WO2015174322A1 - Light-emitting device and display apparatus - Google Patents

Light-emitting device and display apparatus Download PDF

Info

Publication number
WO2015174322A1
WO2015174322A1 PCT/JP2015/063214 JP2015063214W WO2015174322A1 WO 2015174322 A1 WO2015174322 A1 WO 2015174322A1 JP 2015063214 W JP2015063214 W JP 2015063214W WO 2015174322 A1 WO2015174322 A1 WO 2015174322A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
emitting device
emitting element
cavity
Prior art date
Application number
PCT/JP2015/063214
Other languages
French (fr)
Japanese (ja)
Inventor
小野崎 学
憲晃 藤井
裕史 北村
隅谷 憲
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015174322A1 publication Critical patent/WO2015174322A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the present invention relates to a light emitting device and a display device that affect biological rhythm.
  • FIG. 7 presents a melatonin inhibitory action spectrum.
  • FIG. 7 shows that light in a wide wavelength range having a peak wavelength of about 465 nm suppresses the secretion of melatonin, and elucidates the relationship between the secretion of melatonin and biological rhythms such as sleep-wakefulness and body temperature fluctuations. It is being done.
  • FIG. 8 shows a known action spectrum of a human retina photoreceptor.
  • a photoreceptor called endogenous photosensitive retinal fine (ipRGC) has also been found in the retina, and the photoresponse characteristics shown in FIG. It is shown.
  • ipRGC endogenous photosensitive retinal fine
  • the physiological spectrum of light is important for the light spectrum that organisms receive.
  • artificial light has the same effect as natural light.
  • the organism is disturbed by an accurate 24-hour diurnal rhythm.
  • adverse effects on various living bodies such as sleep disorders are regarded as problems. For this reason, techniques for solving this problem have been proposed.
  • Patent Document 1 a first illuminant having a peak wavelength at 600 nm to 660 nm (red), a second illuminant having a peak wavelength at 530 nm to 570 nm (green), and a peak wavelength at 420 nm to 470 nm are disclosed.
  • the first and second light emitters are provided with a color conversion member and a short wavelength cut filter for reducing the visible light component having a wavelength of 480 nm or less to almost zero
  • a technique for emitting a visible light component having a wavelength of 480 nm or less from a light emitter is disclosed.
  • Patent Document 2 discloses a first light emitting unit that emits a daylight color having a high color temperature of 6000 K or more with a light emitting diode chip and a fluorescent material, and a second that emits warm white with a color temperature of 3000 K or less with a light emitting diode chip and a fluorescent material.
  • a technology is disclosed in which the light emitting diode chip emits blue light or UV (Ultra Violet) light.
  • Patent Document 3 a first semiconductor light emitting device having a peak wavelength in a wavelength range of 430 nm to 490 nm, a first LED (Light Emitting Diode) that emits white light by a first wavelength conversion member, and 360 nm
  • the second semiconductor light emitting device having a peak wavelength in the wavelength range of ⁇ 420 nm and the second LED that emits white light by the second wavelength conversion member, and matching the color temperature of the white light emitted by each of the first and second LEDs Techniques for making them disclosed are disclosed.
  • the display unit is divided into a user work area and a non-work area, and in the non-work area, the secretion of melatonin is suppressed by increasing the intensity of blue light in the awakening period, and in the sedation period.
  • Patent Document 5 a first illuminant (blue) having an emission peak wavelength at 445 nm to 480 nm and a second illuminant (blue) having an emission peak wavelength on a shorter wavelength side than the first emitter are selectively used.
  • a technique for lighting is disclosed.
  • Patent No. 538249 Publication (issued on January 8, 2014)” Japanese Patent Gazette “Patent No. 5430394 (issued February 26, 2014)” Japanese Patent Publication “JP 2012-64860 A (published March 29, 2012)” Japanese Patent Gazette “Patent No. 4692528 (issued on June 1, 2011)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-63687 (published on March 10, 2005)”
  • Patent Document 1 The technique disclosed in Patent Document 1 is mainly intended to maintain color rendering properties, and a blue light component having a peak wavelength in the vicinity of 450 nm to 480 nm remains.
  • Patent Document 1 does not mention a method for significantly reducing the melatonin suppression effect in the entire light source device.
  • a light source device that increases the amount of effective melatonin-suppressed radiation required mainly during early morning or daytime awakenings and a melatonin-suppressed effective radiation that is mainly required during nighttime sleeping. It is important to switch to a light source device whose amount is almost zero.
  • Patent Document 1 does not mention a means for realizing this switching.
  • Patent Documents 2 and 3 disclose a technique for switching between two types of light emitting units in accordance with a human circadian rhythm (according to awakening in the daytime or sleeping at night). It is desirable that the effective radiation dose for suppressing melatonin is as small as possible at bedtime at night, but the blue light component having a peak wavelength in the vicinity of 450 nm to 480 nm remains. It is difficult to reduce significantly.
  • Patent Document 4 discloses an example of use in an image display device, but since the blue light component remains even in the sedation period, it is difficult to significantly reduce the melatonin suppression effect.
  • Patent Document 5 while focusing on making the light from the first illuminant have a melatonin suppressing effect, the light from the second illuminant has almost no melatonin suppressing effect. Is not focused. Therefore, the light from the second light emitter still has a somewhat large melatonin suppression effect, and it is difficult to significantly reduce the melatonin suppression effect in the entire light source device.
  • the present invention has been made in view of the above-described problems, and an object thereof is to provide a light-emitting device and a display device that can greatly reduce the melatonin suppressing effect.
  • a light-emitting device includes at least one first semiconductor light-emitting element that emits light having a light emission intensity peak in a first wavelength range of 390 nm to 420 nm, Excited by light emitted from the first semiconductor light emitting element and at least one second semiconductor light emitting element that emits light having an emission intensity peak in a second wavelength region that is greater than 420 nm and less than or equal to 480 nm, and is 498 nm or more and 830 nm or less.
  • the emission intensity peaks in the third wavelength region Excited by the light emitted from the first light conversion member that generates fluorescence having one or more emission intensity peaks in a certain third wavelength region, and the second semiconductor light emitting element, the emission intensity peaks in the third wavelength region.
  • the melatonin suppressing effect can be greatly reduced.
  • blue LED second semiconductor light-emitting element
  • phosphor group second light conversion member
  • the purple LED emits light having a peak of emission intensity in the range of 390 nm to 420 nm (first wavelength region).
  • the blue LED emits light having a peak of emission intensity in the range from 420 nm to 480 nm or less (second wavelength range).
  • each excited phosphor group generates fluorescence having one or more emission intensity peaks in the range of 498 nm to 830 nm (third wavelength region).
  • the purple LED and the blue LED are driven independently from each other (that is, provided with a drive unit).
  • FIG. 1 is a cross-sectional view showing the configuration of the first embodiment of the LED package.
  • LED package 13 includes LED chips 14 and 15, resins 16 and 17, phosphor groups 18 and 19, and cavities 20 and 21.
  • the LED chip (first semiconductor light emitting element) 14 emits purple light having a peak of emission intensity in a range of 390 nm to 420 nm (first wavelength region). The purple light has almost no melatonin inhibitory action.
  • the LED chip 14 is stored in the cavity 20 and is sealed with a resin 16 including a phosphor group 18.
  • the LED chip (second semiconductor light emitting element) 15 emits blue light having a peak of light emission intensity in the range of 420 nm to 480 nm (second wavelength region).
  • the blue light has a large melatonin suppressing effect.
  • the LED chip 15 is stored in the cavity 21 and is sealed with a resin 17 including a phosphor group 19.
  • Resin (sealing member) 16 includes a phosphor group 18 and seals the LED chip 14 stored in the cavity 20.
  • Resin (sealing member) 17 includes the phosphor group 19 and seals the LED chip 15 stored in the cavity 21.
  • the phosphor group (first light conversion member) 18 is excited by purple light emitted from the LED chip 14 and generates fluorescence having one or more emission intensity peaks at 498 nm or more and 830 nm or less (third wavelength region). And consists of a plurality of phosphors 18s. Although illustration of the phosphor group 18 in FIG. 1 is omitted for the sake of brevity, a group composed of a plurality of phosphors 18 s contained in the resin 16 is referred to as a phosphor group 18.
  • the phosphor group 18 is included in the resin 16.
  • Each of the phosphors 18s constituting the phosphor group 18 may generate the same color fluorescence, or at least one of the phosphors 18s may generate fluorescence of a color different from that of the other phosphors 18s. There may be.
  • all of the phosphors 18s constituting the phosphor group 18 may be phosphors 18s that produce yellow fluorescence, or the phosphor group 18 and the phosphors 18s that produce red fluorescence may be green. You may consist of the combination with fluorescent substance 18s which produces
  • the phosphor group (second light conversion member) 19 is excited by blue light emitted from the LED chip 15 and generates fluorescence having one or more emission intensity peaks at 498 nm or more and 830 nm or less. It consists of a body 19s. Although the illustration of the phosphor group 19 in FIG. 1 is omitted for the sake of brevity, a group composed of a plurality of phosphors 19 s contained in the resin 17 is referred to as a phosphor group 19.
  • the phosphor group 19 is included in the resin 17.
  • Each of the phosphors 19s constituting the phosphor group 19 may generate the same color of fluorescence, or at least one of the phosphors 19s may generate a fluorescence of a color different from that of the other phosphors 19s. There may be.
  • all of the phosphors 19s constituting the phosphor group 19 may be phosphors 19s that generate yellow fluorescence, or the phosphor group 19 and the phosphors 19s that generate red fluorescence may be green. It may consist of a combination with a phosphor 19s that generates fluorescence.
  • the phosphor group 18 and the phosphor group 19 may include the same type of phosphor, or may be composed of different materials (for example, each phosphor) or a blending ratio of the materials.
  • the cavity (first cavity) 20 is a recess (such as a container) that stores the LED chip 14.
  • the cavity 20 is filled with the resin 16 including the phosphor group 18.
  • the cavity (second cavity) 21 is a recess (such as a container) that stores the LED chip 15.
  • the cavity 21 is filled with the resin 17 including the phosphor group 19.
  • the LED package 13 white light is realized by a combination of the LED chip 14 and the phosphor group 18. Independent of driving the LED chip 14, the LED package 13 includes an LED chip 15. About the fluorescent substance group 19, it is omissible suitably as needed.
  • one LED chip 14 is mounted in the cavity 20, but a plurality of LED chips 14 may be mounted in the cavity 20.
  • one LED chip 15 is mounted in the cavity 21, but a plurality of LED chips 15 may be mounted in the cavity 21.
  • the number of the LED chips 14 mounted in the cavity 20 and the number of the LED chips 15 mounted in the cavity 21 may be different from each other. Thereby, according to desired brightness, the brightness of light obtained from the purple light emitted from each LED chip 14 and the brightness of light obtained from the blue light emitted from each LED chip 15 can be arbitrarily set. Can be set to
  • a light diffusion member (not shown) for diffusing light may be provided in the path of light emitted from the cavity 20 and / or the path of light emitted from the cavity 21.
  • the light diffusing member include a lens mounted in the opening of the cavity 20 and / or the opening of the cavity 21, and a diffusing agent contained in the resin 16 and / or the resin 17. This facilitates color mixing between the light emitted from the cavity 20 and the light emitted from the cavity 21.
  • cavity 20 and the cavity 21 may be separated as separate packages and configured as two packages.
  • the depression is used for storing the LED chip
  • it is not necessarily limited to such a form.
  • a form in which an LED chip is mounted on a substrate having a lead frame and potted with a sealing resin is possible.
  • FIG. 2 is a cross-sectional view showing the configuration of the LED package according to the second embodiment.
  • the LED package 23 shown in FIG. 2 includes LED chips 14 and 15, a resin 26, a phosphor group 28, and a cavity 30.
  • the LED chips 14 and 15 are housed in the cavity 30 and sealed with a resin 26 including a phosphor group 28.
  • Resin (sealing member) 26 includes phosphor group 28 and seals LED chips 14 and 15 stored in cavity 30.
  • the phosphor group (light converting member) 28 is excited by the purple light emitted from the LED chip 14 and generates fluorescence having one or more emission intensity peaks at 498 nm or more and 830 nm or less. Consists of. Further, the phosphor group 28 may be excited by blue light emitted from the LED chip 15 to generate fluorescence having one or more emission intensity peaks in the range from 498 nm to 830 nm. Although illustration of the phosphor group 28 in FIG. 2 is omitted for the sake of brevity, a group composed of a plurality of phosphors 28 s contained in the resin 26 is referred to as a phosphor group 28.
  • the phosphor group 28 is included in the resin 26.
  • Each of the phosphors 28s constituting the phosphor group 28 may generate the same color of fluorescence, or at least one of the phosphors 28s may generate fluorescence of a color different from that of the other phosphors 28s. There may be.
  • all of the phosphors 28s constituting the phosphor group 28 may be phosphors 28s that produce yellow fluorescence, or the phosphor group 28 and the phosphors 28s that produce red fluorescence may be green. You may consist of the combination with the fluorescent substance 28s which produces fluorescence.
  • the cavity 30 is a recess (such as a container) that stores the LED chips 14 and 15.
  • the cavity 30 is filled with a resin 26 including a phosphor group 28.
  • FIG. 3 is a circuit block diagram showing a schematic configuration of the light emitting device according to the present embodiment.
  • the light emitting device 1 shown in FIG. 3 includes a dimming control unit 2, constant current circuits 3 and 4, and LED circuits 5 and 6.
  • the dimming control unit 2 is connected to the constant current circuits 3 and 4.
  • the constant current circuit 3 is connected to the LED circuit 5.
  • the constant current circuit 4 is connected to the LED circuit 6.
  • LED circuits 5 and 6 are a series circuit of a plurality of LED packages 13 mounted on a substrate.
  • the LED circuit 5 has a plurality of LED chips 14 connected in series
  • the LED circuit 6 has a plurality of LED chips 15 connected in series.
  • each LED circuit 5 and 6 have different emission spectra. That is, the emission spectrum of each LED chip 14 of the LED circuit 5 has a peak of emission intensity in the first wavelength range of 390 nm to 420 nm.
  • the light emission spectrum of each LED chip 15 of the LED circuit 6 has a peak of light emission intensity in the second wavelength region that exceeds 420 nm and is 480 nm or less. Accordingly, the violet light emitted from each LED chip 14 and the blue light emitted from each LED chip 15 have different amounts of action on the intrinsic light-sensitive retinal fine. For this reason, the purple light and the blue light have different effects on the biological rhythm.
  • the amount of action is the amount of reaction that reacts when the photoreceptor receives light. It is obtained by integrating the action spectrum with the spectrum of the irradiation light and integrating it with the wavelength.
  • the dimming control unit (drive unit) 2 controls the lighting time of the LED chip 14 of the LED circuit 5 and the LED chip 15 of the LED circuit 6 by PWM (Pulse Width Modulation: pulse width modulation).
  • the dimming control unit 2 individually controls the LED circuit 5 (LED chip 14) and the LED circuit 6 (LED chip 15).
  • the dimming controller 2 has a PWM circuit (not shown) that individually generates a PWM signal to be supplied to each of the LED circuits 5 and 6. This PWM circuit changes the duty ratio of each PWM signal in accordance with, for example, an instruction from the outside of the illumination control unit 7 or the light emitting device 1.
  • the constant current circuit (drive unit) 3 generates a constant current based on the PWM signal supplied from the dimming control unit 2 and supplies the constant current to the LED circuit 5.
  • the constant current circuit 3 supplies the constant current to the LED circuit 5 by being turned on during the high level period of the PWM signal, while the constant current circuit 3 is turned off during the low level period of the PWM signal. No current is supplied to the LED circuit 5.
  • the constant current circuit (drive unit) 4 generates a constant current based on the PWM signal supplied from the dimming control unit 2 and supplies the constant current to the LED circuit 6.
  • the constant current circuit 4 supplies the constant current to the LED circuit 6 by being turned on during the high level period of the PWM signal, while being turned off during the low level period of the PWM signal. No current is supplied to the LED circuit 6.
  • the constant current circuit 3 controls the constant current supplied to the LED circuit 5 by the PWM signal generated individually by the dimming control unit 2 for each of the LED circuits 5 and 6, and the constant current circuit 4
  • the constant current supplied to the LED circuit 6 is controlled.
  • the LED chip 14 and the LED chip 15 are individually controlled. Therefore, the light emitting device 1 emits light of mixed colors having different colors according to the light intensity of the LED chip 14 and the LED chip 15 by adjusting the constant current supplied to the LED circuits 5 and 6. Can do.
  • control of the LED circuits 5 and 6 by the dimming control unit 2 includes changing the light emission luminance, turning on and off, and blinking of the LED chips 14 and 15.
  • the LED package 23 may be used instead of the LED package 13.
  • the illumination control unit 7 includes necessary components according to the use conditions of the light emitting device 1 and controls the LED circuits 5 and 6 by sending instructions to the dimming control unit 2.
  • Purple light having a peak of emission intensity in the wavelength range of 390 nm or more and 420 nm or less has a smaller amount of visual effect than blue light having a peak of emission intensity in the wavelength range of more than 420 nm and less than or equal to 480 nm. . That is, when these lights are emitted with the same intensity, the purple light appears darker than the blue light. These lights look different from each other in the brightness of the blue, so the colors are different from each other, but because human vision has a function of chromatic adaptation, eventually they become used to the difference in the colors and both of these lights are natural. Become visible.
  • the light emitting device 1 is suitable as a light source for display devices such as portable devices and television receivers.
  • a liquid crystal display is mainly used as the display device.
  • Most liquid crystal displays realize multi-coloring by combining color filters and liquid crystals.
  • the liquid crystal has a low transmittance for a component on the short wavelength side of visible light.
  • the color filters blue ones are usually selected that are optimal for blue wavelengths having a peak in the vicinity of 450 to 460 nm, and many have low transmittance at 420 nm.
  • the light emitting device 1 when the light emitting device 1 is applied to a liquid crystal display, it is necessary to make adjustments so that the light emission intensity of light having many components on the short wavelength side is increased.
  • a digital micromirror device that uses reflection instead of transmission does not require a color filter or liquid crystal, so that the attenuation of the short wavelength component is small. Therefore, it can be said that it is more suitable for application of the light emitting device 1.
  • FIG. 10 is a circuit block diagram showing a schematic configuration of the light emitting device according to the present embodiment. Those not specifically described have the same functions as those shown in FIG.
  • the light emitting device 101 shown in FIG. 10 is included in the concept of the light emitting device 1 shown in FIG. However, in order to clearly indicate that the light emitting device 101 includes the timer unit 105, in FIG. 10, the light source control unit (control unit) 104 and the timer unit 105 are clearly shown in the block of the illumination control unit 7. Yes.
  • the timer unit 105 is a functional block that detects at least one of time and lapse of time by some configuration.
  • the timer unit 105 can be realized by the configurations exemplified in the following (A) to (C).
  • a configuration that directly obtains time and / or time passage such as a real-time clock (RTC) device, a radio clock receiver module, or a GPS (Global Positioning System) receiver module.
  • RTC real-time clock
  • radio clock receiver module such as a radio clock receiver module, or a GPS (Global Positioning System) receiver module.
  • GPS Global Positioning System
  • (B) A configuration (function unit) that connects to a network or the like and obtains time from other connection nodes.
  • (C) A configuration (method) for obtaining the time and / or the passage of time by counting the passage of time with a CPU (Central Processing Unit).
  • CPU Central Processing Unit
  • the light source control unit 104 receives information indicating at least one of the time and the passage of time from the timer unit 105, and appropriately controls the constant current circuits 3 and 4 by the dimming control unit 2 in accordance with this information, and the LED circuit 5
  • the lighting time of each LED chip 14 and each LED chip 15 of the LED circuit 6 is controlled.
  • the lighting time is controlled so that the light emission intensity by each LED chip 15 mainly increases during the day, and the light emission intensity by each LED chip 15 gradually decreases and the light emission intensity by each LED chip 14 increases by night. It is possible to control the lighting time so that
  • the display color changes depending on the lighting time of each LED chip 14 and each LED chip 15.
  • human vision has a function of chromatic adaptation, and even if the displayed hue is different from the original hue, the chromatic adaptation function can identify colors without feeling unnatural. is there. Therefore, there is no problem in using the light emitting device 101 as the light source of the display device.
  • the light emitting device 101 can adjust the above time profile to sunlight according to the time and place. That is, it is possible to change the color and intensity of light emission in accordance with the actual sunshine duration.
  • FIG. 11 is a circuit block diagram showing a schematic configuration of the light emitting device according to the present embodiment. Those not specifically described have the same functions as those shown in FIG.
  • the light emitting device 102 shown in FIG. 11 is included in the concept of the light emitting device 1 shown in FIG. However, in order to clearly indicate that the light emitting device 102 includes the timer unit 105 and the communication unit 106, in FIG. 11, the light source control unit 104, the timer unit 105, and the communication unit 106 are included in the block of the illumination control unit 7. Each is clearly indicated. A difference between the light emitting device 102 illustrated in FIG. 11 and the light emitting device 101 illustrated in FIG. 10 is the presence or absence of the communication unit 106.
  • the application example in which the color of the display on the display device is different from the original one using the human visual color adaptation function has been described.
  • the chromatic adaptation is also affected by the ambient light of the display device. It becomes.
  • the communication unit 106 is a communication function block for controlling ambient light around a display device outside the light emitting device 102.
  • Communication means include wireless communication such as infrared remote control and Bluetooth (registered trademark), lighting control interface such as Dali (Digital Addressable Lighting Interface) and DMX512 signal interface, and other general purpose or dedicated connections Means can be used.
  • the communication part 106 according to the selected said connection means is prepared.
  • the communication unit 106 outputs a signal for controlling the ambient light to the outside using this connection means, and this signal makes the hue of the ambient light close to the hue of the light emitted from the light emitting device 102. Trigger.
  • the ambient light irradiated from the lighting device or the like using the communication unit 106 is also changed in accordance with the change in the emission spectrum of the light emitted from the LED chips 14 and 15. Can be made.
  • the image of the display device and the ambient light are incident on the user's eyes. By making these colors similar, adaptation to the color of the image of the display device is facilitated.
  • the timer unit 105 may be omitted.
  • FIG. 12 is a circuit block diagram showing a schematic configuration of the light emitting device according to the present embodiment. Those not specifically described have the same functions as those shown in FIG.
  • the light emitting device 103 shown in FIG. 12 is included in the concept of the light emitting device 1 shown in FIG. However, in order to clearly indicate that the light emitting device 103 includes the sensor unit 107, in FIG. 12, the light source control unit 104 and the sensor unit 107 are clearly shown in the block of the illumination control unit 7.
  • the sensor unit 107 is a functional block that detects how much blue component the ambient light irradiated to the surroundings contains. An example of the configuration of the sensor unit 107 will be described with reference to FIG.
  • the sensor unit 107 includes a sensor control unit 108, illuminance sensors 109a and 109b, and color filters 110a and 110b.
  • the color filters 110a and 110b have different transmission spectra.
  • the light transmitted through the color filters 110a and 110b is incident on the illuminance sensors 109a and 109b, respectively.
  • the reaction between the illuminance sensor 109a and the illuminance sensor 109b (for example, as an index indicating the intensity of the blue component) according to the intensity of the blue component (short wavelength component of visible light) included in the light such as ambient light.
  • the balance of the output value is adjusted.
  • the illuminance sensor 109a and the illuminance sensor 109b have different frequencies of light to be detected.
  • the color filter 110a transmits a long wavelength component (green or red) of visible light relatively well
  • the color filter 110b transmits a short wavelength component (blue) of visible light relatively well.
  • the intensity of the blue component of the ambient light is large, the light transmitted through the color filter 110a is small and the light transmitted through the color filter 110b is large. Accordingly, the response of the illuminance sensor 109b is greater than the response of the illuminance sensor 109a.
  • the intensity of the blue component of the ambient light is small, much light is transmitted through the color filter 110a and little light is transmitted through the color filter 110b. Accordingly, the response of the illuminance sensor 109a is greater than the response of the illuminance sensor 109b.
  • the sensor control unit 108 can read the magnitude of the response of the illuminance sensors 109a and 109b and detect the hue of the ambient light (blue component intensity) from the balance.
  • the light source control unit 104 adjusts the light emission of the light emitting device 103 according to the result (detection result of the sensor control unit) detected by the sensor control unit 108. For example, when the intensity of the blue component of the ambient light is large, the light emission of each LED chip 15 with high blue visibility is controlled to be more dominant than the light emission of each LED chip 14 with low blue visibility. It is assumed that the light emission has a high intensity of the component. Conversely, when the intensity of the blue component of the ambient light is small, the light emission intensity of each LED chip 15 is reduced and the light emission intensity of each LED chip 14 is increased. In this way, the light emitting device 103 can change the color of light emission in accordance with the color of ambient light.
  • the chromatic adaptation proceeds to lubrication and it is difficult to feel unnaturalness in the color of the display.
  • a configuration in which no color filter is used can be obtained by using a plurality of illuminance sensors having different reacting spectra. Further, instead of using two types of color filters, a structure in which a color filter is used only for one illuminance sensor and a color filter is not used for the other illuminance sensor is possible. In addition to using an illuminance sensor such as a photodiode, it is possible to detect the hue of ambient light by using a camera module.
  • FIG. 4 is a graph comparing the melatonin inhibitory action spectrum (see FIG. 7) with the emission spectrum of light obtained from the LED chip 14 and the phosphor group 18 or 28.
  • the light emission spectrum distribution graph of FIG. 4 uses a chip that emits purple light with a peak of 405 nm as the LED chip 104, and the phosphor group 18 or 28 includes ⁇ -sialon of a green phosphor and CASN of a red phosphor. The example when combining is shown.
  • the melatonin inhibitory action spectrum As shown in the melatonin inhibitory action spectrum, light having a wavelength of 430 nm to 500 nm has a melatonin inhibitory effect of 60% or more with respect to the peak value. Since the light obtained from the LED chip 14 and the phosphor group 18 or 28 has an emission spectrum that hardly includes a wavelength of 430 nm to 500 nm, the melatonin suppressing effect is very small.
  • the light obtained from the LED chip 14 and the phosphor group 18 or 28 is effective to use the light obtained from the LED chip 14 and the phosphor group 18 or 28 as the illumination before going to bed according to the biological rhythm. That is, by using light derived from blue light emitted from the LED chip 15 in the morning and using light derived from purple light emitted from the LED chip 14 at night, the light source is switched in accordance with the biological rhythm. Is possible.
  • the light emitting device 1 does not cut all light having a wavelength shorter than about 500 nm, but emits light having a light emission intensity peak at a wavelength of 390 nm to 420 nm by the LED chip 14.
  • the light emitting device 1 it becomes possible to apply the light emitting device 1 to a display device that performs display by combining colors in three primary colors, such as a backlight of a liquid crystal display device.
  • a second advantage when applied to a lighting device that illuminates a room or the like, it becomes possible to obtain whited light.
  • FIG. 5 is a graph of Smith, Pokony's cone sensitivity function, well known among color engineering researchers as the spectral sensitivity of the L, M, and S cones. This is a spectral characteristic including the optical system of the eyeball, and it is convenient to discuss the relationship between the mechanism that feels light and color when light enters the eye.
  • the light obtained from the LED chip 14 and the phosphor group 18 or 28 contains almost no light having a wavelength of 450 nm to 495 nm classified as blue light, while the violet light near the wavelength of 405 nm is dominant.
  • the purple light hardly stimulates the L cone and the M cone, and substantially stimulates the S cone. For this reason, this purple light has various colors on the human eye by changing the amount of stimulation of the L cone, M cone, and S cone, despite having almost no melatonin suppression effect. Can be used as a light source.
  • FIG. 6 is a graph showing the degree of feeling brightness (specific luminous sensitivity) with respect to the wavelength of visible light.
  • the degree of feeling the brightness of light of other wavelengths where the degree of feeling the brightness of light with a wavelength of 555 nm that humans feel the brightest in an environment of brightness that can feel color is defined as 1.
  • the ratio is shown.
  • FIG. 6 is a graph of photopic standard relative luminous sensitivity characteristics.
  • the relative visibility of violet light near 405 nm is lower than that of blue light near 450 nm.
  • the specific visibility curve is said to be a curve close to the spectral sensitivity of the L cone and the M cone due to the density of cone cells on the retina.
  • the Von Kries model is well known to explain the mechanism of this chromatic adaptation.
  • the Von Kries model will be briefly described.
  • the balance of the L, M, and S cones makes the white appearance constant even when objects are placed in an illumination environment with different spectral distributions. It is a theory that changed and things looked closer to natural colors.
  • the light emitted by the incandescent bulb has a spectrum that has a smaller intensity on the short wavelength side (purple and blue) and a higher intensity on the long wavelength side (red) than sunlight.
  • the sensitivity of the S cone increases and the sensitivity of the L cone decreases, thereby approaching the color balance seen under sunlight.
  • each of the L cone, M cone, and S cone according to the spectral distribution of the light output from the display device
  • the chromatic adaptation that determines the sensitivity works.
  • a light-emitting device includes at least one first semiconductor light-emitting element (LED chip 14) that emits light having a peak of light emission intensity in a first wavelength range of 390 nm to 420 nm, and more than 420 nm to 480 nm. Excited by light emitted from at least one second semiconductor light emitting element (LED chip 15) that emits light having a peak of emission intensity in the second wavelength range, and from 498 nm to 830 nm. The third wavelength is excited by light emitted from the first light conversion member (phosphor group 18) that generates fluorescence having one or more emission intensity peaks in the third wavelength region and the second semiconductor light emitting element, and the third wavelength.
  • LED chip 14 that emits light having a peak of light emission intensity in a first wavelength range of 390 nm to 420 nm, and more than 420 nm to 480 nm.
  • LED chip 15 that emits light having a peak of emission intensity in the second wavelength range, and from 4
  • a second light conversion member (phosphor group 19) that generates fluorescence having one or more peaks of emission intensity in the region, the first semiconductor light emitting element, and the second And it includes driving unit for driving independently of each other and the conductor light emitting element and (dimming controller 2).
  • the light obtained from the first semiconductor light emitting element and the first light conversion member has an emission spectrum that hardly includes a wavelength of 430 nm to 500 nm, and therefore has little melatonin suppression effect.
  • the light obtained from the second semiconductor light emitting element and the second light conversion member has a large melatonin suppressing effect. Then, by driving the first semiconductor light emitting element and the second semiconductor light emitting element independently of each other by the driving unit, it is possible to switch between light having almost no melatonin suppressing effect and light having a large melatonin suppressing effect.
  • the light source derived from the light emitted from the second semiconductor light emitting element is used in the morning and the light derived from the light emitted from the first semiconductor light emitting element is used at night to switch the light source according to the biological rhythm. Is possible. As a result, the melatonin suppressing effect can be greatly reduced.
  • the first light conversion member and the second light conversion member further include the same type of phosphor.
  • the number of the first semiconductor light emitting elements mounted is different from the number of the second semiconductor light emitting elements mounted.
  • the brightness of the light obtained from the light which each 1st semiconductor light-emitting device emitted, and the brightness of the light obtained from the light which each 2nd semiconductor light-emitting device emitted Can be arbitrarily set.
  • the light emitting device further includes a first cavity (cavity 20) and a second cavity (cavity 21), and the first semiconductor light emitting element is stored in the first cavity.
  • the second light-emitting element is sealed in the second cavity, and is sealed with a sealing member (resin 16) including the first light conversion member.
  • the second cavity is further filled with a sealing member (resin 17) including the second light conversion member, and the first light conversion member and the second light emitting device are filled.
  • a light conversion member consists of a mutually different raw material or the compounding ratio of a raw material.
  • the light-emitting device further includes a light diffusion member that diffuses light in at least one of a path of light emitted from the first cavity and a path of light emitted from the second cavity. It has been.
  • a light-emitting device includes at least one first semiconductor light-emitting element that emits light having an emission intensity peak in a first wavelength range of 390 nm or more and 420 nm or less, and a second that is greater than 420 nm and 480 nm or less. At least one second semiconductor light emitting element that emits light having a peak of light emission intensity in the wavelength region, and the light emission intensity in the third wavelength region that is excited by light emitted from the first semiconductor light emitting element and is not less than 498 nm and not more than 830 nm.
  • a light conversion member (phosphor group 28) that generates fluorescence having one or more peaks, a driving unit that drives the first semiconductor light emitting element and the second semiconductor light emitting element independently of each other are provided.
  • the light conversion member is further excited by light emitted from the second semiconductor light emitting element, and has a fluorescence having one or more emission intensity peaks in the third wavelength region. Produce.
  • the first semiconductor light emitting element and the second semiconductor light emitting element are housed in the same cavity (cavity 30) and include the light conversion member. It is sealed with a stop member (resin 26).
  • a light-emitting device includes a control unit (light source control unit 104) that controls a lighting time of the first semiconductor light-emitting element and the second semiconductor light-emitting element, and the first semiconductor light-emitting element
  • the light emitted from the second semiconductor light-emitting element and the light emitted from the second semiconductor light emitting element are characterized in that the amount of action on the intrinsic light-sensitive retinal fine particles is different from each other.
  • the light obtained from the first semiconductor light emitting element has an emission spectrum that hardly includes a wavelength of 430 nm to 500 nm, and therefore has little melatonin suppressing effect.
  • the light obtained from the second semiconductor light emitting device has a great melatonin suppression effect.
  • the control unit controls light emission by the first semiconductor light emitting element and light emission by the second semiconductor light emitting element by the control unit, it is possible to switch between light having almost no melatonin suppressing effect and light having a large melatonin suppressing effect.
  • the light emitting device further includes a timer unit that detects at least one of time and time, and the control unit receives the time and time from the timer unit.
  • the lighting time is controlled according to information indicating at least one of the above.
  • the lighting time of the first semiconductor light emitting element and the second semiconductor light emitting element can be controlled according to the time and the passage of time.
  • the lighting time is controlled mainly during the day so that the light emission intensity of the second semiconductor light-emitting element increases, and the light emission intensity of the second semiconductor light-emitting element gradually decreases as the night goes on.
  • the lighting time can be controlled to increase the intensity.
  • the light-emitting device further includes a plurality of illuminance sensors that detect the intensity of light around the display device on which the light-emitting device is mounted and have different frequencies to be detected, and the plurality of illuminances.
  • a sensor control unit that detects the intensity of the blue component contained in the ambient light of the display device from the detection result of the sensor, and the control unit turns on the light according to the detection result of the sensor control unit. Control the time.
  • the lighting time of the first semiconductor light emitting element and the second semiconductor light emitting element can be controlled in accordance with the result of detecting the intensity of the blue component contained in the ambient light of the display device.
  • the intensity of the blue component of the light is large, the light emission of the second semiconductor light emitting element is controlled to be dominant over the light emission of the first semiconductor light emitting element, so that the light emission of a hue with a large blue component intensity is obtained. Is possible.
  • the intensity of the blue component of light is small, it is possible to control to reduce the emission intensity of the second semiconductor light emitting element and increase the emission intensity of the first semiconductor light emitting element.
  • the light emitting device further includes a communication unit that outputs a signal for controlling light around the display device outside the light emitting device in accordance with the control of the lighting time by the control unit. Yes.
  • the ambient light of the display device can be controlled in accordance with information from the communication unit.
  • a display device includes a light-emitting device according to still another embodiment of the present invention as a light source.
  • the display device has the same effect as the light emitting device according to still another aspect of the present invention.
  • the present invention can be used for light-emitting devices and display devices that affect biological rhythms.

Abstract

 The objective of the present invention is to significantly reduce the effects of melatonin suppression. The present invention is provided with an LED chip (14) for emitting light that has a peak light-emitting intensity of 390-420 nm, an LED chip (15) for emitting light that has a peak light-emitting intensity of above 420 nm to 480 nm or less, a fluorescent body cluster (18) for generating fluorescence that has one or more peak light-emitting intensities of 498-830 nm and that is excited by the light that the LED chip (14) generates, and a fluorescent body cluster (19) for generating fluorescence that has one or more peak light-emitting intensities of 498-830 nm and that is excited by the light that the LED chip (15) generates. The LED chip (14) and the LED chip (15) are mutually and independently driven.

Description

発光デバイスおよび表示装置Light emitting device and display device
 本発明は、生体リズムに影響を与える発光デバイスおよび表示装置に関する。 The present invention relates to a light emitting device and a display device that affect biological rhythm.
 光による生理的影響として、人間やその他哺乳類も含めた多くの生物は、約24時間周期で変動する概日リズムを有しており、太陽光を始めとする外界からの光刺激等により、身体等を正確な24時間の日周リズムに補正し生存している。この外界からの光刺激と生物体内のメラトニン分泌とが深く関係することが明らかになっている。図7には、メラトニン抑制作用スペクトルが提示されている。図7には、約465nmにピーク波長を有する幅広い波長域の光がメラトニンの分泌を抑制することが示されており、このメラトニンの分泌と睡眠覚醒や体温変動等の生体リズムとの関係も解明されつつある。 As a physiological effect of light, many living organisms including humans and other mammals have a circadian rhythm that fluctuates in a cycle of about 24 hours, and the body is stimulated by light stimulation from the outside world including sunlight. Etc. are corrected to an accurate 24-hour diurnal rhythm. It has been clarified that the light stimulus from the outside world is closely related to the melatonin secretion in the organism. FIG. 7 presents a melatonin inhibitory action spectrum. FIG. 7 shows that light in a wide wavelength range having a peak wavelength of about 465 nm suppresses the secretion of melatonin, and elucidates the relationship between the secretion of melatonin and biological rhythms such as sleep-wakefulness and body temperature fluctuations. It is being done.
 また、図8には、従来よく知られる、人間の網膜の光受容体の作用スペクトルが示されている。また、いわゆるS錐体、M錐体、L錐体、および杆体に加え、内因性光感受性網膜細(ipRGC)と呼ばれる光受容体も網膜内で発見されており、図9に示す光応答特性が示されている。このように、光による生理的反応が明らかになりつつある。 Also, FIG. 8 shows a known action spectrum of a human retina photoreceptor. In addition to so-called S cones, M cones, L cones, and rods, a photoreceptor called endogenous photosensitive retinal fine (ipRGC) has also been found in the retina, and the photoresponse characteristics shown in FIG. It is shown. Thus, the physiological reaction by light is becoming clear.
 これらの光による生理的反応は、生物が受ける光のスペクトルが重要である。図7に示されたスペクトルであれば、人工光でも自然光と同様の影響を及ぼす。このため、特に夜間に図7に示すメラトニン抑制作用スペクトルを含む人工光を浴びると、生物は正確な24時間の日周リズムを乱される。この結果、睡眠障害等の様々な生体への悪影響が問題視される。このため、この問題を解決するための技術が従来から提案されてきた。 The physiological spectrum of light is important for the light spectrum that organisms receive. In the case of the spectrum shown in FIG. 7, artificial light has the same effect as natural light. For this reason, especially when exposed to artificial light including the melatonin inhibitory action spectrum shown in FIG. 7 at night, the organism is disturbed by an accurate 24-hour diurnal rhythm. As a result, adverse effects on various living bodies such as sleep disorders are regarded as problems. For this reason, techniques for solving this problem have been proposed.
 また近年、これらの研究が進展し、極めて低い照度でも人間の概日リズムが乱されることが報告されている。特に夜間等の生体リズムを正しく維持するには、メラトニン抑制作用スペクトルを可能な限り含まない発光スペクトルを有する人工光を用いると共に、その放射量も同時に低減することが必要である。 In recent years, these studies have progressed, and it has been reported that human circadian rhythm is disturbed even at extremely low illuminance. In particular, in order to correctly maintain a biological rhythm such as nighttime, it is necessary to use artificial light having an emission spectrum that does not include a melatonin inhibitory action spectrum as much as possible, and to simultaneously reduce the amount of radiation.
 その一方で、人間が正確な24時間の日周リズムを刻むためには、昼間および早朝におけるメラトニンの分泌を抑制することが重要であることはよく知られている。このため、昼間または早朝に、メラトニン抑制作用スペクトルを多く含む高照度の人工光を浴びることも重要であるとされている。 On the other hand, it is well known that it is important to suppress the secretion of melatonin in the daytime and early morning in order for humans to make an accurate 24-hour diurnal rhythm. For this reason, it is also important to be exposed to artificial light with high illuminance including a large melatonin inhibitory action spectrum in the daytime or early morning.
 以上の点に鑑みて、従来、生体リズムを整えるために様々な発光デバイスが提案されている。 In view of the above points, various light emitting devices have been proposed in order to adjust the biological rhythm.
 特許文献1には、600nm~660nmにピーク波長を有する第1の発光体(赤色)と、530nm~570nmにピーク波長を有する第2の発光体(緑色)と、420nm~470nmにピーク波長を有する第3の発光体(青色)とを用いて、第1および第2の発光体に波長480nm以下の可視光成分をほぼ0とするための色変換部材および短波長カットフィルタを設け、第3の発光体からは波長480nm以下の可視光成分を放射する技術が開示されている。 In Patent Document 1, a first illuminant having a peak wavelength at 600 nm to 660 nm (red), a second illuminant having a peak wavelength at 530 nm to 570 nm (green), and a peak wavelength at 420 nm to 470 nm are disclosed. Using the third light emitter (blue), the first and second light emitters are provided with a color conversion member and a short wavelength cut filter for reducing the visible light component having a wavelength of 480 nm or less to almost zero, A technique for emitting a visible light component having a wavelength of 480 nm or less from a light emitter is disclosed.
 特許文献2には、発光ダイオードチップおよび蛍光物質により6000K以上の高い色温度の昼光色を発する第1の発光部と、発光ダイオードチップおよび蛍光物質により3000K以下の色温度の温白色を発する第2の発光部とを有しており、これらの発光ダイオードチップが青色光またはUV(Ultra Violet:紫外線)光を発する技術が開示されている。 Patent Document 2 discloses a first light emitting unit that emits a daylight color having a high color temperature of 6000 K or more with a light emitting diode chip and a fluorescent material, and a second that emits warm white with a color temperature of 3000 K or less with a light emitting diode chip and a fluorescent material. A technology is disclosed in which the light emitting diode chip emits blue light or UV (Ultra Violet) light.
 特許文献3には、430nm~490nmの波長範囲にピーク波長を有する第1半導体発光素子と、第1波長変換部材とにより白色光を放射する第1LED(Light Emitting Diode:発光ダイオード)、および、360nm~420nmの波長範囲にピーク波長を有する第2半導体発光素子と、第2波長変換部材とにより白色光を放射する第2LEDを有し、第1および第2LEDがそれぞれ発する白色光の色温度を整合させる技術が開示されている。 In Patent Document 3, a first semiconductor light emitting device having a peak wavelength in a wavelength range of 430 nm to 490 nm, a first LED (Light Emitting Diode) that emits white light by a first wavelength conversion member, and 360 nm The second semiconductor light emitting device having a peak wavelength in the wavelength range of ˜420 nm and the second LED that emits white light by the second wavelength conversion member, and matching the color temperature of the white light emitted by each of the first and second LEDs Techniques for making them disclosed are disclosed.
 特許文献4には、表示部を使用者の作業領域と非作業領域とに分け、非作業領域において、覚醒期には青色光の強度を増加させることでメラトニンの分泌を抑制し、鎮静期には青色光の強度を低下させることでメラトニンの分泌を亢進させ、体内時計を調整する技術が開示されている。 In Patent Document 4, the display unit is divided into a user work area and a non-work area, and in the non-work area, the secretion of melatonin is suppressed by increasing the intensity of blue light in the awakening period, and in the sedation period. Discloses a technique for adjusting the biological clock by increasing the secretion of melatonin by reducing the intensity of blue light.
 特許文献5には、445nm~480nmに発光ピーク波長を持つ第1発光体(青色)と、第1発光体より短波長側に発光ピーク波長を持つ第2発光体(青色)とを選択的に点灯させる技術が開示されている。 In Patent Document 5, a first illuminant (blue) having an emission peak wavelength at 445 nm to 480 nm and a second illuminant (blue) having an emission peak wavelength on a shorter wavelength side than the first emitter are selectively used. A technique for lighting is disclosed.
日本国特許公報「特許第5382849号公報(2014年1月8日発行)」Japanese Patent Publication “Patent No. 538249 Publication (issued on January 8, 2014)” 日本国特許公報「特許第5430394号公報(2014年2月26日発行)」Japanese Patent Gazette "Patent No. 5430394 (issued February 26, 2014)" 日本国公開特許公報「特開2012-64860号公報(2012年3月29日公開)」Japanese Patent Publication “JP 2012-64860 A (published March 29, 2012)” 日本国特許公報「特許第4692528号公報(2011年6月1日発行)」Japanese Patent Gazette "Patent No. 4692528 (issued on June 1, 2011)" 日本国公開特許公報「特開2005-63687号公報(2005年3月10日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2005-63687 (published on March 10, 2005)”
 特許文献1に開示されている技術は、演色性の維持を主要な目的としており、450nm~480nm付近をピーク波長とする青色光成分が残留している。このように、特許文献1では、光源装置全体でメラトニン抑制効果を大幅に低減する方法について触れられていない。また、人間の概日リズムの維持には、主に早朝または昼間の覚醒時等に必要なメラトニン抑制有効放射量を増大する光源装置と、主に夜間の就寝時等に必要なメラトニン抑制有効放射量をほぼ0にする光源装置との切り替えが重要である。しかしながら、特許文献1では、この切り替えを実現する手段について触れられていない。 The technique disclosed in Patent Document 1 is mainly intended to maintain color rendering properties, and a blue light component having a peak wavelength in the vicinity of 450 nm to 480 nm remains. Thus, Patent Document 1 does not mention a method for significantly reducing the melatonin suppression effect in the entire light source device. In addition, to maintain human circadian rhythm, a light source device that increases the amount of effective melatonin-suppressed radiation required mainly during early morning or daytime awakenings and a melatonin-suppressed effective radiation that is mainly required during nighttime sleeping. It is important to switch to a light source device whose amount is almost zero. However, Patent Document 1 does not mention a means for realizing this switching.
 特許文献2および3については、人間の概日リズムに合わせた(昼間の覚醒時と夜間の就寝時等に合わせて)2種類の発光部を切り替える技術が開示されている。夜間の就寝時等においてはメラトニン抑制有効放射量が可能な限り少ないことが望まれるが、450nm~480nm付近をピーク波長とする青色光成分が残留しているので、光源装置全体でメラトニン抑制効果を大幅に低減することは難しい。 Patent Documents 2 and 3 disclose a technique for switching between two types of light emitting units in accordance with a human circadian rhythm (according to awakening in the daytime or sleeping at night). It is desirable that the effective radiation dose for suppressing melatonin is as small as possible at bedtime at night, but the blue light component having a peak wavelength in the vicinity of 450 nm to 480 nm remains. It is difficult to reduce significantly.
 特許文献4については、画像表示装置に用いる例が開示されているが、鎮静期においても青色光成分が残留しているので、メラトニン抑制効果を大幅に低減することは難しい。 Patent Document 4 discloses an example of use in an image display device, but since the blue light component remains even in the sedation period, it is difficult to significantly reduce the melatonin suppression effect.
 特許文献5については、第1発光体からの光がメラトニン抑制効果を持つようにすることに注力している一方、第2発光体からの光がメラトニン抑制効果をほとんど持たないようにすることには注力していない。従って、依然第2発光体からの光がある程度大きなメラトニン抑制効果を持ち、光源装置全体でメラトニン抑制効果を大幅に低減することは難しい。 Regarding Patent Document 5, while focusing on making the light from the first illuminant have a melatonin suppressing effect, the light from the second illuminant has almost no melatonin suppressing effect. Is not focused. Therefore, the light from the second light emitter still has a somewhat large melatonin suppression effect, and it is difficult to significantly reduce the melatonin suppression effect in the entire light source device.
 本発明は、上記の課題に鑑みて為されたものであり、その目的は、メラトニン抑制効果を大幅に低減することを可能とする発光デバイスおよび表示装置を提供することにある。 The present invention has been made in view of the above-described problems, and an object thereof is to provide a light-emitting device and a display device that can greatly reduce the melatonin suppressing effect.
 上記の課題を解決するために、本発明の一態様に係る発光デバイスは、390nm以上420nm以下である第1波長域に発光強度のピークを有する光を発する少なくとも1つの第1半導体発光素子と、420nmを超え480nm以下である第2波長域に発光強度のピークを有する光を発する少なくとも1つの第2半導体発光素子と、上記第1半導体発光素子が発した光によって励起され、498nm以上830nm以下である第3波長域に発光強度のピークを1つ以上有する蛍光を生じる第1光変換部材と、上記第2半導体発光素子が発した光によって励起され、上記第3波長域に発光強度のピークを1つ以上有する蛍光を生じる第2光変換部材と、上記第1半導体発光素子と、上記第2半導体発光素子とを互いに独立に駆動させる駆動部とを備えていることを特徴としている。 In order to solve the above-described problem, a light-emitting device according to one embodiment of the present invention includes at least one first semiconductor light-emitting element that emits light having a light emission intensity peak in a first wavelength range of 390 nm to 420 nm, Excited by light emitted from the first semiconductor light emitting element and at least one second semiconductor light emitting element that emits light having an emission intensity peak in a second wavelength region that is greater than 420 nm and less than or equal to 480 nm, and is 498 nm or more and 830 nm or less. Excited by the light emitted from the first light conversion member that generates fluorescence having one or more emission intensity peaks in a certain third wavelength region, and the second semiconductor light emitting element, the emission intensity peaks in the third wavelength region. Drive for independently driving the second light conversion member that generates one or more fluorescent light, the first semiconductor light emitting element, and the second semiconductor light emitting element. It is characterized in that it comprises a part.
 本発明の一態様によれば、メラトニン抑制効果を大幅に低減することが可能となる。 According to one aspect of the present invention, the melatonin suppressing effect can be greatly reduced.
本発明に係るLEDパッケージの実施の形態1の構成を示す断面図である。It is sectional drawing which shows the structure of Embodiment 1 of the LED package which concerns on this invention. 本発明に係るLEDパッケージの実施の形態2の構成を示す断面図である。It is sectional drawing which shows the structure of Embodiment 2 of the LED package which concerns on this invention. 本発明の実施の形態3に係る発光デバイスの概略構成を示す回路ブロック図である。It is a circuit block diagram which shows schematic structure of the light-emitting device which concerns on Embodiment 3 of this invention. メラトニン抑制作用スペクトルと、第1半導体発光素子および第1光変換部材から得られた光の発光スペクトルとを対比したグラフである。It is the graph which contrasted the melatonin inhibitory action spectrum and the emission spectrum of the light obtained from the 1st semiconductor light-emitting device and the 1st light conversion member. Smith,Pokonyの錐体感度関数のグラフである。It is a graph of Smith and Pokony's cone sensitivity function. 可視光の波長に対する、明るさを感じる度合い(比視感度)を示したグラフである。It is the graph which showed the degree (specific visibility) which feels brightness to the wavelength of visible light. 従来よく知られる、メラトニン抑制作用スペクトルを示すグラフである。It is a graph which shows the melatonin inhibitory action spectrum known well conventionally. 従来よく知られる、人間の網膜の光受容体の作用スペクトルを示すグラフである。It is a graph which shows the action spectrum of the photoreceptor of a human retina known well conventionally. 内因性光感受性網膜細の光応答特性を示すグラフである。It is a graph which shows the optical response characteristic of an intrinsic light sensitive retinal cell. 本発明の実施の形態4に係る発光デバイスの概略構成を示す回路ブロック図である。It is a circuit block diagram which shows schematic structure of the light-emitting device which concerns on Embodiment 4 of this invention. 本発明の実施の形態5に係る発光デバイスの概略構成を示す回路ブロック図である。It is a circuit block diagram which shows schematic structure of the light-emitting device which concerns on Embodiment 5 of this invention. 本発明の実施の形態6に係る発光デバイスの概略構成を示す回路ブロック図である。It is a circuit block diagram which shows schematic structure of the light-emitting device which concerns on Embodiment 6 of this invention. 図12に示す発光デバイスのセンサ部の概略構成を示す回路ブロック図である。It is a circuit block diagram which shows schematic structure of the sensor part of the light-emitting device shown in FIG.
 〔発明の概要〕
 メラトニン抑制作用がほとんど無い紫色の光を発する紫色LED(第1半導体発光素子)と、この紫色LEDが発した紫色の光によって励起される蛍光体群(第1光変換部材)とを用いて白色光を実現し、照明光を得る発光デバイスである。
[Summary of the Invention]
White using a purple LED (first semiconductor light emitting element) emitting purple light having almost no melatonin suppression action and a phosphor group (first light conversion member) excited by the purple light emitted from this purple LED It is a light emitting device that realizes light and obtains illumination light.
 メラトニン抑制作用が大きい青色の光を発する青色LED(第2半導体発光素子)と、この青色LEDが発した青色の光によって励起される蛍光体群(第2光変換部材)とを併用することで、より生体リズムに適した発光デバイスを実現することが可能である。なお、この青色の光によって励起される蛍光体群は必須の構成でなく、適宜省略可能である。 By using together a blue LED (second semiconductor light-emitting element) that emits blue light with a large melatonin-inhibiting action and a phosphor group (second light conversion member) that is excited by the blue light emitted by this blue LED. It is possible to realize a light emitting device more suitable for biological rhythm. Note that the phosphor group excited by the blue light is not an essential component and can be omitted as appropriate.
 なお、紫色LEDは、390nm以上420nm以下(第1波長域)に発光強度のピークを有する光を発する。また、青色LEDは、420nmを超え480nm以下(第2波長域)に発光強度のピークを有する光を発する。さらに、励起された各蛍光体群はいずれも、498nm以上830nm以下(第3波長域)に発光強度のピークを1つ以上有する蛍光を生じる。 Note that the purple LED emits light having a peak of emission intensity in the range of 390 nm to 420 nm (first wavelength region). In addition, the blue LED emits light having a peak of emission intensity in the range from 420 nm to 480 nm or less (second wavelength range). Further, each excited phosphor group generates fluorescence having one or more emission intensity peaks in the range of 498 nm to 830 nm (third wavelength region).
 また、紫色LEDと青色LEDとは、互いに独立に駆動される(すなわち、駆動部を備えている)。 Further, the purple LED and the blue LED are driven independently from each other (that is, provided with a drive unit).
 〔実施の形態1〕
 図1は、LEDパッケージの実施の形態1の構成を示す断面図である。
[Embodiment 1]
FIG. 1 is a cross-sectional view showing the configuration of the first embodiment of the LED package.
 図1に示すLEDパッケージ13は、LEDチップ14および15と、樹脂16および17と、蛍光体群18および19と、キャビティ20および21とを備えている。 1 includes LED chips 14 and 15, resins 16 and 17, phosphor groups 18 and 19, and cavities 20 and 21. The LED package 13 shown in FIG.
 LEDチップ(第1半導体発光素子)14は、390nm以上420nm以下(第1波長域)に発光強度のピークを有する紫色の光を発するものである。該紫色の光は、メラトニン抑制作用がほとんど無い。LEDチップ14は、キャビティ20に格納されていると共に、蛍光体群18を含む樹脂16によって封止されている。 The LED chip (first semiconductor light emitting element) 14 emits purple light having a peak of emission intensity in a range of 390 nm to 420 nm (first wavelength region). The purple light has almost no melatonin inhibitory action. The LED chip 14 is stored in the cavity 20 and is sealed with a resin 16 including a phosphor group 18.
 LEDチップ(第2半導体発光素子)15は、420nmを超え480nm以下(第2波長域)に発光強度のピークを有する青色の光を発するものである。該青色の光は、メラトニン抑制作用が大きい。LEDチップ15は、キャビティ21に格納されていると共に、蛍光体群19を含む樹脂17によって封止されている。 The LED chip (second semiconductor light emitting element) 15 emits blue light having a peak of light emission intensity in the range of 420 nm to 480 nm (second wavelength region). The blue light has a large melatonin suppressing effect. The LED chip 15 is stored in the cavity 21 and is sealed with a resin 17 including a phosphor group 19.
 樹脂(封止部材)16は、蛍光体群18を含み、キャビティ20に格納されたLEDチップ14を封止するものである。 Resin (sealing member) 16 includes a phosphor group 18 and seals the LED chip 14 stored in the cavity 20.
 樹脂(封止部材)17は、蛍光体群19を含み、キャビティ21に格納されたLEDチップ15を封止するものである。 Resin (sealing member) 17 includes the phosphor group 19 and seals the LED chip 15 stored in the cavity 21.
 蛍光体群(第1光変換部材)18は、LEDチップ14が発した紫色の光によって励起され、498nm以上830nm以下(第3波長域)に発光強度のピークを1つ以上有する蛍光を生じるものであり、複数の蛍光体18sからなる。図1にて蛍光体群18を指し示すことは簡潔化のため省略したが、樹脂16に含有された複数の蛍光体18sからなる群を、蛍光体群18としている。 The phosphor group (first light conversion member) 18 is excited by purple light emitted from the LED chip 14 and generates fluorescence having one or more emission intensity peaks at 498 nm or more and 830 nm or less (third wavelength region). And consists of a plurality of phosphors 18s. Although illustration of the phosphor group 18 in FIG. 1 is omitted for the sake of brevity, a group composed of a plurality of phosphors 18 s contained in the resin 16 is referred to as a phosphor group 18.
 LEDパッケージ13では、蛍光体群18が樹脂16に含まれている。蛍光体群18を構成する各蛍光体18sが互いに同じ色の蛍光を生じるものであってもよいし、少なくとも1つの該蛍光体18sが他の該蛍光体18sと異なる色の蛍光を生じるものであってもよい。具体例を挙げると、蛍光体群18を構成する全ての蛍光体18sが黄色の蛍光を生じる蛍光体18sであってもよいし、蛍光体群18が赤色の蛍光を生じる蛍光体18sと緑色の蛍光を生じる蛍光体18sとの組み合わせからなっていてもよい。 In the LED package 13, the phosphor group 18 is included in the resin 16. Each of the phosphors 18s constituting the phosphor group 18 may generate the same color fluorescence, or at least one of the phosphors 18s may generate fluorescence of a color different from that of the other phosphors 18s. There may be. As a specific example, all of the phosphors 18s constituting the phosphor group 18 may be phosphors 18s that produce yellow fluorescence, or the phosphor group 18 and the phosphors 18s that produce red fluorescence may be green. You may consist of the combination with fluorescent substance 18s which produces | generates fluorescence.
 蛍光体群(第2光変換部材)19は、LEDチップ15が発した青色の光によって励起され、498nm以上830nm以下に発光強度のピークを1つ以上有する蛍光を生じるものであり、複数の蛍光体19sからなる。図1にて蛍光体群19を指し示すことは簡潔化のため省略したが、樹脂17に含有された複数の蛍光体19sからなる群を、蛍光体群19としている。 The phosphor group (second light conversion member) 19 is excited by blue light emitted from the LED chip 15 and generates fluorescence having one or more emission intensity peaks at 498 nm or more and 830 nm or less. It consists of a body 19s. Although the illustration of the phosphor group 19 in FIG. 1 is omitted for the sake of brevity, a group composed of a plurality of phosphors 19 s contained in the resin 17 is referred to as a phosphor group 19.
 LEDパッケージ13では、蛍光体群19が樹脂17に含まれている。蛍光体群19を構成する各蛍光体19sが互いに同じ色の蛍光を生じるものであってもよいし、少なくとも1つの該蛍光体19sが他の該蛍光体19sと異なる色の蛍光を生じるものであってもよい。具体例を挙げると、蛍光体群19を構成する全ての蛍光体19sが黄色の蛍光を生じる蛍光体19sであってもよいし、蛍光体群19が赤色の蛍光を生じる蛍光体19sと緑色の蛍光を生じる蛍光体19sとの組み合わせからなっていてもよい。 In the LED package 13, the phosphor group 19 is included in the resin 17. Each of the phosphors 19s constituting the phosphor group 19 may generate the same color of fluorescence, or at least one of the phosphors 19s may generate a fluorescence of a color different from that of the other phosphors 19s. There may be. As a specific example, all of the phosphors 19s constituting the phosphor group 19 may be phosphors 19s that generate yellow fluorescence, or the phosphor group 19 and the phosphors 19s that generate red fluorescence may be green. It may consist of a combination with a phosphor 19s that generates fluorescence.
 また、蛍光体群18と蛍光体群19とが、互いに同じ種類の蛍光体を含んでいてもよいし、互いに異なる素材(例えば、各蛍光体)または素材の配合比からなっていてもよい。 Further, the phosphor group 18 and the phosphor group 19 may include the same type of phosphor, or may be composed of different materials (for example, each phosphor) or a blending ratio of the materials.
 キャビティ(第1キャビティ)20は、LEDチップ14を格納する窪み(容器等)である。キャビティ20には、蛍光体群18を含む樹脂16が充填されている。 The cavity (first cavity) 20 is a recess (such as a container) that stores the LED chip 14. The cavity 20 is filled with the resin 16 including the phosphor group 18.
 キャビティ(第2キャビティ)21は、LEDチップ15を格納する窪み(容器等)である。キャビティ21には、蛍光体群19を含む樹脂17が充填されている。 The cavity (second cavity) 21 is a recess (such as a container) that stores the LED chip 15. The cavity 21 is filled with the resin 17 including the phosphor group 19.
 LEDパッケージ13では、LEDチップ14と蛍光体群18との組み合わせで白色光を実現している。LEDチップ14の駆動とは独立して、LEDパッケージ13は、LEDチップ15を備えている。蛍光体群19については、必要に応じて適宜省略可能である。 In the LED package 13, white light is realized by a combination of the LED chip 14 and the phosphor group 18. Independent of driving the LED chip 14, the LED package 13 includes an LED chip 15. About the fluorescent substance group 19, it is omissible suitably as needed.
 LEDパッケージ13では、キャビティ20に1つのLEDチップ14が搭載されているが、キャビティ20に複数のLEDチップ14が搭載されていてもよい。同様に、LEDパッケージ13では、キャビティ21に1つのLEDチップ15が搭載されているが、キャビティ21に複数のLEDチップ15が搭載されていてもよい。 In the LED package 13, one LED chip 14 is mounted in the cavity 20, but a plurality of LED chips 14 may be mounted in the cavity 20. Similarly, in the LED package 13, one LED chip 15 is mounted in the cavity 21, but a plurality of LED chips 15 may be mounted in the cavity 21.
 さらに、キャビティ20においてLEDチップ14が搭載されている個数と、キャビティ21においてLEDチップ15が搭載されている個数とが、互いに異なっていてもよい。これにより、所望の明るさに応じて、各LEDチップ14が発した紫色の光から得られる光の明るさと、各LEDチップ15が発した青色の光から得られる光の明るさとを、それぞれ任意に設定することができる。 Furthermore, the number of the LED chips 14 mounted in the cavity 20 and the number of the LED chips 15 mounted in the cavity 21 may be different from each other. Thereby, according to desired brightness, the brightness of light obtained from the purple light emitted from each LED chip 14 and the brightness of light obtained from the blue light emitted from each LED chip 15 can be arbitrarily set. Can be set to
 また、キャビティ20から出射される光の経路および/またはキャビティ21から出射される光の経路に、光を拡散させる光拡散部材(図示しない)が設けられていてもよい。該光拡散部材の一例としては、キャビティ20の開口および/またはキャビティ21の開口に実装されたレンズ、樹脂16および/または樹脂17に含有された拡散剤が挙げられる。これにより、キャビティ20から出射される光とキャビティ21から出射される光とによる混色が容易となる。 Further, a light diffusion member (not shown) for diffusing light may be provided in the path of light emitted from the cavity 20 and / or the path of light emitted from the cavity 21. Examples of the light diffusing member include a lens mounted in the opening of the cavity 20 and / or the opening of the cavity 21, and a diffusing agent contained in the resin 16 and / or the resin 17. This facilitates color mixing between the light emitted from the cavity 20 and the light emitted from the cavity 21.
 なお、キャビティ20とキャビティ21を別々のパッケージとして分離し、2つのパッケージとして構成しても良い。 Note that the cavity 20 and the cavity 21 may be separated as separate packages and configured as two packages.
 上記にはLEDチップの格納に窪みを利用する場合について説明したが、必ずしもこのような形態に限定されない。例えばリードフレームを有する基板上にLEDチップを実装し封止樹脂にて上部にポッティングするような形態も可能である。 Although the case where the depression is used for storing the LED chip has been described above, it is not necessarily limited to such a form. For example, a form in which an LED chip is mounted on a substrate having a lead frame and potted with a sealing resin is possible.
 〔実施の形態2〕
 図2は、LEDパッケージの実施の形態2の構成を示す断面図である。
[Embodiment 2]
FIG. 2 is a cross-sectional view showing the configuration of the LED package according to the second embodiment.
 図2に示すLEDパッケージ23は、LEDチップ14および15と、樹脂26と、蛍光体群28と、キャビティ30とを備えている。 The LED package 23 shown in FIG. 2 includes LED chips 14 and 15, a resin 26, a phosphor group 28, and a cavity 30.
 LEDチップ14および15は、キャビティ30に格納されていると共に、蛍光体群28を含む樹脂26によって封止されている。 The LED chips 14 and 15 are housed in the cavity 30 and sealed with a resin 26 including a phosphor group 28.
 樹脂(封止部材)26は、蛍光体群28を含み、キャビティ30に格納されたLEDチップ14および15を封止するものである。 Resin (sealing member) 26 includes phosphor group 28 and seals LED chips 14 and 15 stored in cavity 30.
 蛍光体群(光変換部材)28は、LEDチップ14が発した紫色の光によって励起され、498nm以上830nm以下に発光強度のピークを1つ以上有する蛍光を生じるものであり、複数の蛍光体28sからなる。また、蛍光体群28はさらに、LEDチップ15が発した青色の光によって励起され、498nm以上830nm以下に発光強度のピークを1つ以上有する蛍光を生じてもよい。図2にて蛍光体群28を指し示すことは簡潔化のため省略したが、樹脂26に含有された複数の蛍光体28sからなる群を、蛍光体群28としている。 The phosphor group (light converting member) 28 is excited by the purple light emitted from the LED chip 14 and generates fluorescence having one or more emission intensity peaks at 498 nm or more and 830 nm or less. Consists of. Further, the phosphor group 28 may be excited by blue light emitted from the LED chip 15 to generate fluorescence having one or more emission intensity peaks in the range from 498 nm to 830 nm. Although illustration of the phosphor group 28 in FIG. 2 is omitted for the sake of brevity, a group composed of a plurality of phosphors 28 s contained in the resin 26 is referred to as a phosphor group 28.
 LEDパッケージ23では、蛍光体群28が樹脂26に含まれている。蛍光体群28を構成する各蛍光体28sが互いに同じ色の蛍光を生じるものであってもよいし、少なくとも1つの該蛍光体28sが他の該蛍光体28sと異なる色の蛍光を生じるものであってもよい。具体例を挙げると、蛍光体群28を構成する全ての蛍光体28sが黄色の蛍光を生じる蛍光体28sであってもよいし、蛍光体群28が赤色の蛍光を生じる蛍光体28sと緑色の蛍光を生じる蛍光体28sとの組み合わせからなっていてもよい。 In the LED package 23, the phosphor group 28 is included in the resin 26. Each of the phosphors 28s constituting the phosphor group 28 may generate the same color of fluorescence, or at least one of the phosphors 28s may generate fluorescence of a color different from that of the other phosphors 28s. There may be. As a specific example, all of the phosphors 28s constituting the phosphor group 28 may be phosphors 28s that produce yellow fluorescence, or the phosphor group 28 and the phosphors 28s that produce red fluorescence may be green. You may consist of the combination with the fluorescent substance 28s which produces fluorescence.
 キャビティ30は、LEDチップ14および15を格納する窪み(容器等)である。キャビティ30には、蛍光体群28を含む樹脂26が充填されている。 The cavity 30 is a recess (such as a container) that stores the LED chips 14 and 15. The cavity 30 is filled with a resin 26 including a phosphor group 28.
 〔実施の形態3〕
 図3は、本実施の形態に係る発光デバイスの概略構成を示す回路ブロック図である。
[Embodiment 3]
FIG. 3 is a circuit block diagram showing a schematic configuration of the light emitting device according to the present embodiment.
 図3に示す発光デバイス1は、調光制御部2、定電流回路3および4、ならびにLED回路5および6を備えている。 The light emitting device 1 shown in FIG. 3 includes a dimming control unit 2, constant current circuits 3 and 4, and LED circuits 5 and 6.
 調光制御部2は、定電流回路3および4に接続されている。定電流回路3は、LED回路5に接続されている。定電流回路4は、LED回路6に接続されている。 The dimming control unit 2 is connected to the constant current circuits 3 and 4. The constant current circuit 3 is connected to the LED circuit 5. The constant current circuit 4 is connected to the LED circuit 6.
 LED回路5および6は、基板上に実装された複数のLEDパッケージ13の直列回路である。LED回路5では複数のLEDチップ14が直列に接続されており、LED回路6では複数のLEDチップ15が直列に接続されている。 LED circuits 5 and 6 are a series circuit of a plurality of LED packages 13 mounted on a substrate. The LED circuit 5 has a plurality of LED chips 14 connected in series, and the LED circuit 6 has a plurality of LED chips 15 connected in series.
 これらのLED回路5および6は、互いに発光スペクトルが異なる。すなわち、LED回路5の各LEDチップ14の発光スペクトルは、390nm以上420nm以下である第1波長域に発光強度のピークを有する。LED回路6の各LEDチップ15の発光スペクトルは、420nmを超え480nm以下である第2波長域に発光強度のピークを有する。これに伴い、各LEDチップ14から出射された紫色の光と、各LEDチップ15から出射された青色の光とは、内因性光感受性網膜細への作用量が互いに異なる。このため、該紫色の光と該青色の光とは、生体リズムに対して互いに異なる作用を示す。なお、作用量とは受光体が光を受けることで反応する反応量のことである。照射光のスペクトルに作用スペクトルを積算し、波長にて積分することで得られる。 These LED circuits 5 and 6 have different emission spectra. That is, the emission spectrum of each LED chip 14 of the LED circuit 5 has a peak of emission intensity in the first wavelength range of 390 nm to 420 nm. The light emission spectrum of each LED chip 15 of the LED circuit 6 has a peak of light emission intensity in the second wavelength region that exceeds 420 nm and is 480 nm or less. Accordingly, the violet light emitted from each LED chip 14 and the blue light emitted from each LED chip 15 have different amounts of action on the intrinsic light-sensitive retinal fine. For this reason, the purple light and the blue light have different effects on the biological rhythm. The amount of action is the amount of reaction that reacts when the photoreceptor receives light. It is obtained by integrating the action spectrum with the spectrum of the irradiation light and integrating it with the wavelength.
 調光制御部(駆動部)2は、LED回路5のLEDチップ14およびLED回路6のLEDチップ15の点灯時間を、PWM(Pulse Width Modulation:パルス幅変調)によって制御する。調光制御部2は、LED回路5(LEDチップ14)とLED回路6(LEDチップ15)とを個別に制御する。該PWMによる制御のため、調光制御部2は、LED回路5および6のそれぞれに与えるPWM信号を個別に生成するPWM回路(図示しない)を有している。このPWM回路は、例えば照明制御部7や発光デバイス1の外部からの指示に応じて、各PWM信号のデューティー比を変更する。 The dimming control unit (drive unit) 2 controls the lighting time of the LED chip 14 of the LED circuit 5 and the LED chip 15 of the LED circuit 6 by PWM (Pulse Width Modulation: pulse width modulation). The dimming control unit 2 individually controls the LED circuit 5 (LED chip 14) and the LED circuit 6 (LED chip 15). For the control by the PWM, the dimming controller 2 has a PWM circuit (not shown) that individually generates a PWM signal to be supplied to each of the LED circuits 5 and 6. This PWM circuit changes the duty ratio of each PWM signal in accordance with, for example, an instruction from the outside of the illumination control unit 7 or the light emitting device 1.
 定電流回路(駆動部)3は、調光制御部2から供給されるPWM信号に基づいて定電流を生成し、この定電流をLED回路5に供給する。定電流回路3は、該PWM信号のハイレベルの期間にオン状態となることで該定電流をLED回路5に供給する一方、該PWM信号のローレベルの期間にオフ状態となることで該定電流をLED回路5に供給しない。 The constant current circuit (drive unit) 3 generates a constant current based on the PWM signal supplied from the dimming control unit 2 and supplies the constant current to the LED circuit 5. The constant current circuit 3 supplies the constant current to the LED circuit 5 by being turned on during the high level period of the PWM signal, while the constant current circuit 3 is turned off during the low level period of the PWM signal. No current is supplied to the LED circuit 5.
 定電流回路(駆動部)4は、調光制御部2から供給されるPWM信号に基づいて定電流を生成し、この定電流をLED回路6に供給する。定電流回路4は、該PWM信号のハイレベルの期間にオン状態となることで該定電流をLED回路6に供給する一方、該PWM信号のローレベルの期間にオフ状態となることで該定電流をLED回路6に供給しない。 The constant current circuit (drive unit) 4 generates a constant current based on the PWM signal supplied from the dimming control unit 2 and supplies the constant current to the LED circuit 6. The constant current circuit 4 supplies the constant current to the LED circuit 6 by being turned on during the high level period of the PWM signal, while being turned off during the low level period of the PWM signal. No current is supplied to the LED circuit 6.
 発光デバイス1では、調光制御部2がLED回路5および6毎に向けて個別に生成するPWM信号によって、定電流回路3がLED回路5に供給する定電流を制御すると共に定電流回路4がLED回路6に供給する定電流を制御する。この結果、LEDチップ14とLEDチップ15とが個別に制御されている。従って、発光デバイス1は、各LED回路5および6に供給する定電流を調整することにより、LEDチップ14とLEDチップ15とのそれぞれの光強度に応じて異なる色となる混色の光を発することができる。 In the light emitting device 1, the constant current circuit 3 controls the constant current supplied to the LED circuit 5 by the PWM signal generated individually by the dimming control unit 2 for each of the LED circuits 5 and 6, and the constant current circuit 4 The constant current supplied to the LED circuit 6 is controlled. As a result, the LED chip 14 and the LED chip 15 are individually controlled. Therefore, the light emitting device 1 emits light of mixed colors having different colors according to the light intensity of the LED chip 14 and the LED chip 15 by adjusting the constant current supplied to the LED circuits 5 and 6. Can do.
 なお、調光制御部2によるLED回路5および6の制御には、LEDチップ14および15の、発光輝度の変更、点灯および消灯、点滅が含まれる。 Note that the control of the LED circuits 5 and 6 by the dimming control unit 2 includes changing the light emission luminance, turning on and off, and blinking of the LED chips 14 and 15.
 また、発光デバイス1では勿論、LEDパッケージ13のかわりにLEDパッケージ23が用いられてもよい。 Of course, in the light emitting device 1, the LED package 23 may be used instead of the LED package 13.
 照明制御部7は、発光デバイス1の使用条件に応じて必要な構成要素を備えており、調光制御部2に指示を送ることでLED回路5および6を制御する。390nm以上420nm以下である波長域に発光強度のピークを有する紫色の光は、420nmを超え480nm以下である波長域に発光強度のピークを有する青色の光と比較し、視覚への作用量が小さい。すなわち、これらの光を同じ強度で発光させると、該紫色の光は、該青色の光より暗く見える。これらの光は、青色の明るさが互いに異なって見えるため、色合いが互いに異なるが、人間の視覚には色順応の機能があるため、やがてその色合いの違いに慣れ、これらの光の両方が自然に見えるようになる。 The illumination control unit 7 includes necessary components according to the use conditions of the light emitting device 1 and controls the LED circuits 5 and 6 by sending instructions to the dimming control unit 2. Purple light having a peak of emission intensity in the wavelength range of 390 nm or more and 420 nm or less has a smaller amount of visual effect than blue light having a peak of emission intensity in the wavelength range of more than 420 nm and less than or equal to 480 nm. . That is, when these lights are emitted with the same intensity, the purple light appears darker than the blue light. These lights look different from each other in the brightness of the blue, so the colors are different from each other, but because human vision has a function of chromatic adaptation, eventually they become used to the difference in the colors and both of these lights are natural. Become visible.
 携帯機器およびテレビ受信機等の画面は、使用時に注視されることから、携帯機器およびテレビ受信機等の表示装置の光源として発光デバイス1は好適である。該表示装置として、現在は液晶ディスプレイが主に普及している。ほとんどの液晶ディスプレイは、カラーフィルタと液晶との組み合わせによって多色化を実現している。一般に、液晶は、可視光のうち短波長側の成分に対する透過率が悪い。また、カラーフィルタのうち青色のものは、通常450~460nm付近にピークを有する青色波長に対して最適なものが選ばれ、420nmでは透過率の落ちるものが多い。従って、液晶ディスプレイに発光デバイス1を適用する場合、該短波長側の成分を多く有する光の発光強度が大きくなるよう調整を行う必要がある。一方で、透過ではなく反射を用いるデジタル・マイクロミラー・デバイスでは、カラーフィルタまたは液晶を必要としないので、該短波長側の成分の減衰も小さい。ゆえに発光デバイス1の適用に更に好適であると言える。 Since the screens of portable devices and television receivers are watched during use, the light emitting device 1 is suitable as a light source for display devices such as portable devices and television receivers. Currently, a liquid crystal display is mainly used as the display device. Most liquid crystal displays realize multi-coloring by combining color filters and liquid crystals. In general, the liquid crystal has a low transmittance for a component on the short wavelength side of visible light. Of the color filters, blue ones are usually selected that are optimal for blue wavelengths having a peak in the vicinity of 450 to 460 nm, and many have low transmittance at 420 nm. Therefore, when the light emitting device 1 is applied to a liquid crystal display, it is necessary to make adjustments so that the light emission intensity of light having many components on the short wavelength side is increased. On the other hand, a digital micromirror device that uses reflection instead of transmission does not require a color filter or liquid crystal, so that the attenuation of the short wavelength component is small. Therefore, it can be said that it is more suitable for application of the light emitting device 1.
 〔実施の形態4〕
 図10は、本実施の形態に係る発光デバイスの概略構成を示す回路ブロック図である。特に説明しないものについては、図3に示したものと同様の機能を有する。
[Embodiment 4]
FIG. 10 is a circuit block diagram showing a schematic configuration of the light emitting device according to the present embodiment. Those not specifically described have the same functions as those shown in FIG.
 図10に示す発光デバイス101は、図3に示した発光デバイス1の概念に含まれるものである。但し、発光デバイス101がタイマ部105を備えていることを明示するため、図10では、照明制御部7のブロック内に、光源制御部(制御部)104とタイマ部105とをそれぞれ明示している。 The light emitting device 101 shown in FIG. 10 is included in the concept of the light emitting device 1 shown in FIG. However, in order to clearly indicate that the light emitting device 101 includes the timer unit 105, in FIG. 10, the light source control unit (control unit) 104 and the timer unit 105 are clearly shown in the block of the illumination control unit 7. Yes.
 タイマ部105は、何らかの構成によって、時刻および時間の経過の少なくとも一方を検知する機能ブロックである。例えば、タイマ部105は、下記(A)~(C)に例示する構成にて実現することができる。 The timer unit 105 is a functional block that detects at least one of time and lapse of time by some configuration. For example, the timer unit 105 can be realized by the configurations exemplified in the following (A) to (C).
 (A)リアルタイムクロック(RTC)デバイス、電波時計受信モジュール、GPS(Global Positioning System:全地球位置把握システム)受信モジュールといった、直接的に時刻および/または時間の経過を得る構成。 (A) A configuration that directly obtains time and / or time passage, such as a real-time clock (RTC) device, a radio clock receiver module, or a GPS (Global Positioning System) receiver module.
 (B)ネットワーク等に接続して、他の接続ノードから時刻を得る構成(機能単位)。 (B) A configuration (function unit) that connects to a network or the like and obtains time from other connection nodes.
 (C)CPU(Central Processing Unit:コンピューターの中央演算処理装置)等で時間の経過をカウントすることによって、時刻および/または時間の経過を得る構成(方法)。 (C) A configuration (method) for obtaining the time and / or the passage of time by counting the passage of time with a CPU (Central Processing Unit).
 光源制御部104は、タイマ部105から時刻および時間の経過の少なくとも一方を示す情報を受け取り、この情報に応じて、調光制御部2により定電流回路3および4を適宜制御し、LED回路5の各LEDチップ14およびLED回路6の各LEDチップ15の点灯時間を制御する。例えば、日中は主に各LEDチップ15による発光強度が大きくなるよう該点灯時間を制御し、夜になるにつれて徐々に各LEDチップ15による発光強度を小さく、各LEDチップ14による発光強度が大きくなるよう該点灯時間を制御することが可能である。 The light source control unit 104 receives information indicating at least one of the time and the passage of time from the timer unit 105, and appropriately controls the constant current circuits 3 and 4 by the dimming control unit 2 in accordance with this information, and the LED circuit 5 The lighting time of each LED chip 14 and each LED chip 15 of the LED circuit 6 is controlled. For example, the lighting time is controlled so that the light emission intensity by each LED chip 15 mainly increases during the day, and the light emission intensity by each LED chip 15 gradually decreases and the light emission intensity by each LED chip 14 increases by night. It is possible to control the lighting time so that
 発光デバイス101を液晶ディスプレイ等の表示装置の光源として用いると、各LEDチップ14および各LEDチップ15の点灯時間に応じて、表示の色合いが変わることになる。しかしながら、人間の視覚は色順応の機能を有しており、たとえ表示の色合いが本来の色合いと異なるものであっても、色順応の機能により不自然さを感じることなく色の識別が可能である。従って、該表示装置の光源として発光デバイス101を使用することに問題は無い。 When the light emitting device 101 is used as a light source of a display device such as a liquid crystal display, the display color changes depending on the lighting time of each LED chip 14 and each LED chip 15. However, human vision has a function of chromatic adaptation, and even if the displayed hue is different from the original hue, the chromatic adaptation function can identify colors without feeling unnatural. is there. Therefore, there is no problem in using the light emitting device 101 as the light source of the display device.
 タイマ部105にGPS受信モジュールを用いると、時刻の情報のみでなく、日付および緯度経度の位置情報をも得ることが可能である。これらの情報を必要に応じて用い、発光デバイス101は、時刻と場所とに応じて上記の時間プロファイルを日照に合わせることができる。すなわち、実際の日照時間に合わせて発光の色合いおよび強度を変化させることが可能である。 When a GPS receiving module is used for the timer unit 105, not only time information but also date and latitude / longitude position information can be obtained. By using these pieces of information as necessary, the light emitting device 101 can adjust the above time profile to sunlight according to the time and place. That is, it is possible to change the color and intensity of light emission in accordance with the actual sunshine duration.
 〔実施の形態5〕
 図11は、本実施の形態に係る発光デバイスの概略構成を示す回路ブロック図である。特に説明しないものについては、図3に示したものと同様の機能を有する。
[Embodiment 5]
FIG. 11 is a circuit block diagram showing a schematic configuration of the light emitting device according to the present embodiment. Those not specifically described have the same functions as those shown in FIG.
 図11に示す発光デバイス102は、図3に示した発光デバイス1の概念に含まれるものである。但し、発光デバイス102がタイマ部105および通信部106を備えていることを明示するため、図11では、照明制御部7のブロック内に、光源制御部104とタイマ部105と通信部106とをそれぞれ明示している。図11に示した発光デバイス102と、図10に示した発光デバイス101との相違は、通信部106の有無である。 The light emitting device 102 shown in FIG. 11 is included in the concept of the light emitting device 1 shown in FIG. However, in order to clearly indicate that the light emitting device 102 includes the timer unit 105 and the communication unit 106, in FIG. 11, the light source control unit 104, the timer unit 105, and the communication unit 106 are included in the block of the illumination control unit 7. Each is clearly indicated. A difference between the light emitting device 102 illustrated in FIG. 11 and the light emitting device 101 illustrated in FIG. 10 is the presence or absence of the communication unit 106.
 実施の形態4にて、人間の視覚の色順応機能を利用して、表示装置の表示の色合いが本来のものと異なる適用例を説明した。このとき、表示装置による表示の色合いを変化させても、表示装置の周囲の光の色合いがそれに伴って変化しなければ、色順応は表示装置の周囲の光にも影響され、不十分なものとなる。発光デバイス102の構成によって表示装置の周囲の光を制御することで、さらに色順応を潤滑に推し進めることが可能になる。 In the fourth embodiment, the application example in which the color of the display on the display device is different from the original one using the human visual color adaptation function has been described. At this time, even if the color of the display by the display device is changed, if the color of the ambient light of the display device does not change accordingly, the chromatic adaptation is also affected by the ambient light of the display device. It becomes. By controlling the light around the display device according to the configuration of the light emitting device 102, it is possible to further promote chromatic adaptation to lubrication.
 通信部106は、発光デバイス102の外部の表示装置の周囲の環境光を制御するための通信機能ブロックである。通信手段としては、赤外線リモコンおよびBluetooth(登録商標)等の無線通信、Dali(Digital Addressable Lighting Interface:デジタルかつアドレス可能な光源インターフェイス)およびDMX512信号用のインターフェイスといった照明制御インターフェイス、その他汎用または専用の接続手段を用いることができる。そして、選択された該接続手段にあわせた通信部106が用意される。通信部106は、この接続手段を用いて環境光を制御するための信号を外部に出力し、この信号が、環境光の色合いを発光デバイス102の発光する光の色合いに近いものとさせるためのトリガとなる。 The communication unit 106 is a communication function block for controlling ambient light around a display device outside the light emitting device 102. Communication means include wireless communication such as infrared remote control and Bluetooth (registered trademark), lighting control interface such as Dali (Digital Addressable Lighting Interface) and DMX512 signal interface, and other general purpose or dedicated connections Means can be used. And the communication part 106 according to the selected said connection means is prepared. The communication unit 106 outputs a signal for controlling the ambient light to the outside using this connection means, and this signal makes the hue of the ambient light close to the hue of the light emitted from the light emitting device 102. Trigger.
 発光デバイス102を表示装置の光源として利用すると、各LEDチップ14および15が発する光の発光スペクトルの変化に合わせて、通信部106を用いて周囲に照明装置等から照射される環境光をも変化させることができる。利用者の目には表示装置の映像と環境光とが入射されるが、これらの色合いを類似のものとすることで、表示装置の映像の色合いへの順応が容易になる。 When the light emitting device 102 is used as the light source of the display device, the ambient light irradiated from the lighting device or the like using the communication unit 106 is also changed in accordance with the change in the emission spectrum of the light emitted from the LED chips 14 and 15. Can be made. The image of the display device and the ambient light are incident on the user's eyes. By making these colors similar, adaptation to the color of the image of the display device is facilitated.
 発光デバイス102において、タイマ部105は省略されてもよい。 In the light emitting device 102, the timer unit 105 may be omitted.
 〔実施の形態6〕
 図12は、本実施の形態に係る発光デバイスの概略構成を示す回路ブロック図である。特に説明しないものについては、図3に示したものと同様の機能を有する。
[Embodiment 6]
FIG. 12 is a circuit block diagram showing a schematic configuration of the light emitting device according to the present embodiment. Those not specifically described have the same functions as those shown in FIG.
 図12に示す発光デバイス103は、図3に示した発光デバイス1の概念に含まれるものである。但し、発光デバイス103がセンサ部107を備えていることを明示するため、図12では、照明制御部7のブロック内に、光源制御部104とセンサ部107とをそれぞれ明示している。 The light emitting device 103 shown in FIG. 12 is included in the concept of the light emitting device 1 shown in FIG. However, in order to clearly indicate that the light emitting device 103 includes the sensor unit 107, in FIG. 12, the light source control unit 104 and the sensor unit 107 are clearly shown in the block of the illumination control unit 7.
 センサ部107は、周囲に照射される環境光がどの程度の青色成分を含んでいるのかを検出する機能ブロックである。センサ部107の構成の一例を、図13を用いて説明する。 The sensor unit 107 is a functional block that detects how much blue component the ambient light irradiated to the surroundings contains. An example of the configuration of the sensor unit 107 will be described with reference to FIG.
 センサ部107は、センサ制御部108と、照度センサ109aおよび109bと、カラーフィルタ110aおよび110bとを備えている。カラーフィルタ110aとカラーフィルタ110bとは、透過スペクトルが互いに異なる。そして、カラーフィルタ110aおよび110bを透過した光は、それぞれ、照度センサ109aおよび109bに入射される。この構成により、環境光等の光に含まれる青色成分(可視光の短波長成分)の強度に応じて、照度センサ109aと照度センサ109bとの反応(例えば、青色成分の強度を示す指標としての出力値)のバランスが変わるよう調整される。換言すれば、照度センサ109aと照度センサ109bとは、検知すべき光の周波数が互いに異なるものである。 The sensor unit 107 includes a sensor control unit 108, illuminance sensors 109a and 109b, and color filters 110a and 110b. The color filters 110a and 110b have different transmission spectra. The light transmitted through the color filters 110a and 110b is incident on the illuminance sensors 109a and 109b, respectively. With this configuration, the reaction between the illuminance sensor 109a and the illuminance sensor 109b (for example, as an index indicating the intensity of the blue component) according to the intensity of the blue component (short wavelength component of visible light) included in the light such as ambient light. The balance of the output value is adjusted. In other words, the illuminance sensor 109a and the illuminance sensor 109b have different frequencies of light to be detected.
 例えば、カラーフィルタ110aが可視光のうち長波長の成分(緑色または赤色)を比較的よく透過し、カラーフィルタ110bが可視光のうち短波長の成分(青色)を比較的よく透過するものとする。環境光の青色成分の強度が大きい場合、カラーフィルタ110aを透過する光は少なく、カラーフィルタ110bを透過する光は多い。従って、照度センサ109aの反応よりも照度センサ109bの反応が大きくなる。逆に、環境光の青色成分の強度が小さい場合、カラーフィルタ110aを透過する光は多く、カラーフィルタ110bを透過する光は少ない。従って、照度センサ109bの反応よりも照度センサ109aの反応が大きくなる。センサ制御部108は、これらの照度センサ109aおよび109bの反応の大きさを読み取り、そのバランスから環境光の色合い(青色成分の強度)を検知することが可能である。 For example, the color filter 110a transmits a long wavelength component (green or red) of visible light relatively well, and the color filter 110b transmits a short wavelength component (blue) of visible light relatively well. . When the intensity of the blue component of the ambient light is large, the light transmitted through the color filter 110a is small and the light transmitted through the color filter 110b is large. Accordingly, the response of the illuminance sensor 109b is greater than the response of the illuminance sensor 109a. Conversely, when the intensity of the blue component of the ambient light is small, much light is transmitted through the color filter 110a and little light is transmitted through the color filter 110b. Accordingly, the response of the illuminance sensor 109a is greater than the response of the illuminance sensor 109b. The sensor control unit 108 can read the magnitude of the response of the illuminance sensors 109a and 109b and detect the hue of the ambient light (blue component intensity) from the balance.
 光源制御部104は、センサ制御部108が色合いを検知した結果(センサ制御部の検知結果)に応じて、発光デバイス103の発光を調整する。例えば、環境光の青色成分の強度が大きい場合、青の視感度の高い各LEDチップ15の発光を、青の視感度の低い各LEDチップ14の発光よりも支配的になるよう制御し、青色成分の強度が大きい色合いの発光とする。逆に、環境光の青色成分の強度が小さい場合、各LEDチップ15の発光強度を小さくし、各LEDチップ14の発光強度を大きくするように制御する。このようにして、環境光の色合いに応じて、発光デバイス103は、その発光の色合いを変化させることができる。発光デバイス103を表示装置の光源に用いた場合、発光デバイス103の発光の色合いと環境光の色合いとが近いため、色順応が潤滑に進み、表示の色合いに不自然さを感じにくい。 The light source control unit 104 adjusts the light emission of the light emitting device 103 according to the result (detection result of the sensor control unit) detected by the sensor control unit 108. For example, when the intensity of the blue component of the ambient light is large, the light emission of each LED chip 15 with high blue visibility is controlled to be more dominant than the light emission of each LED chip 14 with low blue visibility. It is assumed that the light emission has a high intensity of the component. Conversely, when the intensity of the blue component of the ambient light is small, the light emission intensity of each LED chip 15 is reduced and the light emission intensity of each LED chip 14 is increased. In this way, the light emitting device 103 can change the color of light emission in accordance with the color of ambient light. When the light emitting device 103 is used as a light source of a display device, since the light emitting color of the light emitting device 103 and the color of the ambient light are close to each other, the chromatic adaptation proceeds to lubrication and it is difficult to feel unnaturalness in the color of the display.
 上記以外のセンサ部107の構成例として、例えば反応するスペクトルが異なる複数の照度センサを用いることで、カラーフィルタを用いない構成とすることも可能である。また、カラーフィルタを2種類ではなく、一方の照度センサにだけカラーフィルタを用い、他方の照度センサにはカラーフィルタを用いない構造も可能である。また、フォトダイオード等の照度センサを用いる以外に、カメラモジュールを利用することでも環境光の色合いを検知することが可能である。 As a configuration example of the sensor unit 107 other than the above, for example, a configuration in which no color filter is used can be obtained by using a plurality of illuminance sensors having different reacting spectra. Further, instead of using two types of color filters, a structure in which a color filter is used only for one illuminance sensor and a color filter is not used for the other illuminance sensor is possible. In addition to using an illuminance sensor such as a photodiode, it is possible to detect the hue of ambient light by using a camera module.
 〔作用効果1〕
 図4は、メラトニン抑制作用スペクトル(図7参照)と、LEDチップ14および蛍光体群18または28から得られた光の発光スペクトルとを対比したグラフである。
[Operation effect 1]
FIG. 4 is a graph comparing the melatonin inhibitory action spectrum (see FIG. 7) with the emission spectrum of light obtained from the LED chip 14 and the phosphor group 18 or 28.
 図4の光発光スペクトル分布のグラフは、LEDチップ104に405nmをピークとした紫色光を発するチップを用い、蛍光体群18または28には、緑色蛍光体のβ-サイアロンと赤色蛍光体のCASNを組み合わせたときの例を示している。 The light emission spectrum distribution graph of FIG. 4 uses a chip that emits purple light with a peak of 405 nm as the LED chip 104, and the phosphor group 18 or 28 includes β-sialon of a green phosphor and CASN of a red phosphor. The example when combining is shown.
 メラトニン抑制作用スペクトルに示すとおり、波長430nm~500nmの光は、ピーク値に対して60%以上ものメラトニンの抑制効果を有する。LEDチップ14および蛍光体群18または28から得られた光は、430nm~500nmの波長をほとんど含まない発光スペクトルとなるため、メラトニンの抑制効果は非常に小さい。 As shown in the melatonin inhibitory action spectrum, light having a wavelength of 430 nm to 500 nm has a melatonin inhibitory effect of 60% or more with respect to the peak value. Since the light obtained from the LED chip 14 and the phosphor group 18 or 28 has an emission spectrum that hardly includes a wavelength of 430 nm to 500 nm, the melatonin suppressing effect is very small.
 従って、生体リズムに合わせた就寝前の照明として、LEDチップ14および蛍光体群18または28から得られた光を用いることが効果的である。すなわち、朝にはLEDチップ15が発した青色の光由来の光を用いて、夜にはLEDチップ14が発した紫色の光由来の光を用いることにより、生体リズムに合わせて光源を切り替えることが可能である。 Therefore, it is effective to use the light obtained from the LED chip 14 and the phosphor group 18 or 28 as the illumination before going to bed according to the biological rhythm. That is, by using light derived from blue light emitted from the LED chip 15 in the morning and using light derived from purple light emitted from the LED chip 14 at night, the light source is switched in accordance with the biological rhythm. Is possible.
 〔作用効果2〕
 発光デバイス1は、約500nmより短い波長の光を全てカットするのではなく、LEDチップ14により波長390nm以上420nm以下に発光強度のピークを有する光を発する。
[Operation effect 2]
The light emitting device 1 does not cut all light having a wavelength shorter than about 500 nm, but emits light having a light emission intensity peak at a wavelength of 390 nm to 420 nm by the LED chip 14.
 これにより、1つ目の利点として、液晶表示装置のバックライト等の、3原色で色を合成して表示を行う表示装置に発光デバイス1を適用することが可能となる。また、2つ目の利点として、部屋等を照らす照明器具に適用すると、白みを帯びた光を得ることが可能となる。 Thereby, as a first advantage, it becomes possible to apply the light emitting device 1 to a display device that performs display by combining colors in three primary colors, such as a backlight of a liquid crystal display device. As a second advantage, when applied to a lighting device that illuminates a room or the like, it becomes possible to obtain whited light.
 [1つ目の利点の説明]
 一般的に、テレビジョン受信機および表示装置では、赤、緑、および青の3原色を用いて、これらの比率を調整することで様々な色が表示される。人間の色覚メカニズムとして、眼の網膜上にあり互いに分光特性が異なる、L錐体、M錐体、およびS錐体が刺激される量の差(比率)により、人間は色を見分けているという説が現状有力である。
[Explanation of the first advantage]
Generally, in a television receiver and a display device, various colors are displayed by adjusting these ratios using three primary colors of red, green, and blue. As a human color vision mechanism, humans distinguish colors by the difference (ratio) in the amount of stimulation of L cone, M cone, and S cone that are on the retina of the eye and have different spectral characteristics. The theory is influential.
 なお、L錐体、M錐体、およびS錐体への刺激量を変えるために、赤、緑、および青の3原色を選ぶことは必須でない。 Note that it is not essential to select three primary colors of red, green, and blue in order to change the amount of stimulation to the L cone, M cone, and S cone.
 (赤、緑、および青の3原色を選ぶことは必須でないことの説明)
 図5は、L錐体、M錐体、およびS錐体の分光感度として色彩工学の研究者の間でよく知られている、Smith,Pokonyの錐体感度関数のグラフである。これは眼球の光学系も含んだ分光特性であり、光が眼に入射すると光と色とを感じるメカニズムを関係付けることを論ずるのに都合がよい。
(Explanation that choosing the three primary colors red, green and blue is not essential)
FIG. 5 is a graph of Smith, Pokony's cone sensitivity function, well known among color engineering researchers as the spectral sensitivity of the L, M, and S cones. This is a spectral characteristic including the optical system of the eyeball, and it is convenient to discuss the relationship between the mechanism that feels light and color when light enters the eye.
 LEDチップ14および蛍光体群18または28から得られた光は、青色の光に分類される450nm~495nmの波長の光をほとんど含まない一方、波長405nm近傍の紫色の光が支配的である。この紫色の光は、図5に示すグラフによれば、L錐体およびM錐体をほとんど刺激せず、実質的にS錐体を選択的に刺激する。このため、この紫色の光は、メラトニン抑制作用がほとんど無いにも関わらず、L錐体、M錐体、およびS錐体が刺激される量の差を変えることで人間の眼に様々な色を見せることができる光源として用いることができる。 The light obtained from the LED chip 14 and the phosphor group 18 or 28 contains almost no light having a wavelength of 450 nm to 495 nm classified as blue light, while the violet light near the wavelength of 405 nm is dominant. According to the graph shown in FIG. 5, the purple light hardly stimulates the L cone and the M cone, and substantially stimulates the S cone. For this reason, this purple light has various colors on the human eye by changing the amount of stimulation of the L cone, M cone, and S cone, despite having almost no melatonin suppression effect. Can be used as a light source.
 ここで厳密には、テレビジョン放送の映像等の3原色を想定した映像を映し出す場合、赤、緑、および青の光の強度の組み合わせから、赤、緑、および紫の光の強度の組み合わせに映像信号を変換する処理を加えるのが好ましい。ただし、この処理を加えない場合であっても、人間の色順応の能力により、人間が極端に不自然さを感じることなくカラー映像を見ることは可能である。また、利用するアプリケーションによっては、カラーバランスに必要以上にこだわらなくてもよいケースも存在し、この場合、この処理を加えなくてもよい。例えば、テキストやモノクロの図画等を表示装置で閲覧する場合が、このケースに該当する。 Strictly speaking, when projecting an image that assumes three primary colors, such as a television broadcast image, the combination of red, green, and blue light intensity is changed to a combination of red, green, and purple light intensity. It is preferable to add a process for converting the video signal. However, even if this processing is not added, it is possible for humans to view color images without extremely unnatural feeling due to their ability to adapt to color. Further, depending on the application to be used, there is a case where the color balance does not have to be more than necessary, and in this case, this processing need not be added. For example, this is the case when text, monochrome drawings, and the like are viewed on a display device.
 (色順応が働く環境下で発光デバイスを使用した場合の説明)
 人間の眼は、光の波長により明るさを感じる度合いが異なる。図6は、可視光の波長に対する、明るさを感じる度合い(比視感度)を示したグラフである。図6では、色を感じることができる明るさの環境下において人間が最も明るく感じるとされる波長555nmの光の明るさを感じる度合いを1とした、他の波長の光の明るさを感じる度合いの比率を示している。図6は、明所視標準比視感度特性のグラフである。
(Explanation when using a light emitting device in an environment where chromatic adaptation works)
The degree to which human eyes perceive brightness varies depending on the wavelength of light. FIG. 6 is a graph showing the degree of feeling brightness (specific luminous sensitivity) with respect to the wavelength of visible light. In FIG. 6, the degree of feeling the brightness of light of other wavelengths, where the degree of feeling the brightness of light with a wavelength of 555 nm that humans feel the brightest in an environment of brightness that can feel color is defined as 1. The ratio is shown. FIG. 6 is a graph of photopic standard relative luminous sensitivity characteristics.
 波長450nm近傍の青色の光の比視感度に比べて、波長405nm近傍の紫色の光の比視感度は低い。一般に、比視感度曲線は、網膜上の錐体細胞の密度の関係で、L錐体およびM錐体の分光感度に近い曲線と言われている。青色の光に対する感度と紫色の光に対する感度との差を述べるためには、図5に示すS錐体の分光感度特性で比較するのが適していると考えられるが、それでも青色の光に比べて紫色の光の感度は低い。 The relative visibility of violet light near 405 nm is lower than that of blue light near 450 nm. In general, the specific visibility curve is said to be a curve close to the spectral sensitivity of the L cone and the M cone due to the density of cone cells on the retina. In order to describe the difference between the sensitivity to blue light and the sensitivity to purple light, it is considered appropriate to compare the spectral sensitivity characteristics of the S cone shown in FIG. The sensitivity of purple light is low.
 様々な外来光に曝される環境下での発光デバイスの使用を想定すれば、青色の光と紫色の光との比視感度に応じて、紫色の光の量を大きくする必要がある。 Assuming that the light emitting device is used in an environment exposed to various external light, it is necessary to increase the amount of purple light according to the relative luminous sensitivity between blue light and purple light.
 一方で、表示装置を見る部屋の条件によっては、紫色の光の量を大きくする必要が無い場合もある。具体例を挙げると、部屋の照明が暗い場合、部屋を照らす照明光の発光スペクトルがLEDチップ14が発する紫色の光の発光スペクトルに近い場合等においては、人間の眼に備わる色順応の作用により、紫色の光の量を大きくしなくとも、人間が極端に不自然さを感じない色バランスにて映像を見ることが可能である。メラトニン抑制作用が大きい光を浴びることを避けたい夜または就寝前であれば、これらの条件を満足する部屋を実現することは難しくない。 On the other hand, depending on the conditions of the room where the display device is viewed, it may not be necessary to increase the amount of purple light. As a specific example, when the room illumination is dark, when the emission spectrum of the illumination light illuminating the room is close to the emission spectrum of the purple light emitted from the LED chip 14, the chromatic adaptation effect of the human eye Even without increasing the amount of purple light, it is possible to view images with a color balance that makes humans feel extremely unnatural. It is not difficult to realize a room that satisfies these conditions at night or before going to bed, where it is desirable to avoid exposure to light with a melatonin inhibitory effect.
 (色順応について)
 人間は、物を照らす光のスペクトル分布が異なる環境下であっても、自然な色合いで物を見ることができるという、色順応の能力を持っている。色順応の一例としては、太陽光が降り注ぐ屋外から、白熱電球で照らされた部屋に入った直後は全体的に物が赤みまたは黄みを帯びて見えるが、次第に自然な色に見えてくる現象が挙げられる。
(About color adaptation)
Humans have the ability of chromatic adaptation to be able to see things in natural colors even in environments with different spectral distributions of light that illuminates them. As an example of chromatic adaptation, an object appears reddish or yellowish as a whole immediately after entering a room illuminated with incandescent bulbs from sunlight, but gradually becomes a natural color. Is mentioned.
 この色順応の仕組みを説明するものとして、Von Kriesのモデルがよく知られている。このVon Kriesのモデルについて簡単に説明すると、スペクトル分布が異なる照明環境下に物が置かれたときでも、白色の見え方が一定となるようL錐体、M錐体、およびS錐体のバランスが変わり、物が自然な色に近づいて見えるとした説である。白熱電球の発する光は、太陽光に比べて、短波長側(紫色および青色)において強度が小さく長波長側(赤色)において強度が大きくなるスペクトルを有している。この白熱電球に照らされる環境下では、S錐体の感度が上がり、L錐体の感度が下がることで、太陽光の下で見える色バランスに近づくと説明される。 The Von Kries model is well known to explain the mechanism of this chromatic adaptation. The Von Kries model will be briefly described. The balance of the L, M, and S cones makes the white appearance constant even when objects are placed in an illumination environment with different spectral distributions. It is a theory that changed and things looked closer to natural colors. The light emitted by the incandescent bulb has a spectrum that has a smaller intensity on the short wavelength side (purple and blue) and a higher intensity on the long wavelength side (red) than sunlight. In an environment illuminated by this incandescent light bulb, it is explained that the sensitivity of the S cone increases and the sensitivity of the L cone decreases, thereby approaching the color balance seen under sunlight.
 Von Kriesのモデルを用いて、LEDチップ14および蛍光体群18または28から得られた光を液晶表示装置等のバックライトに適用したときの作用を説明する。 Using Von Kries's model, the operation when the light obtained from the LED chip 14 and the phosphor group 18 or 28 is applied to a backlight of a liquid crystal display device or the like will be described.
 部屋の照明や外来光等の、表示装置以外から網膜に入る光の強度が小さければ、表示装置から出力される光のスペクトル分布に従って、L錐体、M錐体、およびS錐体の各々の感度が決定される色順応が働く。 If the intensity of light entering the retina from outside the display device, such as room illumination or extraneous light, is small, each of the L cone, M cone, and S cone according to the spectral distribution of the light output from the display device The chromatic adaptation that determines the sensitivity works.
 紫色の光は比視感度が小さいため、部屋の照明光にS錐体を強く反応させる青色の光が多く含まれていると、S錐体の感度に影響する光として、表示装置からの光よりも部屋の照明が支配的となり、表示装置からの出射光に合わせた色順応が起こりにくくなる。そのため、LEDチップ14および蛍光体群18または28から得られた光を表示装置に用いるときは、青色の光のスペクトルを含まない部屋照明と組み合わせることが好ましい。 Since purple light has a low specific sensitivity, if a large amount of blue light that causes the S cone to react strongly with the illumination light in the room is included, the light from the display device is reflected as light that affects the sensitivity of the S cone. The illumination of the room becomes more dominant than that, and chromatic adaptation in accordance with the light emitted from the display device hardly occurs. Therefore, when the light obtained from the LED chip 14 and the phosphor group 18 or 28 is used for a display device, it is preferable to combine it with room lighting that does not include the spectrum of blue light.
 [2つ目の利点の説明]
 約500nmより短い波長の光を全てカットすると、黄色~赤色を帯びた光となるが、LEDチップ14および蛍光体群18または28から得られた光は、白みを帯びた光とすることができる。
[Explanation of second advantage]
When all light having a wavelength shorter than about 500 nm is cut, it becomes yellowish to reddish light. However, the light obtained from the LED chip 14 and the phosphor group 18 or 28 may be whited light. it can.
 これは、LEDチップ14による光がS錐体を刺激することによる効果である。 This is the effect of the light from the LED chip 14 stimulating the S cone.
 メラトニン抑制作用スペクトルを減らすために、500nmより短い波長の光を全てカットすると、色温度が低い電球色のような色合いになる。赤みを帯びた電球色は、温かみを感じる光であるが季節によっては暑苦しさを感じさせることもある。ここにメラトニン抑制作用の効果が小さい波長405nm近傍の光を加えると、S錐体も刺激され白色に近づいてくるため、夏の時期でも暑苦しさを感じにくい光となる。 If all light with a wavelength shorter than 500 nm is cut in order to reduce the melatonin inhibitory action spectrum, it becomes a light bulb color with a low color temperature. The reddish light bulb color is a light that feels warm, but in some seasons it can make you feel hot. If light having a wavelength of about 405 nm, which has a small melatonin-inhibiting effect, is added here, the S cone is also stimulated and approaches white, so that it is difficult to feel the heat even in summer.
 この結果、メラトニン抑制作用スペクトルを避けながら、白色寄りの光を実現することができる。色温度にこだわらずに、見た目の色合いで調整した白色よりの常夜灯等に好適に利用できる。 As a result, it is possible to realize white light while avoiding the melatonin inhibitory action spectrum. Regardless of the color temperature, it can be suitably used for a night-light from white adjusted with an apparent hue.
 〔まとめ〕
 本発明の一態様に係る発光デバイスは、390nm以上420nm以下である第1波長域に発光強度のピークを有する光を発する少なくとも1つの第1半導体発光素子(LEDチップ14)と、420nmを超え480nm以下である第2波長域に発光強度のピークを有する光を発する少なくとも1つの第2半導体発光素子(LEDチップ15)と、上記第1半導体発光素子が発した光によって励起され、498nm以上830nm以下である第3波長域に発光強度のピークを1つ以上有する蛍光を生じる第1光変換部材(蛍光体群18)と、上記第2半導体発光素子が発した光によって励起され、上記第3波長域に発光強度のピークを1つ以上有する蛍光を生じる第2光変換部材(蛍光体群19)と、上記第1半導体発光素子と、上記第2半導体発光素子とを互いに独立に駆動させる駆動部(調光制御部2)とを備えている。
[Summary]
A light-emitting device according to one embodiment of the present invention includes at least one first semiconductor light-emitting element (LED chip 14) that emits light having a peak of light emission intensity in a first wavelength range of 390 nm to 420 nm, and more than 420 nm to 480 nm. Excited by light emitted from at least one second semiconductor light emitting element (LED chip 15) that emits light having a peak of emission intensity in the second wavelength range, and from 498 nm to 830 nm. The third wavelength is excited by light emitted from the first light conversion member (phosphor group 18) that generates fluorescence having one or more emission intensity peaks in the third wavelength region and the second semiconductor light emitting element, and the third wavelength. A second light conversion member (phosphor group 19) that generates fluorescence having one or more peaks of emission intensity in the region, the first semiconductor light emitting element, and the second And it includes driving unit for driving independently of each other and the conductor light emitting element and (dimming controller 2).
 上記の構成によれば、第1半導体発光素子および第1光変換部材から得られた光は、430nm~500nmの波長をほとんど含まない発光スペクトルとなるため、メラトニンの抑制効果はほとんど無い。一方、第2半導体発光素子および第2光変換部材から得られた光は、メラトニンの抑制効果が大きい。そして、駆動部により第1半導体発光素子と第2半導体発光素子とを互いに独立に駆動させることによって、メラトニンの抑制効果がほとんど無い光とメラトニンの抑制効果が大きい光とを切り替えることができる。 According to the above configuration, the light obtained from the first semiconductor light emitting element and the first light conversion member has an emission spectrum that hardly includes a wavelength of 430 nm to 500 nm, and therefore has little melatonin suppression effect. On the other hand, the light obtained from the second semiconductor light emitting element and the second light conversion member has a large melatonin suppressing effect. Then, by driving the first semiconductor light emitting element and the second semiconductor light emitting element independently of each other by the driving unit, it is possible to switch between light having almost no melatonin suppressing effect and light having a large melatonin suppressing effect.
 従って、朝には第2半導体発光素子が発した光由来の光を用いて、夜には第1半導体発光素子が発した光由来の光を用いることにより、生体リズムに合わせて光源を切り替えることが可能である。結果、メラトニン抑制効果を大幅に低減することが可能となる。 Therefore, the light source derived from the light emitted from the second semiconductor light emitting element is used in the morning and the light derived from the light emitted from the first semiconductor light emitting element is used at night to switch the light source according to the biological rhythm. Is possible. As a result, the melatonin suppressing effect can be greatly reduced.
 本発明の別の態様に係る発光デバイスはさらに、上記第1光変換部材と上記第2光変換部材とが、互いに同じ種類の蛍光体を含んでいる。 In the light-emitting device according to another aspect of the present invention, the first light conversion member and the second light conversion member further include the same type of phosphor.
 本発明の別の態様に係る発光デバイスはさらに、上記第1半導体発光素子が搭載されている個数と上記第2半導体発光素子が搭載されている個数とが、互いに異なっている。 In the light emitting device according to another aspect of the present invention, the number of the first semiconductor light emitting elements mounted is different from the number of the second semiconductor light emitting elements mounted.
 上記の構成によれば、所望の明るさに応じて、各第1半導体発光素子が発した光から得られる光の明るさと、各第2半導体発光素子が発した光から得られる光の明るさとを、それぞれ任意に設定することができる。 According to said structure, according to desired brightness, the brightness of the light obtained from the light which each 1st semiconductor light-emitting device emitted, and the brightness of the light obtained from the light which each 2nd semiconductor light-emitting device emitted Can be arbitrarily set.
 本発明の別の態様に係る発光デバイスはさらに、第1キャビティ(キャビティ20)および第2キャビティ(キャビティ21)をさらに備えており、上記第1半導体発光素子は、上記第1キャビティに格納されていると共に、上記第1光変換部材を含む封止部材(樹脂16)によって封止されており、上記第2半導体発光素子は、上記第2キャビティに格納されている。 The light emitting device according to another aspect of the present invention further includes a first cavity (cavity 20) and a second cavity (cavity 21), and the first semiconductor light emitting element is stored in the first cavity. In addition, the second light-emitting element is sealed in the second cavity, and is sealed with a sealing member (resin 16) including the first light conversion member.
 本発明の別の態様に係る発光デバイスはさらに、上記第2キャビティに、上記第2光変換部材を含む封止部材(樹脂17)が充填されており、上記第1光変換部材と上記第2光変換部材とが、互いに異なる素材または素材の配合比からなる。 In the light emitting device according to another aspect of the present invention, the second cavity is further filled with a sealing member (resin 17) including the second light conversion member, and the first light conversion member and the second light emitting device are filled. A light conversion member consists of a mutually different raw material or the compounding ratio of a raw material.
 本発明の別の態様に係る発光デバイスはさらに、上記第1キャビティから出射される光の経路および上記第2キャビティから出射される光の経路の少なくとも一方に、光を拡散させる光拡散部材が設けられている。 The light-emitting device according to another aspect of the present invention further includes a light diffusion member that diffuses light in at least one of a path of light emitted from the first cavity and a path of light emitted from the second cavity. It has been.
 上記の構成によれば、第1キャビティから出射される光と第2キャビティから出射される光とによる混色が容易となる。 According to the above configuration, color mixing between the light emitted from the first cavity and the light emitted from the second cavity becomes easy.
 本発明の異なる態様に係る発光デバイスは、390nm以上420nm以下である第1波長域に発光強度のピークを有する光を発する少なくとも1つの第1半導体発光素子と、420nmを超え480nm以下である第2波長域に発光強度のピークを有する光を発する少なくとも1つの第2半導体発光素子と、上記第1半導体発光素子が発した光によって励起され、498nm以上830nm以下である第3波長域に発光強度のピークを1つ以上有する蛍光を生じる光変換部材(蛍光体群28)と、上記第1半導体発光素子と、上記第2半導体発光素子とを互いに独立に駆動させる駆動部とを備えている。 A light-emitting device according to a different aspect of the present invention includes at least one first semiconductor light-emitting element that emits light having an emission intensity peak in a first wavelength range of 390 nm or more and 420 nm or less, and a second that is greater than 420 nm and 480 nm or less. At least one second semiconductor light emitting element that emits light having a peak of light emission intensity in the wavelength region, and the light emission intensity in the third wavelength region that is excited by light emitted from the first semiconductor light emitting element and is not less than 498 nm and not more than 830 nm. A light conversion member (phosphor group 28) that generates fluorescence having one or more peaks, a driving unit that drives the first semiconductor light emitting element and the second semiconductor light emitting element independently of each other are provided.
 上記の構成によれば、第1光変換部材および第2光変換部材を備えなくとも、上記一態様に係る発光デバイスと同様の効果を奏する。 According to the above configuration, even if the first light conversion member and the second light conversion member are not provided, the same effect as that of the light emitting device according to the above aspect can be obtained.
 本発明の他の態様に係る発光デバイスはさらに、上記光変換部材はさらに、上記第2半導体発光素子が発した光によって励起され、上記第3波長域に発光強度のピークを1つ以上有する蛍光を生じる。 In the light emitting device according to another aspect of the present invention, the light conversion member is further excited by light emitted from the second semiconductor light emitting element, and has a fluorescence having one or more emission intensity peaks in the third wavelength region. Produce.
 本発明の他の態様に係る発光デバイスはさらに、上記第1半導体発光素子および上記第2半導体発光素子は、互いに同一のキャビティ(キャビティ30)に格納されていると共に、上記光変換部材を含む封止部材(樹脂26)によって封止されている。 In the light emitting device according to another aspect of the present invention, the first semiconductor light emitting element and the second semiconductor light emitting element are housed in the same cavity (cavity 30) and include the light conversion member. It is sealed with a stop member (resin 26).
 本発明のさらに異なる態様に係る発光デバイスは、上記第1半導体発光素子および上記第2半導体発光素子の点灯時間を制御する制御部(光源制御部104)を備えており、上記第1半導体発光素子から出射された光と、上記第2半導体発光素子から出射された光とは、内因性光感受性網膜細への作用量が互いに異なることを特徴としている。 A light-emitting device according to still another aspect of the present invention includes a control unit (light source control unit 104) that controls a lighting time of the first semiconductor light-emitting element and the second semiconductor light-emitting element, and the first semiconductor light-emitting element The light emitted from the second semiconductor light-emitting element and the light emitted from the second semiconductor light emitting element are characterized in that the amount of action on the intrinsic light-sensitive retinal fine particles is different from each other.
 上記の構成によれば、第1半導体発光素子から得られた光は、430nm~500nmの波長をほとんど含まない発光スペクトルとなるため、メラトニンの抑制効果はほとんど無い。一方、第2半導体発光素子から得られた光は、メラトニンの抑制効果が大きい。そして、制御部により第1半導体発光素子による発光と第2半導体発光素子による発光とを制御することによって、メラトニンの抑制効果がほとんど無い光とメラトニンの抑制効果が大きい光とを切り替えることができる。 According to the above configuration, the light obtained from the first semiconductor light emitting element has an emission spectrum that hardly includes a wavelength of 430 nm to 500 nm, and therefore has little melatonin suppressing effect. On the other hand, the light obtained from the second semiconductor light emitting device has a great melatonin suppression effect. And by controlling light emission by the first semiconductor light emitting element and light emission by the second semiconductor light emitting element by the control unit, it is possible to switch between light having almost no melatonin suppressing effect and light having a large melatonin suppressing effect.
 従って、朝には第2半導体発光素子が発した光を用いて、夜には第1半導体発光素子が発した光を用いることにより、生体リズムに合わせて光源を切り替えることが可能である。結果、メラトニン抑制効果を大幅に低減することが可能となる。 Therefore, it is possible to switch the light source according to the biological rhythm by using the light emitted from the second semiconductor light emitting element in the morning and using the light emitted from the first semiconductor light emitting element at night. As a result, the melatonin suppressing effect can be greatly reduced.
 本発明のさらに別の態様に係る発光デバイスはさらに、時刻および時間の経過の少なくとも一方を検知するタイマ部を備えており、上記制御部は、上記タイマ部から受け取った、上記時刻および時間の経過の少なくとも一方を示す情報に応じて、上記点灯時間を制御する。 The light emitting device according to still another aspect of the present invention further includes a timer unit that detects at least one of time and time, and the control unit receives the time and time from the timer unit. The lighting time is controlled according to information indicating at least one of the above.
 上記の構成によれば、時刻および時間の経過に応じて、第1半導体発光素子および第2半導体発光素子の点灯時間を制御することができる。例えば、日中は主に第2半導体発光素子による発光強度が大きくなるよう該点灯時間を制御し、夜になるにつれて徐々に第2半導体発光素子による発光強度を小さく、第1半導体発光素子による発光強度が大きくなるよう該点灯時間を制御することが可能である。 According to the above configuration, the lighting time of the first semiconductor light emitting element and the second semiconductor light emitting element can be controlled according to the time and the passage of time. For example, the lighting time is controlled mainly during the day so that the light emission intensity of the second semiconductor light-emitting element increases, and the light emission intensity of the second semiconductor light-emitting element gradually decreases as the night goes on. The lighting time can be controlled to increase the intensity.
 本発明のさらに別の態様に係る発光デバイスはさらに、上記発光デバイスが搭載される表示装置の周囲の光の強度を検知し、検知すべき周波数が互いに異なる複数の照度センサと、上記複数の照度センサの検知結果から、上記表示装置の周囲の光に含まれる青色成分の強度を検知するセンサ制御部とを備えており、上記制御部は、上記センサ制御部の検知結果に応じて、上記点灯時間を制御する。 The light-emitting device according to yet another aspect of the present invention further includes a plurality of illuminance sensors that detect the intensity of light around the display device on which the light-emitting device is mounted and have different frequencies to be detected, and the plurality of illuminances. A sensor control unit that detects the intensity of the blue component contained in the ambient light of the display device from the detection result of the sensor, and the control unit turns on the light according to the detection result of the sensor control unit. Control the time.
 上記の構成によれば、表示装置の周囲の光に含まれる青色成分の強度を検知した結果に応じて、第1半導体発光素子および第2半導体発光素子の点灯時間を制御することができる。例えば、光の青色成分の強度が大きい場合、第2半導体発光素子の発光を、第1半導体発光素子の発光よりも支配的になるよう制御し、青色成分の強度が大きい色合いの発光とすることが可能である。逆に、光の青色成分の強度が小さい場合、第2半導体発光素子の発光強度を小さくし、第1半導体発光素子の発光強度を大きくするように制御することが可能である。 According to the above configuration, the lighting time of the first semiconductor light emitting element and the second semiconductor light emitting element can be controlled in accordance with the result of detecting the intensity of the blue component contained in the ambient light of the display device. For example, when the intensity of the blue component of the light is large, the light emission of the second semiconductor light emitting element is controlled to be dominant over the light emission of the first semiconductor light emitting element, so that the light emission of a hue with a large blue component intensity is obtained. Is possible. On the other hand, when the intensity of the blue component of light is small, it is possible to control to reduce the emission intensity of the second semiconductor light emitting element and increase the emission intensity of the first semiconductor light emitting element.
 本発明のさらに別の態様に係る発光デバイスはさらに、上記制御部による点灯時間の制御に応じて、上記発光デバイスの外部の表示装置の周囲の光を制御する信号を出力する通信部を備えている。 The light emitting device according to still another aspect of the present invention further includes a communication unit that outputs a signal for controlling light around the display device outside the light emitting device in accordance with the control of the lighting time by the control unit. Yes.
 上記の構成によれば、通信部からの情報に応じて、表示装置の周囲の光を制御することができる。 According to the above configuration, the ambient light of the display device can be controlled in accordance with information from the communication unit.
 本発明の一態様に係る表示装置は、本発明のさらに異なる態様に係る発光デバイスを光源として備えていることを特徴としている。 A display device according to one embodiment of the present invention includes a light-emitting device according to still another embodiment of the present invention as a light source.
 上記の構成によれば、表示装置において、本発明のさらに異なる態様に係る発光デバイスと同様の効果を奏する。 According to the above configuration, the display device has the same effect as the light emitting device according to still another aspect of the present invention.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、生体リズムに影響を与える発光デバイスおよび表示装置に利用することができる。 The present invention can be used for light-emitting devices and display devices that affect biological rhythms.
1、101、102、および103 発光デバイス
2 調光制御部(駆動部)
14 LEDチップ(第1半導体発光素子)
15 LEDチップ(第2半導体発光素子)
16 樹脂(封止部材)
17 樹脂(封止部材)
18 蛍光体群(第1光変換部材)
18s 蛍光体
19 蛍光体群(第2光変換部材)
19s 蛍光体
20 キャビティ(第1キャビティ)
21 キャビティ(第2キャビティ)
26 樹脂(封止部材)
28 蛍光体群(光変換部材)
28s 蛍光体
30 キャビティ
104 光源制御部(制御部)
105 タイマ部
106 通信部
108 センサ制御部
109aおよび109b 照度センサ
1, 101, 102, and 103 Light-emitting device 2 Dimming control unit (drive unit)
14 LED chip (first semiconductor light emitting device)
15 LED chip (second semiconductor light emitting device)
16 Resin (sealing member)
17 Resin (sealing member)
18 Phosphor group (first light conversion member)
18s phosphor 19 phosphor group (second light conversion member)
19s phosphor 20 cavity (first cavity)
21 cavity (second cavity)
26 Resin (sealing member)
28 Phosphors (light conversion member)
28s phosphor 30 cavity 104 light source control unit (control unit)
105 Timer unit 106 Communication unit 108 Sensor control units 109a and 109b Illuminance sensor

Claims (10)

  1.  390nm以上420nm以下である第1波長域に発光強度のピークを有する光を発する少なくとも1つの第1半導体発光素子と、
     420nmを超え480nm以下である第2波長域に発光強度のピークを有する光を発する少なくとも1つの第2半導体発光素子と、
     上記第1半導体発光素子が発した光によって励起され、498nm以上830nm以下である第3波長域に発光強度のピークを1つ以上有する蛍光を生じる第1光変換部材と、
     上記第2半導体発光素子が発した光によって励起され、上記第3波長域に発光強度のピークを1つ以上有する蛍光を生じる第2光変換部材と、
     上記第1半導体発光素子と、上記第2半導体発光素子とを互いに独立に駆動させる駆動部とを備えていることを特徴とする発光デバイス。
    At least one first semiconductor light emitting element that emits light having a peak of emission intensity in a first wavelength range of 390 nm or more and 420 nm or less;
    At least one second semiconductor light emitting element that emits light having a peak of emission intensity in a second wavelength region that is greater than 420 nm and less than or equal to 480 nm;
    A first light conversion member that is excited by light emitted from the first semiconductor light emitting element and generates fluorescence having one or more peaks of emission intensity in a third wavelength range of 498 nm or more and 830 nm or less;
    A second light conversion member that is excited by light emitted by the second semiconductor light emitting element and generates fluorescence having one or more peaks of emission intensity in the third wavelength region;
    A light emitting device, comprising: a drive unit that drives the first semiconductor light emitting element and the second semiconductor light emitting element independently of each other.
  2.  上記第1光変換部材と上記第2光変換部材とが、互いに同じ種類の蛍光体を含んでいることを特徴とする請求項1に記載の発光デバイス。 The light-emitting device according to claim 1, wherein the first light conversion member and the second light conversion member contain the same type of phosphor.
  3.  第1キャビティおよび第2キャビティをさらに備えており、
     上記第1半導体発光素子は、上記第1キャビティに格納されていると共に、上記第1光変換部材を含む封止部材によって封止されており、
     上記第2半導体発光素子は、上記第2キャビティに格納されていることを特徴とする請求項1に記載の発光デバイス。
    A first cavity and a second cavity;
    The first semiconductor light emitting element is housed in the first cavity and sealed by a sealing member including the first light conversion member,
    The light emitting device according to claim 1, wherein the second semiconductor light emitting element is stored in the second cavity.
  4.  上記第2キャビティに、上記第2光変換部材を含む封止部材が充填されており、
     上記第1光変換部材と上記第2光変換部材とが、互いに異なる素材または素材の配合比からなることを特徴とする請求項3に記載の発光デバイス。
    The second cavity is filled with a sealing member including the second light conversion member,
    The light emitting device according to claim 3, wherein the first light conversion member and the second light conversion member are made of different materials or mixing ratios of the materials.
  5.  上記第1キャビティから出射される光の経路および上記第2キャビティから出射される光の経路の少なくとも一方に、光を拡散させる光拡散部材が設けられていることを特徴とする請求項3に記載の発光デバイス。 4. The light diffusing member for diffusing light is provided in at least one of a path of light emitted from the first cavity and a path of light emitted from the second cavity. Light emitting device.
  6.  上記第1半導体発光素子および上記第2半導体発光素子の点灯時間を制御する制御部を備えており、
     上記第1半導体発光素子から出射された光と、上記第2半導体発光素子から出射された光とは、内因性光感受性網膜細への作用量が互いに異なることを特徴とする請求項1から5のいずれか1項に記載の発光デバイス。
    A control unit for controlling lighting times of the first semiconductor light emitting element and the second semiconductor light emitting element;
    6. The light emitted from the first semiconductor light emitting element and the light emitted from the second semiconductor light emitting element are different from each other in the amount of action on the intrinsic light-sensitive retina. The light emitting device according to any one of the above.
  7.  時刻および時間の経過の少なくとも一方を検知するタイマ部を備えており、
     上記制御部は、上記タイマ部から受け取った、上記時刻および時間の経過の少なくとも一方を示す情報に応じて、上記点灯時間を制御することを特徴とする請求項6に記載の発光デバイス。
    It has a timer part that detects at least one of time and the passage of time,
    The light emitting device according to claim 6, wherein the control unit controls the lighting time according to information received from the timer unit and indicating at least one of the time and the passage of time.
  8.  上記発光デバイスが搭載される表示装置の周囲の光の強度を検知し、検知すべき周波数が互いに異なる複数の照度センサと、
     上記複数の照度センサの検知結果から、上記表示装置の周囲の光に含まれる青色成分の強度を検知するセンサ制御部とを備えており、
     上記制御部は、上記センサ制御部の検知結果に応じて、上記点灯時間を制御することを特徴とする請求項6に記載の発光デバイス。
    A plurality of illuminance sensors that detect the intensity of light around the display device on which the light emitting device is mounted and that have different frequencies to be detected;
    From the detection results of the plurality of illuminance sensors, a sensor control unit that detects the intensity of the blue component contained in the ambient light of the display device,
    The light-emitting device according to claim 6, wherein the control unit controls the lighting time according to a detection result of the sensor control unit.
  9.  上記制御部による点灯時間の制御に応じて、上記発光デバイスの外部の表示装置の周囲の光を制御する信号を出力する通信部を備えていることを特徴とする請求項6に記載の発光デバイス。 The light emitting device according to claim 6, further comprising: a communication unit that outputs a signal for controlling light around the display device outside the light emitting device in accordance with control of a lighting time by the control unit. .
  10.  請求項6から9のいずれか1項に記載の発光デバイスを光源として備えていることを特徴とする表示装置。 A display device comprising the light-emitting device according to claim 6 as a light source.
PCT/JP2015/063214 2014-05-12 2015-05-07 Light-emitting device and display apparatus WO2015174322A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014099037 2014-05-12
JP2014-099037 2014-05-12
JP2015026876 2015-02-13
JP2015-026876 2015-02-13

Publications (1)

Publication Number Publication Date
WO2015174322A1 true WO2015174322A1 (en) 2015-11-19

Family

ID=54479863

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/063214 WO2015174322A1 (en) 2014-05-12 2015-05-07 Light-emitting device and display apparatus

Country Status (1)

Country Link
WO (1) WO2015174322A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019535129A (en) * 2016-09-12 2019-12-05 ルミレッズ リミテッド ライアビリティ カンパニー Lighting system with reduced amount of melanopic spectrum
WO2021131376A1 (en) * 2019-12-27 2021-07-01 ヌヴォトンテクノロジージャパン株式会社 Light irradiation device and light-emitting module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146339A (en) * 1994-11-16 1996-06-07 Mitsubishi Electric Corp Video display device
JP2011258649A (en) * 2010-06-07 2011-12-22 Sanken Electric Co Ltd Lighting system and method for controlling the same
JP2012064860A (en) * 2010-09-17 2012-03-29 Mitsubishi Chemicals Corp Led light-emitting device and lighting apparatus incorporating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08146339A (en) * 1994-11-16 1996-06-07 Mitsubishi Electric Corp Video display device
JP2011258649A (en) * 2010-06-07 2011-12-22 Sanken Electric Co Ltd Lighting system and method for controlling the same
JP2012064860A (en) * 2010-09-17 2012-03-29 Mitsubishi Chemicals Corp Led light-emitting device and lighting apparatus incorporating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019535129A (en) * 2016-09-12 2019-12-05 ルミレッズ リミテッド ライアビリティ カンパニー Lighting system with reduced amount of melanopic spectrum
WO2021131376A1 (en) * 2019-12-27 2021-07-01 ヌヴォトンテクノロジージャパン株式会社 Light irradiation device and light-emitting module
US11629827B2 (en) 2019-12-27 2023-04-18 Nuvoton Technology Corporation Japan Illumination device and light-emitting module

Similar Documents

Publication Publication Date Title
JP6802803B2 (en) Multi-channel lamp system and method using mixed spectrum
EP2984392B1 (en) Ambient light monitoring in a lighting fixture
US8646939B2 (en) Display system having circadian effect on humans
CN107950076B (en) Lamp of sleeping peacefully
KR101892996B1 (en) Visible Lighting Lamp with a Built In LED Package Light
US11716796B2 (en) Systems and methods for tunable LED lighting
JP2010092993A (en) Illuminating apparatus
WO2008069103A1 (en) Light source and light irradiating device
ES2958094T3 (en) White light enriched with cyan
TW201638642A (en) Backlight module having design of switchable lighting modes and display module utilized thereof
CN112255785A (en) White light LED color mixing design method for light health and illumination system thereof
JP6735471B2 (en) Light emitting device, bath light method and light emitting system
US10661047B2 (en) Light-emitting apparatus
KR20170137446A (en) Apparatus for LED light source and method for controlling the same
JP7170525B2 (en) LED light emitting device
WO2015174322A1 (en) Light-emitting device and display apparatus
CN108302335A (en) A kind of lighting device and the lamps and lanterns including the lighting device
JP2009004325A (en) Luminaire
US8639104B2 (en) Optical lighting device and optical recording device
EP4151053B1 (en) Melanopic light system with high cri using cyan direct emitters
US20190364637A1 (en) Led lamp consisting of light emitting diodes (led) with circadian adjustable mode of radiated light providing for its health safety
CN114916110A (en) Ambient light adjusting method and system, electronic device and storage medium
CN102573229A (en) Eye-protecting LED (light emitting diode) illuminating lamp
WO2020212325A1 (en) Cytochrome c oxidase activating lighting system for mitochondrial activation and ocular health
US20230328855A1 (en) Systems and methods for tunable led lighting

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15792055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15792055

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP