JP2021141701A - Battery monitoring device - Google Patents

Battery monitoring device Download PDF

Info

Publication number
JP2021141701A
JP2021141701A JP2020037240A JP2020037240A JP2021141701A JP 2021141701 A JP2021141701 A JP 2021141701A JP 2020037240 A JP2020037240 A JP 2020037240A JP 2020037240 A JP2020037240 A JP 2020037240A JP 2021141701 A JP2021141701 A JP 2021141701A
Authority
JP
Japan
Prior art keywords
battery
charging
time
amount
charge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020037240A
Other languages
Japanese (ja)
Inventor
皓子 安谷屋
Hiroko Ataya
皓子 安谷屋
順一 波多野
Junichi Hatano
順一 波多野
勇一郎 須藤
Yuichiro Sudo
勇一郎 須藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2020037240A priority Critical patent/JP2021141701A/en
Publication of JP2021141701A publication Critical patent/JP2021141701A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a technique capable of grasping a change of battery characteristic and a change of full charge capacity.SOLUTION: In a battery monitoring device 1, a battery monitoring device 101 has a determining unit 111 determining whether a first charge duration is less than a charge possible time, and a charge unit 112, when the determination of the determining unit 111 is satisfied, performing first charge for charging by repeatedly charging specified quantity and leaving for a prescribed time, and obtaining an amount of charge and battery voltage associated with each other at the time of leaving completion.SELECTED DRAWING: Figure 1

Description

本発明は、電池監視装置に関する。 The present invention relates to a battery monitoring device.

電池は経年劣化などに伴って、充放電量Ah−OCV(Open Circuit Voltage)特性が変化することが知られている。このような電池監視装置において、CCV(Closed Circuit Voltage)から推定したOCVと、電流積算で推定したSOC(State Of Charge)とを蓄積して、SOC−OCVカーブを算出するものがある。例えば、特許文献1参照。 It is known that the charge / discharge amount Ah-OCV (Open Circuit Voltage) characteristic of a battery changes with aging and the like. In such a battery monitoring device, there is a device that calculates the SOC-OCV curve by accumulating the OCV estimated from the CCV (Closed Circuit Voltage) and the SOC (State Of Charge) estimated by the current integration. For example, see Patent Document 1.

特開2017−223536号公報JP-A-2017-223536

しかしながら、従来の技術に基づきSOCやSOC−OCVカーブを推定するのは困難である。特に充放電量Ah−OCV特性を取得するためには、少量ずつ充放電し、その都度分極解消を待つ時間が必要となるため、通常の充放電時には実施することができない。 However, it is difficult to estimate the SOC or SOC-OCV curve based on the conventional technique. In particular, in order to acquire the charge / discharge amount Ah-OCV characteristic, it is necessary to charge / discharge little by little and wait for the polarization to be eliminated each time, so that it cannot be carried out during normal charging / discharging.

本発明の一側面に係る目的は、電池特性の変化を把握することが可能な電池監視装置を提供することである。 An object of one aspect of the present invention is to provide a battery monitoring device capable of grasping changes in battery characteristics.

本発明に係る一つの態様の電池監視装置は、第1充電所要時間が充電可能時間を下回るか判定する判定部と、前記判定が満たされる場合、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量と電池電圧を対応付けて取得する第1充電を行う充電部と、を備えることを特徴とする。 The battery monitoring device according to one aspect of the present invention has a determination unit for determining whether the first charging time is less than the rechargeable time, and if the determination is satisfied, the battery is repeatedly charged by a predetermined amount and left for a predetermined time. It is characterized by including a charging unit that performs a first charging that charges and acquires the charge amount and the battery voltage in association with each other when the battery is left unattended.

したがって、充電に必要な所要時間に十分余裕がある場合には、少量ずつ所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に、充電量と分極解消後の電池電圧を取得する。これにより、劣化後の充電量Ah−OCV特性を取得することができ、劣化後の電池特性の変化を把握することができる。 Therefore, if there is sufficient time required for charging, the battery is charged by repeating charging a predetermined amount little by little and leaving it for a predetermined time, and at the end of leaving, the charged amount and the battery voltage after polarization elimination are acquired. .. As a result, it is possible to acquire the charge amount Ah-OCV characteristic after deterioration, and it is possible to grasp the change in the battery characteristic after deterioration.

また、前記判定部は、第2充電所要時間が前記充電可能時間を下回るか判定し、前記充電部は、前記判定が満たされる場合、前記第2充電所要時間が前記充電可能時間を下回る場合には、SOC0%まで放電を行った後、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量と電池電圧を対応付けて取得する第2充電を行うことを特徴とする。 Further, the determination unit determines whether the second charging time is less than the chargeable time, and the charging unit determines whether the second charging time is less than the chargeable time, and when the determination is satisfied, the second charging time is less than the chargeable time. Is characterized in that after discharging to SOC 0%, charging is performed while repeating charging a predetermined amount and leaving the battery for a predetermined time, and at the end of leaving the battery, a second charge is performed in which the charge amount and the battery voltage are acquired in association with each other. ..

したがって、充電に必要な所要時間に十分余裕がある場合には、充電前にSOCが0%になるまで放電する。その後、少量ずつ所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に、充電量と分極解消後の電池電圧を取得する。これにより、劣化前の充電量Ah−OCV特性の影響を受けずに、精度よく劣化後の充電量Ah−OCV特性を取得することができ、劣化後の電池特性の変化を精度よく把握することができる。 Therefore, if there is sufficient time required for charging, the battery is discharged until the SOC reaches 0% before charging. After that, the battery is charged by repeating charging a predetermined amount little by little and leaving it for a predetermined time, and at the end of leaving the battery, the charged amount and the battery voltage after the polarization is eliminated are acquired. As a result, it is possible to accurately acquire the charge amount Ah-OCV characteristic after deterioration without being affected by the charge amount Ah-OCV characteristic before deterioration, and to accurately grasp the change in the battery characteristic after deterioration. Can be done.

また、前記判定部は、第3充電所要時間が前記充電可能時間を下回るか判定し、前記充電部は、前記第3充電所要時間が前記充電可能時間を下回る場合には、第1の量の放電と第1の時間の放置を繰り返しながら放電して、放電量と電池電圧を対応付けて取得し、SOC0%まで放電を行った後、第2の量の充電と第2の時間の放置を繰り返しながら充電し、放置終了時に充電量と電池電圧を対応付けて取得する第3充電を行うことを特徴とする。 Further, the determination unit determines whether the third charge time required is less than the chargeable time, and when the third charge time is less than the chargeable time, the charging unit determines the amount of the first amount. Discharge while repeating discharging and leaving for the first time, obtain the discharge amount and battery voltage in association with each other, discharge to SOC 0%, and then charge the second amount and leave for the second time. It is characterized in that the battery is repeatedly charged, and at the end of leaving the battery, a third charge is performed in which the charge amount and the battery voltage are acquired in association with each other.

したがって、充電に必要な所要時間に十分余裕がある場合には、少量ずつ所定量の放電と所定時間の放置を繰り返しながら放電し、放置終了時に、放電量と分極解消後の電池電圧を取得することで、劣化後の充電量Ah−OCV特性を取得することができる。 Therefore, if there is sufficient time required for charging, the battery is discharged while repeating a predetermined amount of discharge and leaving for a predetermined time little by little, and at the end of leaving, the discharge amount and the battery voltage after depolarization are acquired. Therefore, it is possible to acquire the charge amount Ah-OCV characteristic after deterioration.

また、SOC0%になるまで放電を行った後に、少量ずつ所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に、充電量と分極解消後の電池電圧を取得することで、劣化後の充電量Ah−OCV特性を取得することができる。これにより、充放電量と充電時及び放電時に取得した分極解消後の電池電圧を取得することで、充電時または放電時のみ取得した場合と比較して、約2倍の精度で劣化後の充電量Ah−OCV特性を取得することができる。 Further, after discharging until the SOC reaches 0%, the battery is charged by repeating charging a predetermined amount little by little and leaving the battery for a predetermined time, and at the end of leaving the battery, the charged amount and the battery voltage after polarization is eliminated, thereby deteriorating. The later charge amount Ah-OCV characteristic can be acquired. As a result, by acquiring the charge / discharge amount and the battery voltage after polarization elimination acquired during charging and discharging, charging after deterioration is performed with approximately twice the accuracy as compared with the case where it is acquired only during charging or discharging. The quantity Ah-OCV characteristic can be obtained.

本発明に係る一つの態様の電池監視装置は、電池の充電量とOCVに関する相関関係を記憶する記憶部と、ユーザの操作を受け付けたか判定する判定部と、前記判定が満たされる場合、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量と電池電圧を対応付けて取得する第1充電を行う充電部と、前記取得した各充電量と電池電圧に基づいて、前記記憶部の相関関係を更新する更新部と、を備えることを特徴とする。 The battery monitoring device according to one aspect of the present invention includes a storage unit that stores the correlation between the battery charge amount and the OCV, a determination unit that determines whether or not a user operation has been accepted, and a predetermined amount if the determination is satisfied. Based on the charging unit that performs the first charging, which charges the battery while repeating charging and leaving the battery for a predetermined time, and acquires the charge amount and the battery voltage in association with each other at the end of the neglect, and each of the acquired charge amounts and the battery voltage. It is characterized by including an update unit that updates the correlation of the storage unit.

したがって、ユーザから明示的な指示を受け付けた場合には、少量ずつ所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に、充電量と分極解消後の電池電圧を取得することで、劣化後の充電量Ah−OCV特性を取得することができる。これにより、ユーザの所望したタイミングで電池特性の変化を把握することができる。そして、取得した充電量と分極解消後の電池電圧に基づき記憶部に記憶されている電池の充電量とOCVに関する相関関係を更新することができる。これにより、電池特性の変化を把握することができる。 Therefore, when an explicit instruction is received from the user, the battery is charged by repeating charging a predetermined amount little by little and leaving it for a predetermined time, and at the end of leaving, the charge amount and the battery voltage after polarization elimination are acquired. , The charge amount Ah-OCV characteristic after deterioration can be acquired. Thereby, the change in the battery characteristics can be grasped at the timing desired by the user. Then, the correlation between the battery charge amount stored in the storage unit and the OCV can be updated based on the acquired charge amount and the battery voltage after the polarization is eliminated. This makes it possible to grasp changes in battery characteristics.

本発明によれば、電池特性の変化や満充電容量の変化を把握することができる。 According to the present invention, changes in battery characteristics and changes in full charge capacity can be grasped.

第1の実施形態に係わる電池監視装置を含む電池パックの使用例を示す図である。It is a figure which shows the use example of the battery pack including the battery monitoring device which concerns on 1st Embodiment. 充電量と電池電圧を対応付けて取得する一例を示す図である。It is a figure which shows an example which acquires the charge amount and the battery voltage in association with each other. 二次電池の充放電量とOCVに関する相関関係を示す図である。It is a figure which shows the correlation about charge / discharge amount of a secondary battery and OCV. 第1の実施形態の第1充電の処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process of the 1st charge of 1st Embodiment. 第2の実施形態の第2充電の処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process of the 2nd charge of 2nd Embodiment. 第3の実施形態の第3充電の処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process of the 3rd charge of 3rd Embodiment. 第4の実施形態の第1充電の処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process of 1st charge of 4th Embodiment.

<第1の実施形態>
図1は、第1の実施形態に係わる電池監視装置を含む電池パック100の使用例を示す図である。この実施例では、電池パック100は、電気自動車またはプラグインハイブリッド車などの電動車両1において使用され、走行用モータ11に電流を供給するための二次電池102の満充電容量を算出する電池監視装置(電池ECU(Electronic Control Unit))101を含む。
<First Embodiment>
FIG. 1 is a diagram showing a usage example of the battery pack 100 including the battery monitoring device according to the first embodiment. In this embodiment, the battery pack 100 is used in an electric vehicle 1 such as an electric vehicle or a plug-in hybrid vehicle, and is used for battery monitoring to calculate the full charge capacity of the secondary battery 102 for supplying a current to the traveling motor 11. The device (battery ECU (Electronic Control Unit)) 101 is included.

電池パック100は、電池監視装置(電池ECU)101、二次電池102、監視ECU103、電流センサ104、サーミスタ105、リレー106、107を備える。なお、電池パック100は、図1に示してない他の回路構成を備えていてもよい。 The battery pack 100 includes a battery monitoring device (battery ECU) 101, a secondary battery 102, a monitoring ECU 103, a current sensor 104, a thermistor 105, relays 106, and 107. The battery pack 100 may have other circuit configurations not shown in FIG.

二次電池102は、直列に接続された複数の電池モジュールを含む組電池により実現される。そして、監視ECU103は、二次電池102の電圧を計測すると共に、二次電池102を構成する各電池モジュールの電圧を計測する。また、各電池モジュールは、例えば、直列に接続される複数の電池セルで構成される。この場合、監視ECU103は、各電池セルの電圧を計測してもよい。監視ECU103は、二次電池102の電池セルの電圧を計測するセンサとして機能する。なお、以下の記載では、各電池モジュールまたは各電池セルを単に「電池」と呼ぶことがある。 The secondary battery 102 is realized by an assembled battery including a plurality of battery modules connected in series. Then, the monitoring ECU 103 measures the voltage of the secondary battery 102 and also measures the voltage of each battery module constituting the secondary battery 102. Further, each battery module is composed of, for example, a plurality of battery cells connected in series. In this case, the monitoring ECU 103 may measure the voltage of each battery cell. The monitoring ECU 103 functions as a sensor for measuring the voltage of the battery cell of the secondary battery 102. In the following description, each battery module or each battery cell may be simply referred to as a "battery".

電流センサ104は、例えば、ホール素子やシャント抵抗により構成され、二次電池102、リレー106、107に流れる電流を検出する。電流センサ104は、二次電池102に流れる電流を検出するセンサとして機能する。サーミスタ105は、二次電池102の電池温度または二次電池102の周辺温度を検出する。サーミスタ105は、二次電池102の電池温度を測定するセンサとして機能する。監視ECU103は、二次電池102の電圧、電流センサ104により検出される電流及びサーミスタ105により検出される温度を示す電池状態情報を電池監視装置101に送る。 The current sensor 104 is composed of, for example, a Hall element or a shunt resistor, and detects the current flowing through the secondary battery 102, the relays 106, and 107. The current sensor 104 functions as a sensor that detects the current flowing through the secondary battery 102. The thermistor 105 detects the battery temperature of the secondary battery 102 or the ambient temperature of the secondary battery 102. The thermistor 105 functions as a sensor for measuring the battery temperature of the secondary battery 102. The monitoring ECU 103 sends the battery status information indicating the voltage of the secondary battery 102, the current detected by the current sensor 104, and the temperature detected by the thermistor 105 to the battery monitoring device 101.

充電器21は、二次電池102を充電する。このとき、充電器21は、監視ECU103によりモニタされる電圧及び電流センサ104によりモニタされる電流に基づいて二次電池102を充電してもよい。充電器21による二次電池102の充電は、例えば、定電流充電(CC(Constant Current)充電)または定電流定電圧充電(CCCV(Constant Current Constant Voltage)充電)により行うことができる。電動車両1の走行時には、二次電池102から走行用モータ11に電流が供給される。このとき、インバータ回路12は、二次電池102の直流電力を交流電力へ変換して走行用モータ11へ出力する。また、回生時には、インバータ回路12は、走行用モータ11の交流電力を直流電力へ変換し二次電池102へ出力する。 The charger 21 charges the secondary battery 102. At this time, the charger 21 may charge the secondary battery 102 based on the voltage monitored by the monitoring ECU 103 and the current monitored by the current sensor 104. The secondary battery 102 can be charged by the charger 21 by, for example, constant current charging (CC (Constant Current) charging) or constant current constant voltage charging (CCCV (Constant Current Constant Voltage) charging). When the electric vehicle 1 is traveling, a current is supplied from the secondary battery 102 to the traveling motor 11. At this time, the inverter circuit 12 converts the DC power of the secondary battery 102 into AC power and outputs it to the traveling motor 11. Further, at the time of regeneration, the inverter circuit 12 converts the AC power of the traveling motor 11 into DC power and outputs it to the secondary battery 102.

二次電池102と充電器21との間には、リレー106が設けられる。また、二次電池102の負極側において、二次電池102と走行用モータ11及び充電器21との間には、リレー107が設けられる。そして、電池監視装置101は、リレー106、107を制御する。例えば、充電器21が二次電池102を充電するときは、電池監視装置101は、リレー106、107をオン状態に制御する。二次電池102が過充電状態であるときは、電池監視装置101は、リレー106、107をオフ状態に制御してもよい。電動車両1の走行時には、電池監視装置101は、リレー107をオン状態に制御する。二次電池102が過放電状態であるときは、電池監視装置101は、リレー106、107をオフ状態に制御してもよい。 A relay 106 is provided between the secondary battery 102 and the charger 21. Further, on the negative electrode side of the secondary battery 102, a relay 107 is provided between the secondary battery 102, the traveling motor 11, and the charger 21. Then, the battery monitoring device 101 controls the relays 106 and 107. For example, when the charger 21 charges the secondary battery 102, the battery monitoring device 101 controls the relays 106 and 107 to be in the ON state. When the secondary battery 102 is in the overcharged state, the battery monitoring device 101 may control the relays 106 and 107 to be in the off state. When the electric vehicle 1 is traveling, the battery monitoring device 101 controls the relay 107 to be in the ON state. When the secondary battery 102 is in the over-discharged state, the battery monitoring device 101 may control the relays 106 and 107 to be in the off state.

電池監視装置101は、例えば、CPU(Central Processing Unit)、マルチコアCPU、プログラマブルなデバイス(FPGA(Field Programmable Gate
Array)やPLD(Programmable Logic Device)など)を用いた回路が考えられる。また、電池監視装置101は、内部または外部に備えられている記憶部110を備え、記憶部110に記憶されている電池パック100の各部を制御するプログラムを読み出して実行する。また、記憶部110は、二次電池102の充電量Ahまたは放電量AhとOCVに関する相関関係を記憶する。なお、本実施例においては電池監視装置101を用いて説明をするが、電池監視装置101が実行する制御を、例えば電動車両1に搭載されている一つ以上のECUなどに行わせてもよい。
The battery monitoring device 101 includes, for example, a CPU (Central Processing Unit), a multi-core CPU, and a programmable device (FPGA (Field Programmable Gate).
A circuit using Array) or PLD (Programmable Logic Device) can be considered. Further, the battery monitoring device 101 includes a storage unit 110 provided inside or outside, and reads and executes a program for controlling each part of the battery pack 100 stored in the storage unit 110. Further, the storage unit 110 stores the correlation between the charge amount Ah or the discharge amount Ah of the secondary battery 102 and the OCV. In this embodiment, the battery monitoring device 101 will be used for explanation, but the control executed by the battery monitoring device 101 may be performed by, for example, one or more ECUs mounted on the electric vehicle 1. ..

電池監視装置101は、二次電池102のSOC(充電率(State Of Charge))の上限閾値及び下限閾値に基づいて、制限された出力電力(Wout)情報及び回生電力(Win)情報を判定する。二次電池102のSOCが下限閾値以下の場合は、制限された出力電力(Wout)情報を車両ECU13へ伝達し、二次電池102のSOCが上限閾値以上の場合は、制限された回生電力(Win)情報を車両ECU13へ伝達する。 The battery monitoring device 101 determines the limited output power (Wout) information and regenerative power (Win) information based on the upper and lower thresholds of the SOC (State Of Charge) of the secondary battery 102. .. When the SOC of the secondary battery 102 is below the lower limit threshold, the limited output power (Wout) information is transmitted to the vehicle ECU 13, and when the SOC of the secondary battery 102 is above the upper limit threshold, the limited regenerative power (Wout) ( Win) Information is transmitted to the vehicle ECU 13.

車両ECU13は、電池監視装置101からの出力電力(Wout)情報に応じて、二次電池102から走行用モータ11への出力を制限する。また、車両ECU13は、電池監視装置101からの回生電力(Win)情報に応じて、走行用モータ11から二次電池102への回生を制限する。具体的には、車両ECU13は、二次電池102のSOCに基づく出力電力(Wout)情報に基づいてインバータ回路12の出力電力を制限し、走行用モータ11の出力を制限する。また、車両ECU13は、二次電池102のSOCに基づく回生電力(Win)情報に基づいてインバータ回路12の出力電力を制限し、走行用モータ11からの回生を制限する。 The vehicle ECU 13 limits the output from the secondary battery 102 to the traveling motor 11 according to the output power (Wout) information from the battery monitoring device 101. Further, the vehicle ECU 13 limits the regeneration from the traveling motor 11 to the secondary battery 102 according to the regenerative electric energy (Win) information from the battery monitoring device 101. Specifically, the vehicle ECU 13 limits the output power of the inverter circuit 12 based on the output power (Wout) information based on the SOC of the secondary battery 102, and limits the output of the traveling motor 11. Further, the vehicle ECU 13 limits the output power of the inverter circuit 12 based on the regenerative power (Win) information based on the SOC of the secondary battery 102, and limits the regeneration from the traveling motor 11.

インバータ回路12の出力電力を制限する方法は、公知の方法を採用することができるため特に限定しない。例えば、出力電力を制御する方法の一例として、車両ECU13は、インバータ回路12を構成するスイッチのスイッチング周波数を変更してDuty比を下げる方法を採用することができる。 The method for limiting the output power of the inverter circuit 12 is not particularly limited because a known method can be adopted. For example, as an example of the method of controlling the output power, the vehicle ECU 13 can adopt a method of lowering the duty ratio by changing the switching frequency of the switches constituting the inverter circuit 12.

なお、電池監視装置101は、二次電池102のSOCに基づいて、出力電力(Wout)情報及び回生電力(Win)情報を判定しているがこの限りではない。例えば、電池監視装置101は、二次電池102の電圧の上限閾値及び下限閾値に基づいて、制限された出力電力(Wout)情報及び回生電力(Win)情報を判定してもよい。二次電池102の電圧が下限閾値以下の場合は、制限された出力電力(Wout)情報を車両ECU13へ伝達し、二次電池102の電圧が上限閾値以上の場合は、制限された回生電力(Win)情報を車両ECU13へ伝達する。 The battery monitoring device 101 determines the output power (Wout) information and the regenerative power (Win) information based on the SOC of the secondary battery 102, but this is not the case. For example, the battery monitoring device 101 may determine the limited output power (Wout) information and regenerative power (Win) information based on the upper limit threshold value and the lower limit threshold value of the voltage of the secondary battery 102. When the voltage of the secondary battery 102 is below the lower limit threshold, the limited output power (Wout) information is transmitted to the vehicle ECU 13, and when the voltage of the secondary battery 102 is above the upper limit threshold, the limited regenerative power (Wout) ( Win) Information is transmitted to the vehicle ECU 13.

この場合、車両ECU13は、二次電池102の電圧に基づく出力電力(Wout)情報に応じて、二次電池102から走行用モータ11への出力を制限する。また、車両ECU13は、二次電池102の電圧に基づく回生電力(Win)情報に応じて、走行用モータ11から二次電池102への回生を制限する。 In this case, the vehicle ECU 13 limits the output from the secondary battery 102 to the traveling motor 11 according to the output power (Wout) information based on the voltage of the secondary battery 102. Further, the vehicle ECU 13 limits the regeneration from the traveling motor 11 to the secondary battery 102 according to the regenerative electric energy (Win) information based on the voltage of the secondary battery 102.

なお、車両ECU13は、電池監視装置101より受信する二次電池102の出力電力(Wout)情報及び回生電力(Win)情報に基づいて充電器21に電流指令値を与えてもよい。また、車両ECU13は、必要に応じて、電池監視装置101に制御信号を与えることができる。電池監視装置101と車両ECU13とはCAN(Controller Area Network)通信により相互に通信可能に接続してもよい。 The vehicle ECU 13 may give a current command value to the charger 21 based on the output power (Wout) information and the regenerative power (Win) information of the secondary battery 102 received from the battery monitoring device 101. Further, the vehicle ECU 13 can give a control signal to the battery monitoring device 101 as needed. The battery monitoring device 101 and the vehicle ECU 13 may be connected to each other so as to be able to communicate with each other by CAN (Controller Area Network) communication.

ここで、本実施例の電池監視装置101は、記憶部110、判定部111、充電部112、更新部113を備える。なお、電池監視装置101は、図1に示してない他の回路構成を備えていてもよい。 Here, the battery monitoring device 101 of this embodiment includes a storage unit 110, a determination unit 111, a charging unit 112, and an updating unit 113. The battery monitoring device 101 may have other circuit configurations not shown in FIG.

判定部111は、第1充電所要時間が充電可能時間を下回るか判定する。 The determination unit 111 determines whether the first charging time is less than the chargeable time.

第1充電所要時間とは、二次電池102を所定量の充電と所定時間の放置を繰り返しながら間欠的に充電した場合に必要な充電時間をいう。充電可能時間は、充電完了予約時間までの時間や、ユーザが次に利用するまでの推定時間をいう。充電完了予約時間は、ユーザの操作に基づき予約された充電完了の時間をいう。ユーザが次に利用するまでの推定時間は、ユーザの行動パターンに基づき、次に電動車両1を利用すると推定される時間をいう。 The first charging time is the charging time required when the secondary battery 102 is intermittently charged while repeatedly charging a predetermined amount and leaving it for a predetermined time. The chargeable time refers to the time until the charge completion reservation time or the estimated time until the user next uses it. The charge completion reservation time refers to the charge completion time reserved based on the user's operation. The estimated time until the user next uses is the time estimated to use the electric vehicle 1 next based on the user's behavior pattern.

充電部112は、判定部111により、第1充電所要時間が充電可能時間を下回ると判定された場合、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量Ahと電池電圧を対応付けて取得する第1充電を行う。取得する充電量は、Ahに限られずSOCであってもよい。なお、充電開始前にSOC0%まで放電していない場合は、充電部112は、記憶部110に記憶されている充放電量Ah−OCV特性に基づいて現在の充放電量Ahを取得する。そして、充電部112は、取得した充放電量Ah−OCV特性と充電開始時の充放電量Ahに基づいて、充放電Ah−OCV特性の充放電量と充電開始時の充放電量Ahを一致させる。充電部112は、取得した充放電量Ah−OCV特性に基づいてSOC−OCVを取得する。 When the determination unit 111 determines that the first charging time is less than the chargeable time, the charging unit 112 charges the battery while repeating charging a predetermined amount and leaving the battery for a predetermined time, and at the end of leaving the battery, the charging amount Ah and the battery The first charge that acquires the voltage in association with each other is performed. The amount of charge to be acquired is not limited to Ah and may be SOC. If the SOC is not discharged to 0% before the start of charging, the charging unit 112 acquires the current charging / discharging amount Ah based on the charge / discharge amount Ah-OCV characteristic stored in the storage unit 110. Then, the charging unit 112 matches the charge / discharge amount of the charge / discharge Ah-OCV characteristic with the charge / discharge amount Ah at the start of charging based on the acquired charge / discharge amount Ah-OCV characteristic and the charge / discharge amount Ah at the start of charging. Let me. The charging unit 112 acquires the SOC-OCV based on the acquired charge / discharge amount Ah-OCV characteristic.

所定量の充電とは、CC充電またはCCCV充電により、所定の充電量ずつ間欠的に行う充電をいう。所定の充電量は、充電可能時間に基づいて可変であってもよい。充電可能時間が短い時は、一回当たりの充電量を長く設定し、充電可能時間が長い時は、一回当たりの充電量を短く設定してもよい。これにより、充電可能時間に余裕がある場合には、精度の高い充電量Ahと電池電圧とを取得することができる。また、充電可能時間に余裕がない場合であっても、充電可能時間に応じて精度の高い充電量Ahと電池電圧とを取得することができる。 The predetermined amount of charging refers to charging performed intermittently by a predetermined amount of charge by CC charging or CCCV charging. The predetermined charge amount may be variable based on the chargeable time. When the rechargeable time is short, the charge amount per charge may be set long, and when the rechargeable time is long, the charge amount per charge may be set short. As a result, when there is a margin in the chargeable time, it is possible to acquire the highly accurate charge amount Ah and the battery voltage. Further, even when there is no margin in the chargeable time, it is possible to acquire the highly accurate charge amount Ah and the battery voltage according to the chargeable time.

放置に必要な所定時間は、二次電池102の分極解消に必要な時間をいう。放置に必要な所定時間は可変であってもよい。例えば、充電部112は、単位時間あたりの電圧変化が閾値以下になった時間を分極解消時間とみなして、放置に必要な所定時間として設定してもよい。また、充電部112は、二次電池102のSOC、電池温度、充電量から算出した分極解消時間を放置に必要な所定時間として設定してもよい。また、充電部112は、CV充電時には、所要時間を経過時間または電流積算と共に徐々に小さくなるように設定してもよい。また、充電部112は、所要時間を充電可能時間に応じて可変に設定してもよい。 The predetermined time required for leaving is the time required for eliminating the polarization of the secondary battery 102. The predetermined time required for leaving may be variable. For example, the charging unit 112 may consider the time when the voltage change per unit time becomes equal to or less than the threshold value as the polarization elimination time, and set it as a predetermined time required for leaving. Further, the charging unit 112 may set the polarization elimination time calculated from the SOC of the secondary battery 102, the battery temperature, and the charge amount as a predetermined time required for leaving. Further, the charging unit 112 may be set so that the required time gradually decreases with the elapsed time or the current integration during CV charging. Further, the charging unit 112 may set the required time variably according to the chargeable time.

なお、第1充電所要時間を取得する方法は、特に限定されないが、例えば、現在の二次電池102のOCVと、記憶部110に予め記憶されている充電量AhとOCVに関する相関関係と、に基づいて、満充電とするまでに必要な充電量ΔAh1を取得することで、以下の式(1)に基づいて算出できる。
(ΔAh1÷e)×((e÷A1)+t) ・・・ 式(1)
ただし、eは間欠的に行う充電における所定量(充電量)であり、A1は充電電流値であり、tは間欠的に行う放置における所定時間である。充電電流値A1は、例えば、CC充電により二次電池102の充電を行う場合は、該CC充電の電流値を用いることができ、CCCV充電により二次電池102の充電を行う場合は、該CCCV充電の開始から終了に亘る平均電流値等を用いることができる。
The method for acquiring the first charge time is not particularly limited, but for example, the OCV of the current secondary battery 102 and the correlation between the charge amount Ah and the OCV stored in advance in the storage unit 110 can be determined. Based on this, it can be calculated based on the following equation (1) by acquiring the charge amount ΔAh1 required until the battery is fully charged.
(ΔAh1 ÷ e) × ((e ÷ A1) + t) ・ ・ ・ Equation (1)
However, e is a predetermined amount (charge amount) in intermittent charging, A1 is a charging current value, and t is a predetermined time in intermittently left unattended. As the charging current value A1, for example, when charging the secondary battery 102 by CC charging, the current value of the CC charging can be used, and when charging the secondary battery 102 by CCCV charging, the CCCV The average current value or the like from the start to the end of charging can be used.

図2は、充電量Ahと電池電圧を対応付けて取得する一例を示す図である。図2に示すように、充電部112は、判定部111による判定が満たされると、充電を開始し、所定量eの充電が行われると、放置を開始し、所定時間t放置された後に、充電量Ahとそのときの電池電圧v1を対応付けて取得する。充電部112は、その後再度充電を開始し、所定量eの充電が行われると、放置を開始し、所定時間t放置された後に、充電量Ahとそのときの電池電圧v2を対応付けて取得する。充電部112は、SOCが100%になるまで、所定量eの充電と所定時間tの放置を繰り返しながら充電し、放置終了時に充電量Ahと電池電圧を対応付けて取得する第1充電を行う。これにより、劣化後の充電量Ah−OCV特性を取得することができ、劣化後の電池特性の変化を把握することができる。 FIG. 2 is a diagram showing an example of acquiring the charge amount Ah and the battery voltage in association with each other. As shown in FIG. 2, the charging unit 112 starts charging when the determination by the determination unit 111 is satisfied, starts leaving when the predetermined amount e is charged, and after being left for a predetermined time t. The charge amount Ah and the battery voltage v1 at that time are obtained in association with each other. After that, the charging unit 112 starts charging again, and when the predetermined amount e is charged, the charging unit 112 starts leaving the battery, and after being left for a predetermined time t, acquires the charged amount Ah and the battery voltage v2 at that time in association with each other. do. The charging unit 112 charges the battery while repeating charging the predetermined amount e and leaving the battery for a predetermined time t until the SOC reaches 100%, and at the end of leaving the battery, performs the first charging in which the charge amount Ah and the battery voltage are acquired in association with each other. .. As a result, it is possible to acquire the charge amount Ah-OCV characteristic after deterioration, and it is possible to grasp the change in the battery characteristic after deterioration.

更に、SOCが100%に達したときに、各放置終了後での充電量の積算値と、充電前後のSOCの変化量とに基づいて劣化後の満充電容量を算出することができる。これにより、劣化後の電池特性の変化を把握することができる。 Further, when the SOC reaches 100%, the fully charged capacity after deterioration can be calculated based on the integrated value of the charge amount after each leaving and the change amount of the SOC before and after charging. This makes it possible to grasp the change in battery characteristics after deterioration.

更新部113は、充電部112の充電により取得した各充電量と電池電圧に基づいて、記憶部110に記憶されている二次電池102の充電量Ahまたは放電量AhとOCVに関する相関関係を更新する。 The update unit 113 updates the correlation between the charge amount Ah or the discharge amount Ah of the secondary battery 102 stored in the storage unit 110 and the OCV based on each charge amount and the battery voltage acquired by charging the charging unit 112. do.

図3は、二次電池102の充放電量AhとOCVに関する相関関係Cを示す図である。図3には、相関関係Cとして、更新前の充放電量AhとOCVに関する相関関係C1と、更新後の充放電量AhとOCVに関する相関関係C2とが表示されている。 FIG. 3 is a diagram showing a correlation C regarding the charge / discharge amount Ah and OCV of the secondary battery 102. In FIG. 3, as the correlation C, the correlation C1 regarding the charge / discharge amount Ah and OCV before the update and the correlation C2 regarding the charge / discharge amount Ah and the OCV after the update are displayed.

図3に示すように、記憶部110には、予め記憶部110に予め記憶されている充放電量Ah−OCV特性に関する相関関係Cが記憶されている。しかしながら、二次電池102の劣化に伴い、充放電量Ah−OCV特性の変化や満充電容量の低下が生じる。そこで、更新部113は、充電部112の充電により取得した各充電量と電池電圧に基づいて、記憶部110に記憶されている二次電池102の充電量Ahまたは放電量AhとOCVに関する相関関係C1を相関関係C2へ更新する。これにより、劣化後の電池特性の変化を把握することができる。 As shown in FIG. 3, the storage unit 110 stores the correlation C regarding the charge / discharge amount Ah-OCV characteristic previously stored in the storage unit 110. However, as the secondary battery 102 deteriorates, the charge / discharge amount Ah-OCV characteristics change and the full charge capacity decreases. Therefore, the update unit 113 correlates with the charge amount Ah or the discharge amount Ah of the secondary battery 102 stored in the storage unit 110 and the OCV based on each charge amount and the battery voltage acquired by charging the charging unit 112. Update C1 to correlation C2. This makes it possible to grasp the change in battery characteristics after deterioration.

図4は、第1の実施形態の第1充電の処理の一例を示すフローチャートである。 FIG. 4 is a flowchart showing an example of the first charging process of the first embodiment.

判定部111は、第1充電所要時間が充電可能時間を下回るか判定する(S11)。第1充電所要時間が充電可能時間を下回ると判定された場合(S11:YES)には、充電部112は、二次電池102の充電を開始する(S12)。充電部112は、所定量の充電が行われるまで充電し、所定量の充電が行われた場合(S13:YES)には、充電部112は、二次電池102の充電を停止して放置する(S14)。充電部112は、所定時間放置し、所定時間の放置が行われた場合(S15:YES)には、放置終了後に充電量と電池電圧を対応付けて取得する(S16)。 The determination unit 111 determines whether the first charging time is less than the chargeable time (S11). When it is determined that the first charging required time is less than the rechargeable time (S11: YES), the charging unit 112 starts charging the secondary battery 102 (S12). The charging unit 112 charges until a predetermined amount of charging is performed, and when the predetermined amount of charging is performed (S13: YES), the charging unit 112 stops charging the secondary battery 102 and leaves it unattended. (S14). When the charging unit 112 is left for a predetermined time and left for a predetermined time (S15: YES), the charging amount and the battery voltage are acquired in association with each other after the leaving is completed (S16).

充電部112は、二次電池102のSOCが100%か判定し、SOCが100%でない場合(S17:NO)には、S12の処理に戻る。そして、SOCが100%になるまでの間、二次電池102を所定量の充電と所定時間の放置を繰り返しながら間欠的に充電を行うS12〜S17の処理を繰り返し実行する。S12〜S17の処理を繰り返し行った結果、SOCが100%となった場合(S17:YES)には、図4の処理は終了となる。 The charging unit 112 determines whether the SOC of the secondary battery 102 is 100%, and if the SOC is not 100% (S17: NO), the process returns to the process of S12. Then, until the SOC reaches 100%, the processes S12 to S17, in which the secondary battery 102 is intermittently charged while being repeatedly charged by a predetermined amount and left for a predetermined time, are repeatedly executed. When the SOC becomes 100% as a result of repeating the processes of S12 to S17 (S17: YES), the process of FIG. 4 ends.

なお、第1充電所要時間が充電可能時間を上回ると判定された場合(S11:NO)には、通常の充電処理が行われる。すなわち、充電部112は、充電を開始する(S18)。充電部112は、SOCが100%となるまで充電し、SOCが100%となった場合(S19:YES)には、図4の処理は終了となる。 If it is determined that the first charging time exceeds the chargeable time (S11: NO), the normal charging process is performed. That is, the charging unit 112 starts charging (S18). The charging unit 112 charges until the SOC reaches 100%, and when the SOC reaches 100% (S19: YES), the process of FIG. 4 ends.

したがって、第1の実施形態によれば、充電に必要な所要時間に十分余裕がある場合には、少量ずつ所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に、充電量と分極解消後の電池電圧を取得する。これにより、劣化後の充電量Ah−OCV特性を取得することができ、劣化後の電池特性の変化を把握することができる。 Therefore, according to the first embodiment, when the time required for charging is sufficiently sufficient, the battery is charged by repeating charging a predetermined amount little by little and leaving it for a predetermined time, and at the end of leaving the battery, the charge amount is increased. Obtain the battery voltage after the polarization is eliminated. As a result, it is possible to acquire the charge amount Ah-OCV characteristic after deterioration, and it is possible to grasp the change in the battery characteristic after deterioration.

更に、SOCが100%に達したときに、各放置終了後での充電量の積算値と、充電前後のSOCの変化量とに基づいて劣化後の満充電容量を算出することができる。これにより、劣化後の満充電容量の変化を把握することができる。 Further, when the SOC reaches 100%, the fully charged capacity after deterioration can be calculated based on the integrated value of the charge amount after each leaving and the change amount of the SOC before and after charging. This makes it possible to grasp the change in the full charge capacity after deterioration.

<第2の実施形態>
第2の実施形態に係わる電池監視装置の構成については、第1の実施形態の構成と略同様であるため図1を参照して説明を省略する。
<Second embodiment>
Since the configuration of the battery monitoring device according to the second embodiment is substantially the same as the configuration of the first embodiment, the description thereof will be omitted with reference to FIG.

第1の実施形態においては、判定部111は、第1充電所要時間が充電可能時間を下回るか判定しているのに対し、第2の実施形態においては、第2充電所要時間が充電可能時間を下回るか判定する点で相違する。第2充電所要時間は、二次電池102を完全に放電した後、所定時間の放置を繰り返しながら間欠的に充電した場合に必要な充電時間をいう。したがって、第2充電所要時間は第1充電所要時間よりも長い。 In the first embodiment, the determination unit 111 determines whether the first charging time is less than the chargeable time, whereas in the second embodiment, the second charge time is the chargeable time. It differs in that it determines whether it is below. The second charging time is the charging time required when the secondary battery 102 is completely discharged and then intermittently charged while being left for a predetermined time repeatedly. Therefore, the time required for the second charge is longer than the time required for the first charge.

また、第1の実施形態の充電部112は、判定部111により、第1充電所要時間が充電可能時間を下回ると判定された場合、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量Ahと電池電圧を対応付けて取得する第1充電を行うのに対し、第2の実施形態においては、第2充電所要時間が充電可能時間を下回ると判定された場合、SOC0%まで放電を行った後、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量と電池電圧を対応付けて取得する第2充電を行う点で相違する。二次電池102のSOC0%までの放電は、モータ11及びインバータ12によって行われてもよいし、図示しない負荷によって行われてもよい。 Further, when the determination unit 111 determines that the first charging time is less than the rechargeable time, the charging unit 112 of the first embodiment charges the battery while repeating charging a predetermined amount and leaving the battery for a predetermined time. While the first charge is performed to acquire the charge amount Ah and the battery voltage in association with each other at the end of leaving the battery, in the second embodiment, when it is determined that the second charge time is less than the chargeable time, SOC0. The difference is that after discharging to%, charging is performed while repeating charging a predetermined amount and leaving the battery for a predetermined time, and at the end of leaving the battery, a second charge is performed in which the charged amount and the battery voltage are acquired in association with each other. The discharge of the secondary battery 102 to SOC 0% may be performed by the motor 11 and the inverter 12, or may be performed by a load (not shown).

なお、第2充電所要時間を取得する方法は、特に限定されないが、例えば、現在の二次電池102のOCVと、記憶部110に予め記憶されている充放電量AhとOCVに関する相関関係と、に基づいて、満充電とするまでに必要な充電量ΔAh1及びSOCが0%となるまでに必要な放電量ΔAh2を取得することで、以下の式(2)に基づいて算出できる。
(ΔAh2÷A2)+(ΔAh1÷e)×((e÷A1)+t)
・・・ 式(2)
ただし、A2は放電電流値である。放電電流値A2は、例えば、放電電流が一定であれば該放電電流値を用いることができ、放電電流が可変であれば該放電電流の平均値等を用いることができる。
The method for acquiring the second charging time is not particularly limited, but for example, the OCV of the current secondary battery 102, the correlation between the charge / discharge amount Ah and the OCV stored in advance in the storage unit 110, and the correlation. By acquiring the charge amount ΔAh1 required to reach full charge and the discharge amount ΔAh2 required to reach 0% SOC, it can be calculated based on the following equation (2).
(ΔAh2 ÷ A2) + (ΔAh1 ÷ e) × ((e ÷ A1) + t)
... Equation (2)
However, A2 is a discharge current value. For the discharge current value A2, for example, if the discharge current is constant, the discharge current value can be used, and if the discharge current is variable, the average value of the discharge current or the like can be used.

図5は、第2の実施形態の第2充電の処理の一例を示すフローチャートである。 FIG. 5 is a flowchart showing an example of the second charging process of the second embodiment.

判定部111は、第2充電所要時間が充電可能時間を下回るか判定する(S31)。第2充電所要時間が充電可能時間を下回ると判定された場合(S31:YES)には、充電部112は、二次電池102の放電を開始する(S32)。充電部112は、二次電池102のSOCが0%になるまで放電し、SOCが0%となった場合(S33:YES)には、充電部112は、放電を停止して二次電池102の充電を開始する(S34)。 The determination unit 111 determines whether the second charging time is less than the chargeable time (S31). When it is determined that the second charging required time is less than the rechargeable time (S31: YES), the charging unit 112 starts discharging the secondary battery 102 (S32). The charging unit 112 discharges the secondary battery 102 until the SOC reaches 0%, and when the SOC reaches 0% (S33: YES), the charging unit 112 stops discharging and the secondary battery 102. Start charging (S34).

充電部112は、所定量の充電が行われるまで充電し、所定量の充電が行われた場合(S35:YES)には、充電部112は、二次電池102の充電を停止して放置する(S36)。充電部112は、所定時間放置し、所定時間の放置が行われた場合(S37:YES)には、放置終了後に充電量Ahと電池電圧を対応付けて取得する(S38)。 The charging unit 112 charges until a predetermined amount of charging is performed, and when the predetermined amount of charging is performed (S35: YES), the charging unit 112 stops charging the secondary battery 102 and leaves it unattended. (S36). When the charging unit 112 is left for a predetermined time and left for a predetermined time (S37: YES), the charging amount Ah and the battery voltage are acquired in association with each other after the leaving is completed (S38).

充電部112は、二次電池102のSOCが100%か判定し、SOCが100%でない場合(S39:NO)には、S34の処理に戻る。そして、SOCが100%になるまでの間、二次電池102を所定量の充電と所定時間の放置を繰り返しながら間欠的に充電を行うS34〜S39の処理を繰り返し実行する。S34〜S39の処理を繰り返し行った結果、SOCが100%となった場合(S39:YES)には、図5の処理は終了となる。 The charging unit 112 determines whether the SOC of the secondary battery 102 is 100%, and if the SOC is not 100% (S39: NO), the process returns to the process of S34. Then, until the SOC reaches 100%, the processes S34 to S39, in which the secondary battery 102 is intermittently charged while being repeatedly charged by a predetermined amount and left for a predetermined time, are repeatedly executed. When the SOC becomes 100% as a result of repeating the processes of S34 to S39 (S39: YES), the process of FIG. 5 ends.

なお、第2充電所要時間が充電可能時間を上回ると判定された場合(S31:NO)にS40、S41の処理が実行される。S40,S41の処理は、第1の実施形態の図4のS18、S19で実行される通常の充電処理と同様であるため説明を省略する。 When it is determined that the second charging time required exceeds the chargeable time (S31: NO), the processes S40 and S41 are executed. Since the processing of S40 and S41 is the same as the normal charging processing executed in S18 and S19 of FIG. 4 of the first embodiment, the description thereof will be omitted.

したがって、第2の実施形態によれば、充電に必要な所要時間に十分余裕がある場合には、充電前にSOCが0%になるまで放電する。その後、少量ずつ所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に、充電量と分極解消後の電池電圧を取得する。これにより、劣化前の充電量Ah−OCV特性の影響を受けずに、精度よく劣化後の充電量Ah−OCV特性を取得することができ、劣化後の電池特性の変化を精度よく把握することができる。更に、SOCが100%に達したときに、各放置終了後での充電量の積算値に基づいて精度よく劣化後の満充電容量を算出することができる。これにより、劣化後の満充電容量の変化を把握することができる。 Therefore, according to the second embodiment, when there is sufficient time required for charging, the battery is discharged until the SOC reaches 0% before charging. After that, the battery is charged by repeating charging a predetermined amount little by little and leaving it for a predetermined time, and at the end of leaving the battery, the charged amount and the battery voltage after the polarization is eliminated are acquired. As a result, it is possible to accurately acquire the charge amount Ah-OCV characteristic after deterioration without being affected by the charge amount Ah-OCV characteristic before deterioration, and to accurately grasp the change in the battery characteristic after deterioration. Can be done. Further, when the SOC reaches 100%, the fully charged capacity after deterioration can be accurately calculated based on the integrated value of the charge amount after each leaving. This makes it possible to grasp the change in the full charge capacity after deterioration.

<第3の実施形態>
第3の実施形態に係わる電池監視装置の構成については、第1の実施形態の構成と略同様であるため図1を参照して説明を省略する。
<Third embodiment>
Since the configuration of the battery monitoring device according to the third embodiment is substantially the same as the configuration of the first embodiment, the description thereof will be omitted with reference to FIG.

第1の実施形態においては、判定部111は、第1充電所要時間が充電可能時間を下回るか判定しているのに対し、第3の実施形態においては、第3充電所要時間が充電可能時間を下回るか判定する点で相違する。 In the first embodiment, the determination unit 111 determines whether the first charging time is less than the chargeable time, whereas in the third embodiment, the third charge time is the chargeable time. It differs in that it determines whether it is below.

第3充電所要時間は、第1の量の放電と第1の時間の放置を繰り返しながらSOC0%まで間欠的に放電を行った後、第2の量の充電と第2の時間の放置を繰り返しながら間欠的に充電し、放置終了後に充電量と電池電圧を対応付けて取得するのに必要な時間をいう。 In the third charging time, the first amount of discharge and the first time of leaving are repeated to intermittently discharge to SOC 0%, and then the second amount of charging and the second time of leaving are repeated. However, it refers to the time required to intermittently charge the battery and acquire the charge amount and the battery voltage in association with each other after the battery is left unattended.

また、第1の実施形態の充電部112は、判定部111により、第1充電所要時間が充電可能時間を下回ると判定された場合、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量Ahと電池電圧を対応付けて取得する第1充電を行っている。 Further, when the determination unit 111 determines that the first charging time is less than the chargeable time, the charging unit 112 of the first embodiment charges the battery while repeating charging a predetermined amount and leaving the battery for a predetermined time. At the end of leaving the battery, the first charge is performed in which the charge amount Ah and the battery voltage are acquired in association with each other.

これに対し、第3の実施形態においては、充電部112は、第3充電所要時間が充電可能時間を下回る場合には、第1の量の放電と第1の時間の放置を繰り返しながら放電して、放電量と電池電圧を対応付けて取得し、SOC0%まで放電を行った後、第2の量の充電と第2の時間の放置を繰り返しながら充電し、放置終了時に充電量と電池電圧を対応付けて取得する第3充電を行う点で相違する。したがって、第3充電所要時間は第1充電所要時間及び第2充電所要時間よりも長い。二次電池102のSOC0%までの放電は、モータ11及びインバータ12によって行われてもよいし、図示しない負荷によって行われてもよい。 On the other hand, in the third embodiment, when the third charging time is less than the chargeable time, the charging unit 112 discharges while repeating the first amount of discharging and the first time of leaving. Then, the discharge amount and the battery voltage are obtained in association with each other, and after discharging to SOC 0%, the battery is charged while repeating the charging of the second amount and the leaving for the second time. The difference is that the third charge is performed in which the above is associated and acquired. Therefore, the third charge time is longer than the first charge time and the second charge time. The discharge of the secondary battery 102 to SOC 0% may be performed by the motor 11 and the inverter 12, or may be performed by a load (not shown).

なお、第3充電所要時間を取得する方法は、特に限定されないが、例えば、現在の二次電池102のOCVと、記憶部110に予め記憶されている充放電量AhとOCVに関する相関関係と、に基づいて、満充電とするまでに必要な充電量ΔAh1及びSOCが0%となるまでに必要な放電量ΔAh2を取得することで、以下の式(3)に基づいて算出できる。
(ΔAh2÷e1)×((e1÷A2)+t1)+(ΔAh1÷e2)×((e2÷A1)+t2)
・・・ 式(3)
ただし、e1は間欠的に行う放電における第1の量(放電量)であり、t1は間欠的に行う放電における放置の第1の時間であり、e2は間欠的に行う充電における第2の量(充電量)であり、t2は間欠的に行う充電における放置の第2の時間である。
The method for acquiring the third charging time is not particularly limited, but for example, the OCV of the current secondary battery 102, the correlation between the charge / discharge amount Ah and the OCV stored in advance in the storage unit 110, and the correlation. By acquiring the charge amount ΔAh1 required to reach full charge and the discharge amount ΔAh2 required to reach 0% SOC, it can be calculated based on the following equation (3).
(ΔAh2 ÷ e1) × ((e1 ÷ A2) + t1) + (ΔAh1 ÷ e2) × ((e2 ÷ A1) + t2)
... Equation (3)
However, e1 is the first amount (discharge amount) in the intermittent discharge, t1 is the first time of leaving in the intermittent discharge, and e2 is the second amount in the intermittent charge. (Charge amount), and t2 is the second time of neglect in the intermittent charging.

第3の実施形態の第1の量e1及び第2の量e2は、第1の実施形態の所要量eと同じであってもよいし、それぞれ異なる量であってもよい。また、第3の実施形態の第1の時間t1及び第2の時間t2は、第1の実施形態の所要時間tと同じであってもよいし、それぞれ異なる時間であってもよい。 The first quantity e1 and the second quantity e2 of the third embodiment may be the same as the required quantity e of the first embodiment, or may be different amounts from each other. Further, the first time t1 and the second time t2 of the third embodiment may be the same as the required time t of the first embodiment, or may be different times from each other.

したがって、第3の実施形態によれば、充電に必要な所要時間に十分余裕がある場合には、少量ずつ所定量の放電と所定時間の放置を繰り返しながら放電し、放置終了時に、放電量と分極解消後の電池電圧を取得することで、劣化後の充電量Ah−OCV特性を取得することができる。 Therefore, according to the third embodiment, when there is sufficient time required for charging, the battery is discharged little by little by repeating a predetermined amount of discharge and a predetermined time of leaving, and when the leaving is completed, the discharge amount is determined. By acquiring the battery voltage after the polarization is eliminated, the charge amount Ah-OCV characteristic after deterioration can be acquired.

また、SOC0%になるまで放電を行った後に、少量ずつ所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に、充電量と分極解消後の電池電圧を取得することで、劣化後の充電量Ah−OCV特性を取得することができる。これにより、充放電量と充電時及び放電時に取得した分極解消後の電池電圧を取得することで、充電時または放電時のみ取得した場合と比較して、約2倍の精度で劣化後の充電量Ah−OCV特性を取得することができる。 Further, after discharging until the SOC reaches 0%, the battery is charged by repeating charging a predetermined amount little by little and leaving the battery for a predetermined time, and at the end of leaving the battery, the charged amount and the battery voltage after polarization is eliminated, thereby deteriorating. The later charge amount Ah-OCV characteristic can be acquired. As a result, by acquiring the charge / discharge amount and the battery voltage after polarization elimination acquired during charging and discharging, charging after deterioration is performed with approximately twice the accuracy as compared with the case where it is acquired only during charging or discharging. The quantity Ah-OCV characteristic can be obtained.

更に、SOCが100%に達したときに、各放置終了後での充電量の積算値に基づいて劣化後の満充電容量を算出することができる。 Further, when the SOC reaches 100%, the fully charged capacity after deterioration can be calculated based on the integrated value of the charge amount after each leaving.

図6は、第3の実施形態の第3充電の処理の一例を示すフローチャートである。 FIG. 6 is a flowchart showing an example of the third charging process of the third embodiment.

判定部111は、第3充電所要時間が充電可能時間を下回るか判定する(S51)。第3充電所要時間が充電可能時間を下回ると判定された場合(S51:YES)には、充電部112は、二次電池102の放電を開始する(S52)。充電部112は、第1の量の放電が行われるまで放電し、第1の量の放電が行われた場合(S53:YES)には、充電部112は、二次電池102の放電を停止して放置する(S54)。充電部112は、第1の時間放置し、第1の時間の放置が行われた場合(S55:YES)には、放置終了後に放電量Ahと電池電圧を対応付けて取得する(S56)。 The determination unit 111 determines whether the third charging time is less than the chargeable time (S51). When it is determined that the third charging time is less than the rechargeable time (S51: YES), the charging unit 112 starts discharging the secondary battery 102 (S52). The charging unit 112 discharges until the first amount of discharge is performed, and when the first amount of discharging is performed (S53: YES), the charging unit 112 stops discharging the secondary battery 102. And leave it (S54). When the charging unit 112 is left for the first time and left for the first time (S55: YES), the charging amount Ah and the battery voltage are acquired in association with each other after the leaving is completed (S56).

充電部112は、SOCが0%になったか判定(S57)し、SOCが0%でない場合(S57:NO)には、S52の処理に戻る。そして、SOCが0%になるまでの間、二次電池102を第1の量の放電と第1の時間の放置を繰り返しながら間欠的に放電を行うS52〜S57の処理を繰り返し実行する。 The charging unit 112 determines whether the SOC has reached 0% (S57), and if the SOC is not 0% (S57: NO), the process returns to the process of S52. Then, until the SOC reaches 0%, the processes of S52 to S57, which intermittently discharge the secondary battery 102 while repeating the discharge of the first amount and the leaving for the first time, are repeatedly executed.

SOCが0%になった場合(S57:YES)には、充電部112は、放電を停止して二次電池102の充電を開始する(S58)。 When the SOC reaches 0% (S57: YES), the charging unit 112 stops discharging and starts charging the secondary battery 102 (S58).

充電部112は、第2の量の充電が行われるまで充電し、第2の量の充電が行われた場合(S59:YES)には、充電部112は、二次電池102の充電を停止して放置する(S60)。充電部112は、第2の時間放置し、第2の時間の放置が行われた場合(S61:YES)には、放置終了後に充電量Ahと電池電圧を対応付けて取得する(S62)。 The charging unit 112 charges until a second amount of charging is performed, and when the second amount of charging is performed (S59: YES), the charging unit 112 stops charging the secondary battery 102. And leave it (S60). When the charging unit 112 is left for the second time and left for the second time (S61: YES), the charging amount Ah and the battery voltage are acquired in association with each other after the leaving is completed (S62).

充電部112は、二次電池102のSOCが100%か判定し、SOCが100%でない場合(S63:NO)には、S58の処理に戻る。そして、SOCが100%になるまでの間、二次電池102を第2の量の充電と第2時間の放置を繰り返しながら間欠的に充電を行うS58〜S63の処理を繰り返し実行する。S58〜S63の処理を繰り返し行った結果、SOCが100%となった場合(S63:YES)には、図6の処理は終了となる。 The charging unit 112 determines whether the SOC of the secondary battery 102 is 100%, and if the SOC is not 100% (S63: NO), the process returns to the process of S58. Then, until the SOC reaches 100%, the processes of S58 to S63, in which the secondary battery 102 is intermittently charged while repeating the charging of the second amount and the leaving for the second hour, are repeatedly executed. When the SOC becomes 100% as a result of repeating the processes of S58 to S63 (S63: YES), the process of FIG. 6 ends.

なお、第3充電所要時間が充電可能時間を上回ると判定された場合(S51:NO)にS64、S65の処理が実行される。S64,S65の処理は、第1の実施形態の図4のS18、S19で実行される通常の充電処理と同様であるため説明を省略する。 When it is determined that the third charging required time exceeds the chargeable time (S51: NO), the processes of S64 and S65 are executed. Since the processing of S64 and S65 is the same as the normal charging processing executed in S18 and S19 of FIG. 4 of the first embodiment, the description thereof will be omitted.

<第4の実施形態>
第4の実施形態に係わる電池監視装置の構成については、第1の実施形態の構成と略同様であるため図1を参照して説明を省略する。
<Fourth Embodiment>
Since the configuration of the battery monitoring device according to the fourth embodiment is substantially the same as the configuration of the first embodiment, the description thereof will be omitted with reference to FIG.

第1の実施形態においては、判定部111は、第1充電所要時間が充電可能時間を下回るか判定しているのに対し、第4の実施形態においては、ユーザの操作を受け付けたか判定する点で相違する。具体的には、第4の実施形態の判定部111は、ユーザの操作に基づき、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量Ahと電池電圧を対応付けて取得する充電を行う指示を受け付けたか判定する。 In the first embodiment, the determination unit 111 determines whether the first charging time is less than the chargeable time, whereas in the fourth embodiment, it determines whether the user's operation has been accepted. Is different. Specifically, the determination unit 111 of the fourth embodiment charges the battery while repeating charging a predetermined amount and leaving the battery for a predetermined time based on the operation of the user, and associates the charged amount Ah with the battery voltage at the end of leaving the battery. Determine if the instruction to acquire charging has been accepted.

また、第1の実施形態の充電部112は、判定部111により、第1充電所要時間が充電可能時間を下回ると判定された場合に、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量Ahと電池電圧を対応付けて取得する第1充電を行っている。これに対し、第4の実施形態においては、充電部112は、ユーザの操作を受け付けた場合に、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量Ahと電池電圧を対応付けて取得する第1充電を行っている。 Further, when the determination unit 111 determines that the first charging time is less than the chargeable time, the charging unit 112 of the first embodiment charges the battery while repeating charging a predetermined amount and leaving the battery for a predetermined time. The first charge is performed to acquire the charge amount Ah and the battery voltage in association with each other at the end of leaving. On the other hand, in the fourth embodiment, when the user's operation is accepted, the charging unit 112 charges the battery while repeating charging a predetermined amount and leaving the battery for a predetermined time, and at the end of leaving the battery, the charging amount Ah and the battery voltage The first charging is performed in which the above is associated and acquired.

そして、第4の実施形態においては、更新部113は、充電部112の充電により取得した各充電量と電池電圧に基づいて、記憶部110に記憶されている二次電池102の充電量Ahまたは放電量AhとOCVに関する相関関係を更新する。 Then, in the fourth embodiment, the renewal unit 113 has the charge amount Ah or the charge amount Ah of the secondary battery 102 stored in the storage unit 110 based on each charge amount and the battery voltage acquired by charging the charging unit 112. The correlation between the discharge amount Ah and OCV is updated.

図7は、第4の実施形態の第1充電の処理の一例を示すフローチャートである。 FIG. 7 is a flowchart showing an example of the first charging process of the fourth embodiment.

判定部111は、ユーザの操作を受け付けたか判定する(S71)。ユーザの操作を受け付けたと判定された場合(S71:YES)には、二次電池102の充電を開始する(S72)。 The determination unit 111 determines whether or not the user's operation has been accepted (S71). When it is determined that the user's operation has been accepted (S71: YES), charging of the secondary battery 102 is started (S72).

充電部112は、所定量の充電が行われるまで充電し、所定量の充電が行われた場合(S73:YES)には、充電部112は、二次電池102の充電を停止して放置する(S74)。充電部112は、所定時間放置し、所定時間の放置が行われた場合(S75:YES)には、放置終了後に充電量Ahと電池電圧を対応付けて取得する(S76)。 The charging unit 112 charges until a predetermined amount of charging is performed, and when the predetermined amount of charging is performed (S73: YES), the charging unit 112 stops charging the secondary battery 102 and leaves it unattended. (S74). When the charging unit 112 is left for a predetermined time and left for a predetermined time (S75: YES), the charging amount Ah and the battery voltage are acquired in association with each other after the leaving is completed (S76).

充電部112は、二次電池102のSOCが100%か判定し、SOCが100%でない場合(S77:NO)には、S72の処理に戻る。そして、SOCが100%になるまでの間、二次電池102を所定量の充電と所定時間の放置を繰り返しながら間欠的に充電を行うS72〜S77の処理を繰り返し実行する。S72〜S77の処理を繰り返し行った結果、SOCが100%となった場合(S77:YES)には、更新部113は、S76で取得した各充電量Ahと電池電圧に基づいて、記憶部110に記憶されている二次電池102の充電量AhとOCVに関する相関関係を更新する(S78)。この処理が終了すると図7の処理は終了となる。 The charging unit 112 determines whether the SOC of the secondary battery 102 is 100%, and if the SOC is not 100% (S77: NO), the process returns to the process of S72. Then, until the SOC reaches 100%, the processes S72 to S77, which intermittently charge the secondary battery 102 while repeating charging a predetermined amount and leaving the secondary battery 102 for a predetermined time, are repeatedly executed. When the SOC becomes 100% as a result of repeating the processes of S72 to S77 (S77: YES), the update unit 113 stores the storage unit 110 based on each charge amount Ah and the battery voltage acquired in S76. The correlation between the charge amount Ah of the secondary battery 102 and the OCV stored in is updated (S78). When this process is completed, the process of FIG. 7 is completed.

なお、ユーザの操作を受け付けていないと判定された場合(S71:NO)にS79、S80の処理が実行される。S79,S80の処理は、第1の実施形態の図4のS18、S19で実行される通常の充電処理と同様であるため説明を省略する。 If it is determined that the user's operation is not accepted (S71: NO), the processes of S79 and S80 are executed. Since the processing of S79 and S80 is the same as the normal charging processing executed in S18 and S19 of FIG. 4 of the first embodiment, the description thereof will be omitted.

したがって、ユーザから明示的な指示を受け付けた場合には、少量ずつ所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に、充電量と分極解消後の電池電圧を取得することで、劣化後の充電量Ah−OCV特性を取得することができる。これにより、ユーザの所望したタイミングで電池特性の変化を把握することができる。更に、SOCが100%に達したときに、各放置終了後での充電量の積算値と、充電前後のSOCの変化量とに基づいて劣化後の満充電容量を算出することができる。これにより、ユーザが所望したタイミングで満充電容量の変化を把握することができる。そして、取得した充電量と分極解消後の電池電圧に基づき記憶部に記憶されている電池の充電量とOCVに関する相関関係を更新することができる。これにより、電池特性の変化や満充電容量の変化を把握することができる。 Therefore, when an explicit instruction is received from the user, the battery is charged by repeating charging a predetermined amount little by little and leaving it for a predetermined time, and at the end of leaving, the charge amount and the battery voltage after polarization elimination are acquired. , The charge amount Ah-OCV characteristic after deterioration can be acquired. Thereby, the change in the battery characteristics can be grasped at the timing desired by the user. Further, when the SOC reaches 100%, the fully charged capacity after deterioration can be calculated based on the integrated value of the charge amount after each leaving and the change amount of the SOC before and after charging. As a result, it is possible to grasp the change in the full charge capacity at the timing desired by the user. Then, the correlation between the battery charge amount stored in the storage unit and the OCV can be updated based on the acquired charge amount and the battery voltage after the polarization is eliminated. This makes it possible to grasp changes in battery characteristics and changes in full charge capacity.

本発明は、以上の実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲内で種々の改良、変更が可能である。 The present invention is not limited to the above embodiments, and various improvements and changes can be made without departing from the gist of the present invention.

1 電動車両
11 走行用モータ
12 インバータ回路
13 車両ECU
21 充電器
100 電池パック
101 電池監視装置(電池ECU)
102 二次電池
103 監視ECU
104 電流センサ
105 サーミスタ
106,107 リレー
110 記憶部
111 判定部
112 充電部
113 更新部
1 Electric vehicle 11 Traveling motor 12 Inverter circuit 13 Vehicle ECU
21 Charger 100 Battery pack 101 Battery monitoring device (battery ECU)
102 Rechargeable battery 103 Monitoring ECU
104 Current sensor 105 Thermistor 106, 107 Relay 110 Storage unit 111 Judgment unit 112 Charging unit 113 Update unit

Claims (4)

第1充電所要時間が充電可能時間を下回るか判定する判定部と、
前記判定が満たされる場合、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量と電池電圧を対応付けて取得する第1充電を行う充電部と、
を備えることを特徴とする電池監視装置。
A determination unit that determines whether the first charging time is less than the chargeable time,
When the above determination is satisfied, a charging unit that charges while repeating a predetermined amount of charging and leaving for a predetermined time, and performs a first charging that acquires the charged amount and the battery voltage in association with each other at the end of leaving.
A battery monitoring device characterized by being equipped with.
請求項1に記載の電池監視装置であって、
前記判定部は、第2充電所要時間が前記充電可能時間を下回るか判定し、
前記充電部は、前記第2充電所要時間が前記充電可能時間を下回る場合には、SOC0%まで放電を行った後、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量と電池電圧を対応付けて取得する第2充電を行う
ことを特徴とする電池監視装置。
The battery monitoring device according to claim 1.
The determination unit determines whether the second charging time is less than the chargeable time.
When the second charging time is less than the chargeable time, the charging unit discharges to SOC 0%, charges the battery by repeating charging a predetermined amount and leaving the battery for a predetermined time, and charges the battery at the end of the leaving. A battery monitoring device characterized in that a second charge is performed in which an amount and a battery voltage are acquired in association with each other.
請求項1に記載の電池監視装置であって、
前記判定部は、第3充電所要時間が前記充電可能時間を下回るか判定し、
前記充電部は、前記第3充電所要時間が前記充電可能時間を下回る場合には、第1の量の放電と第1の時間の放置を繰り返しながら放電して、放電量と電池電圧を対応付けて取得し、SOC0%まで放電を行った後、第2の量の充電と第2の時間の放置を繰り返しながら充電し、放置終了時に充電量と電池電圧を対応付けて取得する第3充電を行う
ことを特徴とする電池監視装置。
The battery monitoring device according to claim 1.
The determination unit determines whether the third charging time is less than the chargeable time.
When the third charging time is less than the rechargeable time, the charging unit discharges the battery while repeating discharging the first amount and leaving the battery for the first time, and associates the discharge amount with the battery voltage. After the battery is discharged to 0% SOC, the battery is charged by repeating the charging of the second amount and leaving for the second time, and at the end of leaving the battery, the charging amount and the battery voltage are associated with each other to obtain the third charge. A battery monitoring device characterized by performing.
電池の充電量とOCVに関する相関関係を記憶する記憶部と、
ユーザの操作を受け付けたか判定する判定部と、
前記判定が満たされる場合、所定量の充電と所定時間の放置を繰り返しながら充電し、放置終了時に充電量と電池電圧を対応付けて取得する第1充電を行う充電部と、
前記取得した各充電量と電池電圧に基づいて、前記記憶部の相関関係を更新する更新部と、
を備えることを特徴とする電池監視装置。
A storage unit that stores the correlation between the battery charge and OCV,
A judgment unit that determines whether the user's operation has been accepted, and
When the above determination is satisfied, a charging unit that charges while repeating a predetermined amount of charging and leaving for a predetermined time, and performs a first charging that acquires the charged amount and the battery voltage in association with each other at the end of leaving.
An update unit that updates the correlation of the storage unit based on each acquired charge amount and battery voltage, and an update unit.
A battery monitoring device characterized by being equipped with.
JP2020037240A 2020-03-04 2020-03-04 Battery monitoring device Pending JP2021141701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020037240A JP2021141701A (en) 2020-03-04 2020-03-04 Battery monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020037240A JP2021141701A (en) 2020-03-04 2020-03-04 Battery monitoring device

Publications (1)

Publication Number Publication Date
JP2021141701A true JP2021141701A (en) 2021-09-16

Family

ID=77669277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037240A Pending JP2021141701A (en) 2020-03-04 2020-03-04 Battery monitoring device

Country Status (1)

Country Link
JP (1) JP2021141701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430255A (en) * 2023-03-27 2023-07-14 广州通则康威智能科技有限公司 Battery electric quantity self-adaptive display method, device, storage medium and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430255A (en) * 2023-03-27 2023-07-14 广州通则康威智能科技有限公司 Battery electric quantity self-adaptive display method, device, storage medium and system
CN116430255B (en) * 2023-03-27 2024-02-09 广州通则康威科技股份有限公司 Battery electric quantity self-adaptive display method, device, storage medium and system

Similar Documents

Publication Publication Date Title
JP6197479B2 (en) Power storage system and method for estimating full charge capacity of power storage device
JP5715694B2 (en) Battery control device, battery system
US20080150491A1 (en) Method Of Estimating The State-Of-Charge And Of The Use Time Left Of A Rechageable Battery, And Apparatus For Executing Such A Method
JP4767220B2 (en) Charge state equalizing device and electric vehicle equipped with the same
US20130271068A1 (en) Battery control apparatus and battery control method
JP5621818B2 (en) Power storage system and equalization method
US20210184278A1 (en) Battery monitoring device, computer program, and battery monitoring method
JP2008253129A (en) Method for quick charging lithium-based secondary battery and electronic equipment using same
JP6449609B2 (en) Secondary battery charging rate estimation method and charging rate estimation device
US9184600B2 (en) Method for balancing the voltages of electrochemical cells connected in several parallel branches
JP6648709B2 (en) Battery module controller
WO2013008409A1 (en) Method for manufacturing battery pack and battery pack
JPWO2012140776A1 (en) Charge control device
JP2018125965A (en) Power storage device and power storage control method
JP7183576B2 (en) Secondary battery parameter estimation device, secondary battery parameter estimation method and program
JP2018050416A (en) Battery system
WO2004095611A1 (en) Combination battery and battery pack using combination battery
JP2000270491A (en) Lithium ion battery charging method and lithium ion battery charger
KR101822594B1 (en) Apparatus and method for changing using-band of battery
JP2009232659A (en) Charge-discharge control method and charge-discharge control device of battery
JP2021141701A (en) Battery monitoring device
JP5454027B2 (en) Charge control device and charge control method
CN114556738A (en) Quick charging method
JP2023066868A (en) power storage device
CN115244413A (en) Method and device for calculating battery aging degree