent substance 3R having a fluorescence peak wavelength in the range of 580 to 680 nm. Either. More specifically, in the phosphor-containing LED device 10, the LED device main body 5 is a phosphor-containing cap 9 (9BG) containing a phosphor, a phosphor 3BG, a phosphor 3G, a phosphor 3Y, or a phosphor 3R. , 9G, 9Y, 9R).

図2に示すように、LED装置本体5は、青色LED素子1と、青色LED素子1を収容する収容凹部2aを備えるパッケージ部材2と、収容凹部2aに収容された青色LED素子1を封止する透明樹脂封止材4とを備えるLED発光装置である。収容凹部2aの内壁面には、銀メッキ等による反射膜7が形成されている。青色LED素子1の一方の電極はリード2bに接続され、青色LED素子1の他方の電極は金線6によりワイヤーボンディングされてリード2cに接続されて、各リード2b,2cが外部へ延出されている。リード2bはアノードであり、リード2cはカソードである。LED装置本体5のリード2bに電源の正極側、リード2cに電源の負極側を接続して、電力を付与することにより、青色LED素子1が発光する。このようなLED装置本体5においては、透明樹脂封止材4の上面が発光面になる。そして、LED装置本体5の発光面を覆うように蛍光体含有キャップ9(9BG,9G,9Y,9R)がそれぞれ装着されている。蛍光体含有キャップ9に含まれる蛍光体3は青色LED素子1の発光により励起されて蛍光を発する。そのために、蛍光体含有LED装置10から発せられる光の発光スペクトルは、青色LED素子1の発光と蛍光体3の蛍光とを混合したスペクトルを示す。 As shown in FIG. 2, the LED device main body 5 seals the blue LED element 1, the package member 2 including the accommodating recess 2a accommodating the blue LED element 1, and the blue LED element 1 accommodated in the accommodating recess 2a. This is an LED light emitting device including the transparent resin encapsulant 4. A reflective film 7 made of silver plating or the like is formed on the inner wall surface of the accommodating recess 2a. One electrode of the blue LED element 1 is connected to the lead 2b, the other electrode of the blue LED element 1 is wire-bonded by a gold wire 6 and connected to the lead 2c, and the leads 2b and 2c are extended to the outside. ing. Lead 2b is the anode and lead 2c is the cathode. The blue LED element 1 emits light by connecting the positive electrode side of the power supply to the lead 2b of the LED device main body 5 and the negative electrode side of the power supply to the lead 2c to apply electric power. In such an LED device main body 5, the upper surface of the transparent resin encapsulant 4 serves as a light emitting surface. Then, a phosphor-containing cap 9 (9BG, 9G, 9Y, 9R) is attached so as to cover the light emitting surface of the LED device main body 5. The phosphor 3 contained in the phosphor-containing cap 9 is excited by the light emission of the blue LED element 1 to emit fluorescence. Therefore, the emission spectrum of the light emitted from the phosphor-containing LED device 10 shows a spectrum obtained by mixing the emission of the blue LED element 1 and the fluorescence of the phosphor 3.

青色LED素子1は、420nm〜480nmの青色領域に発光ピーク波長を有する、青色LEDチップである。青色LED素子の具体例としては、例えば、GaN系等の素子が挙げられる。また、透明樹脂封止材4は、収容凹部2aに収容された青色LED素子1を封止して密封する。透明樹脂封止材を形成する透明樹脂としては、例えば、シリコーン樹脂やエポキシ樹脂、アクリル樹脂等が挙げられる。本実施形態のLED装置本体は表面実装型装置(SMD)と称されるタイプであるが、SMDの代わりに、いわゆる砲弾型、パッケージ型、チップオンボード型(COBタイプ)などの他のタイプのLED装置を用いてもよい。 The blue LED element 1 is a blue LED chip having an emission peak wavelength in the blue region of 420 nm to 480 nm. Specific examples of the blue LED element include, for example, a GaN-based element. Further, the transparent resin sealing material 4 seals and seals the blue LED element 1 housed in the housing recess 2a. Examples of the transparent resin forming the transparent resin encapsulant include silicone resin, epoxy resin, and acrylic resin. The main body of the LED device of this embodiment is a type called a surface mount type device (SMD), but instead of the SMD, other types such as a so-called bullet type, a package type, and a chip-on-board type (COB type) can be used. An LED device may be used.

また、蛍光体を分散された蛍光体層を形成する蛍光体含有キャップ9は、蛍光体3BG,蛍光体3G,蛍光体3Y,または蛍光体3Rを光透過性樹脂に均一に分散させた蛍光体含有シートをキャップ状に成形した成形体である。好ましい光透過性樹脂の具体例としては、例えば、シリコーンゴム(シリコーンエラストマー)やシリコーンレジン等のシリコーンや、エポキシ樹脂等が例示される。蛍光体層としては、キャップ状の蛍光体含有シートの代わりに、透明樹脂封止材中に埋設させた蛍光体含有シートであっても、透明樹脂封止材の発光面に蛍光体を含有する光透過性樹脂の組成物を塗布して形成された樹脂層であってもよい。また、蛍光体含有LED装置には、蛍光体層を形成する代わりに、LED素子を封止する透明樹脂封止材に蛍光体を分散させてもよい。 Further, the phosphor-containing cap 9 that forms the phosphor layer in which the phosphor is dispersed is a phosphor in which the phosphor 3BG, the phosphor 3G, the phosphor 3Y, or the phosphor 3R is uniformly dispersed in the light transmissive resin. It is a molded body obtained by molding the containing sheet into a cap shape. Specific examples of the preferable light-transmitting resin include silicones such as silicone rubber (silicone elastomer) and silicone resin, and epoxy resins. As the phosphor layer, instead of the cap-shaped phosphor-containing sheet, even if the phosphor-containing sheet is embedded in the transparent resin encapsulant, the light emitting surface of the transparent resin encapsulant contains the phosphor. It may be a resin layer formed by applying a composition of a light-transmitting resin. Further, in the phosphor-containing LED device, instead of forming the phosphor layer, the phosphor may be dispersed in a transparent resin encapsulant that encloses the LED element.

また、蛍光体含有LED装置は、発光色及び発光する光の分光スペクトルの形状を調整するために、蛍光体に加えて、必要に応じて着色剤を含んでもよい。また、混合された光の色むらを低減するために光拡散材等の添加剤を含んでもよい。着色剤は蛍光を発さず、所定の波長の光を吸収することにより発光色を調整するための成分として用いられる。このような着色剤の具体例としては、例えば、緑色顔料として、クロムグリーン、酸化クロム、ピグメントグリーンB、マラカイトグリーンレーキ、ファナルイエローグリーンG、フタロシアニングリーン等の有機または無機顔料、酸化チタン,タルク,硫酸バリウムの白色顔料、カーボンブラックなどの黒色顔料が挙げられる。また、光拡散材としては、シリカ,炭酸カルシウムが挙げられる。 Further, the phosphor-containing LED device may contain a colorant, if necessary, in addition to the phosphor in order to adjust the emission color and the shape of the spectral spectrum of the emitted light. Further, an additive such as a light diffusing material may be included in order to reduce the color unevenness of the mixed light. The colorant does not emit fluorescence and is used as a component for adjusting the emission color by absorbing light having a predetermined wavelength. Specific examples of such colorants include organic or inorganic pigments such as chrome green, chromium oxide, pigment green B, malakite green lake, fanal yellow green G, and phthalocyanine green, titanium oxide, and talc as green pigments. , White pigment of barium sulfate, black pigment such as carbon black can be mentioned. Examples of the light diffusing material include silica and calcium carbonate.

蛍光体層を形成する場合、その厚さは特に限定されないが、例えば20〜3000μm、さらには50〜1000μmであることが好ましく、100〜500μmであることが特に好ましい。また、蛍光体層に分散される蛍光体の割合は、蛍光体の種類や蛍光体層の厚さ等によって適宜調整されるが、一例としては、蛍光体層の厚さが100μmのとき、光透過性樹脂100質量部に対して、10〜300質量部、さらには、50〜200質量部配合することが好ましい。 When the phosphor layer is formed, its thickness is not particularly limited, but is preferably, for example, 20 to 3000 μm, more preferably 50 to 1000 μm, and particularly preferably 100 to 500 μm. The proportion of the phosphor dispersed in the phosphor layer is appropriately adjusted depending on the type of the phosphor, the thickness of the phosphor layer, and the like. As an example, when the thickness of the phosphor layer is 100 μm, light is used. It is preferable to blend 10 to 300 parts by mass, more preferably 50 to 200 parts by mass with respect to 100 parts by mass of the permeable resin.

図2(a)に示す、蛍光体含有LED装置10BGは、430〜490nmの範囲に蛍光ピーク波長を有する蛍光体3BGを含む蛍光体含有キャップ9BGを備える。また、図2(b)に示す、蛍光体含有LED装置10Gは、490〜530nmの範囲に蛍光ピーク波長を有する蛍光体3Gを含む蛍光体含有キャップ9Gを備える。また、図2(c)に示す、蛍光体含有LED装置10Yは、500〜590nmの範囲に蛍光ピーク波長を有する蛍光体3Yを含む蛍光体含有キャップ9Yを備える。また図2(d)に示す、蛍光体含有LED装置10Rは、580〜680nmの範囲に蛍光ピーク波長を有する蛍光体3Rを含む蛍光体含有キャップ9Rを備える。 The phosphor-containing LED device 10BG shown in FIG. 2A includes a phosphor-containing cap 9BG including a phosphor 3BG having a fluorescence peak wavelength in the range of 430 to 490 nm. Further, the phosphor-containing LED device 10G shown in FIG. 2B includes a phosphor-containing cap 9G including a phosphor 3G having a fluorescence peak wavelength in the range of 490 to 530 nm. Further, the phosphor-containing LED device 10Y shown in FIG. 2C includes a phosphor-containing cap 9Y containing a phosphor 3Y having a fluorescence peak wavelength in the range of 500 to 590 nm. Further, the phosphor-containing LED device 10R shown in FIG. 2D includes a phosphor-containing cap 9R including a phosphor 3R having a fluorescence peak wavelength in the range of 580 to 680 nm.

蛍光体3BGは、例えば青色LED素子の発光により励起されて、430〜490nmの範囲にピーク波長を有する青〜緑系の光を発する。このような蛍光体の具体例としては、例えば、シリケート系蛍光体、LuAG系蛍光体(LAG蛍光体)、アルミネート系蛍光体、ユーロピウム賦活ストロンチウム・アルミネイト系蛍光体(SAE蛍光体)、β−SiAlON:Eu等のサイアロン系の蛍光体、等が挙げられる。 The phosphor 3BG is excited by, for example, light emission from a blue LED element to emit blue to green light having a peak wavelength in the range of 430 to 490 nm. Specific examples of such a phosphor include, for example, a silicate-based phosphor, a LuAG-based phosphor (LAG phosphor), an aluminate-based phosphor, a europium-activated strontium-aluminate-based phosphor (SAE phosphor), and β. -SiAlON: Sialone-based phosphors such as Eu, and the like can be mentioned.

また、蛍光体3Gは、例えば青色LED素子の発光により励起されて、490〜530nmの範囲にピーク波長を有する緑〜黄系の光を発する。このような蛍光体の具体例としては、例えば、シリケート系蛍光体、イットリウムアルミニウムガーネット系蛍光体(YAG蛍光体)、LuAG系蛍光体、アルミネート系蛍光体、β−SiAlON:Eu等のサイアロン系蛍光体、等が挙げられる。 Further, the phosphor 3G is excited by, for example, light emission of a blue LED element, and emits green to yellow light having a peak wavelength in the range of 490 to 530 nm. Specific examples of such phosphors include silicate-based phosphors, yttrium aluminum garnet-based phosphors (YAG phosphors), LuAG-based phosphors, phosphorate-based phosphors, and sialone-based phosphors such as β-SiAlON: Eu. Phosphors, etc. may be mentioned.

また、蛍光体3Yは、例えば青色LED素子の発光により励起されて、500〜590nmの範囲にピーク波長を有する黄系の光を発する。このような蛍光体の具体例としては、例えば、セリウム付活YAG系蛍光体等が挙げられる。 Further, the phosphor 3Y is excited by, for example, light emission of a blue LED element to emit yellowish light having a peak wavelength in the range of 500 to 590 nm. Specific examples of such a fluorescent substance include an active YAG-based fluorescent substance with cerium.

また、蛍光体3Rは、例えば青色LED素子の発光により励起されて、580〜680nmの範囲にピーク波長を有する赤系の光を発する。このような蛍光体の具体例としては、例えば、窒化物系蛍光体、シリケート系蛍光体、(Sr,Ca)CaAlSiN3:Eu、CaAlSiN3:Eu等のカズン系蛍光体、サイアロン系蛍光体、等が挙げられる。 Further, the phosphor 3R is excited by, for example, light emission of a blue LED element, and emits reddish light having a peak wavelength in the range of 580 to 680 nm. Specific examples of such a phosphor include a nitride-based phosphor, a silicate-based phosphor, a Cousin-based phosphor such as (Sr, Ca) CaAlSiN 3 : Eu, and CaAlSiN 3 : Eu, and a sialone-based phosphor. And so on.

本実施形態の第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置にそれぞれ含まれる蛍光体は、互いに蛍光ピーク波長が10nm以上離れている。その結果、第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置からの各発光の分光分布に含まれる蛍光ピーク波長が互いに10nm以上離れている。第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置からの各発光の分光分布に含まれる蛍光ピーク波長が互いに10nm以上離れていることにより、照明光の分光分布を調整でき、幅広い波長域で連続した分光分布を有する多様な色の光に調整できる。第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置の蛍光ピーク波長は、互いに10nm以上離れており、好ましくは20nm以上、さらに好ましくは40nm以上離れていることがより、幅広い波長域で連続した分光分布を有する多様な色の光に調整できる点から好ましい。また、第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置の蛍光ピーク波長が離れすぎている場合には蛍光体の分光分布の発光強度が低い領域が照明装置からの発光スペクトルに顕著に表れやすくなるために、200nm以下、さらには、100nm以下の範囲で蛍光ピーク波長が離れていることが好ましい。 The fluorescence peak wavelengths of the first phosphor-containing LED device and the second phosphor-containing LED device of the present embodiment are separated from each other by 10 nm or more. As a result, the fluorescence peak wavelengths included in the spectral distribution of each emission from the first phosphor-containing LED device and the second phosphor-containing LED device are separated from each other by 10 nm or more. Since the fluorescence peak wavelengths included in the spectral distribution of each emission from the first phosphor-containing LED device and the second phosphor-containing LED device are separated from each other by 10 nm or more, the spectral distribution of the illumination light can be adjusted and is wide. It can be adjusted to various colors of light having a continuous spectral distribution in the wavelength range. The fluorescence peak wavelengths of the first phosphor-containing LED device and the second phosphor-containing LED device are separated from each other by 10 nm or more, preferably 20 nm or more, and more preferably 40 nm or more, which is a wider wavelength range. It is preferable because it can be adjusted to various colors of light having a continuous spectral distribution. Further, when the fluorescence peak wavelengths of the first phosphor-containing LED device and the second phosphor-containing LED device are too far apart, the region where the emission intensity of the spectral distribution of the phosphor is low becomes the emission spectrum from the illumination device. It is preferable that the fluorescence peak wavelengths are separated in the range of 200 nm or less, more preferably 100 nm or less, in order to make the appearance remarkably easy.

ここで蛍光ピーク波長とは、蛍光体の蛍光スペクトルの強度が最も高い蛍光ピークの強度に対応する波長と定義される。また、蛍光ピーク波長の半値幅とは、蛍光ピーク波長の相対強度が0.5になる波長の幅と定義される。 Here, the fluorescence peak wavelength is defined as a wavelength corresponding to the intensity of the fluorescence peak having the highest intensity of the fluorescence spectrum of the phosphor. The half-value width of the fluorescence peak wavelength is defined as the width of the wavelength at which the relative intensity of the fluorescence peak wavelength becomes 0.5.

また、本実施形態の第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置からの各発光の蛍光ピーク波長は、半値幅が何れも50nm以上である。第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置の蛍光ピーク波長の半値幅が何れも50nm以上であることにより、幅広い波長域で連続した分光分布を有する多様な色の光に調整できる。蛍光ピーク波長の半値幅は、50nm以上であり、140nm以下であることが蛍光体の入手容易性等の点から好ましい。 Further, the fluorescence peak wavelength of each emission from the first phosphor-containing LED device and the second phosphor-containing LED device of the present embodiment has a half width of 50 nm or more. Since the half-value width of the fluorescence peak wavelength of the first phosphor-containing LED device and the second phosphor-containing LED device is 50 nm or more, it is possible to obtain light of various colors having a continuous spectral distribution in a wide wavelength range. Can be adjusted. The full width at half maximum of the fluorescence peak wavelength is preferably 50 nm or more and 140 nm or less from the viewpoint of easy availability of the phosphor.

430〜490nmの範囲に蛍光ピーク波長を有する蛍光体を含む蛍光体含有LED装置は、青色LED素子から発光される光と蛍光体が発する蛍光が混色されて、緑味の青色の光等を発することができる。 A phosphor-containing LED device containing a phosphor having a fluorescence peak wavelength in the range of 430 to 490 nm emits greenish blue light or the like by mixing the light emitted from the blue LED element and the fluorescence emitted by the phosphor. be able to.

また、490〜530nmの範囲に蛍光ピーク波長を有する蛍光体を含む蛍光体含有LED装置は、青色LED素子から発光される光と蛍光体が発する蛍光が混色されて、黄緑色や緑味の青色、緑青味を帯びた白色等の光を発することができる。 Further, in a phosphor-containing LED device containing a phosphor having a fluorescence peak wavelength in the range of 490 to 530 nm, the light emitted from the blue LED element and the fluorescence emitted by the phosphor are mixed to form a yellowish green or greenish blue color. , Can emit light such as white with a greenish bluish tint.

また、500〜590nmの範囲にピーク波長を有する蛍光体を含む蛍光体含有LED装置は、青色LED素子から発光される光と蛍光体が発する蛍光が混色されて、黄色や白色等の光を発することができる。 Further, a phosphor-containing LED device containing a phosphor having a peak wavelength in the range of 500 to 590 nm emits light such as yellow or white by mixing the light emitted from the blue LED element and the fluorescence emitted by the phosphor. be able to.

また、580〜680nmの範囲に蛍光ピーク波長を有する蛍光体を含む蛍光体含有LED装置は、青色LED素子から発光される光と蛍光体が発する蛍光が混色されて、赤色やピンク、紫色等の光を発することができる。 Further, in a phosphor-containing LED device containing a phosphor having a fluorescence peak wavelength in the range of 580 to 680 nm, the light emitted from the blue LED element and the fluorescence emitted by the phosphor are mixed to produce red, pink, purple or the like. Can emit light.

以上、青色LED素子を含む青色LED装置、蛍光体及び青色LED装置に各色の蛍光体を含む蛍光体含有LED装置について説明した。なお、本実施形態で用いられる蛍光体含有LED装置としては、350〜420nmの範囲に発光ピーク波長を有する近紫外LED素子を含む近紫外LED装置を用いた、近紫外LED素子からの発光に励起されて410〜470nmの範囲にピーク波長を有する青〜青緑の光を発する蛍光体を含む蛍光体含有LED装置を用いてもよい。近紫外LED装置を用いた蛍光体含有LED装置は、青色LED装置を用いた蛍光体含有LED装置と組み合わせて用いてもよい。 The blue LED device including the blue LED element, the phosphor, and the phosphor-containing LED device containing the phosphor of each color in the blue LED device have been described above. The phosphor-containing LED device used in the present embodiment is excited by light emission from the near-ultraviolet LED element using a near-ultraviolet LED device including a near-ultraviolet LED element having an emission peak wavelength in the range of 350 to 420 nm. A phosphor-containing LED device containing a phosphor that emits blue to blue-green light having a peak wavelength in the range of 410 to 470 nm may be used. The phosphor-containing LED device using the near-ultraviolet LED device may be used in combination with the phosphor-containing LED device using the blue LED device.

近紫外LED素子からの発光に励起されて410〜470nmの範囲に蛍光ピーク波長を有する光を発する蛍光体の具体例として、ユーロピウム賦活ストロンチウム・アルミネイト系蛍光体(SAE蛍光体)、タングステン酸塩系蛍光体、りん酸塩系蛍光体、等が挙げられる。 Specific examples of phosphors that are excited by light emission from near-ultraviolet LED elements and emit light having a fluorescence peak wavelength in the range of 410 to 470 nm include europium-activated strontium-aluminate phosphors (SAE phosphors) and tungstates. Examples thereof include a system phosphor, a phosphate system phosphor, and the like.

[照明装置]
本実施形態の照明装置は、各発光の分光分布に含まれる蛍光ピーク波長が互いに10nm以上離れている、互いに異なる色の光を発する、第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置を少なくとも含む、2種以上の蛍光体含有LED装置を含む。第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置は、好ましくはそれぞれ複数である。そして、第1の蛍光体含有LED装置と第2の蛍光体含有LED装置とは、各発光の分光分布に含まれる蛍光ピーク波長が互いに10nm以上離れており、各蛍光ピーク波長の半値幅が50nm以上である。そして、照明装置は、各蛍光体含有LED装置に供給する電力を制御する電力制御部を備える。次に、このような照明装置について、図面を参照して説明する。
[Lighting device]
The lighting device of the present embodiment contains a first phosphor-containing LED device and a second phosphor-containing LED device that emit light of different colors in which the fluorescence peak wavelengths included in the spectral distribution of each emission are separated from each other by 10 nm or more. Includes two or more phosphor-containing LED devices, including at least an LED device. The number of the first phosphor-containing LED device and the second phosphor-containing LED device is preferably plural. The fluorescence peak wavelengths included in the spectral distribution of each emission of the first phosphor-containing LED device and the second phosphor-containing LED device are separated from each other by 10 nm or more, and the half-value width of each fluorescence peak wavelength is 50 nm. That is all. The lighting device includes a power control unit that controls the power supplied to each phosphor-containing LED device. Next, such a lighting device will be described with reference to the drawings.

図3は、実施形態の照明装置100の模式説明図である。図3において、破線で示した部分は内部構造を示している。図3に示すように、照明装置100は、天井Wに固定された照明装置本体20と、照明装置本体20に接続された指示部50とを備える。 FIG. 3 is a schematic explanatory view of the lighting device 100 of the embodiment. In FIG. 3, the part shown by the broken line shows the internal structure. As shown in FIG. 3, the lighting device 100 includes a lighting device main body 20 fixed to the ceiling W and an instruction unit 50 connected to the lighting device main body 20.

照明装置本体20は、積分球筐体15と、積分球筐体15の光取り出し口として設けられた開口Fに配された拡散部材16と、を備える。そして、積分球筐体15の内壁面に、均等な間隔で4か所に互いに異なる種類の蛍光体含有LED装置を実装したLED実装基板11(11BG,11G,11Y,11R)が配されている。積分球筐体15の内壁面には、光を拡散させるための反射膜が形成されている。また、照明装置本体20にはLED実装基板11に電力を供給するための電源30が接続されている。LED実装基板11及び電源30は後述するような照明機構40を形成する。なお、拡散部材とは、照明用拡散板であり、例えば、アクリル製乳白板などが挙げられる。各蛍光体含有LED装置を発光させることにより、拡散部材16を通過した混合色の光Mが取り出される。 The lighting device main body 20 includes an integrating sphere housing 15 and a diffusion member 16 arranged in an opening F provided as a light outlet of the integrating sphere housing 15. Then, on the inner wall surface of the integrating sphere housing 15, LED mounting boards 11 (11BG, 11G, 11Y, 11R) on which different types of phosphor-containing LED devices are mounted at four places at equal intervals are arranged. .. A reflective film for diffusing light is formed on the inner wall surface of the integrating sphere housing 15. Further, a power supply 30 for supplying electric power to the LED mounting board 11 is connected to the lighting device main body 20. The LED mounting board 11 and the power supply 30 form a lighting mechanism 40 as described later. The diffusion member is a diffusion plate for lighting, and examples thereof include an acrylic milk white plate. By causing each phosphor-containing LED device to emit light, the mixed color light M that has passed through the diffusing member 16 is extracted.

照明装置100は、高い混色性能を示す積分球筐体15を備えているが、各LED装置からの発光を混色できる限り、このような形状に限られない。例えば、積分球筐体以外での各LED装置からの発光を混色する形態として、レンズや導光体などの光学部材、拡散板や反射板などの拡散反射部材などが挙げられる。また、LED実装基板11は、異なる種類の蛍光体含有LED装置を含むLED装置ごとにLED実装基板を設けてもよいし、1つの基板上で電力が制御される互いに異なる種類の蛍光体含有LED装置を実装した実装基板を用いてもよく、それらを組み合わせることによって照明装置を構成してもよい。 The lighting device 100 includes an integrating sphere housing 15 that exhibits high color mixing performance, but is not limited to such a shape as long as the light emitted from each LED device can be mixed. For example, as a form in which light emitted from each LED device other than the integrating sphere housing is mixed, an optical member such as a lens or a light guide, a diffuse reflection member such as a diffuser plate or a reflector, and the like can be mentioned. Further, the LED mounting substrate 11 may be provided with an LED mounting substrate for each LED device including different types of phosphor-containing LED devices, or different types of phosphor-containing LEDs whose power is controlled on one substrate. A mounting board on which the device is mounted may be used, or a lighting device may be configured by combining them.

11BGは、蛍光体3BGを含む蛍光体含有LED装置10BGが複数個,実装されている第1LED実装基板である。11Gは、蛍光体3Gを含む蛍光体含有LED装置10Gが複数個,実装されている第2LED実装基板である。11Yは、蛍光体3Yを含む蛍光体含有LED装置10Yが複数個,実装されている第3LED実装基板である。11Rは、蛍光体3Rを含む蛍光体含有LED装置10Rが複数個,実装されている第4LED実装基板である。図4は、LED実装基板の一例の上面模式図を示す。各LED実装基板に実装される蛍光体含有LED装置の数及び配置は、用途や、各蛍光体含有LED装置の発光強度等に応じて、適宜、調整される。 Reference numeral 11BG is a first LED mounting substrate on which a plurality of phosphor-containing LED devices 10BG including the phosphor 3BG are mounted. Reference numeral 11G is a second LED mounting substrate on which a plurality of phosphor-containing LED devices 10G including the phosphor 3G are mounted. Reference numeral 11Y is a third LED mounting substrate on which a plurality of phosphor-containing LED devices 10Y including the phosphor 3Y are mounted. Reference numeral 11R is a fourth LED mounting substrate on which a plurality of phosphor-containing LED devices 10R including the phosphor 3R are mounted. FIG. 4 shows a schematic top view of an example of the LED mounting substrate. The number and arrangement of the phosphor-containing LED devices mounted on each LED mounting substrate are appropriately adjusted according to the application, the emission intensity of each phosphor-containing LED device, and the like.

各蛍光体含有LED装置はLED実装基板に1個ずつ実装されていてもよく、複数個実装されていてもよい。複数の各蛍光体含有LED装置の数としては、例えば、2〜200個、さらには、2〜100個、が挙げられる。 Each phosphor-containing LED device may be mounted one by one on the LED mounting substrate, or may be mounted in plurality. Examples of the number of each of the plurality of phosphor-containing LED devices include 2 to 200, and further 2 to 100.

各LED装置においては、各LED実装基板に形成された回路の実装部に、各LED装置のアノード側に電源の正極側、カソード側に電源の負極側が接続される。各LED実装基板に実装されたLED装置は好ましくは並列接続されている。 In each LED device, the positive electrode side of the power supply is connected to the anode side of each LED device, and the negative electrode side of the power supply is connected to the cathode side to the mounting portion of the circuit formed on each LED mounting substrate. The LED devices mounted on each LED mounting board are preferably connected in parallel.

また、電源30としては、例えば、家庭用のAC100V交流電源や、乗物用のバッテリー等を一次電源とする電源が挙げられる。各LED装置には、直流電圧に変換された電流として電力が供給される。 Further, examples of the power supply 30 include a household AC100V AC power supply and a power supply using a vehicle battery or the like as a primary power supply. Electric power is supplied to each LED device as a current converted into a DC voltage.

一方、指示部50は、各LED実装基板11(11BG,11G,11Y,11R)のそれぞれに供給される電力を指示する。指示部50は、各LED実装基板11(11BG,11G,11Y,11R)に対応するチャンネル(ch1〜4)を備える。指示部50には、チャンネル(ch1〜4)で設定された電力量を電気信号としてそれぞれ指示するための信号線L1〜L4が接続されている。また、信号線L1〜L4の他端は、各LED実装基板11(11BG,11G,11Y,11R)の信号入力端子に接続されている。そして、各ボリュームつまみ51〜54をそれぞれ回すことによって、各LED実装基板11に供給される電力が設定される。電力量に対応する電流量が、チャンネル(ch1〜4)に対応する電流値メーター55〜58に表示される。 On the other hand, the indicator unit 50 instructs the electric power supplied to each of the LED mounting boards 11 (11BG, 11G, 11Y, 11R). The indicator unit 50 includes channels (ch1 to 4) corresponding to each LED mounting board 11 (11BG, 11G, 11Y, 11R). Signal lines L1 to L4 for instructing the electric energy set in the channels (ch1 to 4) as electric signals are connected to the instruction unit 50. The other ends of the signal lines L1 to L4 are connected to the signal input terminals of the LED mounting boards 11 (11BG, 11G, 11Y, 11R). Then, by turning each of the volume knobs 51 to 54, the electric power supplied to each LED mounting board 11 is set. The amount of current corresponding to the amount of electric power is displayed on the current value meters 55 to 58 corresponding to the channels (ch1 to 4).

なお、指示部50は各ボリュームつまみ51〜54をそれぞれ回すことによって、各LED実装基板11に供給される電力を調整するものであるが、各LED装置に供給される電力を電圧値で指示したり、相対値による電力量で間接的に指示したり、光の分光分布や色味と関連付けて供給される電力量を間接的に指示したりするものであってもよい。 The indicator 50 adjusts the electric power supplied to each LED mounting board 11 by turning the volume knobs 51 to 54, respectively, and indicates the electric power supplied to each LED device by a voltage value. Alternatively, it may be indirectly instructed by the amount of electric power based on a relative value, or may be indirectly instructed by the amount of electric power supplied in association with the spectral distribution or tint of light.

また、照明装置100においては、照明装置本体20と指示部50とは信号線L1〜L4を介した有線接続により信号が送信されている。このような信号線による通信の代わりに、赤外線通信,インターネット回線を介するITC技術を用いた通信,Wi-fi通信,Bluetooth通信等の無線通信や、音声認識機能を用いた音声通信を用いてもよい。また、指示部としては、専用機器端末の代わりに、上述のような電力量を直接または間接的に指示できるアプリケーションをインストールしたスマートフォンやパーソナルコンピューター等の電子機器端末を用いてもよい。また、人工知能(AI)やIoT技術を使用することにより、集積されたデータに基づいて、例えば、デスクワークをする場合には視認性が良い分光分布の照明光を照射する等のように、使用環境に応じて照明装置のユーザーが求める最適な光の分光分布を自動調整してもよい。 Further, in the lighting device 100, a signal is transmitted between the lighting device main body 20 and the indicator unit 50 by a wired connection via signal lines L1 to L4. Instead of such signal line communication, infrared communication, communication using ITC technology via the Internet line, wireless communication such as Wi-fi communication and Bluetooth communication, and voice communication using a voice recognition function may be used. good. Further, as the instruction unit, instead of the dedicated device terminal, an electronic device terminal such as a smartphone or a personal computer in which an application capable of directly or indirectly instructing the amount of power as described above may be used may be used. In addition, by using artificial intelligence (AI) or IoT technology, it is used, for example, by irradiating illumination light with a spectral distribution with good visibility when doing desk work, based on the accumulated data. The optimum spectral distribution of light required by the user of the luminaire may be automatically adjusted according to the environment.

人工知能(AI)の機能を有した照明装置の場合、例えば、照明装置の構成中に人工知能を処理部として設け、ユーザーの眼球運動や心拍などの生体情報をIoT測定したデータから、ユーザーが時間ごとに設定する光のパターンなどのデータからクラス分類や回帰を行い、人工知能処理部がユーザーの視認性や疲労度などの認知感性情報に係る特徴量を抽出したうえで、ルールやパターンを導入する処理部にて処理し、電力制御部へ電力を調整する指示を出すことで、ユーザーにとって快適な光環境をつくりだす光の分光分布を自動調整することが挙げられる。また、IoT技術を使用する場合は、処理部がネットワークに接続され、照明装置が設置されている室内のパソコンやエアコン等の他の装置や機器とネットワーク情報を取得し、他の装置や機器と連動して動作してもよい。 In the case of a lighting device having an artificial intelligence (AI) function, for example, an artificial intelligence is provided as a processing unit in the configuration of the lighting device, and the user can perform IoT measurement of biological information such as eye movements and heartbeats of the user. Class classification and regression are performed from data such as light patterns set for each hour, and the artificial intelligence processing unit extracts features related to cognitive sensation information such as user visibility and fatigue, and then rules and patterns are created. It is possible to automatically adjust the spectral distribution of light that creates a comfortable lighting environment for the user by processing in the processing unit to be introduced and issuing an instruction to adjust the power to the power control unit. In addition, when using IoT technology, the processing unit is connected to the network, and network information is acquired with other devices and devices such as personal computers and air conditioners in the room where the lighting device is installed, and with other devices and devices. It may operate in conjunction with each other.

次に、照明装置本体20に組み込まれたLED実装基板11及び電源30等を備える照明機構40について説明する。図5は、照明機構40の概略構成図を示す。 Next, the lighting mechanism 40 including the LED mounting board 11 incorporated in the lighting device main body 20, the power supply 30, and the like will be described. FIG. 5 shows a schematic configuration diagram of the lighting mechanism 40.

照明機構40においては、第1LED実装基板11BG,第2LED実装基板11G,第3LED実装基板11Y,及び第4LED実装基板11Rのそれぞれに電力制御部であるLEDドライバ25(25BG,25G,25Y,25R)が実装されている。LEDドライバ25BG,25G,25Y,25Rは、それぞれ独立して対応するLED実装基板11BG,11G,11Y,11Rに供給される電力を制御する。電力制御部は、LED実装基板に供給される電力を制御する機能を有していればよく、LEDドライバ以外にもマイコン(MCU)、手動で可変抵抗を調整等でもよく、適宜選択することができる。 In the lighting mechanism 40, the LED drivers 25 (25BG, 25G, 25Y, 25R) that are power control units for the first LED mounting board 11BG, the second LED mounting board 11G, the third LED mounting board 11Y, and the fourth LED mounting board 11R, respectively. Is implemented. The LED drivers 25BG, 25G, 25Y, and 25R independently control the power supplied to the corresponding LED mounting boards 11BG, 11G, 11Y, and 11R. The power control unit may have a function of controlling the power supplied to the LED mounting board, and in addition to the LED driver, a microcomputer (MCU) or manually adjusting the variable resistance may be selected as appropriate. can.

また、各LED実装基板には、各蛍光体含有LED装置が複数個,並列接続されている。電源30から電力制御部25を介して各LED実装基板へ電力が供給される。LEDドライバは、LEDをON/OFFする回路やLED装置を点灯するために電流の大小を制御して発光を制御する駆動モジュールである。LEDドライバは、例えば、明るさの制御を行うためのPWM制御回路や複数のLED装置を点灯するためのダイナミック点灯制御回路等を備える。また、LEDドライバのPWM制御によれば、1/fゆらぎを示す点灯に制御することもできる。 Further, a plurality of each phosphor-containing LED device are connected in parallel to each LED mounting substrate. Power is supplied from the power source 30 to each LED mounting board via the power control unit 25. The LED driver is a drive module that controls light emission by controlling the magnitude of the current in order to light a circuit for turning on / off an LED or an LED device. The LED driver includes, for example, a PWM control circuit for controlling brightness, a dynamic lighting control circuit for lighting a plurality of LED devices, and the like. Further, according to the PWM control of the LED driver, it is possible to control the lighting indicating 1 / f fluctuation.

各LEDドライバ25のそれぞれには、指示部50から各LED実装基板11に供給される電力を指示する信号を送信される信号線L1〜L4が接続されている。具体的には、LEDドライバ25BGの入力端子DIMにはL1が、LEDドライバ25Gの入力端子DIMにはL2が、LEDドライバ25Yの入力端子DIMにはL3が、LEDドライバ25Rの入力端子DIMにはL4が接続されている。 Signal lines L1 to L4 are connected to each of the LED drivers 25 to transmit a signal indicating the power supplied from the indicator 50 to each LED mounting board 11. Specifically, L1 is used for the input terminal DIM of the LED driver 25BG, L2 is used for the input terminal DIM of the LED driver 25G, L3 is used for the input terminal DIM of the LED driver 25Y, and L3 is used for the input terminal DIM of the LED driver 25R. L4 is connected.

指示部50はボリュームつまみの操作に応答した指示を信号として各LEDドライバ25に送信する。各LEDドライバ25は信号を入力端子DIMを通じて受信して、各LED実装基板11BG,11G,11Y,11Rに供給される電流等を変化させて供給される電力をそれぞれ制御する。電力を制御する方法としては、各LED装置を定電流駆動してPWM制御によりDuty比を各々変化させる定電流制御や、定電圧制御が挙げられる。供給される電流量は電流センス抵抗Rfbにより検出される。 The instruction unit 50 transmits an instruction in response to the operation of the volume knob to each LED driver 25 as a signal. Each LED driver 25 receives a signal through the input terminal DIM, and controls the electric power supplied by changing the current and the like supplied to the LED mounting boards 11BG, 11G, 11Y, and 11R. Examples of the method of controlling the electric power include constant current control in which each LED device is driven by a constant current and the duty ratio is changed by PWM control, and constant voltage control. The amount of current supplied is detected by the current sense resistor R fb.

各LED実装基板11に供給される電力を指示部50のボリュームつまみで設定して、各LEDドライバ25が各LED実装基板に実装されたLED装置への電力の供給量を変化させることにより、各LED実装基板に実装されたLED装置からの発光の強度が変化する。そして、各LED実装基板からの発光が照明装置本体20の積分球筐体15の内部で拡散及び混色され、拡散部材16を通過して光が取り出される。そして、さらに、指示部50の各ボリュームつまみ51〜54をそれぞれ回すことによって、照明装置100からの発光スペクトルの分光分布が変化する。 The power supplied to each LED mounting board 11 is set by the volume knob of the indicator unit 50, and each LED driver 25 changes the amount of power supplied to the LED device mounted on each LED mounting board. The intensity of light emission from the LED device mounted on the LED mounting substrate changes. Then, the light emitted from each LED mounting substrate is diffused and mixed inside the integrating sphere housing 15 of the lighting device main body 20, and the light is taken out through the diffusion member 16. Further, by turning each volume knob 51 to 54 of the indicator unit 50, the spectral distribution of the emission spectrum from the lighting device 100 is changed.

上述した照明装置100においては、第1の蛍光体含有LED装置及び第2の蛍光体含有LED装置を含む2種以上の蛍光体含有LED装置として、4種類の蛍光体含有LED装置を含む例を説明した。2種以上の蛍光体含有LED装置に含まれる蛍光体含有LED装置の種類としては、4種類に限られず、5種類以上、または、2〜3種類であってもよい。このとき、蛍光体含有LED装置の種類が多いほど、照明光の分光分布の波長領域毎の強度を細かく調整することができる。また、上述したような2種以上の蛍光体含有LED装置を含む限り、蛍光体を有しない青色LED装置や拡散層を備える青色LED装置等を用いてもよい。 In the above-mentioned lighting device 100, an example in which four types of phosphor-containing LED devices are included as two or more types of phosphor-containing LED devices including a first phosphor-containing LED device and a second phosphor-containing LED device. explained. The type of the phosphor-containing LED device included in the two or more types of phosphor-containing LED devices is not limited to four types, and may be five or more types, or two or three types. At this time, as the number of types of the phosphor-containing LED device increases, the intensity of the spectral distribution of the illumination light for each wavelength region can be finely adjusted. Further, as long as the above-mentioned two or more types of phosphor-containing LED devices are included, a blue LED device having no phosphor, a blue LED device having a diffusion layer, or the like may be used.

また、照明制御機構の他の例として、例えば、図6に示すような照明制御機構41も例示できる。照明制御機構41においては、一つのLED実装基板11上に、それぞれグループ化されて電力量が制御されるそれぞれ複数の蛍光体含有LED装置10BG、複数の蛍光体含有LED装置10G、複数の蛍光体含有LED装置10Y、複数の蛍光体含有LED装置10Rが実装されている。そして、各グループの複数の蛍光体含有LED装置(10BG,10G,10Y,10R)は、一つのLEDドライバ25により、供給される電力量がそれぞれ独立して制御される。具体的には、信号線L1〜L4を介して送信される指示部50からの電力を指示する信号を受信したLEDドライバ25は、蛍光体含有LED装置10BGの制御された電流M1,蛍光体含有LED装置10Gの制御された電流M1,蛍光体含有LED装置10Yの制御された電流M3,蛍光体含有LED装置10Rの制御された電流M4,をそれぞれ供給する。すなわち、信号線L1〜L4を介して送信された指示部50からの電力を指示する信号に応じて、LEDドライバ25は各グループごとの複数の蛍光体含有LED装置(10BG,10G,10Y,10R)にそれぞれ指示された量に応じた電流を供給する。 Further, as another example of the lighting control mechanism, for example, the lighting control mechanism 41 as shown in FIG. 6 can be exemplified. In the lighting control mechanism 41, a plurality of phosphor-containing LED devices 10BG, a plurality of phosphor-containing LED devices 10G, and a plurality of phosphors, each of which is grouped and the amount of power is controlled on one LED mounting substrate 11. A containing LED device 10Y and a plurality of phosphor-containing LED devices 10R are mounted. The amount of power supplied to each of the plurality of phosphor-containing LED devices (10BG, 10G, 10Y, 10R) of each group is independently controlled by one LED driver 25. Specifically, the LED driver 25 that has received the signal instructing the power from the instruction unit 50 transmitted via the signal lines L1 to L4 contains the controlled current M1 and the phosphor in the phosphor-containing LED device 10BG. A controlled current M1 of the LED device 10G, a controlled current M3 of the phosphor-containing LED device 10Y, and a controlled current M4 of the phosphor-containing LED device 10R are supplied. That is, the LED driver 25 has a plurality of phosphor-containing LED devices (10BG, 10G, 10Y, 10R) for each group in response to the signal instructing the power from the indicator unit 50 transmitted via the signal lines L1 to L4. ), And the current corresponding to the specified amount is supplied.

また、照明制御機構の他の例として、例えば、図7に示すような照明制御機構42も例示できる。照明制御機構42においては、一つのLED実装基板11上に、それぞれグループ化されて電力量が制御されるそれぞれ複数の蛍光体含有LED装置10BG、複数の蛍光体含有LED装置10G、複数の蛍光体含有LED装置10Y、複数の蛍光体含有LED装置10Rが実装されている。そして、各グループの複数の蛍光体含有LED装置(10BG,10G,10Y,10R)は、マイコン26により、供給される電力量がそれぞれ独立して制御される。具体的には、信号線L1〜L4を介して送信される指示部50からの電力を指示する信号を受信したマイコン26は、蛍光体含有LED装置10BGの制御された電流M1,蛍光体含有LED装置10Gの制御された電流M1,蛍光体含有LED装置10Yの制御された電流M3,蛍光体含有LED装置10Rの制御された電流M4,をそれぞれ供給する。すなわち、信号線L1〜L4を介して送信された指示部50からの電力を指示する信号に応じて、マイコン26は各グループごとの複数の蛍光体含有LED装置(10BG,10G,10Y,10R)にそれぞれ指示された量に応じた電流を供給する。 Further, as another example of the lighting control mechanism, for example, the lighting control mechanism 42 as shown in FIG. 7 can be exemplified. In the lighting control mechanism 42, a plurality of phosphor-containing LED devices 10BG, a plurality of phosphor-containing LED devices 10G, and a plurality of phosphors, each of which is grouped and the amount of power is controlled on one LED mounting substrate 11. A containing LED device 10Y and a plurality of phosphor-containing LED devices 10R are mounted. The amount of electric power supplied to each of the plurality of phosphor-containing LED devices (10BG, 10G, 10Y, 10R) of each group is independently controlled by the microcomputer 26. Specifically, the microcomputer 26 that has received the signal instructing the power from the instruction unit 50 transmitted via the signal lines L1 to L4 is the controlled current M1 of the phosphor-containing LED device 10BG and the phosphor-containing LED. A controlled current M1 of the device 10G, a controlled current M3 of the phosphor-containing LED device 10Y, and a controlled current M4 of the phosphor-containing LED device 10R are supplied. That is, in response to the signal instructing the electric power from the indicator unit 50 transmitted via the signal lines L1 to L4, the microcomputer 26 is a plurality of phosphor-containing LED devices (10BG, 10G, 10Y, 10R) for each group. A current is supplied according to the amount indicated for each.

このような照明装置によれば、互いに最大の蛍光ピーク波長が10nm以上離れており、最大の蛍光ピーク波長の半値幅が何れも50nm以上である蛍光体含有LED装置の発光強度を独立して調整できるために、照明光の分光分布を調整でき、ブロードで連続した分光分布に調整でき、多様な色の光に調整できる照明装置が得られる。 According to such a lighting device, the emission intensity of a phosphor-containing LED device in which the maximum fluorescence peak wavelengths are separated from each other by 10 nm or more and the half-value width of the maximum fluorescence peak wavelength is 50 nm or more is independently adjusted. Therefore, it is possible to obtain a lighting device that can adjust the spectral distribution of the illumination light, adjust the spectral distribution to be broad and continuous, and adjust the light to various colors.

以上説明した本実施形態の照明装置は、住宅用や病院などの施設用照明や間接照明,自動車、飛行機、船舶、電車等の輸送装置の内部照明,街路灯,照明モジュール等に好ましく用いられる。特には、輸送装置の内部照明として、自動車のルームランプやアンビエント照明やマップランプやバニティーランプやフットランプやライトガイド用光源、インストルメントパネルやステアリングスイッチやヒートコントロールパネルやパワーウィンドウスイッチやコンソールなどの操作用スイッチのバックライト光源として好ましく用いられる。 The lighting device of the present embodiment described above is preferably used for lighting for facilities such as houses and hospitals, indirect lighting, internal lighting for transportation devices such as automobiles, airplanes, ships, and trains, street lights, lighting modules, and the like. In particular, as internal lighting for transportation equipment, automobile room lamps, ambient lighting, map lamps, vanity lamps, foot lamps, light guide light sources, instrument panels, steering switches, heat control panels, power window switches, consoles, etc. It is preferably used as a backlight source for operation switches.

本実施形態の照明装置による調光は次のような状況で役に立つ。例えば、自動車への長時間の乗車は、運転者や同乗者に疲労感,緊張感,眠気,作業効率低下,退屈感等を与える。このような場合、運転者や同乗者の状況に合わせて、リラックスさせる光、緊張感を与える光、読書に適した光、覚醒する光等、に調整することにより、照明により運転者や同乗者の意識を変化させ、車内での運転以外の過ごし方の多様化に応じて、最適な照明光に調整することができる。 Dimming with the lighting device of this embodiment is useful in the following situations. For example, riding a car for a long time gives the driver and passengers a feeling of fatigue, tension, drowsiness, decreased work efficiency, and a feeling of boredom. In such a case, the driver or passenger can be illuminated by adjusting the light to relax, give tension, read, or awaken according to the situation of the driver or passenger. It is possible to change the consciousness of the vehicle and adjust the lighting to the optimum light according to the diversification of ways of spending other than driving in the car.

また、例えば、自然界に存在する月の色や、空の色,花弁の色,昆虫の色,水面の色,火の色,植物の色,キノコの色等の反射スペクトルを照明光で再現することにより、人の心理に親しみ感や冷静、不快感、危機感等の変化を与えることもできる。 In addition, for example, the reflection spectrum of the moon color, sky color, petal color, insect color, water surface color, fire color, plant color, mushroom color, etc. existing in the natural world is reproduced by illumination light. By doing so, it is possible to give a feeling of familiarity, calmness, discomfort, a sense of crisis, and the like to a person's psychology.

また、例えば、人の目に対して優しい光を提供することができる。人が光を感じるための目の視細胞としては、主に明るい環境で機能する錐体細胞と主に暗い環境で機能する桿体細胞という2種類の視細胞がある。視細胞は同一波長の光から連続的に刺激を受けた場合、眼精疲労や視細胞に悪影響を与える恐れがあることが知られている。従来の、赤色LED素子,緑色LED素子,青色LED素子の異なる色の光を発するLEDを組み合わせて構成された従来のフルカラーLED装置またはRGB3in1LED装置を用いた照明装置は、3原色の鋭いピークの発光を組み合わせて光の色が調整されるために、目に対する刺激が強いとされており、とくに、青色LED素子から発せられるブルーライトが網膜へ与える悪影響については、種々研究されている。また、色覚異常者は知覚できる光の波長範囲が狭い場合や、特定の波長領域の光を知覚することができない問題もあった。本実施形態の照明装置を用いれば、幅広い分光分布の照明光とすることで色覚異常者が知覚しやすい光に調整することもできる。 Further, for example, it is possible to provide a light that is gentle to the human eye. There are two types of photoreceptor cells in the eye for humans to sense light: pyramidal cells, which mainly function in a bright environment, and rod cells, which mainly function in a dark environment. It is known that when photoreceptor cells are continuously stimulated by light of the same wavelength, there is a risk of asthenopia and adverse effects on photoreceptor cells. A conventional full-color LED device or a lighting device using an RGB3in1 LED device, which is composed of a combination of conventional LEDs that emit light of different colors such as a red LED element, a green LED element, and a blue LED element, emits light with sharp peaks of three primary colors. It is said that the stimulus to the eyes is strong because the color of the light is adjusted by combining the above, and in particular, the adverse effects of the blue light emitted from the blue LED element on the retina have been studied in various ways. In addition, there is a problem that a person with color vision deficiency cannot perceive light in a specific wavelength region or when the wavelength range of light that can be perceived is narrow. By using the illumination device of the present embodiment, it is possible to adjust the light to be easily perceived by a person with color vision deficiency by using the illumination light having a wide spectral distribution.

また、本実施形態の照明装置にリラックス感や緊張感、危機感などを与える照明光に連動して、リラックス感や緊張感、危機感などを人に与える音や匂いを発する機能を有してもよく、それにより照明光で得られるリラックス感といった効果を高めることができる。 In addition, the lighting device of the present embodiment has a function of emitting sounds and odors that give a feeling of relaxation, tension, and a sense of crisis in conjunction with the illumination light that gives a feeling of relaxation, tension, and a sense of crisis. It is also good, and it is possible to enhance the effect such as a feeling of relaxation obtained by the illumination light.

なお、本照明装置に匂いや音など光以外に、人に対してリラックスや覚醒、危険などを促す機能を有していてもよい。本照明装置の照明光以外にも人の嗅覚や聴覚へユーザーが必要としている機能性を提供できることにより、例えばリラックス効果や覚醒効果、危険の認知効果が高まるためよい。 In addition to light such as odor and sound, the lighting device may have a function of promoting relaxation, awakening, danger, etc. to a person. In addition to the illumination light of this lighting device, it is preferable that the functionality required by the user can be provided to the human sense of smell and hearing, for example, the relaxing effect, the awakening effect, and the cognitive effect of danger are enhanced.

以下、本発明を実施例により具体的に説明する。なお、本発明の範囲は、実施例に何ら限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples. The scope of the present invention is not limited to the examples.

実施例において、10種の蛍光体A〜Jをシリコーンゴムにそれぞれ配合した蛍光体層を準備した。具体的には、10種の各蛍光体をそれぞれシリコーンゴムに均一分散させ、厚さ0.3mmの蛍光体層(蛍光体含有キャップ)を作製した。 In the example, a phosphor layer in which 10 kinds of phosphors A to J were mixed with silicone rubber was prepared. Specifically, each of the 10 types of phosphors was uniformly dispersed in silicone rubber to prepare a phosphor layer (fluorescent-containing cap) having a thickness of 0.3 mm.

なお、実施例においては、発光ピーク波長450nmで半値幅16nmの青色LED装置を用いた。具体的には、青色LED装置は日亜化学工業(株)製のNSSC063Aを用いた。そして、次のようにして、各LED装置の発光面に上述した10種の各蛍光体層のいずれかをシリコーン系接着剤で接着して表1に示す蛍光体含有LED装置A1〜J1を製造した。 In the examples, a blue LED device having an emission peak wavelength of 450 nm and a half-value width of 16 nm was used. Specifically, NSSC063A manufactured by Nichia Corporation was used as the blue LED device. Then, as follows, any of the above-mentioned 10 types of phosphor layers is adhered to the light emitting surface of each LED device with a silicone-based adhesive to manufacture the phosphor-containing LED devices A1 to J1 shown in Table 1. bottom.

Figure 2021142778
Figure 2021142778

蛍光体含有LED装置A1〜J1の発光スペクトルを図8に示す。 The emission spectra of the phosphor-containing LED devices A1 to J1 are shown in FIG.

そして、20×40mmで厚さ2mmのLED装置実装基板に、2×4個で合計8個のLED装置を実装した。各LED装置実装基板には、同種の上記いずれかの蛍光体含有LED装置または青色LED装置をグループ化して実装した。 Then, a total of 8 LED devices of 2 × 4 were mounted on the LED device mounting board having a thickness of 20 × 40 mm and a thickness of 2 mm. Any of the above-mentioned phosphor-containing LED devices or blue LED devices of the same type were grouped and mounted on each LED device mounting substrate.

そして、図3に示すような直径120mmの積分球の筐体であって、直径25mmの光取り出し口となる開口を有し、筐体の内壁面に均等な間隔で4か所に、4種類の何れかのLED装置を実装したLED実装基板を配した。なお、内壁面には硫酸バリウムからなる反射膜が形成されており、各LED装置からの発光は筐体の内壁面における反射により混合されて、拡散部材を経て開口から出射される。 A housing of an integrating sphere having a diameter of 120 mm as shown in FIG. 3, having openings serving as light outlets having a diameter of 25 mm, and four types at four locations at equal intervals on the inner wall surface of the housing. An LED mounting board on which any of the above LED devices was mounted was arranged. A reflective film made of barium sulfate is formed on the inner wall surface, and the light emitted from each LED device is mixed by the reflection on the inner wall surface of the housing and emitted from the opening through the diffusion member.

そして、各LED装置実装基板に実装されたLED装置に電力を供給するために、各基板に電源を接続した。なお、電源はAC100Vであり、各LED装置に付与される電流値をそれぞれ独立してボリュームつまみで電流値が制御される電流制御回路及びAC/DC変換器を備えたLEDドライバを介して接続した。 Then, a power source was connected to each board in order to supply electric power to the LED device mounted on each LED device mounting board. The power supply is AC100V, and the current values applied to each LED device are independently connected via a current control circuit in which the current value is controlled by the volume knob and an LED driver equipped with an AC / DC converter. ..

そして、青色LED装置、または、10種の蛍光体含有LED装置A1〜J1のいずれかがそれぞれ実装された各LED装置実装基板の組み合わせを変更して筐体の内壁面の4か所に配した。そして、各LED装置実装基板に実装されたLED装置に供給される電流量をボリュームつまみで変化させて、筐体の開口から4種類のLED装置からの発光が混合された混色光を取り出した。なお、このとき、XYZ表色系の色座標を純白色の色座標(x,y)=(0.333,0.333)を目標値として得るように各LED装置に供給される電流値をボリュームつまみで調整した。混色光の色座標及び演色性Raは結果を表2に示す。また、実験番号1〜9における照明装置の発する混色光の発光スペクトルを図9に、CIE表色系のXY色度図を図10に示す。 Then, the combination of the blue LED device or each LED device mounting substrate on which any of the 10 types of phosphor-containing LED devices A1 to J1 was mounted was changed and arranged at four places on the inner wall surface of the housing. .. Then, the amount of current supplied to the LED device mounted on each LED device mounting board was changed by the volume knob, and the mixed color light in which the light emitted from the four types of LED devices was mixed was taken out from the opening of the housing. At this time, the current value supplied to each LED device is set so that the color coordinates of the XYZ color system are obtained with the pure white color coordinates (x, y) = (0.333, 0.333) as the target value. Adjusted with the volume knob. The color coordinates and color rendering index Ra of the mixed color light are shown in Table 2. Further, FIG. 9 shows an emission spectrum of the mixed color light emitted by the lighting apparatus in Experiment Nos. 1 to 9, and FIG. 10 shows an XY chromaticity diagram of the CIE color system.

Figure 2021142778
Figure 2021142778

実験番号1〜9における混色光は、図10に示すように、何れも純白色の色座標(x,y)=(0.333,0.333)に近似する色であった。そして、実験番号1〜9における混色光は、図9に示すように、互いに大きく異なる発光スペクトルを有していた。これらの結果から、本発明に係る照明装置によれば、各LED装置の組み合わせ及び各LED装置への電力を調整することにより、同じ色であっても大きく異なる発光スペクトルを示す発光に調整することができることがわかる。表2を参照すれば、発光スペクトルの違いによる影響は演色性Raが大きく異なることからもわかる。このような照明装置によれば、照明光の分光分布を調整でき、連続した分光分布を有する多様な色の光に調整できることがわかる。 As shown in FIG. 10, the mixed color lights in Experiment Nos. 1 to 9 were all colors that approximated the pure white color coordinates (x, y) = (0.333, 0.333). Then, as shown in FIG. 9, the mixed color lights in Experiment Nos. 1 to 9 had emission spectra that were significantly different from each other. From these results, according to the lighting device according to the present invention, by adjusting the combination of each LED device and the electric power to each LED device, it is possible to adjust the light emission to show a significantly different emission spectrum even if the color is the same. You can see that you can do it. With reference to Table 2, the influence of the difference in the emission spectrum can be seen from the fact that the color rendering properties Ra are significantly different. It can be seen that such an illumination device can adjust the spectral distribution of the illumination light and can adjust the light to various colors having a continuous spectral distribution.

次に、実験番号10〜13においては、実験番号1〜9で用いた照明装置を用いて、色座標(x,y)=(0.31,0.35),(0.47,0.37),(0.50,0.38),(0.32,0.33)の色を調光した。 Next, in Experiment Nos. 10 to 13, the color coordinates (x, y) = (0.31, 0.35), (0.47, 0. 37), (0.50, 0.38), (0.32, 0.33) were dimmed.

なお、実験番号10は、疲労感を与えにくい光とされる特開2019−125577号公報に記載された発光を再現したものであり、実験番号11は、リラックスを与える光とされる特開2013−171689号公報に記載された発光を再現したものであり、実験番号12は、良質な睡眠が得られる光とされる特開2013−171686号公報に記載された発光を再現したものであり、実験番号13は、視認性に優れた光とされる特開2018−088374号公報に記載された発光を再現したものである。結果を表3に示す。また、実験番号10〜13における混色光の発光スペクトルを図11に、CIE表色系のXY色度図を図12に示す。 In addition, Experiment No. 10 reproduces the light emission described in JP-A-2019-125777, which is considered to be light that does not give a feeling of fatigue, and Experiment No. 11 is JP-A-2013, which is considered to be light that gives relaxation. The light emission described in Japanese Patent Application Laid-Open No. -171689 is reproduced, and Experiment No. 12 is a reproduction of the light emission described in Japanese Patent Application Laid-Open No. 2013-171686, which is considered to be light that can obtain good quality sleep. Experiment No. 13 reproduces the light emission described in Japanese Patent Application Laid-Open No. 2018-083374, which is considered to be light having excellent visibility. The results are shown in Table 3. Further, the emission spectrum of the mixed color light in Experiment Nos. 10 to 13 is shown in FIG. 11, and the XY chromaticity diagram of the CIE color system is shown in FIG.

Figure 2021142778
Figure 2021142778

実験番号10〜13における混色光は、図12に示すように、混色光の発光色は、それぞれ上記作用を有するとされている光の色座標に近似する色度及び分光分布であった。そして、実験番号10〜13における混色光は、図11に示すように、連続した分光分布を有していた。これらの結果から、本発明に係る照明装置によれば、各LED装置の組み合わせ及び各LED装置への電力を制御することにより、照明光の分光分布を調整でき、多様な色の光に調整できることがわかる。 As shown in FIG. 12, the mixed color light in Experiment Nos. 10 to 13 had a chromaticity and a spectral distribution close to the color coordinates of the light, which are said to have the above-mentioned effects, respectively. The mixed color light in Experiment Nos. 10 to 13 had a continuous spectral distribution as shown in FIG. From these results, according to the lighting device according to the present invention, the spectral distribution of the lighting light can be adjusted by controlling the combination of the LED devices and the power to each LED device, and the light can be adjusted to various colors. I understand.

次に、実験番号14〜20においては、実験番号1〜13で用いた照明装置を用いて、色座標(x,y)=(0.298,0.293),(0.298,0.284),(0.291,0.252),(0.342,0.331),(0.321,0.290),(0.411,0.489),(0.362,0.523)の色を調光した。結果を表4に示す。また、実施例14〜20における混色光の発光スペクトルを図13に、CIE表色系のXY色度図を図14に示す。 Next, in Experiment Nos. 14 to 20, the color coordinates (x, y) = (0.298, 0.293), (0.298, 0. 284), (0.291, 0.252), (0.342, 0.331), (0.321, 0.290), (0.411, 0.489), (0.362, 0. The color of 523) was dimmed. The results are shown in Table 4. Further, the emission spectrum of the mixed color light in Examples 14 to 20 is shown in FIG. 13, and the XY chromaticity diagram of the CIE chromaticity system is shown in FIG.

Figure 2021142778
Figure 2021142778

実験番号14〜20は、3種類の蛍光体含有LED装置と青色LED装置の組み合わせを同じにして、各LED装置の電力を調整した。このような照明装置によれば、同じ4種類のLED装置の組み合わせによって、細かく分光分布を調整することができることがわかる。また、より細かく電力を調整することにより、さらに細かく分光分布を調整することができることがわかる。 In Experiment Nos. 14 to 20, the power of each LED device was adjusted by using the same combination of the three types of phosphor-containing LED devices and the blue LED device. According to such a lighting device, it can be seen that the spectral distribution can be finely adjusted by combining the same four types of LED devices. Further, it can be seen that the spectral distribution can be finely adjusted by finely adjusting the electric power.

[比較例]
次に、従来の、赤色LED素子,緑色LED素子,青色LED素子の異なる色の光を発するLED装置であるRGB3in1LED装置を用いた照明装置において、各LED素子に供給される電流値を制御した。結果を表5に示す。比較実験番号1〜5における混色光の発光スペクトルを図15に、CIE表色系のXY色度図を図16に示す。
[Comparison example]
Next, in a conventional lighting device using an RGB3in1 LED device, which is an LED device that emits light of different colors of a red LED element, a green LED element, and a blue LED element, the current value supplied to each LED element was controlled. The results are shown in Table 5. The emission spectrum of the mixed color light in Comparative Experiment Nos. 1 to 5 is shown in FIG. 15, and the XY chromaticity diagram of the CIE color system is shown in FIG.

Figure 2021142778
Figure 2021142778

比較実験番号1〜5の混色光の発光スペクトルより、赤色、緑色、青色の発光素子のピーク波長は固定で、鋭いピークの発光となっており、比較実験番号1の純白色の座標(0.33,0.33)を再現した場合でもブロードな連続した分光分布ではなかった。また、比較実験番号2は実験番号10と同様の色座標となる光を再現したが、分光分布の形状が異なり疲労感を与えにくい光とはならなかった。 From the emission spectrum of the mixed color light of Comparative Experiment Nos. 1 to 5, the peak wavelengths of the red, green, and blue light emitting elements are fixed and the emission is a sharp peak, and the pure white coordinates of Comparative Experiment No. 1 (0. Even when 33, 0.33) was reproduced, the spectral distribution was not broad and continuous. Further, Comparative Experiment No. 2 reproduced light having the same color coordinates as Experiment No. 10, but the shape of the spectral distribution was different and the light did not give a feeling of fatigue.

1 青色LED素子
2 パッケージ部材
2a 収容凹部
2b リード
2c リード
3(3BG,3G,3R,3Y) 蛍光体
4 透明樹脂封止材
5 LED装置本体
6 金線
7 反射膜
9(9BG,9G,9R,9Y) 蛍光体含有キャップ
10(10BG,10G,10R,10Y) 蛍光体含有LED装置
11 LED実装基板
11BG 第1LED実装基板
11G 第2LED実装基板
11Y 第3LED実装基板
11R 第4LED実装基板
15 積分球筐体
16 拡散部材
20 照明装置本体
25 LEDドライバ(電力制御部)
26 マイコン(電力制御部)
30 電源
40,41,42 照明機構
100 照明装置
1 Blue LED element 2 Package member 2a Storage recess 2b Lead 2c Lead 3 (3BG, 3G, 3R, 3Y) Fluorescent material 4 Transparent resin encapsulant 5 LED device body 6 Gold wire 7 Reflective film 9 (9BG, 9G, 9R, 9Y) Fluorescent material-containing cap 10 (10BG, 10G, 10R, 10Y) Fluorescent material-containing LED device 11 LED mounting board 11BG 1st LED mounting board 11G 2nd LED mounting board 11Y 3rd LED mounting board 11R 4th LED mounting board 15 Integrating sphere housing 16 Diffusing member 20 Lighting device body 25 LED driver (power control unit)
26 Microcomputer (power control unit)
30 Power supply 40, 41, 42 Lighting mechanism 100 Lighting device

Claims (7)

第1の蛍光体含有LED装置と、第2の蛍光体含有LED装置と、前記第1の蛍光体含有LED装置に供給される電力及び前記第2の蛍光体含有LED装置のそれぞれに供給される電力を制御する電力制御部とを備え、
前記第1の蛍光体含有LED装置は、青色LED素子または近紫外LED素子から選ばれる1種のLED素子と第1の蛍光体とを含み、前記第2の蛍光体含有LED装置は、前記LED素子と第2の蛍光体とを含み、
前記第2の蛍光体含有LED装置と前記第1の蛍光体含有LED装置とは、それぞれの発光の分光分布に含まれる蛍光ピーク波長が互いに10nm以上離れており、前記蛍光ピーク波長の半値幅が50nm以上であることを特徴とする照明装置。
The power supplied to the first phosphor-containing LED device, the second phosphor-containing LED device, the first phosphor-containing LED device, and the second phosphor-containing LED device are supplied to each of the first phosphor-containing LED device and the second phosphor-containing LED device. Equipped with a power control unit that controls power
The first phosphor-containing LED device includes one type of LED element selected from a blue LED element or a near-ultraviolet LED element and a first phosphor, and the second phosphor-containing LED device includes the LED. Including the element and the second phosphor
The fluorescence peak wavelengths included in the spectral distributions of the second phosphor-containing LED device and the first phosphor-containing LED device are separated from each other by 10 nm or more, and the half-value width of the fluorescence peak wavelength is large. A lighting device characterized by having a wavelength of 50 nm or more.
第3の蛍光体含有LED装置をさらに備え、前記電力制御部は前記第3の蛍光体含有LED装置に供給される電力を制御し、
前記第3の蛍光体含有LED装置は、前記LED素子と、第3の蛍光体と、を含み、
前記第3の蛍光体含有LED装置の発光の分光分布に含まれる蛍光ピーク波長は、前記第1の蛍光体含有LED装置及び前記第2の蛍光体含有LED装置の少なくとも何れか1つの各前記蛍光ピーク波長と10nm以上離れており、前記蛍光ピーク波長の半値幅が50nm以上である請求項1に記載の照明装置。
A third phosphor-containing LED device is further provided, and the power control unit controls the power supplied to the third phosphor-containing LED device.
The third phosphor-containing LED device includes the LED element and the third phosphor.
The fluorescence peak wavelength included in the spectral distribution of the emission of the third phosphor-containing LED device is the fluorescence of at least one of the first phosphor-containing LED device and the second phosphor-containing LED device. The lighting device according to claim 1, wherein the fluorescence peak wavelength is separated from the peak wavelength by 10 nm or more and the half-value width of the fluorescence peak wavelength is 50 nm or more.
第4の蛍光体含有LED装置をさらに備え、前記電力制御部は前記第4の蛍光体含有LED装置に供給される電力を制御し、
前記第4の蛍光体含有LED装置は、前記LED素子と、第4の蛍光体と、を含み、
前記第4の蛍光体含有LED装置の発光の分光分布に含まれる蛍光ピーク波長は、前記第1の蛍光体含有LED装置,前記第2の蛍光体含有LED装置及び前記第3の蛍光体含有LED装置の少なくとも何れか1つの各前記蛍光ピーク波長と10nm以上離れている請求項2に記載の照明装置。
A fourth phosphor-containing LED device is further provided, and the power control unit controls the power supplied to the fourth phosphor-containing LED device.
The fourth phosphor-containing LED device includes the LED element and the fourth phosphor.
The fluorescence peak wavelength included in the emission spectral distribution of the fourth phosphor-containing LED device is the first phosphor-containing LED device, the second phosphor-containing LED device, and the third phosphor-containing LED. The lighting device according to claim 2, wherein at least one of the devices is separated from each of the fluorescence peak wavelengths by 10 nm or more.
前記第1の蛍光体,前記第2の蛍光体,前記第3の蛍光体,及び前記第4の蛍光体は、410〜470nmの範囲に蛍光ピーク波長を有する蛍光体,430〜490nmの範囲に蛍光ピーク波長を有する蛍光体,490〜530nmの範囲に蛍光ピーク波長を有する蛍光体、500〜590nmの範囲にピーク波長を有する蛍光体、580〜680nmの範囲に蛍光ピーク波長を有する蛍光体から選ばれる請求項3に記載の照明装置。 The first phosphor, the second phosphor, the third phosphor, and the fourth phosphor are fluorescents having a fluorescence peak wavelength in the range of 410 to 470 nm, in the range of 430 to 490 nm. Select from phosphors having a fluorescence peak wavelength, phosphors having a fluorescence peak wavelength in the range of 490 to 530 nm, phosphors having a peak wavelength in the range of 500 to 590 nm, and phosphors having a fluorescence peak wavelength in the range of 580 to 680 nm. The lighting device according to claim 3. 蛍光体を含まないLED装置をさらに備え、前記電力制御部は前記蛍光体を含まないLED装置に供給される電力を制御する請求項1〜4の何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 4, further comprising an LED device that does not contain a phosphor, and the power control unit controls power supplied to the LED device that does not contain a phosphor. 自動車の内部照明である請求項1〜6の何れか1項に記載の照明装置。 The lighting device according to any one of claims 1 to 6, which is an internal lighting of an automobile. 前記照明装置は、前記電力制御部のPWM制御により1/fゆらぎ点灯することを特徴とする請求項1〜6の何れか1項に記載の照明装置。
The lighting device according to any one of claims 1 to 6, wherein the lighting device is 1 / f fluctuation lighting by PWM control of the power control unit.
JP2020040849A 2020-03-10 2020-03-10 Lighting device Pending JP2021142778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020040849A JP2021142778A (en) 2020-03-10 2020-03-10 Lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020040849A JP2021142778A (en) 2020-03-10 2020-03-10 Lighting device

Publications (1)

Publication Number Publication Date
JP2021142778A true JP2021142778A (en) 2021-09-24

Family

ID=77765740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020040849A Pending JP2021142778A (en) 2020-03-10 2020-03-10 Lighting device

Country Status (1)

Country Link
JP (1) JP2021142778A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258356A (en) * 2007-04-04 2008-10-23 Sharp Corp Illuminating light source and illuminator comprising the same
JP2009266484A (en) * 2008-04-23 2009-11-12 Sharp Corp Lighting device
JP2016522542A (en) * 2013-05-03 2016-07-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light source with adapted spectral output

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008258356A (en) * 2007-04-04 2008-10-23 Sharp Corp Illuminating light source and illuminator comprising the same
JP2009266484A (en) * 2008-04-23 2009-11-12 Sharp Corp Lighting device
JP2016522542A (en) * 2013-05-03 2016-07-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Light source with adapted spectral output

Similar Documents

Publication Publication Date Title
JP5106049B2 (en) Lighting device and lighting system
JP4335210B2 (en) Display device
US20110299277A1 (en) Illuminating apparatus and method of controlling illuminating apparatus
WO2013125521A1 (en) Lighting device
JP2009259639A (en) Illumination device
JP2005101296A (en) Device, module, and lighting apparatus of variable color light emitting diode
CN104011457A (en) White light source and white light source system using same
CN104114932A (en) Tunable LED lamp for producing biologically-adjusted light
CN106028583B (en) Light source device and lighting device
JP2010092993A (en) Illuminating apparatus
US10661047B2 (en) Light-emitting apparatus
JP2007299714A (en) Lighting fixture
CN108343901B (en) Lighting device
KR20150098175A (en) Lighting device
CN101451658A (en) Regulation method capable of implementing dynamic white light and application luminaire thereof
CN108302335B (en) Lighting device and lamp comprising same
US9488333B2 (en) Lighting device
JP6152726B2 (en) LIGHTING DEVICE AND LIGHTING DEVICE CONTROL METHOD
JP2007227678A (en) White lighting system using light-emitting diode
JP2021142778A (en) Lighting device
WO2022111307A1 (en) Light source module and light fixture
US11570863B2 (en) Lighting device for generating a white mixed light with controllable spectral characteristics
CN114396572A (en) Light source module, lighting system and lamp
WO2015174322A1 (en) Light-emitting device and display apparatus
CN214468424U (en) LED light source

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20240116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240626