JP2021142509A - Cyanide-containing liquid treatment method and cyanide-containing liquid treatment equipment - Google Patents

Cyanide-containing liquid treatment method and cyanide-containing liquid treatment equipment Download PDF

Info

Publication number
JP2021142509A
JP2021142509A JP2020044456A JP2020044456A JP2021142509A JP 2021142509 A JP2021142509 A JP 2021142509A JP 2020044456 A JP2020044456 A JP 2020044456A JP 2020044456 A JP2020044456 A JP 2020044456A JP 2021142509 A JP2021142509 A JP 2021142509A
Authority
JP
Japan
Prior art keywords
cyanide
reducing agent
containing liquid
added
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020044456A
Other languages
Japanese (ja)
Inventor
謙太朗 桃井
Kentaro Momoi
謙太朗 桃井
智大 石森
Tomohiro Ishimori
智大 石森
修士 村上
Shuji Murakami
修士 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2020044456A priority Critical patent/JP2021142509A/en
Publication of JP2021142509A publication Critical patent/JP2021142509A/en
Pending legal-status Critical Current

Links

Images

Abstract

To highly and economically treat cyanide, and stably treat cyanide by accurately controlling an addition amount of a reducing agent, in a treatment of cyanide-containing liquid by a total cyanide method (reduced copper salt method).SOLUTION: There is provided a cyanide-containing liquid treatment method, including: adding a copper compound and a reducing agent to cyanide-containing liquid; and controlling an addition amount of the reducing agent based on a dissolved oxygen concentration of a liquid to be treated to which the reducing agent is added, using a cyanide compound as an insoluble salt. There is also provided cyanide-containing liquid treatment equipment, including: a mixing facility that introduces a cyanide-containing liquid and reacts it with the copper compound; means for adding the reducing agent to the mixing equipment; a dissolved oxygen meter that measures a dissolved oxygen concentration of the liquid in the mixing facility; and control means for controlling the addition amount of the reducing agent based on a measured value of the dissolved oxygen meter.SELECTED DRAWING: Figure 1

Description

本発明は、シアン化合物含有液に銅化合物を添加し、重亜硫酸ソーダや硫酸第一鉄などの還元剤の存在下に反応させて、シアン化合物を不溶性塩として分離除去するシアン化合物含有液の処理方法及び処理装置に関するものである。
詳しくは、このようなシアン排水処理で銅化合物を還元するために必要な還元剤の添加量を的確に制御して、効率的かつ経済的な処理を行うシアン化合物含有液の処理方法及び処理装置に関する。
The present invention treats a cyanide-containing liquid in which a copper compound is added to a cyanide-containing liquid and reacted in the presence of a reducing agent such as sodium bicarbonate or ferrous sulfate to separate and remove the cyanide as an insoluble salt. It relates to a method and a processing device.
Specifically, a method and a treatment apparatus for a cyanide-containing liquid for efficient and economical treatment by accurately controlling the amount of the reducing agent added to reduce the copper compound in such cyanide wastewater treatment. Regarding.

シアン化合物含有排水中のシアン化合物の形態には、遊離シアン(CN)と金属シアノ錯体(M(CN) x−)がある。従来、これらのシアン化合物を処理する方法として、還元剤の存在下に銅化合物を添加してシアンの不溶性塩を生成させる全シアン法(還元銅塩法)が知られている。 The morphology of the cyanide in the cyanide-containing wastewater includes free cyanide (CN ) and a metal cyano complex (M (CN) n x − ). Conventionally, as a method for treating these cyanide compounds, a total cyanide method (reduced copper salt method) is known in which a copper compound is added in the presence of a reducing agent to produce an insoluble salt of cyanide.

例えば、特許文献1では、銅化合物及びマグネシウム化合物を添加し、重亜硫酸ソーダなどの還元剤の存在下に反応させて、シアンの不溶性塩を生成させこれを除去している。この特許文献1の0022段落には、還元剤の添加量は、銅化合物及びフェリシアンイオンの還元に必要な量であると記載されている。 For example, in Patent Document 1, a copper compound and a magnesium compound are added and reacted in the presence of a reducing agent such as sodium bisulfite to produce an insoluble salt of cyanide, which is removed. Paragraph 0022 of Patent Document 1 states that the amount of the reducing agent added is an amount required for the reduction of the copper compound and the ferricyan ion.

従来、このような全シアン法(還元銅塩法)において、還元剤の添加量を酸化還元電位(以下、ORPという)で決定(管理)することが知られている。
例えば特許文献2の実施例では、還元剤はORPが250mVとなるまで添加されている。
特許文献3の請求項3には、酸化還元電位の飛躍が少なくとも終了した時点を還元剤である亜硫酸化合物の添加の終点とすることが記載されている。
特許文献4の0050段落には、還元剤添加後のORPが80mV以下である場合に、シアン除去効果が安定して良好となるとの記載がある。
Conventionally, in such a total cyan method (reduced copper salt method), it is known that the amount of a reducing agent added is determined (controlled) by an oxidation-reduction potential (hereinafter referred to as ORP).
For example, in the examples of Patent Document 2, the reducing agent is added until the ORP reaches 250 mV.
Claim 3 of Patent Document 3 describes that the end point of addition of the sulfite compound as a reducing agent is at least the time when the leap of the redox potential is completed.
Paragraph 0050 of Patent Document 4 describes that the cyanide removal effect is stable and good when the ORP after the addition of the reducing agent is 80 mV or less.

しかしながら、本発明者らの検討により、排水種によっては、還元剤の添加量を酸化還元電位で制御できない場合が認められた。具体的には、還元剤の添加量を横軸に、酸化還元電位を縦軸にとった場合、特許文献3に記載のように、酸化還元電位が急激に変化する点が認められず、還元剤の添加量の終点を酸化還元電位で管理することができない場合があることが判明した。 However, according to the studies by the present inventors, it has been found that the amount of the reducing agent added cannot be controlled by the redox potential depending on the wastewater species. Specifically, when the amount of the reducing agent added is on the horizontal axis and the redox potential is on the vertical axis, as described in Patent Document 3, the point where the redox potential changes rapidly is not observed, and reduction is performed. It has been found that the end point of the amount of the agent added may not be controlled by the redox potential.

一方、特許文献5には、シアン化合物を第一鉄塩と反応させて水不溶性塩を生成させ、これを分離除去する、いわゆる紺青法において、鉄シアン錯体を対象として、アルカリ塩素法による二段分解のあと、溶存酸素(以下、DOという)濃度が所定値もしくはDOが急激に低下したところを第一鉄塩の添加終点とする方法が開示されている。
特許文献5ではDOにより薬剤の添加を監理しているが、特許文献5の方法は、本発明で行う全シアン法(還元銅塩法)によるものではなく、従来、全シアン法(還元銅塩法)において、DOにより還元剤の薬注制御を行う提案はなされていない。
On the other hand, in Patent Document 5, in the so-called Prussian blue method in which a cyanide is reacted with a ferrous salt to form a water-insoluble salt and the salt is separated and removed, the iron-cyanide complex is targeted by the alkali chlorine method in two steps. A method is disclosed in which the concentration of dissolved oxygen (hereinafter referred to as DO) after decomposition is set to a predetermined value or a point where DO is sharply lowered as the end point of addition of ferrous salt.
In Patent Document 5, the addition of a drug is supervised by DO, but the method of Patent Document 5 is not based on the total cyanide method (reduced copper salt method) performed in the present invention, and conventionally, the total cyanide method (reduced copper salt method) is used. In the law), no proposal has been made to control the drug injection of the reducing agent by DO.

特開2013−226510号公報Japanese Unexamined Patent Publication No. 2013-226510 特開昭58−216778号公報Japanese Unexamined Patent Publication No. 58-216778 特開平1−210096号公報Japanese Unexamined Patent Publication No. 1-210096 特開2017−136539号公報Japanese Unexamined Patent Publication No. 2017-136539 特開平4−83590号公報Japanese Unexamined Patent Publication No. 4-83590

本発明は、全シアン法(還元銅塩法)によるシアン化合物含有液の処理において、還元剤の添加量を的確に制御してシアン化合物を高度にかつ経済的に、しかも安定して処理することができるシアン化合物含有液の処理方法及び処理装置を提供することを課題とする。 According to the present invention, in the treatment of a cyanide-containing liquid by the total cyanid method (reduced copper salt method), the amount of the reducing agent added is accurately controlled to treat the cyanide compound highly, economically and stably. It is an object of the present invention to provide a method and an apparatus for treating a cyanide compound-containing liquid capable of producing a cyanide compound.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、シアン化合物含有液を全シアン法(還元銅塩法)で処理する場合において、溶存酸素(DO)を指標として還元剤の薬注制御を行うことにより、重亜硫酸ソーダや硫酸第一鉄などの還元剤を過不足なく添加して、シアン化合物を高度にかつ経済的に、しかも安定して処理することが可能であり、処理液のシアン濃度を十分に低くすることができることを見出した。 As a result of diligent studies to solve the above problems, the present inventors have used dissolved oxygen (DO) as an index when treating a cyanide-containing liquid by the total cyanide method (reduced copper salt method). By performing chemical injection control, it is possible to add reducing agents such as sodium bicarbonate and ferrous sulfate in just proportion, and to treat cyanide highly, economically, and stably. It has been found that the cyanide concentration of the treatment liquid can be sufficiently lowered.

本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。 The present invention has been achieved based on such findings, and the gist of the present invention is as follows.

[1] シアン化合物含有液に銅化合物及び還元剤を添加して、該シアン化合物を不溶性塩として分離除去するシアン化合物含有液の処理方法において、該還元剤の添加量を、該還元剤が添加された被処理液の溶存酸素濃度に基づいて制御することを特徴とするシアン化合物含有液の処理方法。 [1] In a method for treating a cyanide-containing liquid in which a copper compound and a reducing agent are added to the cyanide-containing liquid and the cyanide is separated and removed as an insoluble salt, the reducing agent is added to the amount of the reducing agent added. A method for treating a cyanide compound-containing liquid, which is controlled based on the dissolved oxygen concentration of the liquid to be treated.

[2] [1]において、前記溶存酸素濃度が下がり切った時を前記還元剤の添加終点とすることを特徴とするシアン化合物含有液の処理方法。 [2] The method for treating a cyanide compound-containing liquid according to [1], wherein the end point of addition of the reducing agent is when the dissolved oxygen concentration is completely lowered.

[3] シアン化合物含有液が連続的に流入する反応槽に銅化合物及び還元剤を添加して、該シアン化合物を不溶性塩として分離除去する方法において、該反応槽内の溶存酸素濃度を測定し、該溶存酸素濃度の測定値が所定値になるように該還元剤の添加量を制御することを特徴とするシアン化合物含有液の処理方法。 [3] In a method in which a copper compound and a reducing agent are added to a reaction vessel in which a cyanide-containing liquid continuously flows, and the cyanide compound is separated and removed as an insoluble salt, the dissolved oxygen concentration in the reaction vessel is measured. A method for treating a cyanide compound-containing liquid, which comprises controlling the amount of the reducing agent added so that the measured value of the dissolved oxygen concentration becomes a predetermined value.

[4] シアン化合物含有液を導入して銅化合物と反応させる混合設備と、該混合設備に還元剤を添加する手段と、該混合設備の液の溶存酸素濃度を測定する溶存酸素計と、該溶存酸素計の測定値に基づいて該還元剤の添加量を制御する制御手段とを備えることを特徴とするシアン化合物含有液の処理装置。 [4] A mixing facility for introducing a cyanide-containing liquid to react with a copper compound, a means for adding a reducing agent to the mixing facility, a dissolved oxygen meter for measuring the dissolved oxygen concentration of the liquid in the mixing facility, and the like. A device for treating a cyanide compound-containing liquid, which comprises a control means for controlling the amount of the reducing agent added based on a measured value of a dissolved oxygen meter.

本発明によれば、全シアン法(還元銅塩法)によるシアン化合物含有液の処理において、溶存酸素(DO)濃度を指標として還元剤の添加量を制御することにより、重亜硫酸ソーダや硫酸第一鉄などの還元剤を過不足なく添加して、シアン化合物を高度にかつ経済的に、しかも安定して処理することが可能となり、シアン濃度が十分に低減された処理液を得ることができる。 According to the present invention, in the treatment of a cyanide compound-containing liquid by the total cyanide method (reduced copper salt method), the amount of the reducing agent added is controlled by using the dissolved oxygen (DO) concentration as an index to control sodium barous sulfate or sulfuric acid. By adding a reducing agent such as monoiron in just proportion, it is possible to treat the cyanide compound highly, economically, and stably, and it is possible to obtain a treatment liquid in which the cyanide concentration is sufficiently reduced. ..

本発明のシアン化合物含有液の処理方法及び処理装置の実施の形態の一例を示す系統図である。It is a system diagram which shows an example of the embodiment of the treatment method and the treatment apparatus of the cyanide compound-containing liquid of this invention.

以下に本発明の実施の形態を詳細に説明する。 Embodiments of the present invention will be described in detail below.

本発明は、全シアン法(還元銅塩法)によるシアン化合物含有液の処理に当たり、従来法のORP値に変えて、DO濃度を指標として還元剤の薬注制御を行うことを特徴とする。 The present invention is characterized in that, when treating a cyanide compound-containing liquid by the total cyanide method (reduced copper salt method), the chemical injection control of the reducing agent is performed using the DO concentration as an index instead of the ORP value of the conventional method.

本発明者らが、ORP値に基づく従来法では処理にバラツキが発生するシアンヒドリンを含む排水やフェロシアンなどの錯シアンを含む排水について検討した結果、このようなORP値では薬注制御が困難なシアン化合物含有液であっても、処理液のシアン濃度とDO濃度との間には密接な関係があり、DO濃度が一定レベルになるように重亜硫酸ソーダや硫酸第一鉄などの還元剤の注入制御を実施すれば、低シアン濃度の処理液を安定して得ることができることが明らかとなった。 As a result of the present inventors studying wastewater containing cyanide hydrin and wastewater containing complex cyanide such as ferrocyan, which causes variation in treatment by the conventional method based on the ORP value, it is difficult to control chemical injection with such an ORP value. Even if the solution contains a cyanide compound, there is a close relationship between the cyanide concentration and the DO concentration of the treatment solution, and the reducing agent such as sodium bisulfite or ferrous sulfate is used so that the DO concentration becomes a constant level. It was clarified that a treatment solution having a low cyanide concentration can be stably obtained by carrying out injection control.

本発明によると、DO濃度を指標として還元剤の添加量を制御するようにしたので、還元剤を過不足なく添加して、シアン化合物含有液を効率よく高度に、しかも安定して処理することができ、シアン濃度の低い処理液を得ることができる。 According to the present invention, since the amount of the reducing agent added is controlled by using the DO concentration as an index, the reducing agent is added in just proportion, and the cyanide compound-containing liquid is treated efficiently, highly and stably. It is possible to obtain a treatment liquid having a low cyanide concentration.

本発明によるシアン化合物含有液の処理は、反応槽にシアン化合物含有液を導入し、これに重亜硫酸ソーダや硫酸第一鉄などの還元剤と銅化合物をそれぞれ添加して、被処理液中のシアン化合物を反応させ、水不溶性塩を生成させることで実施することができる。
上記の反応は回分式(バッチ式)で行ってもよく、連続式で行ってもよい。
回分式で処理を行う場合、還元剤を添加しながらDO計により反応槽内液のDO濃度を測定し、または原水のシアン濃度に応じた銅化合物を適量添加したのち、反応槽内液のDO濃度を測定する操作を繰返す。そしてDO濃度の値が下がり切った時をもって還元剤の添加の終点とする。
このDO濃度の値が下がり切った時とは、例えば、還元剤の添加量1mg/L当たり、DO濃度値の低下が0.002mg/L以下となるようなときである。
In the treatment of the cyanide-containing liquid according to the present invention, the cyanide-containing liquid is introduced into the reaction vessel, and a reducing agent such as sodium bicarbonate or ferrous sulfate and a copper compound are added thereto, respectively, in the liquid to be treated. It can be carried out by reacting a cyanide compound to produce a water-insoluble salt.
The above reaction may be carried out in a batch type or a continuous type.
When the treatment is performed in a batch system, the DO concentration of the solution in the reaction vessel is measured with a DO meter while adding a reducing agent, or an appropriate amount of copper compound corresponding to the cyan concentration of the raw water is added, and then the DO of the solution in the reaction vessel is added. The operation of measuring the concentration is repeated. Then, when the value of the DO concentration is completely lowered, the end point of the addition of the reducing agent is set.
The time when the value of the DO concentration is completely lowered is, for example, when the decrease in the DO concentration value is 0.002 mg / L or less per 1 mg / L of the addition amount of the reducing agent.

連続式の場合は、DO濃度が所定値になるように、すなわち回分処理における終点の決定のように、DO濃度が下がり切った時のDO濃度をビーカーテストなどで決定し、その値と同じになるように、重亜硫酸ソーダや硫酸第一鉄などの還元剤と、銅化合物を添加して水不溶性塩を効率よく生成させることができる。具体的には、反応槽が完全混合型ならば反応槽内のDO濃度値が所定の値になるように還元剤を添加すればよく、また反応槽が押し出し流れ型ならば、液の流れに沿って複数個のDO計を設置し、最下流のDO計のDO濃度値が所定の値になるように還元剤を添加する。
このような方法で、添加した銅化合物を確実に有効活用し得る、還元剤の的確な薬注制御が可能となる。
In the case of the continuous formula, the DO concentration is determined by a beaker test or the like so that the DO concentration becomes a predetermined value, that is, the DO concentration when the DO concentration is completely lowered, as in the determination of the end point in batch processing, and is the same as that value. As such, a reducing agent such as sodium sulfite or ferrous sulfate and a copper compound can be added to efficiently produce a water-insoluble salt. Specifically, if the reaction vessel is a completely mixed type, a reducing agent may be added so that the DO concentration value in the reaction vessel becomes a predetermined value, and if the reaction vessel is an extrusion flow type, the flow of the liquid is increased. A plurality of DO meters are installed along the line, and a reducing agent is added so that the DO concentration value of the most downstream DO meter becomes a predetermined value.
In such a method, it is possible to accurately control the injection of the reducing agent, which can surely effectively utilize the added copper compound.

なお、不溶性塩を生成させる反応は、撹拌機を備える反応槽で行う他、ラインミキサー等の混合設備で行うこともできる。 The reaction for producing the insoluble salt can be carried out in a reaction vessel equipped with a stirrer or in a mixing facility such as a line mixer.

以上のようにしてシアン化合物含有液を処理すると、反応液のDO濃度が低下しているので、水不溶性塩中の銅化合物が十分に1価に還元された状態でシアンと結合し、原水のORPなどに左右されることがないので、経済的に還元剤を運用することができる。そのため、処理液中にシアンイオンがリークすることがなく、高度な処理を安定して行うことができる。 When the cyanide-containing solution is treated as described above, the DO concentration of the reaction solution is lowered, so that the copper compound in the water-insoluble salt is sufficiently reduced to monovalent and is combined with cyanide to form raw water. Since it is not affected by ORP or the like, the reducing agent can be operated economically. Therefore, cyan ions do not leak into the treatment liquid, and advanced treatment can be stably performed.

図1は、連続式による本発明のシアン化合物含有液の処理方法及び処理装置の実施の形態の一例を示す系統図である。
必要に応じてpH調整、曝気処理等の前処理が施されたシアン化合物含有液は、反応槽1に導入され、撹拌下に重亜硫酸ソーダや硫酸第一鉄などの還元剤と銅化合物が添加されることで不溶性塩を生成する。不溶性塩を含む反応液は沈殿槽2に送給されて固液分離され、分離水が処理液として取り出される。沈殿槽2から抜き出された分離汚泥は脱水設備等に送給されて処理される。
FIG. 1 is a system diagram showing an example of a method for treating a cyanide compound-containing liquid of the present invention and an embodiment of a treatment apparatus according to a continuous method.
The cyanide-containing liquid, which has been subjected to pretreatment such as pH adjustment and aeration treatment as necessary, is introduced into the reaction tank 1, and a reducing agent such as sodium bisulfite or ferrous sulfate and a copper compound are added under stirring. It produces an insoluble salt. The reaction solution containing the insoluble salt is sent to the settling tank 2 for solid-liquid separation, and the separated water is taken out as a treatment solution. The separated sludge extracted from the settling tank 2 is sent to a dehydration facility or the like for treatment.

反応槽1には槽内液のDO濃度を測定するDO計3が設けられており、DO濃度の測定値が制御装置4に入力される。 The reaction tank 1 is provided with a DO total 3 for measuring the DO concentration of the liquid in the tank, and the measured value of the DO concentration is input to the control device 4.

制御装置4には予めビーカーテスト等によりDO濃度値が下がり切った時点のDO濃度を設定しておき、そのDO濃度になる時点を還元剤添加の終点とするように、還元剤の薬注ポンプPの制御信号を出力する。 The DO concentration at the time when the DO concentration value has completely dropped is set in advance in the control device 4 by a beaker test or the like, and the chemical injection pump of the reducing agent is set so that the time when the DO concentration reaches the DO concentration is the end point of the addition of the reducing agent. The control signal of P is output.

DO濃度の適正値については、処理するシアン化合物含有液中の基質(シアンヒドリンの共存の有無等)にもよって異なるが、1.0mg/L以下、好ましくは0.5mg/L以下、より好ましくは0.1mg/L以下となる時点を終点とするように制御することもできる。 The appropriate value of the DO concentration varies depending on the substrate in the cyanide compound-containing liquid to be treated (presence or absence of coexistence of cyanhydrin, etc.), but is 1.0 mg / L or less, preferably 0.5 mg / L or less, more preferably. It is also possible to control the end point to be 0.1 mg / L or less.

以下、本発明によるシアン化合物含有液の処理に好適な各構成要件について説明する。 Hereinafter, each constituent requirement suitable for the treatment of the cyanide compound-containing liquid according to the present invention will be described.

[シアン化合物含有液]
本発明で処理対象とするシアン化合物含有液は、遊離シアン、錯体シアン等のシアン化合物を含有する水である。本発明は、シアン化合物含有液中に遊離シアンまたはフェロシアンなどの錯シアンが共存している場合に好適に適用可能である。錯体シアンとしてはシアンの金属錯体があり、フェロシアンイオン、フェリシアンイオンなどの鉄シアン錯体、その他の金属錯体が含まれていてもよい。
[Cyanide-containing liquid]
The cyanide-containing liquid to be treated in the present invention is water containing a cyanide compound such as free cyanide and complex cyanide. The present invention is suitably applicable when complex cyanide such as free cyanide or ferrocyanide coexists in the cyanide compound-containing liquid. As the complex cyanide, there is a metal complex of cyanide, and an iron cyanide complex such as a ferrocyanine ion or a ferricyanide ion, or another metal complex may be contained.

このようなシアン化合物含有液としては、金属めっき工場、化学工場などから排出されるシアン化合物含有液が挙げられる。シアン化合物含有液は、鉄等の金属や、有機酸等のキレート剤その他の不純物を含んでいてもよい。鉄等の金属はシアン錯体として含まれているものが一般的である。有機酸等のキレート剤は金属を不溶化するものとして含まれている場合がある。 Examples of such a cyanide-containing liquid include cyanide-containing liquids discharged from metal plating factories, chemical factories, and the like. The cyanide compound-containing liquid may contain a metal such as iron, a chelating agent such as an organic acid, and other impurities. Metals such as iron are generally contained as a cyanide complex. Chelating agents such as organic acids may be included as insolubilizing metals.

シアン化合物含有液のシアン化合物濃度には特に制限はないが、通常全シアン濃度として、1〜20mg/L程度である。 The concentration of the cyanide compound in the cyanide compound-containing liquid is not particularly limited, but the total cyanide concentration is usually about 1 to 20 mg / L.

なお、ホルムアルデヒドによりシアンヒドリンを生成したシアン化合物含有液の場合、事前に酸化剤や曝気等に酸化分解することが望ましい。 In the case of a cyanide compound-containing liquid in which cyanide is produced by formaldehyde, it is desirable to oxidatively decompose it with an oxidizing agent, aeration, or the like in advance.

[銅化合物・還元剤]
本発明では、上記シアン化合物含有液にまず銅化合物及び還元剤を添加して不溶性塩を生成させる。
[Copper compounds / reducing agents]
In the present invention, a copper compound and a reducing agent are first added to the cyanide compound-containing liquid to produce an insoluble salt.

銅化合物としては、水溶性の硫酸銅(II)、塩化銅(II)、硝酸銅(II)などの2価の銅塩を用いることができる。 As the copper compound, divalent copper salts such as water-soluble copper sulfate (II), copper chloride (II), and copper nitrate (II) can be used.

還元剤は2価の銅イオンを1価に還元できる還元剤であり、例えば亜硫酸塩、重亜硫酸塩、鉄塩(II)、ヒドラジンなどいずれでもよいが、汚泥発生量の低減及び入手の容易性の点から亜硫酸塩、重亜硫酸塩が推奨される。これらの塩としてはナトリウム塩、例えば重亜硫酸ナトリウム(NaHSO)が好適である。 The reducing agent is a reducing agent capable of reducing divalent copper ions to monovalent, and may be, for example, sulfite, sulfite, iron salt (II), hydrazine, etc., but the amount of sludge generated is reduced and availability is easy. From this point of view, sulfites and sulfites are recommended. As these salts, sodium salts such as sodium bisulfite (NaHSO 3 ) are suitable.

一般に硫酸銅などの2価の銅塩に亜硫酸塩、重亜硫酸塩、硫酸鉄(II)、ヒドラジンなどの各種還元剤を添加してpH2〜11としても、見かけ上1価の銅イオンの生成は見られないが、シアン化合物含有液に2価の銅塩と還元剤を添加すると、1価の銅のシアン化合物が不溶性塩となって沈殿する。 Generally, even if various reducing agents such as sulfite, bicarbonate, iron (II) sulfate, and hydrazine are added to a divalent copper salt such as copper sulfate to adjust the pH to 2-11, apparently monovalent copper ions are not produced. Although not seen, when a divalent copper salt and a reducing agent are added to the cyan compound-containing liquid, the monovalent copper cyan compound becomes an insoluble salt and precipitates.

上記の反応は下式に示す3種類に代表される。 The above reactions are typified by the three types shown in the formula below.

Cu+CN−→CuCN …(1)
4Cu+Zn(CN) 2−→4CuCN+Zn2+ …(2)
Cu+Ag(CN) →CuAg(CN) …(3)
このうち(1)式は遊離シアンの反応、(2)式は前記易分解性のシアン錯塩の反応、(3)式は難分解性のシアン錯塩の反応である。
Cu + + CN- → CuCN… (1)
4Cu + + Zn (CN) 4 2- → 4CuCN + Zn 2+ … (2)
Cu + + Ag (CN) 2 - → CuAg (CN) 2 ... (3)
Of these, Eq. (1) is a reaction of free cyanide, Eq. (2) is a reaction of the easily decomposable cyanide complex salt, and Eq. (3) is a reaction of a persistent cyanide complex salt.

反応系に添加する2価の銅塩の量は、好ましくはシアン化合物含有液中のシアン化合物との反応当量以上であり、原則的には上記(1)〜(3)式における反応当量でよいが、シアン化合物含有液中のシアン化合物濃度の変動に対処するため、ならびに反応促進のためにはシアン化合物含有液中のシアン濃度の2〜5倍量が特に好ましい。銅化合物がすでにシアン化合物含有液中に存在する場合は不足分を添加すればよい。 The amount of the divalent copper salt added to the reaction system is preferably equal to or more than the reaction equivalent with the cyanide in the cyanide-containing liquid, and in principle, the reaction equivalent in the above formulas (1) to (3) may be used. However, in order to cope with fluctuations in the cyanide compound concentration in the cyanide compound-containing liquid and to promote the reaction, an amount of 2 to 5 times the cyanide concentration in the cyanide compound-containing liquid is particularly preferable. If the copper compound is already present in the cyanide-containing liquid, the deficiency may be added.

本発明において、還元剤の添加量は前述の通り、DO値に基づいて制御される。 In the present invention, the amount of the reducing agent added is controlled based on the DO value as described above.

銅化合物及び還元剤は同時に添加するのが好ましいが、前後に分けて別々に添加してもよい。 The copper compound and the reducing agent are preferably added at the same time, but they may be added separately before and after.

[反応条件]
シアン化合物含有液に銅化合物及び還元剤を添加して不溶性塩を生成させるためのpH(例えば、銅化合物及び還元剤を添加する反応槽のpH)は好ましくは2〜9.5、特に好ましくは7〜9.5である。従って、処理するシアン化合物含有液のpHがこの範囲を外れる場合は、必要に応じて酸又はアルカリを添加してpH調整を行うことが好ましい。
反応温度(例えば銅化合物及び還元剤を添加する反応槽の温度)は特に制限はないが、通常15〜60℃である。
[Reaction conditions]
The pH for adding the copper compound and the reducing agent to the cyan compound-containing liquid to form an insoluble salt (for example, the pH of the reaction vessel to which the copper compound and the reducing agent are added) is preferably 2 to 9.5, particularly preferably. It is 7 to 9.5. Therefore, when the pH of the cyanide compound-containing liquid to be treated is out of this range, it is preferable to adjust the pH by adding an acid or an alkali as necessary.
The reaction temperature (for example, the temperature of the reaction vessel to which the copper compound and the reducing agent are added) is not particularly limited, but is usually 15 to 60 ° C.

[不溶性塩の分離]
シアン化合物含有液に銅化合物及び還元剤を添加して生成させた不溶性塩の固液分離方法には特に制限はないが、凝集剤を添加して凝集処理し、凝集処理後固液分離する方法が好ましい。
[Separation of insoluble salts]
The solid-liquid separation method of the insoluble salt produced by adding a copper compound and a reducing agent to the cyanide compound-containing liquid is not particularly limited, but a method of adding a flocculant to perform coagulation treatment, and then solid-liquid separation after coagulation treatment. Is preferable.

凝集剤としては無機凝集剤及び有機高分子凝集剤が用いられる。無機凝集剤は不溶性塩等の凝集のほか、残留するシアン錯体をも凝集させるのに適した塩化鉄(III)、硫酸鉄(III)等の鉄塩系凝集剤が好ましいが、PAC等のアルミニウム塩系凝集剤なども用いることができる。特許文献4に記載されるように、アルミニウム塩系凝集剤を用いた場合の方が、鉄系凝集剤を用いた場合よりも凝集処理効率が高い場合があり、アルミニウム塩系凝集が適している場合もある。有機高分子凝集剤としては、無機凝集剤により凝集した凝集物をフロック化して分離するのに適した凝集剤として、ポリアクリルアミド、アクリルアミドとアクリル酸(ナトリウム)との共重合物、ポリアクリルアミド部分加水分解物などのアニオン系高分子凝集剤が好ましいものとして挙げられる。 As the flocculant, an inorganic flocculant and an organic polymer flocculant are used. The inorganic flocculant is preferably an iron salt-based flocculant such as iron (III) chloride or iron (III) sulfate, which is suitable for coagulating not only insoluble salts and the like but also residual cyanide complexes, but aluminum such as PAC. A salt-based flocculant or the like can also be used. As described in Patent Document 4, the coagulation treatment efficiency may be higher when the aluminum salt-based coagulant is used than when the iron-based coagulant is used, and the aluminum salt-based coagulant is suitable. In some cases. Examples of the organic polymer flocculant include polyacrylamide, a copolymer of acrylamide and acrylic acid (sodium), and polyacrylamide partial hydrolysis as a flocculant suitable for flocculating and separating agglomerates aggregated by an inorganic flocculant. Anionic polymer flocculants such as decomposition products are preferred.

無機凝集剤の添加量は20〜2000mg/L、特に100〜500mg/L程度が好ましい。また、有機高分子凝集剤の添加量は0.2〜10mg/L、特に0.5〜2mg/L程度が好ましい。 The amount of the inorganic flocculant added is preferably 20 to 2000 mg / L, particularly preferably about 100 to 500 mg / L. The amount of the organic polymer flocculant added is preferably 0.2 to 10 mg / L, particularly preferably about 0.5 to 2 mg / L.

なお、過剰に添加された銅化合物を除去するために、凝集処理時に重金属捕集剤を添加してもよい。重金属捕集剤としてはジチオカルバミン酸系キレート剤などが挙げられる。 In addition, in order to remove the excessively added copper compound, a heavy metal collecting agent may be added at the time of the aggregation treatment. Examples of the heavy metal collecting agent include a dithiocarbamic acid-based chelating agent.

凝集処理後の固液分離としては、沈澱分離、浮上分離、濾過の1又は2以上が挙げられる。濾過としては、砂濾過、多層濾過(アンスラサイト・砂二層濾過など)、膜濾過などを用いることができる。 Examples of the solid-liquid separation after the agglutination treatment include one or two or more of precipitation separation, levitation separation, and filtration. As the filtration, sand filtration, multi-layer filtration (anthracite / sand two-layer filtration, etc.), membrane filtration and the like can be used.

図1では、反応槽1からの反応液を直接沈殿槽2で固液分離しているが、反応槽1と沈殿槽2との間に凝集反応槽を設けてもよい。
この場合、凝集反応槽として、無機凝集剤を添加して撹拌する急速撹拌槽と、有機高分子凝集剤を添加して撹拌する緩速撹拌槽とを設けてもよい。また、沈殿槽2の後段に更に濾過器を設けて、沈殿槽2からの上澄水を濾過処理してもよい。
In FIG. 1, the reaction liquid from the reaction tank 1 is directly separated by the settling tank 2, but an agglutination reaction tank may be provided between the reaction tank 1 and the settling tank 2.
In this case, as the agglutination reaction tank, a rapid stirring tank in which an inorganic flocculant is added and stirred, and a slow stirring tank in which an organic polymer flocculant is added and stirred may be provided. Further, a filter may be further provided after the settling tank 2 to filter the supernatant water from the settling tank 2.

[実施例1]
以下に実施例に代わる実験例を挙げて、本発明をより具体的に説明する。
[Example 1]
Hereinafter, the present invention will be described in more detail with reference to experimental examples alternative to the examples.

[実験例I]
フェロシアン、シアンヒドリン及び遊離シアンを含む排水(原水1)について、還元剤(NaHSO)を添加した後、銅化合物(CuSO)を添加して処理する実験を行った。
原水1は全シアン濃度3.4mg/Lで、ORP、DOの測定値はそれぞれ下記表1に示す通りであった。
この原水1に、還元剤としてNaHSOを下記表1に示す量添加した後、銅化合物としてCuSOを100mg/L添加して反応させ、反応液のORPとDOを測定したところ、下記表1に示す通りであった。なお、反応はいずれも水温50℃、pH8.4で行った。
得られた反応液について、それぞれアニオン性高分子凝集剤(栗田工業(株) クリファームPA923)を添加撹拌し、30分間静置した後の上澄液(処理水)の全シアン濃度を測定し、結果を表1に示した。
[Experimental Example I]
An experiment was conducted in which wastewater containing ferrocyanide, cyanhydrin and free cyanide (raw water 1) was treated by adding a reducing agent (NaHSO 3 ) and then adding a copper compound (CuSO 4).
Raw water 1 had a total cyanide concentration of 3.4 mg / L, and the measured values of ORP and DO were as shown in Table 1 below.
After adding NaHSO 4 as a reducing agent to this raw water 1 in the amount shown in Table 1 below , 100 mg / L of CuSO 4 as a copper compound was added and reacted, and the ORP and DO of the reaction solution were measured. It was as shown in. All the reactions were carried out at a water temperature of 50 ° C. and a pH of 8.4.
Anionic polymer flocculants (Kurifarm PA923, Kurita Kogyo Co., Ltd.) were added to each of the obtained reaction solutions, and the mixture was allowed to stand for 30 minutes, and then the total cyanide concentration of the supernatant (treated water) was measured. The results are shown in Table 1.

Figure 2021142509
Figure 2021142509

表1より、反応液のDO濃度が0.3mg/L以下となるように還元剤を添加すると処理水中にシアンは検出されなくなることが分かる。
この実験例Iの結果から、特許文献2のようにORPが250mVとなるまで還元剤を添加してもシアン除去効果は得られず、また、特許文献4に記載されるようにORPが80mV以下でもシアン除去効果は十分ではなく、特許文献3のようなORPの急激な変化も認められないことが分かる。
From Table 1, it can be seen that when a reducing agent is added so that the DO concentration of the reaction solution is 0.3 mg / L or less, cyanide is not detected in the treated water.
From the result of this Experimental Example I, the cyanide removing effect cannot be obtained even if the reducing agent is added until the ORP becomes 250 mV as in Patent Document 2, and the ORP is 80 mV or less as described in Patent Document 4. However, it can be seen that the cyan removal effect is not sufficient, and the rapid change in ORP as in Patent Document 3 is not observed.

[実験例II]
実験例Iで用いた排水とは異なる工場排水(原水2)について、実験例Iと同様に処理を行った。
原水2は全シアン濃度2.8mg/Lで、ORP、DOの測定値はそれぞれ下記表2に示す通りであった。
この原水2に、還元剤としてNaHSOを下記表2に示す量添加した後、銅化合物としてCuSOを100mg/L添加して反応させ、反応液のORPとDOを測定したところ、下記表2に示す通りであった。なお、反応はいずれも水温50℃、pH8.4で行った。
得られた反応液について、それぞれアニオン性高分子凝集剤(栗田工業(株) クリファームPA923)を添加撹拌し、30分間静置した後の上澄液(処理水)の全シアン濃度を測定し、結果を表2に示した。
[Experimental Example II]
Factory wastewater (raw water 2) different from the wastewater used in Experimental Example I was treated in the same manner as in Experimental Example I.
The raw water 2 had a total cyanide concentration of 2.8 mg / L, and the measured values of ORP and DO were as shown in Table 2 below, respectively.
After adding NaHSO 4 as a reducing agent to this raw water 2 in the amount shown in Table 2 below , 100 mg / L of CuSO 4 as a copper compound was added and reacted, and the ORP and DO of the reaction solution were measured. It was as shown in. All the reactions were carried out at a water temperature of 50 ° C. and a pH of 8.4.
Anionic polymer flocculants (Kurifarm PA923, Kurita Kogyo Co., Ltd.) were added to each of the obtained reaction solutions, and the mixture was allowed to stand for 30 minutes, and then the total cyanide concentration of the supernatant (treated water) was measured. The results are shown in Table 2.

Figure 2021142509
Figure 2021142509

表2より、以下のことが分かる。
No.II−1〜No.II−3のORPの値から、ORP値が急激に変化する範囲を還元剤の添加量制御の指標とする場合、例えば、ORPの設定電位は30〜50mVの範囲で選定され、30mVで還元剤の添加OFF、50mVで添加ONというような制御を行うことを仮定すると、このような薬注制御では、シアンの不溶化はまだ完了していないことが分かる。このため、さらに還元剤を添加できるようなORP値を選定する必要があるが、ORP値50mV以下では、原水のシアン濃度に対応する銅化合物も変化するため、還元剤添加量に対するORPの変化が緩慢であり、制御が困難である。シアン処理の安全を見込んで、低いORP値を設定した場合は還元剤の過剰注入となり経済的ではない。
一方、DO濃度に基づいて還元剤の添加を制御する場合、シアン錯イオンが低レベルまで処理された後、DO濃度値が急激に低下しており、例えばDO濃度が0.3mg/L以下になるまで還元剤を添加すれば、原水シアン濃度が変化しても銅化合物が必要量を満たしていれば全シアン濃度1mg/L以下の処理水が得られることが分かる。
From Table 2, the following can be seen.
No. II-1 to No. When the range in which the ORP value suddenly changes from the ORP value of II-3 is used as an index for controlling the addition amount of the reducing agent, for example, the set potential of the ORP is selected in the range of 30 to 50 mV, and the reducing agent is 30 mV. Assuming that the addition is turned off and the addition is turned on at 50 mV, it can be seen that the insolubilization of cyanide is not yet completed by such chemical injection control. Therefore, it is necessary to select an ORP value that allows the addition of a reducing agent. However, when the ORP value is 50 mV or less, the copper compound corresponding to the cyan concentration of the raw water also changes, so that the ORP changes with respect to the amount of the reducing agent added. It is slow and difficult to control. If a low ORP value is set in anticipation of the safety of cyanide treatment, the reducing agent will be over-injected, which is not economical.
On the other hand, when the addition of the reducing agent is controlled based on the DO concentration, the DO concentration value drops sharply after the cyanide complex ion is treated to a low level, for example, the DO concentration becomes 0.3 mg / L or less. It can be seen that if the reducing agent is added until the total cyanide concentration changes, treated water having a total cyanide concentration of 1 mg / L or less can be obtained if the required amount of the copper compound is satisfied even if the cyanide concentration in the raw water changes.

1 反応槽
2 沈殿槽
3 DO計
4 制御装置
1 Reaction tank 2 Sedimentation tank 3 DO meter 4 Control device

Claims (4)

シアン化合物含有液に銅化合物及び還元剤を添加して、該シアン化合物を不溶性塩として分離除去するシアン化合物含有液の処理方法において、該還元剤の添加量を、該還元剤が添加された被処理液の溶存酸素濃度に基づいて制御することを特徴とするシアン化合物含有液の処理方法。 In the method for treating a cyanide-containing liquid in which a copper compound and a reducing agent are added to the cyanide-containing liquid and the cyanide is separated and removed as an insoluble salt, the amount of the reducing agent added is adjusted to the amount to which the reducing agent is added. A method for treating a cyanide compound-containing liquid, which is controlled based on the dissolved oxygen concentration of the treatment liquid. 請求項1において、前記溶存酸素濃度が下がり切った時を前記還元剤の添加終点とすることを特徴とするシアン化合物含有液の処理方法。 The method for treating a cyanide compound-containing liquid according to claim 1, wherein the end point of addition of the reducing agent is when the dissolved oxygen concentration is completely lowered. シアン化合物含有液が連続的に流入する反応槽に銅化合物及び還元剤を添加して、該シアン化合物を不溶性塩として分離除去する方法において、該反応槽内の溶存酸素濃度を測定し、該溶存酸素濃度の測定値が所定値になるように該還元剤の添加量を制御することを特徴とするシアン化合物含有液の処理方法。 In a method in which a copper compound and a reducing agent are added to a reaction vessel in which a cyanide-containing liquid continuously flows, and the cyanide compound is separated and removed as an insoluble salt, the dissolved oxygen concentration in the reaction vessel is measured and the dissolved oxygen is dissolved. A method for treating a cyanide compound-containing liquid, which comprises controlling the amount of the reducing agent added so that the measured value of the oxygen concentration becomes a predetermined value. シアン化合物含有液を導入して銅化合物と反応させる混合設備と、該混合設備に還元剤を添加する手段と、該混合設備の液の溶存酸素濃度を測定する溶存酸素計と、該溶存酸素計の測定値に基づいて該還元剤の添加量を制御する制御手段とを備えることを特徴とするシアン化合物含有液の処理装置。 A mixing facility for introducing a cyanide-containing liquid to react with a copper compound, a means for adding a reducing agent to the mixing facility, a dissolved oxygen meter for measuring the dissolved oxygen concentration of the liquid in the mixing facility, and the dissolved oxygen meter. A cyanide compound-containing liquid processing apparatus, which comprises a control means for controlling the amount of the reducing agent added based on the measured value of the above.
JP2020044456A 2020-03-13 2020-03-13 Cyanide-containing liquid treatment method and cyanide-containing liquid treatment equipment Pending JP2021142509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020044456A JP2021142509A (en) 2020-03-13 2020-03-13 Cyanide-containing liquid treatment method and cyanide-containing liquid treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020044456A JP2021142509A (en) 2020-03-13 2020-03-13 Cyanide-containing liquid treatment method and cyanide-containing liquid treatment equipment

Publications (1)

Publication Number Publication Date
JP2021142509A true JP2021142509A (en) 2021-09-24

Family

ID=77766735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020044456A Pending JP2021142509A (en) 2020-03-13 2020-03-13 Cyanide-containing liquid treatment method and cyanide-containing liquid treatment equipment

Country Status (1)

Country Link
JP (1) JP2021142509A (en)

Similar Documents

Publication Publication Date Title
JP5962177B2 (en) Cyanogen-containing wastewater treatment method and treatment agent
JP4894403B2 (en) Cyanide-containing wastewater treatment method and apparatus
JP2018047417A (en) Wastewater treatment apparatus and wastewater treatment method using the same
KR102119234B1 (en) How to treat cyanide-containing wastewater
CN104129875A (en) Cyanated wastewater treatment method
JP2020032412A (en) Method and equipment for treating cyanide-containing water
CN110759532A (en) High-salt concentrated water treatment process for producing iron phosphate by sodium method
JP5945682B2 (en) Treatment method of wastewater containing cyanide
JP4863694B2 (en) Method and apparatus for fluorinating chelating agent-containing water
JP2009072769A (en) Sewage treatment system
JP2005279571A (en) Cyanogen-containing wastewater treatment method
US5853573A (en) Groundwater total cyanide treatment apparatus
JP2014091115A (en) Method and device of treating heavy metal-containing waste fluid
CN209797710U (en) Device for strengthening treatment of metallurgical thallium-containing wastewater
JP2013056328A (en) Treatment method and treatment apparatus of cyanide-containing water
CN104803524A (en) Method and system for treating leather retanning low-chromium wastewater through microelectroanalysis
CN108083563A (en) A kind of admiro waste liquid, chemical nickel waste liquid and pickle liquor collaboration treatment process
JP2021142509A (en) Cyanide-containing liquid treatment method and cyanide-containing liquid treatment equipment
JP7157192B2 (en) water treatment method
JP6597349B2 (en) Blast furnace wastewater treatment method
JP2013202500A (en) Treatment method of wastewater for suppressing production of high oil content sludge
JP2007260556A (en) Phosphoric acid-containing wastewater treatment method and apparatus
JP2847864B2 (en) Chromium-containing wastewater treatment method
JP2013236983A (en) Device and method for treating waste water
JP2005270752A (en) Coagulation method and apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240220