JP2021141886A - Cultivation method for reducing mycotoxin level in crops using microbial material - Google Patents

Cultivation method for reducing mycotoxin level in crops using microbial material Download PDF

Info

Publication number
JP2021141886A
JP2021141886A JP2021034049A JP2021034049A JP2021141886A JP 2021141886 A JP2021141886 A JP 2021141886A JP 2021034049 A JP2021034049 A JP 2021034049A JP 2021034049 A JP2021034049 A JP 2021034049A JP 2021141886 A JP2021141886 A JP 2021141886A
Authority
JP
Japan
Prior art keywords
aspergillus
crop
mycotoxin
corn
crops
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021034049A
Other languages
Japanese (ja)
Other versions
JP7454804B2 (en
Inventor
隆一 上垣
Ryuichi Kamigaki
隆一 上垣
宙 内野
Sora Uchino
宙 内野
晴久 須賀
Haruhisa Suga
晴久 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Tokai National Higher Education and Research System NUC
Original Assignee
National Agriculture and Food Research Organization
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization, Tokai National Higher Education and Research System NUC filed Critical National Agriculture and Food Research Organization
Publication of JP2021141886A publication Critical patent/JP2021141886A/en
Application granted granted Critical
Publication of JP7454804B2 publication Critical patent/JP7454804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

To provide a method for reducing the level of mycotoxin produced by mycotoxin-producing cells in crops.SOLUTION: A method for culturing crops with a reduced mycotoxin level includes the step of inoculating crops with Aspergillus microbes and culturing the crops.SELECTED DRAWING: None

Description

本発明は、例えばマイコトキシン産生菌と競合する微生物を用いて、作物中のマイコトキシン濃度を低減した栽培方法に関する。 The present invention relates to a cultivation method in which the concentration of mycotoxins in a crop is reduced by using, for example, a microorganism that competes with a mycotoxin-producing bacterium.

世界的にトウモロコシやイネ等の基幹作物は、マイコトキシンに汚染されることが多々あることが知られている。日本においても例外ではなく、これらの作物中からフサリウム属(Fusarium)かびが産生するマイコトキシンが高頻度に検出され、中には高濃度に汚染されているものも認められている。また、作物中のフサリウム属かびが産生するマイコトキシンは、栽培期間中に対策を講じるのが有効だと考えられている。このように、作物のマイコトキシンによるリスクを低減するための栽培法が求められている。 It is known worldwide that key crops such as corn and rice are often contaminated with mycotoxins. In Japan, mycotoxins produced by Fusarium fungi are frequently detected in these crops, and some of them are highly contaminated. In addition, it is considered effective to take measures during the cultivation period for mycotoxins produced by Fusarium fungi in crops. Thus, there is a need for cultivation methods to reduce the risk of crops caused by mycotoxins.

しかしながら、従来において、トウモロコシ等の作物の栽培におけるマイコトキシンの低減化は、品種の選定の他は特段行われていない。さらに、マイコトキシンの蓄積性の低い品種であっても、気象条件等でマイコトキシンが高濃度になるケースがあること、また、ごく限られた品種になるので、収穫時期の調節や栽培環境への適応性等で栽培が困難な場合がある。 However, conventionally, the reduction of mycotoxins in the cultivation of crops such as maize has not been carried out in particular except for the selection of varieties. Furthermore, even varieties with low mycotoxin accumulation may have high concentrations of mycotoxins due to weather conditions, etc., and since the varieties are very limited, adjustment of harvest time and adaptation to the cultivation environment Cultivation may be difficult due to sex.

本発明は、上述の実情に鑑み、作物において、マイコトキシン産生菌により産生されるマイコトキシン濃度を低減する方法を提供することを目的とする。 In view of the above circumstances, it is an object of the present invention to provide a method for reducing the concentration of mycotoxins produced by mycotoxin-producing bacteria in crops.

上記課題を解決するため鋭意研究を行った結果、作物の栽培において、アスペルギルス属(Aspergillus)に属する微生物を当該作物に接種することで、当該作物中のマイコトキシン産生菌により産生されるマイコトキシン濃度を低減できることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the concentration of mycotoxins produced by mycotoxin-producing bacteria in the crop is reduced by inoculating the crop with microorganisms belonging to the genus Aspergillus in the cultivation of the crop. We have found what we can do and have completed the present invention.

すなわち、本発明は、以下を包含する。
(1)作物に、アスペルギルス属に属する微生物を接種し、該作物を栽培する工程を含む、マイコトキシン濃度を低減した作物の栽培方法。
(2)作物に、アスペルギルス属に属する微生物を接種し、該作物を栽培する工程を含む、作物又作物に由来する製品におけるマイコトキシン汚染の抑制方法。
(3)作物がトウモロコシ、イネ及び麦類から成る群より選択される、(1)又は(2)記載の方法。
(4)絹糸抽出期のトウモロコシ、又は出穂期のイネ若しくは麦類に、アスペルギルス属に属する微生物を接種する、(3)記載の方法。
(5)アスペルギルス属に属する微生物が白麹菌及び/又は黒麹菌(Aspergillus luchuensis)である、(1)〜(4)のいずれか1記載の方法。
(6)白麹菌が白麹菌(やさかこうじ)である、(5)記載の方法。
(7)黒麹菌がAspergillus luchuensis IFM 61405である、(5)又は(6)記載の方法。
(8)マイコトキシンがフサリウム属かび毒である、(1)〜(7)のいずれか1記載の方法。
(9)フサリウム属かび毒がフモニシン、デオキシニバレノール、ゼアラレノン及びT-2トキシンから成る群より選択される、(8)記載の方法。
(10)アスペルギルス属に属する微生物を含有する、(1)〜(9)のいずれか1記載の方法によるマイコトキシン濃度を低減した作物栽培用組成物、又は作物若しくは作物に由来する製品におけるマイコトキシン汚染抑制用組成物。
That is, the present invention includes the following.
(1) A method for cultivating a crop having a reduced mycotoxin concentration, which comprises a step of inoculating a crop with a microorganism belonging to the genus Aspergillus and cultivating the crop.
(2) A method for suppressing mycotoxin contamination in a crop or a product derived from the crop, which comprises a step of inoculating a crop with a microorganism belonging to the genus Aspergillus and cultivating the crop.
(3) The method according to (1) or (2), wherein the crop is selected from the group consisting of corn, rice and wheat.
(4) The method according to (3), wherein corn in the silk thread extraction stage or rice or wheat in the heading stage is inoculated with a microorganism belonging to the genus Aspergillus.
(5) The method according to any one of (1) to (4), wherein the microorganism belonging to the genus Aspergillus is Aspergillus luchuensis.
(6) The method according to (5), wherein the white aspergillus is white aspergillus.
(7) The method according to (5) or (6), wherein the black aspergillus is Aspergillus luchuensis IFM 61405.
(8) The method according to any one of (1) to (7), wherein the mycotoxin is a Fusarium fungal venom.
(9) The method according to (8), wherein the Fusarium mycotoxin is selected from the group consisting of fumonisin, vomitoxin, zearalenone and T-2 mycotoxin.
(10) Suppression of mycotoxin contamination in a crop cultivation composition containing a microorganism belonging to the genus Aspergillus and having a reduced mycotoxin concentration by the method according to any one of (1) to (9), or a crop or a product derived from the crop. Composition for.

本発明によれば、栽培中のイネ、ムギ、トウモロコシ等の食用基幹作物、及び当該作物に由来する製品において、マイコトキシン濃度を低減することができる。 According to the present invention, the concentration of mycotoxins can be reduced in edible basic crops such as rice, wheat, and corn under cultivation, and products derived from the crops.

実施例1における麹菌を共培養した時のフモニシン産生抑制効果を示すグラフである。米粉、コーングリッツ、YM+コーンスティープリカー培地において、麹菌(黒麹菌及び白麹菌)を培養後にフモニシン産生かびFusarium fujikuroiを接種した時のフモニシン産生量(B1+B2+B3 μg)を示す。麹菌の培養により、培養していない時と比較してフモニシンの産生を大きく抑制した。エラーバーは標準偏差を示す(n=3)。It is a graph which shows the fumonisin production inhibitory effect at the time of co-culturing the aspergillus in Example 1. The amount of fumonisin produced (B 1 + B 2 + B 3 μg) when the fumonisin-producing mold Fusarium fujikuroi was inoculated after culturing the aspergillus (black aspergillus and white aspergillus) in rice flour, corn steep liquor medium, is shown. By culturing aspergillus, the production of fumonisin was greatly suppressed as compared with the case of not culturing. Error bars indicate standard deviation (n = 3). 実施例2における室内栽培でのイネ穂中のフモニシン濃度を示すグラフである。室内においてイネを栽培し、出穂期に麹菌(黒麹菌及び白麹菌)を、さらにその2日後にフモニシンを産生するFusarium fujikuroiを穂に接種した。完熟期にイネ穂を採取し、乾燥、粉砕後にフモニシン濃度(B1+B2+B3:mg/kg乾物)を測定した。麹菌の接種により、フモニシンの濃度が低下した。エラーバーは標準偏差を示す(n=3)。It is a graph which shows the fumonisin concentration in the rice ear in the indoor cultivation in Example 2. FIG. Rice was cultivated indoors, and the ears were inoculated with aspergillus (black aspergillus and white aspergillus) at the heading stage, and two days later, Fusarium fujikuroi, which produces fumonisin. Rice ears were collected during the ripe period, dried and crushed, and then the fumonisin concentration (B 1 + B 2 + B 3 : mg / kg dry matter) was measured. Inoculation with Jiuqu reduced the concentration of fumonisin. Error bars indicate standard deviation (n = 3). 実施例3における屋外栽培でのトウモロコシ子実中のフモニシン濃度を示すグラフである。屋外圃場においてトウモロコシを栽培し、絹糸抽出期に麹菌(黒麹菌及び白麹菌)を接種した。完熟期にトウモロコシ雌穂を30本採取し(2群)、子実を乾燥、混合、粉砕後にフモニシン濃度(B1+B2+B3:mg/kg乾物)を測定した。麹菌の接種により、フモニシンの濃度が低下した。It is a graph which shows the fumonisin concentration in the corn grain in the outdoor cultivation in Example 3. FIG. Corn was cultivated in an outdoor field and inoculated with aspergillus (black aspergillus and white aspergillus) during the silk thread extraction period. During the ripe period, 30 corn ears were collected (2 groups), and the grains were dried, mixed, and crushed, and then the fumonisin concentration (B 1 + B 2 + B 3 : mg / kg dry matter) was measured. Inoculation with Jiuqu reduced the concentration of fumonisin. 実施例4における破砕小麦種子で培養したフモニシン産生抑制効果を示すグラフである。It is a graph which shows the effect of suppressing the production of fumonisin cultured in the crushed wheat seed in Example 4. 実施例5におけるコーングリッツで培養したデオキシニバレノール・ゼアラレノン産生抑制効果を示すグラフである。It is a graph which shows the effect of suppressing the production of deoxynivalenol / zearalenone cultured in Corn grits in Example 5. 実施例6におけるコーングリッツで培養したT-2トキシン産生抑制効果を示すグラフである。It is a graph which shows the effect of suppressing the production of T-2 toxin cultured in Corn grits in Example 6.

以下、本発明を詳細に説明する。
本発明は、作物に、アスペルギルス属に属する微生物(アスペルギルス属菌)を接種し、該作物を栽培することで、マイコトキシン濃度を低減した作物を栽培する(又は生産する)方法である(以下、「本方法」と称する)。本方法によれば、栽培中の作物に、フサリウム属かび等のマイコトキシン産生菌と競合するアスペルギルス属菌を接種することで、アスペルギルス属菌を接種しない作物と比較して、作物又は栽培後に収穫した作物に由来する製品中のマイコトキシン濃度を有意に低減することができる。また、本方法は、作物又作物に由来する製品におけるマイコトキシン汚染の抑制方法ということもできる。
Hereinafter, the present invention will be described in detail.
The present invention is a method of inoculating a crop with a microorganism belonging to the genus Aspergillus (Aspergillus spp.) And cultivating the crop to cultivate (or produce) a crop having a reduced mycotoxin concentration (hereinafter, "" This method). According to this method, by inoculating a cultivated crop with Aspergillus spp. That compete with mycotoxin-producing bacteria such as Fusarium fungus, the crop was harvested or harvested after cultivation as compared with a crop not inoculated with Aspergillus spp. The concentration of mycotoxins in crop-derived products can be significantly reduced. This method can also be said to be a method for suppressing mycotoxin contamination in crops or products derived from crops.

本方法における対象の作物としては、フサリウム属かび等のマイコトキシン産生菌が寄生し、マイコトキシンに汚染されるか又は汚染される可能性がある作物であれば特に限定されてないが、例えばトウモロコシ、イネ、麦類(例えばコムギ、オオムギ、エンバク、ライムギ)、ソルガム等が挙げられる。また、栽培後に収穫した作物に由来する製品としては、収穫した作物を貯蔵又は加工して製造される製品であり、例えば生食用トウモロコシ、缶詰コーン、トウモロコシ飼料、コーングリッツ、コーンスターチ、飼料用米及びそのサイレージ、小麦粉及びそれを原料とする食品(パン、うどん等)、各種セモリナ及びフレーク等が挙げられる。 The target crop in this method is not particularly limited as long as it is a crop that is contaminated with or may be contaminated with mycotoxins, which is infested with mycotoxin-producing bacteria such as sorghum, but for example, corn and rice. , Wheat (eg wheat, barley, corn, rye), sorghum and the like. The products derived from the crops harvested after cultivation are products produced by storing or processing the harvested crops, for example, raw corn, canned corn, corn feed, corn glitz, corn starch, feed rice and the like. Examples thereof include silage, wheat flour and foods made from the same (bread, corn, etc.), various semolinas and flakes.

本方法では、栽培中の作物にアスペルギルス属菌を接種する。接種するアスペルギルス属菌としては、例えば白麹菌、黒麹菌(Aspergillus luchuensis)、又はこれらの混合物が挙げられ、特に白麹菌及び黒麹菌から成る混合物が好ましい。 In this method, the cultivated crop is inoculated with Aspergillus spp. Examples of Aspergillus spp. Inoculated include white aspergillus, aspergillus luchuensis, and mixtures thereof, and a mixture consisting of white aspergillus and black aspergillus is particularly preferable.

白麹菌としては、食品由来の麹が使用でき、例えば島根県浜田市「やさか共同農場」から市販されている「やさか 生麹(こうじ)」において繁殖した状態の白麹菌(やさかこうじ)が挙げられる。白麹菌(やさかこうじ)は、「やさか 生麹(こうじ)」から、滅菌水で撹拌後の上澄より得ることができる。 As the white aspergillus, food-derived aspergillus can be used. Can be mentioned. White Jiuqu can be obtained from "Yasaka Jiuqu" from the supernatant after stirring with sterilized water.

一方、黒麹菌としては、例えばAspergillus luchuensis IFM 61405が挙げられる。IFM 61405株は、千葉大学真菌医学研究センター(MMRC)において保有されており、ここより入手することができる。 On the other hand, examples of black aspergillus include Aspergillus luchuensis IFM 61405. The IFM 61405 strain is held at the Chiba University School of Medicine Research Center (MMRC) and can be obtained from here.

また、白麹菌及び黒麹菌から成る混合物は、双方の麹菌を等量混合したものであってよい。 In addition, the mixture composed of white aspergillus and black aspergillus may be a mixture of both aspergillus in equal amounts.

アスペルギルス属菌の接種時期としては、例えばトウモロコシであれば絹糸抽出期、イネ又は麦類であれば出穂期が挙げられる。接種は、1又は複数回(1〜5回、1〜3回、1又は2回)行われる。また、これら時期後にも、アスペルギルス属菌を1又は複数回(1〜5回、1〜3回、1又は2回)接種してもよい。 Examples of the inoculation time of Aspergillus spp. Include the silk thread extraction period for corn and the heading period for rice or wheat. Inoculation is given once or multiple times (1-5 times, 1-3 times, 1 or 2 times). In addition, after these periods, Aspergillus spp. May be inoculated one or more times (1 to 5 times, 1 to 3 times, 1 or 2 times).

接種は、例えば作物に対するアスペルギルス属菌の胞子液の噴霧により行われる。噴霧の際には、手動であってもよく、あるいは動力噴霧器を用いてもよい。噴霧等により接種する箇所としては、例えば栽培する作物全体、作物の穂、葉、茎、根、花、種子、あるいは作物が栽培されている土壌、水田、苗栽培用のポットが挙げられる。 Inoculation is carried out, for example, by spraying the crop with a spore solution of Aspergillus spp. When spraying, it may be manual or a power sprayer may be used. Examples of the place to be inoculated by spraying or the like include the entire crop to be cultivated, the spikes, leaves, stems, roots, flowers, seeds of the crop, or the soil in which the crop is cultivated, paddy fields, and pots for seedling cultivation.

1回の接種量としては、例えばトウモロコシであれば2.7-4.1×109-10CFU/10a、イネや麦類であれば穂当たりアスペルギルス属菌の胞子液(1×105-6CFU/mL)25mLが挙げられる。 For example, 2.7-4.1 × 10 9-10 CFU / 10a for corn and spore solution of Aspergillus spp. (1 × 10 5-6 CFU / mL) per ear for rice and wheat. ) 25 mL can be mentioned.

本方法によれば、このように栽培中の作物にアスペルギルス属菌を接種することで、アスペルギルス属菌を接種しない作物と比較して、作物中のマイコトキシン濃度を有意に低減することができる。低減されるマイコトキシンとしては、例えばフサリウム属かび毒が挙げられる。また、フサリウム属かび毒としては、例えばフモニシンB群(B1、B2及びB3、特にB1)等のフモニシン、T-2トキシン、HT-2トキシン、ゼアラレノン、デオキシニバレノール及びニバレノールが挙げられる。 According to this method, by inoculating the cultivated crop with Aspergillus spp., The concentration of mycotoxins in the crop can be significantly reduced as compared with the crop not inoculated with Aspergillus spp. Examples of mycotoxins that are reduced include Fusarium fungal venom. Examples of fusarium mycotoxins include fumonisins such as fumonisin group B (B 1 , B 2 and B 3 , especially B 1 ), T-2 mycotoxin, HT-2 toxin, zearalenone, deoxynivalenol and nivalenol. ..

また、本発明は、本方法により使用される、上述のアスペルギルス属菌を含有する、マイコトキシン濃度を低減した作物栽培用組成物、又は作物若しくは作物に由来する製品におけるマイコトキシン汚染抑制用組成物(以下、「本組成物」と称する)に関する。本組成物は、含有されるアスペルギルス属菌の胞子液が使用時に上述の接種量となるように適宜希釈して用いてもよく、又は上述の接種量における使用濃度でアスペルギルス属菌の胞子液を含有していてもよい。 Further, the present invention is a composition for growing a crop containing the above-mentioned Aspergillus spp. Used by the present method and having a reduced concentration of mycotoxins, or a composition for suppressing mycotoxin contamination in a crop or a product derived from the crop (hereinafter referred to as a composition). , Referred to as "this composition"). This composition may be appropriately diluted so that the contained spore solution of Aspergillus spp. Is used at the above-mentioned inoculation amount, or the spore solution of Aspergillus spp. Is used at the concentration used at the above-mentioned inoculation amount. It may be contained.

以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the technical scope of the present invention is not limited to these Examples.

〔実施例1〕
1.実験と方法
3種類の培地(米粉、コーングリッツ、YM+コーンスティープリカー[YMC])を実験に供した。米粉又はコーングリッツ1gを試験管に入れて滅菌(オートクレーブ)した。また、YMCは、YM培地(Difco)1000mLにコーンスティープリカー(Sigma-Aldrich)を100mL加えてよく撹拌後に、セライトろ過(ハイフロスーパーセル)を行なったものを50mLずつ200mL三角フラスコに入れてシリコン栓をして滅菌(オートクレーブ)した。
[Example 1]
1. 1. Experiments and methods
Three types of media (rice flour, corn grits, YM + corn steep liquor [YMC]) were used in the experiment. 1 g of rice flour or corn grits was placed in a test tube and sterilized (autoclaved). For YMC, add 100 mL of corn steep liquor (Sigma-Aldrich) to 1000 mL of YM medium (Difco), stir well, and then put 50 mL each of Celite filtration (hyflo supercell) into a 200 mL Erlenmeyer flask and plug it into a silicon stopper. And sterilized (autoclaved).

それぞれの培地に、白麹菌(やさかこうじ)、黒麹菌(Aspergillus luchuensis IFM 61405)の胞子液、又は乳酸菌(Lactobacillus plantarum)培養液を添加(10μL:1×105-6CFU/mL)し、2日間30℃で静置培養した。そこにFusarium fujikuroi MO409の胞子液10μL(1×105-6CFU/mL)を添加し、さらに7日間30℃で静置培養した。 To each medium, add spore solution of Aspergillus luchuensis IFM 61405 or Lactobacillus plantarum culture solution (10 μL: 1 × 10 5-6 CFU / mL). It was statically cultured at 30 ° C for 2 days. To this, 10 μL (1 × 10 5-6 CFU / mL) of Fusarium fujikuroi MO409 spore solution was added, and the cells were allowed to stand at 30 ° C. for another 7 days.

培養後の試験管又は三角フラスコを滅菌(オートクレーブ)した後、米粉とコーングリッツには、メタノール水混合液(3/1)を10mL加えてガラス棒でよく撹拌した。その上澄み1mLを、精製カラム(Bond Elute SAX(登録商標)アジレント)で精製した後に、LC-MS/MSでフモニシンを測定した。 After sterilizing (autoclaving) the test tube or Erlenmeyer flask after culturing, 10 mL of a mixed solution of methanol water (3/1) was added to rice flour and corn glitz, and the mixture was stirred well with a glass rod. After purifying 1 mL of the supernatant on a purification column (Bond Elute SAX® Agilent), fumonisin was measured by LC-MS / MS.

サンプルは、以下の通りである:
(1): 培養なしの培地
(2): F. fujikuroiのみを培養したもの
(3): 白麹菌を2日間培養後にF. fujikuroiを培養したもの
(4): 黒麹菌を2日間培養後にF. fujikuroiを培養したもの
(5): 白麹菌+黒麹菌を2日間培養後にF. fujikuroiを培養したもの
(6): 乳酸菌を2日間培養後にF. fujikuroiを培養したもの
※各処理n=3
The sample is as follows:
(1): Medium without culture
(2): Cultured only F. fujikuroi
(3): F. fujikuroi cultivated after culturing white aspergillus for 2 days
(4): F. fujikuroi cultivated after culturing black aspergillus for 2 days
(5): F. fujikuroi cultivated after culturing white aspergillus + black aspergillus for 2 days
(6): F. fujikuroi cultured after culturing lactic acid bacteria for 2 days * Each treatment n = 3

2.結果と考察
フモニシン濃度をフモニシンの産生量に変換して図1に示した。全ての培地において、F. fujikuroiのみを培養したものに対し、白麹菌も黒麹菌もフモニシンの産生を抑制した結果であった。それぞれ単独でも強く抑制の効果が認められたが、混合することでより強い抑制効果が認められた。乳酸菌も抑制効果が認められているが、麹菌はさらに強い抑制効果を示した。
2. Results and Discussion The fumonisin concentration was converted into the amount of fumonisin produced and shown in FIG. In all media, only F. fujikuroi was cultured, whereas both white and black aspergillus suppressed the production of fumonisin. A strong inhibitory effect was observed when each was used alone, but a stronger inhibitory effect was observed when mixed. Lactic acid bacteria have also been shown to have an inhibitory effect, but aspergillus has a stronger inhibitory effect.

〔実施例2〕
1.実験と方法
イネ(夢あおば)を屋内で栽培し、出穂して2〜3日後に、白麹菌(やさかこうじ)、黒麹菌(Aspergillus luchuensis IFM 61405)の胞子液(1×105-6CFU/mL)の等量混合液25mLを穂毎に噴霧した。穂をビニール袋で覆いをして2日経過した後に、F. fujikuroi MO409の胞子液25mL(1×105-6CFU/mL)を噴霧した。40〜50日後に、穂をサンプリングし、フモニシン濃度をLC-MS/MSにて測定した(n=3)。
[Example 2]
1. 1. Experiments and methods Rice (Yume Aoba) is cultivated indoors, and 2-3 days after heading, spore solution (1 × 10 5-6 CFU) of white aspergillus (Aspergillus luchuensis IFM 61 405) 25 mL of an equal volume mixture of / mL) was sprayed on each ear. Two days after covering the ears with a plastic bag, 25 mL (1 × 10 5-6 CFU / mL) of spore solution of F. fujikuroi MO 409 was sprayed. After 40 to 50 days, the ears were sampled and the fumonisin concentration was measured by LC-MS / MS (n = 3).

2.結果と考察
フモニシン濃度を図2に示した。無処理の穂に、F. fujikuroi MO409の胞子液を噴霧したものは、2100μg/kgであったが、あらかじめ白麹菌と黒麹菌の混合液を噴霧したものは140μg/kgであった。麹菌より、フモニシンの産生を有意に(p<0.05)抑制することができた。
2. Results and discussion The fumonisin concentration is shown in FIG. The untreated ears were sprayed with the spore solution of F. fujikuroi MO409 at 2100 μg / kg, but the mixture of white and black aspergillus was sprayed in advance at 140 μg / kg. Fumonisin production could be significantly suppressed (p <0.05) compared to Jiuqu.

〔実施例3〕
1.実験と方法
トウモロコシ(きみまる)を、農業・食品産業技術総合研究機構東北農業研究センター内実験圃場にて栽培した。絹糸抽出期及びその1週間後に、白麹菌(やさかこうじ)と黒麹菌(Aspergillus luchuensis IFM 61405)の混合液を動噴で散布した。その際、展着材を添加した。黄熟後期(絹糸抽出から約50日後)に、にサンプリングを行なった。試験区内の連続する100個体から雌穂を採取した後、苞葉と芯を除去し、子実のみを取り出した。70℃で3日間以上乾燥した後に、粉砕(1mmメッシュ)し、LC-MS/MSでフモニシン濃度を測定した(2群)。
[Example 3]
1. 1. Experiments and methods Corn was cultivated in the experimental field in the Tohoku Agricultural Research Center, Agricultural and Food Industry Research Organization. A mixture of white aspergillus (Yasaka Koji) and black aspergillus (Aspergillus luchuensis IFM 61405) was sprayed by dynamic jet during the silk thread extraction period and one week after that. At that time, a spreading material was added. Sampling was performed in the late yellow ripening stage (about 50 days after silk thread extraction). After collecting ears from 100 consecutive individuals in the test plot, the bracts and cores were removed, and only the grains were taken out. After drying at 70 ° C. for 3 days or more, the mixture was pulverized (1 mm mesh) and the fumonisin concentration was measured by LC-MS / MS (group 2).

2.結果と考察
トウモロコシ子実中のフモニシン濃度を図3に示した。無処理のトウモロコシ子実は、2500と2300μg/kgであったが、白麹菌と黒麹菌の混合液を噴霧したものは1100と950μg/kgであった。麹菌散布により、トウモロコシ子実のフモニシンの濃度を抑制することができた。
2. Results and discussion Figure 3 shows the fumonisin concentration in maize grains. The untreated corn grains were 2500 and 2300 μg / kg, while the sprayed mixture of white and black aspergillus was 1100 and 950 μg / kg. By spraying Jiuqu, the concentration of fumonisin in corn kernels could be suppressed.

〔実施例4〕
1.実験と方法
破砕した小麦種子(農林1号)1gに、黒麹菌(Aspergillus luchuensis IFM 61405)及び/又は白麹菌(やさかこうじ)の胞子液を接種し、滅菌精製水を1mL添加し、30℃で2日間培養した。その後、Fusarium fujikuroiの菌液を接種し、30℃で7日間インキュベートした。培養種子をオートクレーブにかけ、メタノール/水抽出を行い、機器分析にてフモニシンの定量分析を行なった。
[Example 4]
1. 1. Experiments and methods 1 g of crushed wheat seeds (Norin No. 1) is inoculated with spore solution of black aspergillus (Aspergillus luchuensis IFM 61405) and / or white aspergillus (Yasaka Koji), 1 mL of sterilized purified water is added, and 30 ° C. Was cultured for 2 days. Then, the bacterial solution of Fusarium fujikuroi was inoculated and incubated at 30 ° C. for 7 days. The cultured seeds were autoclaved, methanol / water extracted, and quantitative analysis of fumonisin was performed by instrumental analysis.

2.結果と考察
破砕小麦種子中のFusarium fujikuroiによるフモニシン産生量を図4に示した。麹菌を無添加の場合(無)、フモニシン生産量が平均99ng(標準偏差91)に対し、麹菌接種のものは、ほぼ産生されなかった(白麹菌、黒麹菌、白麹菌+黒麹菌)。
2. Results and discussion Figure 4 shows the amount of fumonisin produced by Fusarium fujikuroi in crushed wheat seeds. When no aspergillus was added (no), the average amount of fumonisin produced was 99 ng (standard deviation 91), whereas that inoculated with aspergillus was hardly produced (white aspergillus, black aspergillus, white aspergillus + black aspergillus).

〔実施例5〕
1.実験と方法
コーングリッツ1gに、黒麹菌(Aspergillus luchuensis IFM 61405)及び/又は白麹菌(やさかこうじ)の胞子液を接種し、滅菌精製水を1mL添加し、30℃で2日間培養した。その後、Fusarium graminearumの菌液を接種し、30℃で7日間インキュベートした。培養したコーングリッツをオートクレーブにかけ、アセトニトリル/水抽出を行い、機器分析にてデオキシニバレノールの定量分析を行なった。
[Example 5]
1. 1. Experiments and Methods 1 g of corn glitz was inoculated with spore solution of Aspergillus luchuensis IFM 61405 and / or Aspergillus luchuensis (Yasaka Koji), 1 mL of sterile purified water was added, and the cells were cultured at 30 ° C. for 2 days. Then, the bacterial solution of Fusarium graminearum was inoculated and incubated at 30 ° C. for 7 days. The cultured corn glitz was autoclaved, acetonitrile / water extraction was performed, and quantitative analysis of vomitoxin was performed by instrumental analysis.

2.結果と考察
コーングリッツ中のFusarium graminearumによるデオキシニバレノール及びゼアラレノン産生量を図5に示した。麹菌を無添加の場合(無)、デオキシニバレノール生産量が平均32ng(標準偏差29)、麹菌接種のものは、4-6ngの産生量であった(白麹菌、黒麹菌、白麹菌+黒麹菌:○表記)。また、ゼアラレノンは、無添加の場合(無)平均14ng(標準偏差14)に対し、麹菌接種のものはほぼ産生されなかった(白麹菌、黒麹菌、白麹菌+黒麹菌:△表記)。
2. Results and Discussion The production of deoxynivalenol and zearalenone by Fusarium graminearum in corn grits is shown in FIG. When no aspergillus was added (no), the average production of deoxynivalenol was 32 ng (standard deviation 29), and the amount of aspergillus inoculated was 4-6 ng (white aspergillus, black aspergillus, white aspergillus + black aspergillus). : ○ notation). In addition, when no addition was added, the average of 14 ng (standard deviation 14) of Zearalenone was not produced, but the one inoculated with Jiuqu was hardly produced (Jiuqu, Black Jiuqu, White Jiuqu + Black Jiuqu: △ notation).

〔実施例6〕
1.実験と方法
コーングリッツ1gに、黒麹菌(Aspergillus luchuensis IFM 61405)及び/又は白麹菌(やさかこうじ)の胞子液を接種し、滅菌精製水を1mL添加し、30℃で2日間培養した。その後、Fusarium sporotrichioidesの菌液を接種し、30℃で7日間インキュベートした。培養したコーングリッツをオートクレーブにかけ、アセトニトリル/水抽出を行い、機器分析にてT-2トキシンの定量分析を行なった。
[Example 6]
1. 1. Experiments and Methods 1 g of corn glitz was inoculated with spore solution of Aspergillus luchuensis IFM 61405 and / or Aspergillus luchuensis (Yasaka Koji), 1 mL of sterile purified water was added, and the cells were cultured at 30 ° C. for 2 days. Then, the bacterial solution of Fusarium sporotrichioides was inoculated and incubated at 30 ° C. for 7 days. The cultured corn glitz was autoclaved, acetonitrile / water extraction was performed, and quantitative analysis of T-2 toxin was performed by instrumental analysis.

2.結果と考察
コーングリッツ中のFusarium sporotrichioidesによるT-2トキシン産生量を図6に示した。麹菌を無添加の場合(無)、T-2トキシン生産量が平均14μg(標準偏差0.29)に対し、麹菌接種のものは、ほぼ産生されなかった(白麹菌、黒麹菌、白麹菌+黒麹菌)。
2. Results and Discussion The amount of T-2 toxin produced by Fusarium sporotrichioides in corn grits is shown in FIG. When no aspergillus was added (no), the average T-2 toxin production was 14 μg (standard deviation 0.29), whereas the one inoculated with aspergillus was hardly produced (white aspergillus, black aspergillus, white aspergillus + black aspergillus). ).

Claims (10)

作物に、アスペルギルス属(Aspergillus)に属する微生物を接種し、該作物を栽培する工程を含む、マイコトキシン濃度を低減した作物の栽培方法。 A method for cultivating a crop having a reduced mycotoxin concentration, which comprises a step of inoculating a crop with a microorganism belonging to the genus Aspergillus and cultivating the crop. 作物に、アスペルギルス属に属する微生物を接種し、該作物を栽培する工程を含む、作物又作物に由来する製品におけるマイコトキシン汚染の抑制方法。 A method for controlling mycotoxin contamination in a crop or a product derived from the crop, which comprises a step of inoculating a crop with a microorganism belonging to the genus Aspergillus and cultivating the crop. 作物がトウモロコシ、イネ及び麦類から成る群より選択される、請求項1又は2記載の方法。 The method of claim 1 or 2, wherein the crop is selected from the group consisting of corn, rice and wheat. 絹糸抽出期のトウモロコシ、又は出穂期のイネ若しくは麦類に、アスペルギルス属に属する微生物を接種する、請求項3記載の方法。 The method according to claim 3, wherein the corn in the silk thread extraction stage or the rice or wheat in the heading stage is inoculated with a microorganism belonging to the genus Aspergillus. アスペルギルス属に属する微生物が白麹菌及び/又は黒麹菌(Aspergillus luchuensis)である、請求項1〜4のいずれか1項記載の方法。 The method according to any one of claims 1 to 4, wherein the microorganism belonging to the genus Aspergillus is Aspergillus luchuensis. 白麹菌が白麹菌(やさかこうじ)である、請求項5記載の方法。 The method according to claim 5, wherein the white aspergillus is white aspergillus (Yasaka Koji). 黒麹菌がAspergillus luchuensis IFM 61405である、請求項5又は6記載の方法。 The method according to claim 5 or 6, wherein the black aspergillus is Aspergillus luchuensis IFM 61405. マイコトキシンがフサリウム属(Fusarium)かび毒である、請求項1〜7のいずれか1項記載の方法。 The method according to any one of claims 1 to 7, wherein the mycotoxin is a Fusarium fungal venom. フサリウム属かび毒がフモニシン、デオキシニバレノール、ゼアラレノン及びT-2トキシンから成る群より選択される、請求項8記載の方法。 The method of claim 8, wherein the Fusarium mycotoxin is selected from the group consisting of fumonisin, vomitoxin, zearalenone and T-2 mycotoxin. アスペルギルス属に属する微生物を含有する、請求項1〜9のいずれか1項記載の方法によるマイコトキシン濃度を低減した作物栽培用組成物、又は作物若しくは作物に由来する製品におけるマイコトキシン汚染抑制用組成物。
A composition for crop cultivation in which the concentration of mycotoxins is reduced by the method according to any one of claims 1 to 9, which contains a microorganism belonging to the genus Aspergillus, or a composition for suppressing mycotoxin contamination in a crop or a product derived from the crop.
JP2021034049A 2020-03-12 2021-03-04 Cultivation method to reduce mycotoxins in crops using microbial materials Active JP7454804B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020043402 2020-03-12
JP2020043402 2020-03-12

Publications (2)

Publication Number Publication Date
JP2021141886A true JP2021141886A (en) 2021-09-24
JP7454804B2 JP7454804B2 (en) 2024-03-25

Family

ID=77765280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021034049A Active JP7454804B2 (en) 2020-03-12 2021-03-04 Cultivation method to reduce mycotoxins in crops using microbial materials

Country Status (1)

Country Link
JP (1) JP7454804B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027724A (en) 1998-07-06 2000-02-22 The United States Of America, As Represented By The Secretary Of Agriculture Non-toxigenic strain of Aspergillus oryzae and Aspergillus sojae for biocontrol of toxigenic fungi
JP2002101870A (en) 2000-10-02 2002-04-09 Zenichi Moromizato Microorganism having antagonistic action against fusarium fungus and method for controlling cucumber fusarium wilt with the microorganism and method for culturing the microorganism in large amount

Also Published As

Publication number Publication date
JP7454804B2 (en) 2024-03-25

Similar Documents

Publication Publication Date Title
RU2688455C1 (en) Chitooligosaccharides and methods of their use for increasing crop capacity
Shalaby et al. Application of Saccharomyces cerevisiae as a biocontrol agent against Fusarium infection of sugar beet plants
JP4810151B2 (en) Control agent for diseases occurring during the seedling raising season of rice
CN111356761A (en) Methods and compositions for biological control of plant pathogens
CN110423712B (en) Paenibacillus porrigens and application thereof
CN106282067B (en) Multifunctional agricultural complex micro organism fungicide and probiotics and application
EP2177600B1 (en) Fungus having activity of controlling disease of gramineous plant, controlling agent using the same, method of controlling and biological material
JPWO2003020032A1 (en) Composition for inducing plant disease resistance and method for producing the same
JP2011140463A (en) Technique for controlling plant disease using waste mushroom bed of edible mushroom
JPH08505056A (en) Method for treating germinated seed material
RU2529958C1 (en) Strain of nitrogen-fixing bacteria pseudomonas sp for obtaining biological product against diseases of wheat caused by phytopathogenic fungi, and increase in productivity
JP7454804B2 (en) Cultivation method to reduce mycotoxins in crops using microbial materials
US20230028115A1 (en) Formulation comprising streptomyces spp. for use in seed treatment
EP3348540B1 (en) Beijerinckia fluminensis bf 2806 bacterial strain, use thereof as a fertilizer and a biological control agent in preventing and/or treating plant diseases, and method of stimulating plant growth and protecting plants against diseases
KR101573584B1 (en) Composition comprising Tsukamurella tyrosinosolvens strain YJR102 for controlling plant diseases and plant-growth promiting effect
CN113233922A (en) Preparation and application of purple lilac spore fungus biological seedling culture substrate
CN109456900A (en) A kind of composite biological agent and application thereof
JP4435584B2 (en) Antibacterial agent and production method thereof
Al-Askar Bioactive Compounds Produced by Trichoderma harzianum 1-SSR for controlling Fusarium verticillioides (Sacc.) Nirenberg and Growth Promotion of Sorghum vulgare.
KR20150079323A (en) Composition comprising Pseudomonas otitidis strain YJR27 for controlling plant diseases and plant-growth promiting effect
Gunaratna et al. Effect of Trichoderma asperellum and Trichoderma virens on Allium cepa L. Growth, Damping off and Basal Rot Disease Incidence and Severity in Sri Lanka
Amuza et al. Trichoderma spp.-mechanisms of action in the control of storage pathogens-review.
Levchyk et al. The development of biological product for plant growing on the basis of Streptomyces albus
RU2086128C1 (en) Strain of bacterium bacillus subtilis for preparing the preparation for fungus disease control in plants
Kumari et al. In vitro screening and efficacy of plant growth promoting rhizobacteria and biocontrol agents in bell pepper (Capsicum annuum L.)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240301

R150 Certificate of patent or registration of utility model

Ref document number: 7454804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150