JP2021138924A - Coating agent and intermediate base material - Google Patents

Coating agent and intermediate base material Download PDF

Info

Publication number
JP2021138924A
JP2021138924A JP2021009277A JP2021009277A JP2021138924A JP 2021138924 A JP2021138924 A JP 2021138924A JP 2021009277 A JP2021009277 A JP 2021009277A JP 2021009277 A JP2021009277 A JP 2021009277A JP 2021138924 A JP2021138924 A JP 2021138924A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
mass
coating agent
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021009277A
Other languages
Japanese (ja)
Other versions
JP2021138924A5 (en
Inventor
銀平 町田
Gimpei MACHIDA
銀平 町田
静恵 小柳
Shizue Koyanagi
静恵 小柳
一朗 武田
Ichiro Takeda
一朗 武田
宏明 坂田
Hiroaki Sakata
宏明 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2021138924A publication Critical patent/JP2021138924A/en
Publication of JP2021138924A5 publication Critical patent/JP2021138924A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

To provide a surface protective material which is rich in UV resistance, can protect a surface of a prepreg as a base material, prevents degradation by UV of a fiber-reinforced composite material and can prevent defects in coating, can control a resin flow, and has a small amount of volatilization in curing.SOLUTION: A coating agent for spraying or hand coating that is composed of an epoxy resin composition containing at least components [A] to [D] contains 90-100 pts.mass of [A], 15-75 pts.mass of [B], 0.05-75 pts.mass of [C] and 0.1-10 pts.mass of [D] with respect to 100 pts.mass of the whole epoxy resin. [A] Non-aromatic epoxy resin. [B] Pigment having an average particle diameter of 0.1-10 μm. [C] Non-aromatic thermoplastic resin. [D] Cationic or anionic curing agent.SELECTED DRAWING: None

Description

本発明は、耐光性に優れたエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤および塗布剤が金属等の表面に塗布されてなる中間基材に関する。 The present invention relates to a coating agent for spraying or hand coating, which comprises an epoxy resin composition having excellent light resistance, and an intermediate base material obtained by applying the coating agent to a surface of a metal or the like.

航空機構造部材、風車の羽根、自動車外板およびICトレイやノートパソコンの筐体などのコンピュータ用途等の高い構造性能を求められる製品には、炭素繊維などの強化繊維にエポキシ樹脂などの熱硬化性樹脂を含浸させて作製されるプリプレグが用いられることが多い。しかし、一般的なプリプレグを硬化して得られる繊維複合材料は耐光性(耐UV性)が低く、表面が光にさらされると劣化変性する。そこで近年、繊維複合材料の表面に耐光性を付与したいとの要望が増えている。 For products that require high structural performance such as aircraft structural members, windmill blades, automobile outer panels, IC trays, laptop housings, and other computer applications, reinforced fibers such as carbon fiber and thermosetting resin such as epoxy resin are used. A prepreg made by impregnating with a resin is often used. However, the fiber composite material obtained by curing a general prepreg has low light resistance (UV resistance) and deteriorates and denatures when the surface is exposed to light. Therefore, in recent years, there has been an increasing demand for imparting light resistance to the surface of fiber composite materials.

特許文献1には繊維複合材料の表面保護フィルムとして、UV遮蔽性を有するシート材料が開示されている。また、特許文献2では耐UV性を有する樹脂組成物として、芳香環を含まないエポキシ樹脂と、同じく芳香環を含まないカルボン酸無水物ならびに紫外線吸収剤の組み合わせの開示がある。非芳香族エポキシは、一般に低分子で分子間の相互作用が弱いため粘度が低く揮発しやすいという特性を有している。 Patent Document 1 discloses a sheet material having a UV shielding property as a surface protective film of a fiber composite material. Further, Patent Document 2 discloses a combination of an epoxy resin containing no aromatic ring, a carboxylic acid anhydride also containing no aromatic ring, and an ultraviolet absorber as a resin composition having UV resistance. Non-aromatic epoxies are generally small molecules and have weak intramolecular interactions, so that they have a low viscosity and are easily volatilized.

特表2015−507648号公報Special Table 2015-507648 国際公開第2003/002661号International Publication No. 2003/002661

しかしながら、特許文献1に開示される技術では、フィルム材として用いられているエポキシ樹脂組成物は芳香環を含み、フィルム材自身の耐UV性が乏しいという問題があった。また、特許文献2に開示される技術では、カルボン酸無水物をエポキシ樹脂組成物の硬化剤として適用しているため、表面保護材料としての取り扱い性や樹脂フローの制御、硬化時の揮発を抑制するために設計自由度が低いという問題があった。 However, in the technique disclosed in Patent Document 1, there is a problem that the epoxy resin composition used as the film material contains an aromatic ring and the film material itself has poor UV resistance. Further, in the technique disclosed in Patent Document 2, since the carboxylic acid anhydride is applied as a curing agent for the epoxy resin composition, the handleability as a surface protective material, the control of the resin flow, and the suppression of volatilization during curing are suppressed. Therefore, there was a problem that the degree of design freedom was low.

そのため、耐UV性に富み、母材となるプリプレグ表面を保護することが可能であり、繊維強化複合材料のUVによる劣化を防止し塗装時の不具合を防止することができ、なおかつ、樹脂フローの制御が可能であり、硬化時の揮発量が少ない表面保護材料の実現が課題である。 Therefore, it is highly UV resistant, it is possible to protect the surface of the prepreg that is the base material, it is possible to prevent deterioration of the fiber reinforced composite material due to UV, and it is possible to prevent defects during painting, and it is possible to prevent defects in the resin flow. The challenge is to realize a surface protective material that can be controlled and has a small amount of volatilization during curing.

本発明は、かかる課題を解決するために次の構成を有するものである。すなわち、本発明の塗布剤は、少なくとも構成要素[A]〜[D]を含むエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤であって、全エポキシ樹脂100質量部に対して[A]を90〜100質量部、[B]を15〜75質量部、[C]を0.05〜75質量部、[D]を0.1〜10質量部含むことを特徴とする。
[A]非芳香族エポキシ樹脂
[B]平均粒径0.1〜10μmの顔料
[C]非芳香族熱可塑性樹脂
[D]カチオンまたはアニオン硬化剤。
The present invention has the following configuration in order to solve such a problem. That is, the coating agent of the present invention is a coating agent for spraying or hand-coating, which comprises an epoxy resin composition containing at least the components [A] to [D], with respect to 100 parts by mass of the total epoxy resin [ A] is 90 to 100 parts by mass, [B] is 15 to 75 parts by mass, [C] is 0.05 to 75 parts by mass, and [D] is 0.1 to 10 parts by mass.
[A] Non-aromatic epoxy resin [B] Pigment with an average particle size of 0.1 to 10 μm [C] Non-aromatic thermoplastic resin [D] Cationic or anionic curing agent.

また、本発明の中間基材は、上記塗布剤が金属、炭素繊維強化複合材料前駆体または炭素繊維強化複合材料の表面に塗布されてなる。 Further, the intermediate base material of the present invention is obtained by applying the coating agent to the surface of a metal, a carbon fiber reinforced composite material precursor, or a carbon fiber reinforced composite material.

本発明により、耐光性に優れたエポキシ樹脂組成物を用いた塗布剤を提供することができる。、また、該塗布剤が金属、炭素繊維強化複合材料前駆体または炭素繊維強化複合材料の表面に塗布され一体化されることで、表面に耐光性を有する中間基材を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a coating agent using an epoxy resin composition having excellent light resistance. Further, when the coating agent is applied to the surface of a metal, a carbon fiber reinforced composite material precursor or a carbon fiber reinforced composite material and integrated, an intermediate base material having a light resistant surface can be provided.

本発明の塗布剤は、次の構成を有するものである。 The coating agent of the present invention has the following constitution.

少なくとも構成要素[A]〜[D]を含むエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤であって、全エポキシ樹脂100質量部に対して[A]を90〜100質量部、[B]を15〜75質量部、[C]を0.05〜75質量部、[D]を0.1〜10質量部含む塗布剤。
[A]非芳香族エポキシ樹脂
[B]平均粒径0.1〜10μmの顔料
[C]非芳香族熱可塑性樹脂
[D]カチオンまたはアニオン硬化剤。
A coating agent for spraying or hand-coating, which comprises an epoxy resin composition containing at least the components [A] to [D], and 90 to 100 parts by mass of [A] with respect to 100 parts by mass of the total epoxy resin. A coating agent containing 15 to 75 parts by mass of [B], 0.05 to 75 parts by mass of [C], and 0.1 to 10 parts by mass of [D].
[A] Non-aromatic epoxy resin [B] Pigment with an average particle size of 0.1 to 10 μm [C] Non-aromatic thermoplastic resin [D] Cationic or anionic curing agent.

本発明に係る構成要素[A]は非芳香族エポキシ樹脂である。ここで「芳香族」とは、芳香族炭化水素や共役不飽和複素環式化合物を化学構造中に含むものであり、それ以外が「非芳香族」である。すなわち、非芳香族エポキシ樹脂とは、芳香族炭化水素基や不飽和複素環を化学構造中に含まないエポキシ樹脂のことを指す。非芳香族エポキシ樹脂を例示すると、脂環式エポキシ樹脂(シクロアルカン環を含むエポキシ樹脂)として、テトラヒドロインデンジエポキシド、ビニルシクロヘキセンオキシド、(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート、ジペンテンジオキシド、アジピン酸ビス(3,4−エポキシシクロヘキシルメチル)、ジシクロペンタジエンジオキシド、ビス(2,3−エポキシシクロペンチル)エーテル、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物、エポキシ化ブタンテトラカルボン酸テトラキス−(3−シクロヘキセニルメチル)修飾イプシロン−カプロラクトン、ビ−7−オキサビシクロ[4.1.0]ヘプタン、ドデカヒドロビスフェノールAジグリシジルエーテル、ドデカヒドロビスフェノールFジグリシジルエーテル、1,4−シクロヘキサンジメタノールジグリシジルエーテル、ヘキサヒドロフタル酸ジグリシジルエステル、ヘキサヒドロテレフタル酸ジグリシジルエステル、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテル(一般名:水添ビスフェノールA型液状エポキシ樹脂)、芳香環、アミン性窒素原子、シクロアルカン環、シクロアルケン環のいずれも含まないエポキシ樹脂の具体例として、エチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、1,4−ブタンジオールグリシジルエーテル、1,6−ヘキサンジオールジグリシジルエーテル、ネオペンチレングリコールジグリシジルエーテル、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、1,4−ビス(2−オキシラニル)ブタン、ペンタエリスリトールポリグリシジルエーテル、芳香環、アミン性窒素原子のいずれも含まない単官能エポキシ化合物(1個のオキシラン環のみを含むエポキシ化合物)の具体例として、4−tert−ブチルグリシジルエーテル、ブチルグリシジルエーテル、1−ブテンオキシド、1,2−エポキシ−4−ビニルシクロヘキサン、2−エチルヘキシルグリシジルエーテルなどを挙げることができる。 The component [A] according to the present invention is a non-aromatic epoxy resin. Here, the "aromatic" includes an aromatic hydrocarbon or a conjugated unsaturated heterocyclic compound in the chemical structure, and the others are "non-aromatic". That is, the non-aromatic epoxy resin refers to an epoxy resin that does not contain an aromatic hydrocarbon group or an unsaturated heterocycle in its chemical structure. Examples of non-aromatic epoxy resins include tetrahydroindene diepoxides, vinylcyclohexene oxides, and (3', 4'-epoxycyclohexane) methyl 3,4-epoxy as alicyclic epoxy resins (epoxy resins containing cycloalkane rings). Cyclohexanecarboxylate, dipentenedioxide, bis adipate (3,4-epoxycyclohexylmethyl), dicyclopentadienedioxide, bis (2,3-epoxycyclopentyl) ether, 2,2-bis (hydroxymethyl) -1- Butanol 1,2-epoxy-4- (2-oxylanyl) cyclohexane adduct, tetrakis- (3-cyclohexenylmethyl) epoxidized butanetetracarboxylic acid-modified epsilon-caprolactone, bi-7-oxabicyclo [4.1. 0] Heptane, dodecahydrobisphenol A diglycidyl ether, dodecahydrobisphenol F diglycidyl ether, 1,4-cyclohexanedimethanol diglycidyl ether, hexahydrophthalic acid diglycidyl ester, hexahydroterephthalic acid diglycidyl ester, 2,2 -Bis (4-hydroxycyclohexyl) propane diglycidyl ether (generic name: hydrogenated bisphenol A type liquid epoxy resin), aromatic ring, amine nitrogen atom, cycloalkane ring, epoxy resin containing no cycloalkene ring Specific examples include ethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, 1,4-butanediol glycidyl ether, 1,6-hexanediol diglycidyl ether, neopentylene glycol diglycidyl ether, glycerol polyglycidyl ether, and diglycerol. Monofunctional epoxy compound containing no polyglycidyl ether, trimethylpropan polyglycidyl ether, sorbitol polyglycidyl ether, 1,4-bis (2-oxylanyl) butane, pentaerythritol polyglycidyl ether, aromatic ring, or amine nitrogen atom Specific examples of (an epoxy compound containing only one oxylan ring) include 4-tert-butyl glycidyl ether, butyl glycidyl ether, 1-butene oxide, 1,2-epoxy-4-vinylcyclohexane, and 2-ethylhexyl glycidyl ether. And so on.

耐熱性の観点から非芳香族エポキシ樹脂は、脂環式エポキシ樹脂が好ましく用いられる。 From the viewpoint of heat resistance, an alicyclic epoxy resin is preferably used as the non-aromatic epoxy resin.

上記非芳香族エポキシ樹脂は市販品を用いることができる。例えば、“セロキサイド(登録商標)”2021P、“セロキサイド(登録商標)”8010、“セロキサイド(登録商標)”2000、“エポリード(登録商標)”GT401、“セロキサイド(登録商標)”2081、EHPE3150((株)ダイセル化学工業製)、THI−DE(JXTGエネルギー(株)製)、TTA21、AAT15,TTA22(サンケミカル(株)製)、Ex−121、Ex−211、Ex−212、Ex−313、Ex−321、Ex−411(ナガセケムテック(株)製)、“エポライト(登録商標)”4000(共栄社化学(株)製)、ST−3000、ST−4000(日鉄ケミカル&マテリアル(株)製)、YX8000(三菱ケミカル(株)製)、EPALOY5000(HUNTSMAN製)などが挙げられる。 Commercially available products can be used as the non-aromatic epoxy resin. For example, "Selokiside (registered trademark)" 2021P, "Selokiside (registered trademark)" 8010, "Selokiside (registered trademark)" 2000, "Epolide (registered trademark)" GT401, "Selokiside (registered trademark)" 2081, EHPE3150 ((() Daicel Chemical Industry Co., Ltd.), THI-DE (JXTG Energy Co., Ltd.), TTA21, AAT15, TTA22 (Sun Chemical Co., Ltd.), Ex-121, Ex-221, Ex-212, Ex-313, Ex-321, Ex-411 (manufactured by Nagase Chemtech Co., Ltd.), "Epolite (registered trademark)" 4000 (manufactured by Kyoeisha Chemical Co., Ltd.), ST-3000, ST-4000 (Nittetsu Chemical & Materials Co., Ltd.) ), YX8000 (manufactured by Mitsubishi Chemical Co., Ltd.), EPALOY5000 (manufactured by HUNTSMAN), and the like.

上記非芳香族エポキシ樹脂を少なくとも2種類用いることで、エポキシ樹脂組成物の反応性を制御でき、エポキシ樹脂組成物の速硬化性とポットライフの良好なバランスを得ることができる。 By using at least two kinds of the above non-aromatic epoxy resins, the reactivity of the epoxy resin composition can be controlled, and a good balance between the fast curing property of the epoxy resin composition and the pot life can be obtained.

上記非芳香族エポキシ樹脂をエポキシ樹脂組成物全体に対して90質量%以上含むことで、高い耐光性(耐UV性)を得ることができる。 High light resistance (UV resistance) can be obtained by containing 90% by mass or more of the non-aromatic epoxy resin with respect to the entire epoxy resin composition.

また、エポキシ樹脂組成物に脂環式エポキシ樹脂のみを用いた場合、耐UV性を有しつつ高いガラス転移温度を有するエポキシ樹脂硬化物を得ることができる。 Further, when only an alicyclic epoxy resin is used for the epoxy resin composition, a cured epoxy resin having a high glass transition temperature while having UV resistance can be obtained.

構成要素[B]は顔料(平均粒径0.1〜10μm)である。顔料の例は、硫酸バリウム、硫化亜鉛、酸化チタン、モリブデンレッド、カドミウムレッド、酸化クロム、チタンイエロー、コバルトグリーン、コバルトブルー、群青、チタン酸バリウム、カーボンブラック、酸化鉄、赤リン、クロム酸銅などを挙げることができる。顔料の平均粒径は0.1〜10μmである必要があり、好ましくは0.1〜5μm、より好ましくは0.3〜5μmであれば高いUV遮蔽性を有するエポキシ樹脂組成物を得ることができる。なお、ここで平均粒子径とは、レーザー回折散乱法を用いたLA−950((株)堀場製作所製)を用いて測定したものである。分散媒として“アラルダイト(登録商標)”GY282(成分:ビスフェノールF型エポキシ樹脂、ハンツマン・ジャパン(株)製)を用いて測定した体積換算の結果を粒度分布測定結果として採用し、得られた粒度分布の累積カーブにおける50%での粒径(メジアン径)を平均粒子径とする。 The component [B] is a pigment (average particle size 0.1 to 10 μm). Examples of pigments are barium sulfate, zinc sulfide, titanium oxide, molybdenum red, cadmium red, chromium oxide, titanium yellow, cobalt green, cobalt blue, ultramarine, barium titanate, carbon black, iron oxide, red phosphorus, copper chromate. And so on. The average particle size of the pigment needs to be 0.1 to 10 μm, preferably 0.1 to 5 μm, more preferably 0.3 to 5 μm, to obtain an epoxy resin composition having high UV shielding properties. can. Here, the average particle size is measured using LA-950 (manufactured by HORIBA, Ltd.) using a laser diffraction / scattering method. The result of volume conversion measured using "Araldite (registered trademark)" GY282 (ingredient: bisphenol F type epoxy resin, manufactured by Huntsman Japan Co., Ltd.) as a dispersion medium was adopted as the particle size distribution measurement result, and the obtained particle size was obtained. The particle size (median diameter) at 50% in the cumulative curve of the distribution is defined as the average particle size.

上記顔料をエポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して15〜75質量部、好ましくは、25〜55質量部、より好ましくは30〜50質量部含むことで樹脂硬化物の光遮蔽性と手塗り時の密着性を良好なバランスで得ることができる。 By containing the above pigment in an amount of 15 to 75 parts by mass, preferably 25 to 55 parts by mass, and more preferably 30 to 50 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition, the light of the cured resin product is obtained. It is possible to obtain a good balance between the shielding property and the adhesion at the time of hand coating.

構成要素[C]は非芳香族熱可塑性樹脂である。ここで「芳香族」とは、芳香族炭化水素や共役不飽和複素環式化合物を化学構造中に含むものであり、それ以外が「非芳香族」である。すなわち、非芳香族熱可塑性樹脂とは、芳香族炭化水素基や不飽和複素環を化学構造中に含まない熱可塑性樹脂のことを指す。非芳香族の熱可塑性樹脂を例示すると、ポリビニルアルコール、ポリビニルアセタール、ポリビニルホルマール、ポリビニルアセトアセタール、ポリビニルブチラール、ポリ酢酸ビニル、水添ビスフェノールA・ペンタエリストールホスファイトポリマー、水添テルペン、水添テルペンフェノールなどを挙げることができる。 The component [C] is a non-aromatic thermoplastic resin. Here, the "aromatic" includes an aromatic hydrocarbon or a conjugated unsaturated heterocyclic compound in the chemical structure, and the others are "non-aromatic". That is, the non-aromatic thermoplastic resin refers to a thermoplastic resin that does not contain an aromatic hydrocarbon group or an unsaturated heterocycle in its chemical structure. Examples of non-aromatic thermoplastic resins include polyvinyl alcohol, polyvinyl acetal, polyvinyl formal, polyvinyl acetal, polyvinyl butyral, polyvinyl acetate, hydrogenated bisphenol A / pentaeristol phosphite polymer, hydrogenated terpene, hydrogenated terpene. Examples include phenol.

特に非芳香族エポキシ樹脂への溶解性が高いポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール、ポリビニルアセトアセタールおよびポリビニル酢酸ビニルはエポキシ樹脂組成物の粘度調整が容易である点で好ましい。ポリビニルアセトアセタールおよびポリビニルブチラールは硬化後のエポキシ樹脂組成物の伸度の向上効果が得られることからより好ましい。ここで、伸度とは硬化後のエポキシ樹脂組成物を所定の形状で3点曲げした際の曲げ歪(%)を指す。 In particular, polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, polyvinyl acetal acetal, and polyvinyl acetate, which have high solubility in non-aromatic epoxy resins, are preferable because the viscosity of the epoxy resin composition can be easily adjusted. Polyvinyl acetal acetal and polyvinyl butyral are more preferable because they have the effect of improving the elongation of the epoxy resin composition after curing. Here, the elongation refers to the bending strain (%) when the cured epoxy resin composition is bent at three points in a predetermined shape.

これらの非芳香族の熱可塑性樹脂は、構成要素[A]のエポキシ樹脂に溶解可能なものが好ましい。例えば、構成要素[A]のエポキシ樹脂100質量部に対して少なくとも10質量部の熱可塑性樹脂の粉体を添加し、100〜120℃、1時間で混錬した結果、開始時より該熱可塑性樹脂の粉体の減量が見られるものが溶解可能であるという。減量が見られるとは光学的に観測不可能なまで小さくなることや、残存する粉体を回収した時、開始時よりも10%以上の質量の減少が見られるケースをいう。エポキシ樹脂に溶解させる観点からは、熱可塑性樹脂の粉体は、すくなくともレーザー回折法によって得られる平均粒径が100μm以下となることが好ましい。また平均粒径が100nmよりも大きいと保管時の凝集抑制やエポキシ樹脂への撹拌が容易であるなど好ましい。 These non-aromatic thermoplastic resins are preferably those that can be dissolved in the epoxy resin of the component [A]. For example, as a result of adding at least 10 parts by mass of thermoplastic resin powder to 100 parts by mass of the epoxy resin of the component [A] and kneading at 100 to 120 ° C. for 1 hour, the thermoplasticity from the start. It is said that those with a decrease in the amount of resin powder can be dissolved. Weight loss means that the weight is reduced to an level that cannot be observed optically, and that when the remaining powder is recovered, the mass is reduced by 10% or more from the starting point. From the viewpoint of dissolving in the epoxy resin, it is preferable that the powder of the thermoplastic resin has at least an average particle size of 100 μm or less obtained by a laser diffraction method. Further, when the average particle size is larger than 100 nm, it is preferable that aggregation is suppressed during storage and stirring with the epoxy resin is easy.

また、これらの非芳香族の熱可塑性樹脂の分子量は5000〜70000g/mol、好ましくは7000〜65000g/mol、より好ましくは10000〜60000g/molであるとエポキシ樹脂組成物への溶解の均一性と樹脂フロー抑制効果の良好なバランスを得ることができる。ここでの分子量とはHLC−8420GPC(東ソー(株)製)を用いたゲル浸透クロマグラフィーによるポリスチレン換算の重量平均分子量を意味する。 Further, when the molecular weight of these non-aromatic thermoplastic resins is 5000 to 70000 g / mol, preferably 7000 to 65000 g / mol, and more preferably 1000 to 60000 g / mol, the uniformity of dissolution in the epoxy resin composition is determined. A good balance of the resin flow suppressing effect can be obtained. The molecular weight here means a polystyrene-equivalent weight average molecular weight by gel permeation chromagraphy using HLC-8420GPC (manufactured by Tosoh Corporation).

上記非芳香族熱可塑性樹脂は市販品を用いることができる。例えば、“J−POVAL(登録商標)”(日本酢ビ・ポバール(株)製)、“ビニレック(登録商標)”(JNC(株)製)、“エスレック(登録商標)”(積水化学工業(株)製)、“ウルトラセン(登録商標)”(東ソー(株)製)JPH−3800(城北化学工業(株)製)、YSポリスターUH130(ヤスハラケミカル(株)製)などが挙げられる。 Commercially available products can be used as the non-aromatic thermoplastic resin. For example, "J-POVAL (registered trademark)" (manufactured by Japan Vam & Poval Co., Ltd.), "Vinirec (registered trademark)" (manufactured by JNC Co., Ltd.), "Eslek (registered trademark)" (Sekisui Chemical Co., Ltd. (Sekisui Chemical Co., Ltd.) (Manufactured by Co., Ltd.), "Ultrasen (registered trademark)" (manufactured by Tosoh Co., Ltd.) JPH-3800 (manufactured by Johoku Chemical Industry Co., Ltd.), YS Polystar UH130 (manufactured by Yasuhara Chemical Co., Ltd.) and the like.

エポキシ樹脂組成物をスプレーとして塗布する場合、エポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して上記非芳香族熱可塑性樹脂を0.05質量部以上含むことで樹脂フロー抑制効果を得られる。ここでのスプレーとは、エポキシ樹脂組成物を容器の中に補填しノズルを用いて高圧空気や機械的な運動によりエポキシ樹脂組成物を霧状または泡状に噴霧する方法を指す。エポキシ樹脂組成物をスプレーとして塗布する場合、上記非芳香族熱可塑性樹脂を0.05〜1質量部、好ましくは0.1〜0.5質量部含むことで、一定時間あたりの噴霧量を多く保ちかつ高い樹脂フロー抑制効果を得られる点で好ましい。 When the epoxy resin composition is applied as a spray, the resin flow suppressing effect is obtained by containing 0.05 parts by mass or more of the non-aromatic thermoplastic resin with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition. Be done. The term "spray" as used herein refers to a method in which the epoxy resin composition is filled in a container and the epoxy resin composition is sprayed in the form of mist or foam by high-pressure air or mechanical movement using a nozzle. When the epoxy resin composition is applied as a spray, the amount of the spray per fixed time is increased by containing 0.05 to 1 part by mass, preferably 0.1 to 0.5 part by mass of the non-aromatic thermoplastic resin. It is preferable in that it can maintain and obtain a high resin flow suppressing effect.

また、エポキシ樹脂組成物を手塗りして塗布する場合において、全エポキシ樹脂100質量部に対して上記非芳香族熱可塑性樹脂を1〜75質量部以下、好ましくは5〜65質量部、より好ましくは10〜55質量部の上記非芳香族熱可塑性樹脂を含むことによって良好な密着性が得られる。ここでの手塗りとは、例えばエポキシ樹脂組成物を容器に溜めておき、刷毛やローラーをエポキシ樹脂組成物に浸した後に人の手で刷毛やローラーで対象に塗布する方法や、対象にエポキシ樹脂組成物を載せヘラやバーコーターを用いて塗り広げる方法を指す。 Further, when the epoxy resin composition is applied by hand coating, the non-aromatic thermoplastic resin is applied in an amount of 1 to 75 parts by mass or less, preferably 5 to 65 parts by mass, more preferably 5 parts by mass, based on 100 parts by mass of the total epoxy resin. Good adhesion can be obtained by containing 10 to 55 parts by mass of the non-aromatic thermoplastic resin. The manual coating here is, for example, a method in which an epoxy resin composition is stored in a container, a brush or roller is dipped in the epoxy resin composition, and then manually applied to the target with a brush or roller, or an epoxy is applied to the target. It refers to a method in which a resin composition is placed and spread using a spatula or a bar coater.

構成要素[D]はカチオン硬化剤またはアニオン硬化剤である。カチオン硬化剤の例として、1−ナフチルメチルメチルp−ヒドロキシフェニルスルホニウム=ヘキサフルオロアンチモナート、2−メチルベンジルメチルp−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモナート、ベンジルメチルp−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモナート、ジメチル−p−アセトキシフェニルスルホニウムヘキサフルオロアンチモナート、ジアリールヨードニウム塩、酸フッ化ホウ素ピペリジン、酸フッ化ホウ素モノエチルアミン、ジアリールヨードニウム塩、スルホニウム塩などを挙げることができる。 The component [D] is a cationic curing agent or an anion curing agent. Examples of cationic curing agents include 1-naphthylmethylmethyl p-hydroxyphenylsulfonium = hexafluoroantimonate, 2-methylbenzylmethyl p-hydroxyphenylsulfonium hexafluoroantimonate, benzylmethyl p-hydroxyphenylsulfonium hexafluoroantimonate, Examples thereof include dimethyl-p-acetoxyphenyl sulfonium hexafluoroantimonate, diaryliodonium salt, boron acid fluoride piperidine, boron acid fluoride monoethylamine, diallyl iodonium salt, and sulfonium salt.

上記カチオン硬化剤は市販品を用いることができる。例えば、“アデカオプトン(登録商標)”CP−77、“アデカオプトン(登録商標)”CP−66((株)ADEKA製)、CI−2639、CI−2624(日本曹達(株)製)、“サンエイド(登録商標)”SI−60、“サンエイド(登録商標)”SI−80、“サンエイド(登録商標)”SI−100、“サンエイド(登録商標)”SI−150、“サンエイド(登録商標)”SI−B4、“サンエイド(登録商標)”SI−B5(三新化学工業(株)製)、TA−100、IK−1PC(80)(サンアプロ(株)製)、三フッ化ホウ素ピペリジン、三フッ化ホウ素モノエチルアミン(ステラケミファ(株)製)などが挙げられる。カチオン硬化剤は、光熱カチオン硬化剤もしくは熱カチオン硬化剤であることが好ましい。光熱カチオン硬化剤とは、紫外線や可視光などの一定の波長以下の光もしくはある一定温度以上の熱を与えることで反応性が生じるものを言い、熱カチオン硬化剤は熱により反応性が生じるものを指す。光熱カチオン硬化剤を用いると多種多様な環境で硬化させることができるために好ましく、熱カチオン硬化剤の場合は温度管理により高い保管安定性が得られるため好ましい。 A commercially available product can be used as the cationic curing agent. For example, "ADEKA OPTON (registered trademark)" CP-77, "ADEKA OPTON (registered trademark)" CP-66 (manufactured by ADEKA Corporation), CI-2339, CI-2624 (manufactured by Nippon Soda Co., Ltd.), "Sun Aid ( "Registered Trademarks)" SI-60, "Sun Aid (Registered Trademark)" SI-80, "Sun Aid (Registered Trademark)" SI-100, "Sun Aid (Registered Trademark)" SI-150, "Sun Aid (Registered Trademark)" SI- B4, "Sun Aid (registered trademark)" SI-B5 (manufactured by Sanshin Chemical Industry Co., Ltd.), TA-100, IK-1PC (80) (manufactured by Sun Appro Co., Ltd.), boron trifluoride piperidine, trifluoride Boron monoethylamine (manufactured by Stella Chemifa Corporation) and the like can be mentioned. The cationic curing agent is preferably a photothermal cationic curing agent or a thermal cationic curing agent. A photothermal cation curing agent is one that is reactive by applying light of a certain wavelength or less such as ultraviolet rays or visible light or heat of a certain temperature or more, and a thermal cation curing agent is one that is reactive by heat. Point to. It is preferable to use a photothermal cation curing agent because it can be cured in a wide variety of environments, and a thermal cation curing agent is preferable because high storage stability can be obtained by temperature control.

アニオン硬化剤の例として、六フッ化リン、六フッ化アンチモン、六フッ化ヒ素、六塩化スズ、四塩化鉄、五塩化ビスマス、六塩化ニオブ、などを挙げることができる。 Examples of anion curing agents include phosphorus hexafluoride, antimony pentafluoride, arsenic hexafluoride, tin hexachloride, iron tetrachloride, bismuth pentachloride, niobium hexachloride, and the like.

上記硬化剤を少なくとも2種類用いることで、エポキシ樹脂組成物の反応性を制御でき、エポキシ樹脂組成物の速硬化性とポットライフの良好なバランスを得ることができる。 By using at least two kinds of the above-mentioned curing agents, the reactivity of the epoxy resin composition can be controlled, and a good balance between the fast curing property of the epoxy resin composition and the pot life can be obtained.

上記硬化剤の種類ならびに添加量でエポキシ樹脂組成物からなる塗布剤の反応性を制御できる。エポキシ樹脂組成物からなる塗布剤をプリプレグなどの繊維強化複合材料前駆体に塗布し成形する際には、成形過程中でエポキシ樹脂組成物が繊維強化複合材料前駆体の樹脂よりも速く硬化し、エポキシ樹脂組成物の硬化後は繊維強化複合材料前駆体樹脂はエポキシ樹脂組成物に混入しないため、エポキシ樹脂組成物に混入する繊維強化複合材料前駆体の樹脂量の高い抑制効果を得られる点で好ましい。ここで、塗布剤のDSC発熱ピーク温度は、繊維強化複合材料前駆体の硬化温度によるが、繊維強化複合材料前駆体の硬化温度よりも40℃以上低いことが好ましく、60℃以上低いことがより好ましい。繊維強化複合材料前駆体の硬化温度が180℃の場合、塗布剤のDSC発熱ピーク温度が80〜120℃の範囲にあると、取り扱い性の観点からも好ましい。 The reactivity of the coating agent composed of the epoxy resin composition can be controlled by the type and the amount of the curing agent added. When a coating agent consisting of an epoxy resin composition is applied to a fiber-reinforced composite material precursor such as prepreg and molded, the epoxy resin composition cures faster than the resin of the fiber-reinforced composite material precursor during the molding process. After the epoxy resin composition is cured, the fiber-reinforced composite material precursor resin is not mixed in the epoxy resin composition, so that a high resin amount-suppressing effect of the fiber-reinforced composite material precursor mixed in the epoxy resin composition can be obtained. preferable. Here, the DSC exothermic peak temperature of the coating agent depends on the curing temperature of the fiber-reinforced composite material precursor, but is preferably 40 ° C. or more lower than the curing temperature of the fiber-reinforced composite material precursor, and more preferably 60 ° C. or more lower. preferable. When the curing temperature of the fiber-reinforced composite material precursor is 180 ° C., it is preferable that the DSC exothermic peak temperature of the coating agent is in the range of 80 to 120 ° C. from the viewpoint of handleability.

上記硬化剤はエポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して0.5〜10質量部、好ましくは1〜5質量部、より好ましくは1〜3質量部含むことで速硬化性があり成形中の樹脂フローや揮発量抑制効果、速硬化性、ポットライフと耐UV性の良好なバランスを得ることができる。 The curing agent is fast-curing by containing 0.5 to 10 parts by mass, preferably 1 to 5 parts by mass, and more preferably 1 to 3 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition. It is possible to obtain a good balance between the resin flow during molding, the effect of suppressing the amount of volatilization, the quick curing property, the pot life and the UV resistance.

また、本発明におけるエポキシ樹脂組成物は、構成要素[E]としてチキソトロピー性付与剤を含むことができる。チキソトロピー性付与剤の例としては、二酸化ケイ素、マグネシウム シリコン ナトリウム フルオライド ハイドロオキサイド オキサイド、アルキル4級アンモニウム塩、合成ヘクトライト、粘度鉱物、変性ベントナイト、鉱物および有機変性ベントナイトの混合系などを挙げることができる。 In addition, the epoxy resin composition in the present invention may contain a thixotropy-imparting agent as a component [E]. Examples of thixotropy-imparting agents include silicon dioxide, magnesium silicon sodium fluoride hydroxyoxide oxide, alkyl quaternary ammonium salts, synthetic hectorite, viscous minerals, modified bentonite, and a mixture of minerals and organically modified bentonite. ..

上記チキソトロピー性付与剤は市販品を用いることができ、例としては、ヒュームドシリカ(“アエロジル(登録商標)”(日本アエロジル(株)製))、“OPTIGEL(登録商標)”、“OPTIBENT(登録商標)”、“GARAMITE(登録商標)”、“LAPONITE(登録商標)”、“TIXOGEL(登録商標)”、“CRAYTONE(登録商標)”、“CLOISITE(登録商標)”(BYK(株)製)、“ソマシフ(登録商標)”ME−100、ミクロマイカMK(片倉コープアグリ(株)製)などが挙げられる。 Commercially available products can be used as the above-mentioned thixotropy-imparting agent, and examples thereof include fumed silica (“Aerosil (registered trademark)” (manufactured by Nippon Aerosil Co., Ltd.)), “OPTIGEL (registered trademark)”, and “OPTIBENT (”. "Registered Trademark", "GARAMITE®", "LAPONITE®", "TIXOGEL®", "CRAYTONE®", "CLOISITE®" (manufactured by BYK Co., Ltd.) ), "Somasif (registered trademark)" ME-100, Micromica MK (manufactured by Katakura Corp. Agri Co., Ltd.) and the like.

上記チキソトロピー性付与剤をエポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して好ましくは0.1〜20質量部、より好ましくは0.5〜10質量部、さらに好ましくは0.5〜5質量部含むことで成形中の樹脂フロー抑制効果と密着特性との良好なバランスを得ることができる。 The thixotropy-imparting agent is preferably 0.1 to 20 parts by mass, more preferably 0.5 to 10 parts by mass, still more preferably 0.5 to 50 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition. By including 5 parts by mass, a good balance between the resin flow suppressing effect during molding and the adhesion property can be obtained.

さらに、本発明におけるエポキシ樹脂組成物は、構成要素[F]として硬化助剤を含むことができる。硬化助剤の例としては、4−ヒドロキシフェニルジメチルスルホニウム=メチルスルフェート、4−(メチルチオ)フェノールなどを挙げることができる。 Further, the epoxy resin composition in the present invention may contain a curing aid as a component [F]. Examples of the curing aid include 4-hydroxyphenyldimethylsulfonium = methylsulfate, 4- (methylthio) phenol and the like.

上記硬化助剤は市販品を用いることができ、例としては、“サンエイド(登録商標)”SI−S、“サンエイド(登録商標)”S−ME(三新化学工業(株)製)などが挙げられる。 Commercially available products can be used as the curing aid, and examples thereof include "Sun Aid (registered trademark)" SI-S and "Sun Aid (registered trademark)" S-ME (manufactured by Sanshin Chemical Industry Co., Ltd.). Can be mentioned.

上記硬化助剤をエポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して好ましくは0.1〜10質量部、より好ましくは0.1〜5質量部、さらに好ましくは0.1〜2.5質量部含むことで、エポキシ樹脂組成物の速硬化性とポットライフの良好なバランスを得ることができる。 The curing aid is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, still more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition. By including 5.5 parts by mass, a good balance between the quick-curing property and the pot life of the epoxy resin composition can be obtained.

本発明におけるエポキシ樹脂組成物は、構成要素[G]としてゴムを含むことができる。ゴムの例としては天然ゴム、ジエン系ゴム、非ジエン系ゴムなどを挙げることができる。ジエン系ゴムの例としてはスチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、アクリロニトリル・ブタジエンゴムなどが挙げられる。非ジエン系ゴムの例としてはブチルゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴムなどが挙げられる。本発明におけるエポキシ樹脂組成物中の含有物としては非ジエン系ゴムが好ましくなかでも二重結合をポリマー主鎖にもたない、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、シリコーンゴム、フッ素ゴムは耐光性が高く、本発明におけるエポキシ樹脂組成物に対する耐UV性への影響が少ないことから特に好ましい。また、ゴムの形状としては特にパウダー状であればエポキシ樹脂組成物中での分散性に優れるため好ましい。 The epoxy resin composition in the present invention may contain rubber as a component [G]. Examples of rubber include natural rubber, diene-based rubber, and non-diene-based rubber. Examples of diene-based rubbers include styrene-butadiene rubber, isoprene rubber, butadiene rubber, chloroprene rubber, and acrylonitrile-butadiene rubber. Examples of non-diene rubber include butyl rubber, ethylene / propylene rubber, ethylene / propylene / diene rubber, urethane rubber, silicone rubber, and fluororubber. Non-diene rubber is preferable as the content in the epoxy resin composition in the present invention, but ethylene / propylene rubber, ethylene / propylene / diene rubber, silicone rubber, and fluororubber, which do not have a double bond in the polymer main chain, are It is particularly preferable because it has high light resistance and has little effect on the UV resistance of the epoxy resin composition of the present invention. Further, as the shape of the rubber, it is particularly preferable that it is in the form of powder because it has excellent dispersibility in the epoxy resin composition.

エポキシ樹脂組成物をスプレーとして塗布する場合、上記ゴムをエポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して0.05質量部以上含むことで樹脂フロー抑制効果ならびに硬化後のエポキシ樹脂組成物の伸度が優れるため塗装後のひび割れ防止効果を得られる。ここで、伸度とは硬化後のエポキシ樹脂組成物を所定の形状で3点曲げした際の曲げ歪(%)を指し、スプレーとは、エポキシ樹脂組成物を容器の中に補填しノズルを用いて高圧空気や機械的な運動によりエポキシ樹脂組成物を霧状または泡状に噴霧する方法を指す。上記ゴムをエポキシ樹脂組成物に含まれる全エポキシ樹脂100質量部に対して好ましくは0.05〜1質量部含むことで一定時間あたりの噴霧量を多く保ちかつ高い樹脂フロー抑制効果を得られる点で好ましい。 When the epoxy resin composition is applied as a spray, the resin flow suppressing effect and the epoxy resin composition after curing are obtained by containing 0.05 part by mass or more of the above rubber with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition. Since the elongation of the object is excellent, the effect of preventing cracks after painting can be obtained. Here, the elongation refers to the bending strain (%) when the cured epoxy resin composition is bent at three points in a predetermined shape, and the spray refers to filling the epoxy resin composition in a container and using a nozzle. It refers to a method of spraying an epoxy resin composition in the form of mist or foam by using high-pressure air or mechanical movement. By containing the rubber in an amount of preferably 0.05 to 1 part by mass with respect to 100 parts by mass of the total epoxy resin contained in the epoxy resin composition, a large amount of spray per fixed time can be maintained and a high resin flow suppressing effect can be obtained. Is preferable.

また、エポキシ樹脂組成物を手塗りして塗布する場合において、全エポキシ樹脂100質量部に対して上記ゴムの含有量は1〜50質量部が好ましい。ゴムの含有量が全エポキシ樹脂100質量部に対して1質量部以上であることで、樹脂フロー抑制効果ならびに硬化後のエポキシ樹脂組成物の伸度が優れるため塗装後のひび割れ防止効果を得られるため好ましく、50質量部以下であることで対象とエポキシ樹脂組成物との密着性に優れるため好ましい。ここでの手塗りとは、例えばエポキシ樹脂組成物を容器に溜めておき、刷毛やローラーをエポキシ樹脂組成物に浸した後に人の手で刷毛やローラーで対象に塗布する方法や、対象にエポキシ樹脂組成物を載せヘラやバーコーターを用いて塗り広げる方法を指す。 Further, when the epoxy resin composition is applied by hand coating, the content of the rubber is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the total epoxy resin. When the rubber content is 1 part by mass or more with respect to 100 parts by mass of the total epoxy resin, the resin flow suppressing effect and the elongation of the epoxy resin composition after curing are excellent, so that the crack preventing effect after painting can be obtained. Therefore, it is preferable that the amount is 50 parts by mass or less because the adhesion between the target and the epoxy resin composition is excellent. The manual coating here is, for example, a method in which an epoxy resin composition is stored in a container, a brush or roller is dipped in the epoxy resin composition, and then manually applied to the target with a brush or roller, or an epoxy is applied to the target. It refers to a method in which a resin composition is placed and spread using a spatula or a bar coater.

上記ゴムは市販品を用いることができ、例としては、KMP−598、KMP−600、KMP−601、KMP−602、KMP−605(信越化学工業製)、“セビアン(登録商標)”(ダイセルミライズ(株)製)、JSR N215SL、JSR N222SH、JSR N238H、JSR N241H、JSR N250S、PN30A、PN20HA、N280(JSR(株)製)などが挙げられる。 Commercially available products can be used as the rubber, and examples thereof include KMP-598, KMP-600, KMP-601, KMP-602, KMP-605 (manufactured by Shin-Etsu Chemical Co., Ltd.), "Sebian (registered trademark)" (Daicel). Examples include JSR N215SL, JSR N222SH, JSR N238H, JSR N241H, JSR N250S, PN30A, PN20HA, N280 (manufactured by JSR Corporation).

本発明のエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤は、作業環境性や成形後の厚みの正確な制御の点から、180℃1時間環境下においた後の揮発量が10%以下であることが好ましい。 The coating agent for spraying or hand coating made of the epoxy resin composition of the present invention has a volatile amount of 10 after being placed in an environment at 180 ° C. for 1 hour from the viewpoint of work environment and accurate control of thickness after molding. % Or less is preferable.

本発明に係るエポキシ樹脂組成物の硬化物に波長300〜400nmのUVを1000kJ/m照射した後に変色が見られないことが、耐UV性の観点から好ましく、塗布対象をUVから保護することが可能である。変色が見られないことは、本発明ではUV照射前後での式差ΔEabが4以下であることを示し、式差ΔEabは波長300〜400nmの紫外線を1000kJ/m照射した前後でのエポキシ樹脂組成物の硬化物の測色値を多光源分光測色計により測定することで求めることができる。 From the viewpoint of UV resistance, it is preferable that no discoloration is observed after irradiating the cured product of the epoxy resin composition according to the present invention with UV having a wavelength of 300 to 400 nm at 1000 kJ / m 2, and the object to be coated is protected from UV. Is possible. Before and after the color change is not observed, the present invention shows that expression difference Delta] E * ab before and after UV irradiation is 4 or less, wherein difference Delta] E * ab is that the ultraviolet rays having a wavelength 300 to 400 nm 1000 kJ / m 2 was irradiated It can be obtained by measuring the color measurement value of the cured product of the epoxy resin composition in (1) with a multi-light source spectrophotometer.

本発明のエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤は、金属表面に塗布した後に熱で硬化させるか、もしくは一般的に繊維強化複合材料に使用される未硬化のプリプレグやRTM材、レジンフィルムインフュージョン(RFI)材(本発明において「繊維強化複合材料前駆体」とも言う)の最表面に塗布し、塗布した状態で共に熱により硬化することができる。ここで、プリプレグは強化繊維にエポキシ樹脂などの熱硬化性樹脂を含浸してなる繊維強化複合材料前駆体であり、RTM材は強化繊維基材を型に積層し、そこに液状の熱硬化性樹脂を注入し強化繊維基材に含浸させてなる繊維強化複合材料前駆体であり、RFI材は熱硬化性樹脂フィルムを強化繊維基材上に重ね、積層したものを加熱と加圧により熱硬化性樹脂を強化繊維基材に含浸させてなる繊維強化複合材料前駆体を指す。金属の表面に塗布する場合、塗布前にシランカップリング剤を金属の表面に塗布し、光源または熱により処理してから金属表面にエポキシ樹脂組成物を塗布してもよい。シランカップリング剤の処理により、シランカップリング剤が金属表面と本発明におけるエポキシ樹脂組成物の塗布剤の橋渡しとなり、金属表面と塗布剤との接着性が向上する効果や塗布剤の金属表面に対する濡れ性を向上する効果を得ることができる。硬化によりエポキシ樹脂組成物の硬化物が硬化後の繊維強化複合材料前駆体の表面を覆い、一体化した繊維強化複合材料を得ることができる。 The spray or hand-coated coating agent comprising the epoxy resin composition of the present invention is applied to a metal surface and then cured by heat, or an uncured prepreg or RTM generally used for a fiber-reinforced composite material. It can be applied to the outermost surface of a material, a resin film infusion (RFI) material (also referred to as a "fiber-reinforced composite material precursor" in the present invention), and can be cured by heat together in the applied state. Here, the prepreg is a fiber-reinforced composite material precursor formed by impregnating reinforcing fibers with a thermosetting resin such as an epoxy resin, and the RTM material is made by laminating a reinforcing fiber base material in a mold and liquid thermosetting there. It is a fiber-reinforced composite material precursor formed by injecting resin and impregnating the reinforcing fiber base material. The RFI material is a thermosetting resin film laminated on the reinforcing fiber base material, and the laminated product is thermoset by heating and pressurizing. Refers to a fiber-reinforced composite material precursor formed by impregnating a reinforcing fiber base material with a sex resin. When applied to the surface of a metal, a silane coupling agent may be applied to the surface of the metal before application, and the epoxy resin composition may be applied to the surface of the metal after being treated with a light source or heat. By the treatment of the silane coupling agent, the silane coupling agent acts as a bridge between the metal surface and the coating agent of the epoxy resin composition in the present invention, and has the effect of improving the adhesiveness between the metal surface and the coating agent and the effect of the coating agent on the metal surface. The effect of improving wettability can be obtained. By curing, the cured product of the epoxy resin composition covers the surface of the cured fiber-reinforced composite material precursor, and an integrated fiber-reinforced composite material can be obtained.

繊維強化複合材料前駆体における強化繊維としては、各種炭素繊維、黒鉛繊維、ガラス繊維やアラミド繊維などが好ましく用いられる。 As the reinforcing fibers in the fiber-reinforced composite material precursor, various carbon fibers, graphite fibers, glass fibers, aramid fibers and the like are preferably used.

本発明のエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤は繊維強化複合材料前駆体に塗布し、共に熱硬化することで効果を発揮するが、エポキシ樹脂組成物はスプレーにて塗布してもよいし、刷毛等やバーコーター等を用いて手塗りしてもよい。また、手塗り後は離型フィルム等を用い真空引きすることで、本発明のエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤と繊維強化複合材料前駆体の密着性を高めることも可能である。 The coating agent for spraying or hand-coating composed of the epoxy resin composition of the present invention is effective by being applied to a fiber-reinforced composite material precursor and thermosetting together, whereas the epoxy resin composition is applied by spraying. Alternatively, it may be hand-painted using a brush or the like or a bar coater or the like. In addition, after hand-coating, vacuuming is performed using a release film or the like to improve the adhesion between the spray or hand-painted coating agent composed of the epoxy resin composition of the present invention and the fiber-reinforced composite material precursor. It is possible.

本発明に係るエポキシ樹脂組成物は、様々な方法で対象に塗布することができる。例えば、エポキシ樹脂組成物を容器の中に補填しノズルを用いて高圧空気や機械的な運動によりエポキシ樹脂組成物を霧状または泡状に噴霧する方法や、ローラーや刷毛を本発明の塗布剤に浸し、それを対象に塗布することも可能である。さらに、バーコーターを用いたり、ヘラを用いたりすることで本発明の塗布剤を対象に塗布することも可能である。いずれの方法においても必要に応じて加温し、エポキシ樹脂組成物の粘度を低粘度化しながら塗布することも可能である。 The epoxy resin composition according to the present invention can be applied to a subject by various methods. For example, a method in which the epoxy resin composition is filled in a container and the epoxy resin composition is sprayed in the form of mist or foam by high-pressure air or mechanical movement using a nozzle, or a roller or brush is used as the coating agent of the present invention. It is also possible to soak in and apply it to the subject. Further, it is also possible to apply the coating agent of the present invention to a target by using a bar coater or a spatula. In either method, it is possible to apply the epoxy resin composition while lowering the viscosity by heating it as necessary.

以上のように、本発明のエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤は様々な方法にて対象へ塗布することが可能であるが、好ましい塗布の方法はエポキシ樹脂組成物の室温粘度により依存する。エポキシ樹脂組成物の室温粘度が100〜500mPa・sの場合はスプレーによる塗布が好ましい。スプレーによる塗布の場合、室温粘度が100mPa・s以下の場合、室温での樹脂フローを抑制でき、塗布剤の厚みを均一に保つことが可能となる一方で、室温粘度が500m・Pa以下でスプレー時エポキシ樹脂組成物が詰まらず塗布することが可能となり、作業性が良い。 As described above, the coating agent for spraying or hand coating made of the epoxy resin composition of the present invention can be applied to a target by various methods, but the preferred coating method is the epoxy resin composition. Depends on room temperature viscosity. When the room temperature viscosity of the epoxy resin composition is 100 to 500 mPa · s, application by spray is preferable. In the case of application by spray, when the room temperature viscosity is 100 mPa · s or less, the resin flow at room temperature can be suppressed and the thickness of the coating agent can be kept uniform, while the room temperature viscosity is 500 mPa · Pa or less. When the epoxy resin composition is not clogged, it can be applied and workability is good.

エポキシ樹脂組成物の室温粘度が0.5〜30Pa・sの場合はローラーや刷毛等を用いた手塗りが好ましい。エポキシ樹脂組成物の室温粘度が0.5Pa・s以上であれば塗布時のタレを抑制することができ好ましく、30Pa・s以下の場合、刷毛やロールをエポキシ樹脂組成物に容易に浸すことができるため作業性が良好となる。 When the room temperature viscosity of the epoxy resin composition is 0.5 to 30 Pa · s, hand coating using a roller, a brush, or the like is preferable. When the room temperature viscosity of the epoxy resin composition is 0.5 Pa · s or more, sagging during coating can be suppressed, and when it is 30 Pa · s or less, the brush or roll can be easily immersed in the epoxy resin composition. Since it can be done, workability is improved.

エポキシ樹脂組成物の室温粘度が30〜30000Pa・sの場合はヘラやバーコーター等を利用した手塗りによる塗布が好ましい。手塗りによる塗布の場合、エポキシ樹脂組成物の室温粘度が30Pa・s以上の場合、硬化過程中におけるエポキシ樹脂組成物の樹脂フロー抑制効果が高いため好ましい。また、エポキシ樹脂組成物の室温粘度が30000Pa・s以下の場合、エポキシ樹脂組成物と繊維強化複合材料前駆体との密着性が高く、硬化後のエポキシ樹脂組成物と繊維強化複合材料との接着性が高いため好ましい。 When the room temperature viscosity of the epoxy resin composition is 30,000 to 30,000 Pa · s, it is preferable to apply it by hand coating using a spatula, a bar coater, or the like. In the case of manual coating, when the room temperature viscosity of the epoxy resin composition is 30 Pa · s or more, the resin flow suppressing effect of the epoxy resin composition during the curing process is high, which is preferable. Further, when the room temperature viscosity of the epoxy resin composition is 30,000 Pa · s or less, the adhesion between the epoxy resin composition and the fiber-reinforced composite material precursor is high, and the adhesion between the epoxy resin composition and the fiber-reinforced composite material after curing is high. It is preferable because it has high properties.

本発明のエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤を繊維強化複合材料前駆体に塗布する際の目付は30〜300g/mであることが好ましい。エポキシ樹脂組成物の目付が30g/m以上であると繊維強化複合材料の表面を目で見て透けることなく覆うことができ、十分な耐光性を発揮可能となる。また、エポキシ樹脂組成物の目付が300g/m以下であると繊維強化複合材料とともに成形する際、エポキシ樹脂組成物硬化時の発熱が抑えられるため好ましい。 When the coating agent for spraying or hand coating made of the epoxy resin composition of the present invention is applied to the fiber-reinforced composite material precursor, the basis weight is preferably 30 to 300 g / m 2 . When the basis weight of the epoxy resin composition is 30 g / m 2 or more, the surface of the fiber-reinforced composite material can be covered without being visually transparent, and sufficient light resistance can be exhibited. Further, it is preferable that the epoxy resin composition has a texture of 300 g / m 2 or less because heat generation during curing of the epoxy resin composition is suppressed when molding together with the fiber-reinforced composite material.

本発明のエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤ならびに繊維強化複合材料の成形方法としては、繊維強化複合材料前駆体の最表面に塗布した後、共に硬化させるのがよい。上述した本発明のエポキシ樹脂組成物からなる塗布剤を所定の形態で繊維強化複合材料前駆体の最表面に塗布し、加圧・加熱して本発明のエポキシ樹脂組成物からなる塗布剤ならびに繊維強化複合材料前駆体に含まれる樹脂を硬化させ、繊維強化複合材料を製造することができる。ここで熱及び圧力を付与する方法としては、例えば、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等が採用される。 As a method for molding a coating agent for spraying or hand-coating and a fiber-reinforced composite material comprising the epoxy resin composition of the present invention, it is preferable to apply the coating agent to the outermost surface of the fiber-reinforced composite material precursor and then cure both of them. The above-mentioned coating agent composed of the epoxy resin composition of the present invention is applied to the outermost surface of the fiber-reinforced composite material precursor in a predetermined form, and is pressurized and heated to obtain the coating agent and fibers composed of the epoxy resin composition of the present invention. The resin contained in the reinforced composite material precursor can be cured to produce a fiber reinforced composite material. Here, as a method of applying heat and pressure, for example, a press molding method, an autoclave molding method, a bagging molding method, a lapping tape method, an internal pressure molding method and the like are adopted.

以下、本発明を実施例により詳細に説明する。ただし、本発明の範囲はこれらの実施例に限定されるものではない。また、各種特性の測定は、特に注釈のない限り温度23℃、相対湿度50%の環境下で行った。 Hereinafter, the present invention will be described in detail with reference to Examples. However, the scope of the present invention is not limited to these examples. Unless otherwise specified, various characteristics were measured in an environment with a temperature of 23 ° C. and a relative humidity of 50%.

<実施例および比較例で用いた材料>
(1)芳香族エポキシ樹脂
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”828、三菱ケミカル(株)製)エポキシ当量:175(g/eq.)。
<Materials used in Examples and Comparative Examples>
(1) Aromatic epoxy resin / bisphenol A type epoxy resin (“jER®” 828, manufactured by Mitsubishi Chemical Corporation) Epoxy equivalent: 175 (g / eq.).

(2)構成要素[A]非芳香族エポキシ樹脂
・(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート(“セロキサイド(登録商標)”2021P、(株)ダイセル製)エポキシ当量:136(g/eq.)
・2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物(“EHPE3150”、(株)ダイセル製)
・エポキシ化ブタンテトラカルボン酸テトラキス−(3−シクロヘキセニルメチル)修飾イプシロン−カプロラクトン(“エポリード(登録商標)”GT401、(株)ダイセル製)
・2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテル(YX8000、三菱ケミカル(株)製)。
(2) Component [A] Non-aromatic epoxy resin
(3', 4'-Epoxycyclohexane) Methyl 3,4-epoxycyclohexanecarboxylate ("Seroxide®" 2021P, manufactured by Daicel Corporation) Epoxy equivalent: 136 (g / eq.)
1,2-Epoxy-4- (2-oxylanyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol (“EHPE3150”, manufactured by Daicel Corporation)
Tetrakis- (3-cyclohexenylmethyl) epoxidized butanetetracarboxylic acid-modified epsilon-caprolactone (“Epolide®” GT401, manufactured by Daicel Corporation)
-Diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane (YX8000, manufactured by Mitsubishi Chemical Corporation).

(3)構成要素[B]顔料
・酸化チタン(ルチル型)(“Ti−Pure(登録商標)”R−960、ケマーズ(株)製、平均粒径0.5μm)。
(3) Component [B] Pigment, titanium oxide (rutile type) ("Ti-Pure (registered trademark)" R-960, manufactured by The Chemours Company, average particle size 0.5 μm).

(4)構成要素[C]非芳香族熱可塑性樹脂
・ポリビニルホルマール(“ビニレック(登録商標)”K、JNC(株)製、計算分子量40000〜54000g/mol)
・ポリビニルホルマール(“ビニレック(登録商標)”E、JNC(株)製、計算分子量95000〜134000g/mol)
・ポリビニルアセトアセタール(“エスレック(登録商標)”KS−10、積水化学工業(株)製、計算分子量17000g/mol)
・ポリビニルブチラール(“エスレック(登録商標)”BX−L、積水化学工業(株)製、計算分子量18000g/mol)。
(4) Component [C] Non-aromatic thermoplastic resin, polyvinyl formal (“Vinirec (registered trademark)” K, manufactured by JNC Co., Ltd., calculated molecular weight: 40,000 to 54,000 g / mol)
-Polyvinyl formal ("Vinirec (registered trademark)" E, manufactured by JNC Co., Ltd., calculated molecular weight 95,000 to 134,000 g / mol)
-Polyvinyl acetal acetal ("Eslek (registered trademark)" KS-10, manufactured by Sekisui Chemical Co., Ltd., calculated molecular weight 17,000 g / mol)
-Polyvinyl butyral ("Eslek (registered trademark)" BX-L, manufactured by Sekisui Chemical Co., Ltd., calculated molecular weight 18,000 g / mol).

(5)構成要素[D]カチオン硬化剤
・ジメチル−p−アセトキシフェニルスルホニウムヘキサフルオロアンチモナート“サンエイド(登録商標)”SI−150、三新化学工業(株)製)
・ベンジルメチルp−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモナート“サンエイド(登録商標)”SI−100、三新化学工業(株)製)。
(5) Component [D] Cationic curing agent, dimethyl-p-acetoxyphenylsulfonium hexafluoroantimonate "Sun Aid (registered trademark)" SI-150, manufactured by Sanshin Chemical Industry Co., Ltd.)
-Benzylmethyl p-hydroxyphenylsulfonium hexafluoroantimonate "Sun Aid (registered trademark)" SI-100, manufactured by Sanshin Chemical Industry Co., Ltd.

(6)構成要素[E]チキソトロピー性付与剤
・ヒュームドシリカ(“AEROSIL(登録商標)”RY200S、日本アエロジル(株)製)
・アルキルアンモニウムクレイ(“GARAMITE(登録商標)”1958、BYK(株)製)。
(6) Component [E] Thixotropy-imparting agent, fumed silica (“AEROSIL®” RY200S, manufactured by Nippon Aerosil Co., Ltd.)
-Alkylammonium clay ("GARAMITE (registered trademark)" 1958, manufactured by BYK Co., Ltd.).

(7)構成要素[F]硬化助剤
・4−ヒドロキシフェニルジメチルスルホニウム=メチルスルフェート(“サンエイド(登録商標)”SI−S、三新化学工業(株)製)
・4−(メチルチオ)フェノール(“サンエイド(登録商標)”S−ME、三新化学工業(株)製)。
(7) Component [F] Curing aid, 4-hydroxyphenyldimethylsulfonium = methylsulfate ("Sun Aid (registered trademark)" SI-S, manufactured by Sanshin Chemical Industry Co., Ltd.)
4- (Methylthio) phenol ("Sun Aid (registered trademark)" S-ME, manufactured by Sanshin Chemical Industry Co., Ltd.).

(8)構成要素[G]ゴム
・シリコーンゴムパウダー(KPM−601、信越化学工業(株)製)。
(8) Component [G] Rubber / Silicone Rubber Powder (KPM-601, manufactured by Shin-Etsu Chemical Co., Ltd.).

<エポキシ樹脂組成物および繊維強化複合材料の作製方法および評価方法>
以下の方法にて各実施例および比較例のエポキシ樹脂組成物を測定した。
<Method of producing and evaluating epoxy resin composition and fiber-reinforced composite material>
The epoxy resin compositions of each Example and Comparative Example were measured by the following methods.

(1)エポキシ樹脂組成物の作製
表1〜8に記載の構成要素[A]に該当するエポキシ樹脂(実施例33及び比較例1、8における芳香族エポキシ樹脂も含む)、および構成要素[B]に該当する顔料および必要であれば構成要素[E]チキソトロピー性付与剤、構成要素[G]ゴムを三本ロールミルに投入し、任意のロール回転速度で混合し、粉体混合前駆体を得た。前記粉体混合前駆体と表1〜8に記載の構成要素[C]に該当する非芳香族熱可塑性樹脂を混合器へ投入し、加熱混合を行い、非芳香族熱可塑性樹脂を溶解させた。次いで、混練を続けたまま60℃以下の温度まで降温させ、表1〜8に記載の構成要素[D]カチオン硬化剤と必要であれば構成要素[F]硬化助剤を加えて攪拌し、エポキシ樹脂組成物を得た。
(1) Preparation of Epoxy Resin Composition The epoxy resin corresponding to the component [A] shown in Tables 1 to 8 (including the aromatic epoxy resin in Example 33 and Comparative Examples 1 and 8), and the component [B]. ], If necessary, the component [E] thixotropy-imparting agent, and the component [G] rubber are put into a three-roll mill and mixed at an arbitrary roll rotation speed to obtain a powder mixing precursor. rice field. The powder mixing precursor and the non-aromatic thermoplastic resin corresponding to the component [C] shown in Tables 1 to 8 were put into a mixer and heated and mixed to dissolve the non-aromatic thermoplastic resin. .. Next, the temperature was lowered to 60 ° C. or lower while continuing kneading, and the component [D] cationic curing agent shown in Tables 1 to 8 and, if necessary, the component [F] curing aid were added and stirred. An epoxy resin composition was obtained.

(2)エポキシ樹脂組成物の室温粘度測定
上記(1)で調製したエポキシ樹脂組成物の室温粘度を、動的粘弾性装置ARES−2KFRTN1−FCO−STD(ティー・エイ・インスツルメント社製)を用い、上下部測定冶具に直径40mmの平板のパラレルプレートを用い、上部と下部の冶具間距離が1mmとなるように該エポキシ樹脂組成物をセット後、ねじりモード(測定周波数:0.5Hz)測定温度23℃等温にて10分間測定した。測定時間2〜10分の粘度の平均値をエポキシ樹脂組成物の室温粘度とした。
(2) Measurement of room temperature viscosity of epoxy resin composition The room temperature viscosity of the epoxy resin composition prepared in (1) above is measured by the dynamic viscoelastic device ARES-2KFRTN1-FCO-STD (manufactured by TA Instruments). After setting the epoxy resin composition so that the distance between the upper and lower jigs is 1 mm, use a flat parallel plate with a diameter of 40 mm for the upper and lower measurement jigs, and then twist mode (measurement frequency: 0.5 Hz). The measurement was carried out at a measurement temperature of 23 ° C. for 10 minutes. The average value of the viscosities with a measurement time of 2 to 10 minutes was taken as the room temperature viscosity of the epoxy resin composition.

(3)エポキシ樹脂組成物のポットライフ測定
上記(1)で調製したエポキシ樹脂組成物の粘度を、動的粘弾性装置ARES−2KFRTN1−FCO−STD(ティー・エイ・インスツルメント社製)を用い、上下部測定冶具に直径40mmの平板のパラレルプレートを用い、上部と下部の冶具間距離が1mmとなるように該エポキシ樹脂組成物をセット後、ねじりモード(測定周波数:0.5Hz)で測定した。65℃で2分間保持した時の粘度η 、65℃で2時間保持し、任意の時間の粘度η を測定し、そのときの増粘倍率をη ÷η より求めた。求めた増粘倍率が3となるまでの時間をポットライフとした。
(3) Pot life measurement of epoxy resin composition The viscosity of the epoxy resin composition prepared in (1) above can be measured by using a dynamic viscoelastic device ARES-2KFRTN1-FCO-STD (manufactured by TA Instruments). Use, use a flat parallel plate with a diameter of 40 mm for the upper and lower measurement jigs, set the epoxy resin composition so that the distance between the upper and lower jigs is 1 mm, and then in twist mode (measurement frequency: 0.5 Hz). It was measured. Viscosity η * 2 when held at 65 ° C for 2 minutes , Viscosity η * x at 65 ° C for 2 hours is measured, and the thickening ratio at that time is calculated from η * x ÷ η * 2. rice field. The time required for the obtained thickening ratio to reach 3 was defined as the pot life.

(4)エポキシ樹脂組成物の揮発量測定
離型紙(質量:W1)の上で上記(1)にて調製したエポキシ樹脂組成物を3gを目標に秤量し(質量:W2)、エポキシ樹脂組成物と離型紙を180℃のオーブンへ1時間入れた。その後、オーブンからエポキシ樹脂組成物と離型紙を取り出し、デシケータ中に30分放置した後にエポキシ樹脂と離型紙を合わせた質量を測定し(質量:W3)、以下の算出式により本発明における揮発量[%]として算出した。
{(W2−(W3−W1)}/W2×100[%]
算出した揮発量が5%以下の場合を「良好」とし、5%を超える場合を「不良」とした。
(4) Measurement of Volatile Amount of Epoxy Resin Composition Weigh the epoxy resin composition prepared in (1) above on a paper pattern (mass: W1) with a target of 3 g (mass: W2), and then weigh the epoxy resin composition. The paper pattern was placed in an oven at 180 ° C. for 1 hour. Then, the epoxy resin composition and the paper pattern were taken out from the oven, left in the desiccator for 30 minutes, and then the combined mass of the epoxy resin and the paper pattern was measured (mass: W3), and the volatile amount in the present invention was calculated by the following formula. Calculated as [%].
{(W2- (W3-W1)} / W2 x 100 [%]
When the calculated volatilization amount was 5% or less, it was regarded as "good", and when it exceeded 5%, it was regarded as "bad".

(5)エポキシ樹脂組成物の樹脂フロー量測定
15cm角に切り出した離型フィルムの上に上記(1)で作製したエポキシ樹脂組成物を3gを目標に秤量した(質量:W4)。もう一枚の15cm角に切り出した離型フィルムでエポキシ樹脂組成物をはさみ、さらに2枚の10cm角の金属板(一枚400g)ではさみ、その状態でオートクレーブにて成形(6気圧下180℃2時間、昇温1.7℃/分)した。成形後、10cm角の金属板からはみ出した部分のエポキシ樹脂組成物の硬化物を取り除き、残ったエポキシ樹脂組成物の硬化物の質量を測定した(質量:W5)。以下の算出式により本発明におけるエポキシ樹脂組成物の樹脂フロー量[%]を算出した。
(W4−W5)/W4×100[%]
樹脂フロー量が5%以下をA、5%超え、10%以下をB、10%超え、15%以下をC、15%超えをDと表記した。
(5) Measurement of Resin Flow Amount of Epoxy Resin Composition The epoxy resin composition prepared in (1) above was weighed with a target of 3 g on a release film cut into a 15 cm square (mass: W4). The epoxy resin composition is sandwiched between another 15 cm square cut-out film, and then sandwiched between two 10 cm square metal plates (400 g each), and in that state, molded by an autoclave (180 ° C under 6 atm). The temperature was raised to 1.7 ° C./min for 2 hours). After molding, the cured product of the epoxy resin composition protruding from the metal plate of 10 cm square was removed, and the mass of the cured product of the remaining epoxy resin composition was measured (mass: W5). The resin flow amount [%] of the epoxy resin composition in the present invention was calculated by the following calculation formula.
(W4-W5) / W4 × 100 [%]
When the resin flow amount is 5% or less, it is expressed as A, when it exceeds 5%, 10% or less is expressed as B, when it exceeds 10%, when it exceeds 15%, it is expressed as C, and when it exceeds 15%, it is expressed as D.

(6)エポキシ樹脂組成物の密着性
上記(1)で調製したエポキシ樹脂組成物を任意の大きさ(10cm角よりも大きい)のアルミ板にエポキシ樹脂組成物が80μmの厚みになるように塗布し、その上からダイフリーGA−3000(ダイキン工業製)をスプレーすることで離型処理した10cm角のステンレス製プレート(400g)を載せ、30秒間保持した。その後、ステンレス製プレートを持ち上げ、アルミ板にエポキシ樹脂組成物が密着した状態で地面を軸に90°になるようにアルミ板を立てかけ、24時間後アルミ板にエポキシ樹脂組成物が密着している場合は密着性「良好」とし、一部でも剥がれていた場合を「不良」とした。
(6) Adhesion of Epoxy Resin Composition The epoxy resin composition prepared in (1) above is applied to an aluminum plate of an arbitrary size (larger than 10 cm square) so that the epoxy resin composition has a thickness of 80 μm. Then, a 10 cm square stainless steel plate (400 g) that had been released from the mold by spraying Die-free GA-3000 (manufactured by Daikin Industries) was placed on it and held for 30 seconds. After that, the stainless steel plate is lifted, the aluminum plate is leaned against the aluminum plate so that the temperature is 90 ° with respect to the ground, and after 24 hours, the epoxy resin composition is in close contact with the aluminum plate. In the case of the case, the adhesion was regarded as "good", and the case where even a part of the adhesive was peeled off was regarded as "poor".

(7)エポキシ樹脂組成物のUV照射試験
上記(1)で調製したエポキシ樹脂組成物を離型フィルムの上にエポキシ樹脂組成物が80μmとなるよう塗布し、オーブンにて180℃2時間、昇温1.7℃/分の条件で硬化し、得られたエポキシ樹脂組成物の硬化物の表面を半分アルミホイルで覆った状態でメタリングウェザーメータ(M6T、スガ試験機(株)製)を用いて照射波長を300〜400nm、積算照度を1.55kW/mに設定し、本発明のエポキシ樹脂組成物の硬化物は屋外で日光に年単位で暴露されることが想定されるため、日本(夏場)における1ヶ月間のUV量の概算値である積算強度1000kJ/mのUV光を照射した。照射後アルミホイルを剥がし、アルミホイルを覆った場所と覆っていない場所の見た目を肉眼で見ることUV照射前後のエポキシ樹脂硬化物の変色有無を確認できる。照射前後でエポキシ樹脂組成物の硬化物の色差を多光源分光測色計(MSC−P、スガ試験機(株)製)を用いて測定した。エポキシ樹脂組成物を多光源分光測色計にセットし、測定条件として波長380〜780nmの範囲において、反射モード、C光源、2°視野、8°入射の条件で反射率を測定した。さらに、装置に付属するプログラムを用いて、L変色系におけるUV照射前の測色値(L1a1b1)を求めた。次に、UV照射実施後(L2a2b2)を求めた。さらにUV照射実施前後でのエポキシ樹脂組成物の硬化物の色差ΔEabをΔEab=[(L1−L2)+(a1−a2)+(b1−b2)1/2により求めた。求めたΔEabが4以下の場合、耐UV性を「良好」とし、ΔEabが4を超えた場合、耐UV性を「不良」とした。
(7) UV Irradiation Test of Epoxy Resin Composition The epoxy resin composition prepared in (1) above is applied onto a release film so that the epoxy resin composition is 80 μm, and the temperature is raised in an oven at 180 ° C. for 2 hours. A metering weather meter (M6T, manufactured by Suga Testing Machine Co., Ltd.) was used in a state where the cured product of the obtained epoxy resin composition was cured at a temperature of 1.7 ° C./min and the surface of the cured product was half covered with aluminum foil. Since the irradiation wavelength is set to 300 to 400 nm and the integrated illuminance is set to 1.55 kW / m 2 , the cured product of the epoxy resin composition of the present invention is expected to be exposed to sunlight outdoors on a yearly basis. UV light with an integrated intensity of 1000 kJ / m 2 , which is an approximate value of the amount of UV for one month in Japan (summer), was irradiated. After the irradiation, the aluminum foil is peeled off, and the appearance of the place where the aluminum foil is covered and the place where the aluminum foil is not covered can be visually observed. The presence or absence of discoloration of the epoxy resin cured product before and after UV irradiation can be confirmed. Before and after irradiation, the color difference of the cured product of the epoxy resin composition was measured using a multi-light source spectrophotometer (MSC-P, manufactured by Suga Test Instruments Co., Ltd.). The epoxy resin composition was set in a multi-light source spectrophotometer, and the reflectance was measured in the wavelength range of 380 to 780 nm under the conditions of reflection mode, C light source, 2 ° field, and 8 ° incident. Furthermore, the color measurement value (L * 1a * 1b * 1) before UV irradiation in the L * a * b * discoloration system was obtained using the program attached to the device. Next, it was determined after UV irradiation was performed (L * 2a * 2b * 2). Furthermore, the color difference ΔE * ab of the cured product of the epoxy resin composition before and after UV irradiation is set to ΔE * ab = [(L * 1-L * 2) 2 + (a * 1-a * 2) 2 + (b *). 1-b * 2) 2 ] Obtained by 1/2. When the obtained ΔE * ab was 4 or less, the UV resistance was defined as “good”, and when ΔE * ab exceeded 4, the UV resistance was defined as “poor”.

(8)成形過程中でエポキシ樹脂組成物に混入するプリプレグの樹脂量
上記(1)で調製したエポキシ樹脂組成物を連続繊維のプリプレグ(T800S/3900−2B(東レ(株)製))を疑似等方になるように8枚積層(積層構成:[+45°/0°/−45°/90°])したものの最表面にエポキシ樹脂組成物が80μmの厚みとなるように塗布し、その状態でオートクレーブにて6気圧、180℃2時間、昇温1.7℃/分の条件で成形した複合材料のエポキシ樹脂組成物の硬化物側をATR法によるIR測定(FT/IR−4000 日本分光(株)製、プリズム:ダイヤモンド、測定波長:400〜4000cm−1、積算回数:16回)を行い、エステルを示す1715cm−1のピークを用いて規格化し、プリプレグに使用されている樹脂硬化物起因のベンゼン環を示す1592cm−1のピークの値を評価することで、プリプレグに使用されている樹脂が成形過程中でエポキシ樹脂組成物からなる塗布剤と混合し、繊維強化複合材料の表面へ露出した量を評価することが可能となる。プリプレグに使用されている樹脂硬化物起因のベンゼン環を示す1592cm−1のピークの値が0.6以下であれば、繊維強化複合材料の表面の耐UV性は良好と判定した。また、実施例35〜56、比較例9〜11においては上記と同様にATR法によるIR測定を実施し、エステルを示す1715cm−1のピークを用いた規格化は行わず、プリプレグに使用されている樹脂硬化物起因のベンゼン環を示す1592cm−1のピークの値を評価した。この場合、プリプレグに使用されている樹脂硬化物起因のベンゼン環を示す1592cm−1のピークの値が1.0以下であれば、繊維強化複合材料の表面の耐UV性は良好と判定した。
(8) Amount of prepreg resin mixed in the epoxy resin composition during the molding process The epoxy resin composition prepared in (1) above is simulated as a continuous fiber prepreg (T800S / 3900-2B (manufactured by Toray Co., Ltd.)). Epoxy resin composition was applied to the outermost surface of a stack of eight sheets so as to be isotropic (laminated structure: [+ 45 ° / 0 ° / −45 ° / 90 °] s) so as to have a thickness of 80 μm. IR measurement (FT / IR-4000 Japan) of the cured product side of the epoxy resin composition of the composite material molded in an autoclave under the conditions of 6 atm, 180 ° C. for 2 hours, and temperature rise of 1.7 ° C./min. Spectral Co., Ltd., Prism: Diamond, Measurement wavelength: 400 to 4000 cm -1 , Accumulation number: 16 times), standardized using the peak of 1715 cm -1 indicating ester, and the resin cured used in the prepreg. By evaluating the peak value of 1592 cm -1 , which indicates the benzene ring caused by the substance, the resin used for the prepreg is mixed with the coating agent composed of the epoxy resin composition during the molding process, and the surface of the fiber-reinforced composite material is mixed. It is possible to evaluate the amount of exposure to. When the peak value of 1592 cm -1 , which indicates the benzene ring caused by the cured resin used in the prepreg, was 0.6 or less, it was judged that the UV resistance of the surface of the fiber-reinforced composite material was good. Further, in Examples 35 to 56 and Comparative Examples 9 to 11, IR measurement was carried out by the ATR method in the same manner as described above, and standardization using a peak of 1715 cm-1 indicating an ester was not performed, and the prepreg was used. The value of the peak of 1592 cm -1 showing the benzene ring caused by the cured resin product was evaluated. In this case, if the peak value of 1592 cm -1 , which indicates the benzene ring caused by the cured resin used in the prepreg, is 1.0 or less, it is determined that the UV resistance of the surface of the fiber-reinforced composite material is good.

(9)プリプレグ表面へのエポキシ樹脂組成物の塗布方法
エポキシ樹脂組成物をスプレーにて塗布する場合はスプレーガンW−2001−2(アネスト岩田(株)製)を用いてプリプレグ表面にエポキシ樹脂組成物を吹き付け塗布した。
(9) Method of applying the epoxy resin composition to the surface of the prepreg When the epoxy resin composition is applied by spraying, the epoxy resin composition is applied to the surface of the prepreg using a spray gun W-2001-2 (manufactured by Anest Iwata Co., Ltd.). The object was sprayed and applied.

エポキシ樹脂組成物を刷毛を用いて手塗りする場合はエポキシ樹脂組成物を容器に溜め、そこに刷毛を浸け込んだ後、直接対象に塗布した。 When the epoxy resin composition is hand-painted with a brush, the epoxy resin composition is stored in a container, the brush is dipped in the container, and then the epoxy resin composition is directly applied to the target.

エポキシ樹脂組成物をバーコーターを用いて手塗りする場合はエポキシ樹脂組成物を塗布対象の表面に置き、バーコーターで塗り広げて対象に塗布した。 When the epoxy resin composition was manually applied using a bar coater, the epoxy resin composition was placed on the surface of the object to be coated, spread with a bar coater, and applied to the object.

(10)エポキシ樹脂組成物の発熱ピーク温度の測定方法
示差走査熱量計(DSC Q2500:TAインスツルメント社製)を用いて、窒素雰囲気中で5℃/分の昇温速度にて、エポキシ樹脂組成物の発熱曲線を得た。得られた発熱曲線中で、発熱量が100mW/g以上である発熱ピークの頂点の温度を、発熱ピーク温度として算出した。発熱量が100mW/g以上である発熱ピークが2つ以上ある場合は、低温側のピークの頂点の温度を、本発明におけるDSCの発熱ピーク温度として算出した。速硬化性の評価に関し、表1〜4において、発熱ピーク温度が100℃以下をA、100℃超、120℃以下をB、120℃超、140℃以下をC、140℃超をDで表記した。
(10) Method for measuring the exothermic peak temperature of the epoxy resin composition Using a differential scanning calorimeter (DSC Q2500: manufactured by TA Instruments), the epoxy resin is heated at a heating rate of 5 ° C./min in a nitrogen atmosphere. The exothermic curve of the composition was obtained. In the obtained heat generation curve, the temperature at the peak of the heat generation peak having a heat generation amount of 100 mW / g or more was calculated as the heat generation peak temperature. When there are two or more exothermic peaks having a calorific value of 100 mW / g or more, the temperature of the apex of the peak on the low temperature side is calculated as the exothermic peak temperature of the DSC in the present invention. Regarding the evaluation of quick curing, in Tables 1 to 4, the exothermic peak temperature of 100 ° C. or lower is represented by A, 100 ° C. or lower, 120 ° C. or lower is represented by B, 120 ° C. or lower is represented by C, and 140 ° C. or lower is represented by D. bottom.

(11)硬化後のエポキシ樹脂組成物の曲げ試験
未硬化のエポキシ樹脂組成物を真空中で脱泡した後、2mm厚の“テフロン(登録商標)”製のスペーサーを用い、厚み2mmになるよう設定したモールド中で、180℃の温度で2時間硬化させた。得られた厚み2mmのエポキシ樹脂硬化物を幅10±0.1mm、長さ60±1mmにカットし、試験片を得た。インストロン万能試験機(インストロン製)を用いJIS−K7171(1994)に従い、スパン間32mmの三点曲げを実施し、弾性率と曲げ歪(伸度)を測定した。測定数はN=6とし、その平均値を求めた。
(11) Bending test of the cured epoxy resin composition After defoaming the uncured epoxy resin composition in a vacuum, a spacer made of "Teflon (registered trademark)" having a thickness of 2 mm is used so that the thickness becomes 2 mm. In the set mold, it was cured at a temperature of 180 ° C. for 2 hours. The obtained cured epoxy resin having a thickness of 2 mm was cut into a width of 10 ± 0.1 mm and a length of 60 ± 1 mm to obtain a test piece. Using an Instron universal testing machine (manufactured by Instron), three-point bending with a span of 32 mm was performed according to JIS-K7171 (1994), and the elastic modulus and bending strain (elongation) were measured. The number of measurements was N = 6, and the average value was calculated.

<実施例1〜32および比較例1>
実施例1〜32では、構成要素[A]として、(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートのみ、または、2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物やエポキシ化ブタンテトラカルボン酸テトラキス−(3−シクロヘキセニルメチル)修飾イプシロン−カプロラクトンとの非芳香族エポキシ樹脂の組み合わせによるエポキシ樹脂組成物を用いたところ、耐UV性試験では硬化後も変色が見られず良好な結果が得られた。一方、構成要素[A]非芳香族エポキシ樹脂を含まず芳香族エポキシ樹脂のみを含む比較例1では、耐UV性試験で不良と判定され耐UV性が低いことが示された。
<Examples 1 to 32 and Comparative Example 1>
In Examples 1-32, as the component [A], only (3', 4'-epoxycyclohexane) methyl3,4-epoxycyclohexanecarboxylate or 2,2-bis (hydroxymethyl) -1-butanol is used. Epoxy resin composition by combination of 1,2-epoxy-4- (2-oxylanyl) cyclohexane adduct and non-aromatic epoxy resin with epoxidized butanetetracarboxylic acid tetrakis- (3-cyclohexenylmethyl) modified epsilon-caprolactone. When a product was used, no discoloration was observed even after curing in the UV resistance test, and good results were obtained. On the other hand, in Comparative Example 1 containing only the aromatic epoxy resin without containing the component [A] non-aromatic epoxy resin, it was judged to be defective in the UV resistance test, and it was shown that the UV resistance was low.

<実施例1〜2>
実施例1、2では構成要素[D]の種類を変え、比較した結果、ベンジルメチルp−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモナートをカチオン硬化剤として使用した場合、ヨードニウム塩をカチオン硬化剤として使用した場合よりも速硬化性が高く、揮発性、樹脂フロー、成形過程中でのエポキシ樹脂組成物からなる塗布剤に混入するプリプレグの樹脂量を全て抑制する傾向にあることが示された一方で、ポットライフが低下することが示された。
<Examples 1 and 2>
In Examples 1 and 2, the type of the component [D] was changed and compared. As a result, when benzylmethyl p-hydroxyphenylsulfonium hexafluoroantimonate was used as the cationic curing agent, and when iodonium salt was used as the cationic curing agent. It has been shown to be faster-curing than, volatile, resin-flowing, and tending to reduce the amount of prepreg resin mixed into the coating of the epoxy resin composition during the molding process, while pots. It has been shown that life is reduced.

<実施例2〜6、21〜23、26〜28、34、比較例4〜5>
塗布方法がスプレーの実施例2〜3では構成要素[C]の種類を変え、比較した結果、ポリビニルホルマール対比ポリビニルアセトアセタールを使用した場合の方が、樹脂フロー量の抑制効果が高いことが示された。また、同じく塗布方法がスプレーの実施例4〜6はそれぞれポリビニルアセトアセタールの添加量を変更しており、増量するほど樹脂フロー量の抑制効果が向上することが示された。
<Examples 2 to 6, 21 to 23, 26 to 28, 34, Comparative Examples 4 to 5>
In Examples 2 to 3 of the spraying method, the type of the component [C] was changed and compared. As a result, it was shown that the effect of suppressing the resin flow amount was higher when the polyvinyl acetal compared with polyvinyl formal was used. Was done. Similarly, in Examples 4 to 6 of the spraying method, the addition amount of polyvinyl acetal was changed, and it was shown that the effect of suppressing the resin flow amount was improved as the amount was increased.

一方で、比較例4では構成要素[C]が含まれない場合、樹脂フロー量が多く、成形過程中での本発明のエポキシ樹脂組成物からなる塗布剤に混入するプリプレグの樹脂量が過剰となり不良と判定された。 On the other hand, in Comparative Example 4, when the component [C] is not included, the amount of resin flow is large, and the amount of resin of the prepreg mixed in the coating agent composed of the epoxy resin composition of the present invention during the molding process becomes excessive. It was judged to be defective.

また、塗布方法が刷毛を用いた手塗りの実施例21〜22および塗布方法がバーコーターを用いた手塗りの実施例23、26〜28は構成要素[C]のポリビニルホルマールの量を変更しており、これらにおいても構成要素[C]が増量するほど樹脂フロー量の抑制効果が向上することが示された。 Further, in Examples 21 to 22 of hand coating using a brush as the coating method and Examples 23 and 26 to 28 of hand coating using a bar coater as the coating method, the amount of polyvinyl formal of the component [C] was changed. In these cases as well, it was shown that the effect of suppressing the resin flow amount is improved as the amount of the component [C] is increased.

一方で、実施例28では構成要素[C]のポリビニルホルマールの量を75質量部とした場合、密着性が良好であることが示された一方で、比較例5のようにポリビニルホルマールの量を80質量部とすると室温粘度が高く、密着性が不良と判定された。 On the other hand, in Example 28, when the amount of polyvinyl formal of the component [C] was 75 parts by mass, it was shown that the adhesion was good, while the amount of polyvinyl formal was changed as in Comparative Example 5. When it was 80 parts by mass, the viscosity at room temperature was high, and it was judged that the adhesion was poor.

また、実施例34では構成要素[C]として計算分子量がビニレックK(計算分子量40000〜54000g/mol)やエスレックKS−10(計算分子量17000g/mol)よりも高いビニレックE(計算分子量95000〜134000g/mol)を用いた場合、樹脂フロー抑制効果は高く、成形過程中で樹脂硬化物に混入するプリプレグの樹脂量の抑制効果が示された一方で、室温粘度が過剰であり密着性が不良と判定された。 Further, in Example 34, as a component [C], Vinilek E (calculated molecular weight 95,000 to 134,000 g / mol) having a calculated molecular weight higher than that of Vinilek K (calculated molecular weight of 40,000 to 54,000 g / mol) or Eslek KS-10 (calculated molecular weight of 17,000 g / mol). When mol) was used, the resin flow suppressing effect was high, and while the effect of suppressing the amount of resin of the prepreg mixed in the cured resin during the molding process was shown, it was judged that the room temperature viscosity was excessive and the adhesion was poor. Was done.

<実施例23〜25、33、比較例8>
実施例23では構成要素[A]に(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート100質量部用いた一方で、70質量部の(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートに対して実施例24では2,2−ビス(ヒドロキシメチル)−1−ブタノールの1,2−エポキシ−4−(2−オキシラニル)シクロヘキサン付加物を30質量部、実施例25ではエポキシ化ブタンテトラカルボン酸テトラキス−(3−シクロヘキセニルメチル)修飾イプシロン−カプロラクトンをそれぞれ30質量部添加した。その結果、実施例23〜25におけるエポキシ樹脂組成物の密着性は良好であり、なおかつ耐UV性も良好であった。従って、非芳香族エポキシ樹脂であれば、1種類のエポキシ樹脂を用いた場合と2種類以上のエポキシ樹脂を用いた場合ともに物性が良好なエポキシ樹脂組成物を取得可能であるということが示された。
<Examples 23 to 25, 33, Comparative Example 8>
In Example 23, 100 parts by mass of (3', 4'-epoxycyclohexane) methyl 3,4-epoxycyclohexane carboxylate was used as the component [A], while 70 parts by mass of (3', 4'-epoxycyclohexane) was used. In Example 24, 30 mass of 1,2-epoxy-4- (2-oxylanyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol was added to methyl 3,4-epoxycyclohexanecarboxylate. In Example 25, 30 parts by mass of epoxidized butane tetracarboxylic acid tetrakis- (3-cyclohexenylmethyl) -modified epsilon-caprolactone was added. As a result, the adhesion of the epoxy resin compositions in Examples 23 to 25 was good, and the UV resistance was also good. Therefore, it was shown that, in the case of a non-aromatic epoxy resin, an epoxy resin composition having good physical properties can be obtained both when one type of epoxy resin is used and when two or more types of epoxy resins are used. rice field.

また、実施例33では非芳香族エポキシ樹脂90質量部と芳香族エポキシ樹脂10質量部を併用し、耐UV性評価を実施した結果、良好と判定された。従って、エポキシ樹脂のうち芳香族エポキシ樹脂を10質量%含むエポキシ樹脂組成物の場合耐UV性は良好となることが示された。 Further, in Example 33, 90 parts by mass of the non-aromatic epoxy resin and 10 parts by mass of the aromatic epoxy resin were used in combination, and the UV resistance was evaluated. As a result, it was determined to be good. Therefore, it was shown that the UV resistance is good in the case of the epoxy resin composition containing 10% by mass of the aromatic epoxy resin among the epoxy resins.

一方で、比較例8では非芳香族エポキシ樹脂80質量部と芳香族エポキシ樹脂20質量部を併用し、耐UV性を評価した結果、不良と判定された。従って、エポキシ樹脂のうち芳香族エポキシ樹脂を20質量%含むエポキシ樹脂組成物の場合耐UV性は不良となることが示された。 On the other hand, in Comparative Example 8, 80 parts by mass of the non-aromatic epoxy resin and 20 parts by mass of the aromatic epoxy resin were used in combination, and as a result of evaluating the UV resistance, it was determined to be defective. Therefore, it was shown that the UV resistance of the epoxy resin composition containing 20% by mass of the aromatic epoxy resin among the epoxy resins is poor.

<実施例1、2、7〜10、比較例6、7>
実施例7では構成要素[D]カチオン硬化剤であるヨードニウム塩を実施例1対比増量した。実施例7のエポキシ樹脂組成物の速硬化性は実施例1対比増加した一方で、ポットライフは低下したが、揮発量と樹脂フロー量およびの成形過程中での本発明のエポキシ樹脂組成物からなる塗布剤に混入するプリプレグの樹脂量の抑制効果が高いことが示された。
<Examples 1, 2, 7 to 10, Comparative Examples 6, 7>
In Example 7, the amount of iodonium salt, which is a component [D] cationic curing agent, was increased as compared with Example 1. Although the fast-curing property of the epoxy resin composition of Example 7 was increased as compared with Example 1, the pot life was decreased, but the volatile amount and the resin flow amount were obtained from the epoxy resin composition of the present invention during the molding process. It was shown that the effect of suppressing the amount of resin of the prepreg mixed in the coating agent is high.

また同様に実施例8では構成要素[D]のカチオン硬化剤であるベンジルメチルp−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモナートを実施例2対比増量した。実施例8のエポキシ樹脂組成物の速硬化性は実施例2対比増加し、一方でポットライフは低下したが、揮発量と樹脂フロー量および成形過程中での本発明のエポキシ樹脂組成物からなる塗布剤に混入するプリプレグの樹脂量の抑制効果が高いことが示された。 Similarly, in Example 8, the amount of benzylmethyl p-hydroxyphenylsulfonium hexafluoroantimonate, which is a cationic curing agent for the component [D], was increased as compared with Example 2. The fast-curing property of the epoxy resin composition of Example 8 was increased as compared with Example 2, while the pot life was decreased, but it consisted of the volatile amount, the resin flow amount, and the epoxy resin composition of the present invention during the molding process. It was shown that the effect of suppressing the amount of resin of the prepreg mixed in the coating agent is high.

実施例9〜10では構成要素[D]のカチオン硬化剤であるジメチル−p−アセトキシフェニルスルホニウムヘキサフルオロアンチモナートとベンジルメチルp−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモナートの2種類を硬化剤として併用した。実施例9は実施例8対比速硬化性が低下した一方で、ポットライフの増加が見られた。実施例10ではメチル−p−アセトキシフェニルスルホニウムヘキサフルオロアンチモナートを実施例9から増量している。実施例10は実施例9対比速硬化性が向上し、ポットライフが低下した。従って、構成要素[D]カチオン硬化剤の添加割合、2種添加した場合は混合比によりエポキシ樹脂組成物の速硬化性とポットライフのバランスを制御可能であることが示された。 In Examples 9 to 10, two types of dimethyl-p-acetoxyphenylsulfonium hexafluoroantimonate and benzylmethyl p-hydroxyphenylsulfonium hexafluoroantimonate, which are cationic curing agents for the component [D], were used in combination as curing agents. In Example 9, the fast curing property was decreased as compared with Example 8, while the pot life was increased. In Example 10, the amount of methyl-p-acetoxyphenylsulfonium hexafluoroantimonate is increased from that of Example 9. In Example 10, the fast curing property was improved as compared with Example 9, and the pot life was lowered. Therefore, it was shown that the balance between the quick-curing property and the pot life of the epoxy resin composition can be controlled by the addition ratio of the component [D] cationic curing agent and the mixing ratio when two kinds are added.

比較例6では構成要素[D]カチオン硬化剤であるジメチル−p−アセトキシフェニルスルホニウムヘキサフルオロアンチモナートを0.05部添加した。比較例6は速硬化性が低く、揮発量ならびに成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量が不良と判定された。 In Comparative Example 6, 0.05 part of dimethyl-p-acetoxyphenylsulfonium hexafluoroantimonate, which is a component [D] cationic curing agent, was added. In Comparative Example 6, the quick-curing property was low, and the amount of volatilization and the amount of prepreg resin mixed in the epoxy resin composition during the molding process were determined to be defective.

一方で、比較例7ではベンジルメチルp−ヒドロキシフェニルスルホニウムヘキサフルオロアンチモナートを15質量部添加した。速硬化性は高いが、ポットライフが顕著に低下した。また、成形過程中でのエポキシ樹脂組成物からなる塗布剤に混入するプリプレグの樹脂量の評価が不良と判定されたが、また、比較例7では1000kJ/mのUV照射後の硬化後のエポキシ樹脂組成物の耐UV性試験により不良と判定されたため、耐UV性は低いことが示された。 On the other hand, in Comparative Example 7, 15 parts by mass of benzylmethyl p-hydroxyphenylsulfonium hexafluoroantimonate was added. The fast-curing property was high, but the pot life was significantly reduced. Further, it was determined that the evaluation of the amount of the prepreg resin mixed in the coating agent composed of the epoxy resin composition during the molding process was poor, but in Comparative Example 7, after curing after UV irradiation of 1000 kJ / m 2. Since it was determined to be defective by the UV resistance test of the epoxy resin composition, it was shown that the UV resistance was low.

<実施例11〜12、実施例29〜30、比較例2、3>
実施例11〜12では、構成要素[B]の酸化チタンの量を変え、比較をした結果、酸化チタンの量が多い実施例12の方が実施例11と比較して、速硬化性が低下し、ポットライフが向上し、酸化チタンの量でエポキシ樹脂組成物の反応性を制御可能であることが示された。また、酸化チタンの量が多い実施例12の方が実施例11より成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量を抑制する効果が高いことが示された。
<Examples 11 to 12, Examples 29 to 30, Comparative Examples 2 and 3>
In Examples 11 to 12, as a result of changing the amount of titanium oxide of the component [B] and making a comparison, the quick-curing property of Example 12 having a large amount of titanium oxide was lower than that of Example 11. However, it was shown that the pot life was improved and the reactivity of the epoxy resin composition could be controlled by the amount of titanium oxide. Further, it was shown that Example 12 having a large amount of titanium oxide has a higher effect of suppressing the amount of prepreg resin mixed in the epoxy resin composition during the molding process than that of Example 11.

実施例29〜30では構成要素[B]の酸化チタンの量をそれぞれ15質量部および75質量部とした。実施例30は実施例29対比速硬化性が低下し、揮発量の抑制向上効果が高いことが示された。また、両者の耐UV性ならびに成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量は良好との判定を得られた。 In Examples 29 to 30, the amounts of titanium oxide of the component [B] were set to 15 parts by mass and 75 parts by mass, respectively. It was shown that the fast curability of Example 30 was lower than that of Example 29, and the effect of suppressing and improving the amount of volatilization was high. In addition, it was determined that the UV resistance of both and the amount of prepreg resin mixed in the epoxy resin composition during the molding process were good.

一方で、比較例2のように構成要素[B]の酸化チタンを10質量部とした場合、成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量が多く、不良と判定された。 On the other hand, when the titanium oxide of the component [B] was 10 parts by mass as in Comparative Example 2, the amount of resin of the prepreg mixed in the epoxy resin composition during the molding process was large, and it was determined to be defective.

また、比較例3のように構成要素[B](II)の酸化チタンを100質量部添加した場合速硬化性が乏しく、180℃1時間後の揮発量が不良と判定された。 Further, when 100 parts by mass of titanium oxide of the component [B] (II) was added as in Comparative Example 3, the quick-curing property was poor, and the amount of volatilization after 1 hour at 180 ° C. was determined to be poor.

<実施例8、13〜15、23,31>
塗布方法がスプレーである実施例13〜15では構成要素[F]の硬化助剤を適用した。実施例13では構成要素[F]として硬化助剤4−ヒドロキシフェニルジメチルスルホニウム=メチルスルフェートを0.2質量部適用した結果、実施例8対比ポットライフの向上が見られた。また、実施例15では4−ヒドロキシフェニルジメチルスルホニウム=メチルスルフェートを1.0部と増量した結果、実施例13対比さらにポットライフの向上が見られた。また、同様に実施例14では構成要素[F]の硬化助剤の種類を4−(メチルチオ)フェノールに変更し、0.2部適用した結果、実施例8対比ポットライフの向上が見られた。また、実施例13〜15は揮発性、耐UV性、成形過程中でのエポキシ樹脂組成物からなる塗布剤に混入するプリプレグの樹脂量の全てが良好との判定を得られた。
<Examples 8, 13 to 15, 23, 31>
In Examples 13 to 15 in which the coating method was a spray, the curing aid of the component [F] was applied. In Example 13, 0.2 parts by mass of the curing aid 4-hydroxyphenyldimethylsulfonium = methylsulfate was applied as the component [F], and as a result, the pot life was improved as compared with Example 8. Further, in Example 15, as a result of increasing the amount of 4-hydroxyphenyldimethylsulfonium = methylsulfate to 1.0 part, further improvement in pot life was observed as compared with Example 13. Similarly, in Example 14, the type of curing aid for the component [F] was changed to 4- (methylthio) phenol, and 0.2 parts were applied. As a result, the pot life was improved as compared with Example 8. .. Further, it was determined that Examples 13 to 15 had good volatility, UV resistance, and the amount of resin of the prepreg mixed in the coating agent composed of the epoxy resin composition during the molding process.

また、塗布方法がバーコーターを用いた手塗りである実施例31において構成要素[F]として4−ヒドロキシフェニルジメチルスルホニウム=メチルスルフェートを0.2質量部適用した結果、同じく塗布方法がバーコーターを用いた手塗りである実施例23対比ポットライフの向上が見られた。そのため、塗布方法に限らず構成要素[F]をエポキシ樹脂組成物に適用することでポットライフ向上効果を得られることが示された。 Further, as a result of applying 0.2 parts by mass of 4-hydroxyphenyldimethylsulfonium = methylsulfate as a component [F] in Example 31 in which the coating method is hand coating using a bar coater, the coating method is also the bar coater. An improvement in pot life was observed as compared with Example 23, which was hand-painted using. Therefore, it was shown that the pot life improving effect can be obtained by applying the component [F] to the epoxy resin composition regardless of the coating method.

<実施例8、16〜18、23、32>
塗布方法がスプレーである実施例16〜18は構成要素[E]チキソトロピー性付与剤を適用している。実施例16〜17ではヒュームドシリカとアルキルアンモニウムクレイを同じく塗布方法がスプレーである実施例8に対してそれぞれ4部適用しており、速硬化性、耐UV性を損なうことなく、樹脂フロー量ならびに成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量を抑制する効果が示された。また、実施例18ではヒュームドシリカとアルキルアンモニウムクレイの両方を実施例8に対してそれぞれ4部ずつ適用しており、実施例16〜17対比さらに樹脂フロー量ならびに成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量を抑制する効果が高いことが示された。
<Examples 8, 16-18, 23, 32>
In Examples 16 to 18 in which the coating method is a spray, the component [E] thixotropy-imparting agent is applied. In Examples 16 to 17, four parts each of fumed silica and alkylammonium clay are applied to Example 8 in which the coating method is spray, and the amount of resin flow is not impaired in quick curing and UV resistance. In addition, the effect of suppressing the amount of prepreg resin mixed in the epoxy resin composition during the molding process was shown. Further, in Example 18, both fumed silica and alkylammonium clay are applied to Example 8 in four parts each, and the amount of resin flow and the epoxy resin composition in the molding process are further compared with those of Examples 16 to 17. It was shown that the effect of suppressing the amount of resin of the prepreg mixed in the substance is high.

また、塗布方法がバーコーターを用いた手塗りの実施例32において構成要素[E]にヒュームドシリカとアルキルアンモニウムクレイの両方を適用した場合、同じく塗布方法がバーコーターを用いた手塗りである実施例23対比樹脂フロー量ならびに成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量を抑制する効果が高いことが示された。 Further, when both fumed silica and alkylammonium clay are applied to the component [E] in Example 32 of hand coating using a bar coater as the coating method, the coating method is also hand coating using the bar coater. Example 23 It was shown that the effect of suppressing the amount of resin flow and the amount of prepreg resin mixed in the epoxy resin composition during the molding process was high.

そのため、塗布方法に限らず構成要素[E]をエポキシ樹脂組成物に適用することで樹脂フロー量抑制効果と成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量の向上効果を得られることが示された。 Therefore, not limited to the coating method, by applying the component [E] to the epoxy resin composition, it is possible to obtain the effect of suppressing the resin flow amount and the effect of improving the resin amount of the prepreg mixed in the epoxy resin composition during the molding process. Was shown.

<実施例8、19〜20>
塗布方法がスプレーである実施例19〜20では、構成要素[E]チキソトロピー性付与剤ならびに構成要素[F]硬化助剤の両方を適用しており、同じく塗布方法がスプレーである実施例8と対比、樹脂フロー量ならびに成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量の抑制効果があり、さらにポットライフが優れることが示された。従って構成要素[E]ならびに[F]を同時に用いることで相乗効果が得られることが示された。
<Examples 8, 19 to 20>
In Examples 19 to 20 in which the coating method is a spray, both the component [E] thixotropy-imparting agent and the component [F] curing aid are applied, and the same as in Example 8 in which the coating method is a spray. In comparison, it was shown that the resin flow amount and the resin amount of the prepreg mixed in the epoxy resin composition during the molding process were suppressed, and the pot life was excellent. Therefore, it was shown that a synergistic effect can be obtained by using the components [E] and [F] at the same time.

また、塗布方法がバーコーターを用いた手塗りの実施例32において構成要素[E]チキソトロピー性付与剤ならびに構成要素[F]硬化助剤の両方を適用した場合、同じく塗布方法がバーコーターを用いた手塗りである実施例23対比樹脂フロー量ならびに成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量の抑制効果があり、さらにポットライフが優れることが示された。 Further, when both the component [E] thixotropy-imparting agent and the component [F] curing aid are applied in Example 32 of hand coating using a bar coater as the application method, the application method also uses the bar coater. It was shown that there was an effect of suppressing the amount of the resin flow compared to Example 23, which was hand-painted, and the amount of the prepreg resin mixed in the epoxy resin composition during the molding process, and the pot life was further excellent.

そのため、塗布方法に限らず構成要素[E]および構成要素[F]の両方をエポキシ樹脂組成物に適用することで樹脂フロー量抑制効果と成形過程中でのエポキシ樹脂組成物に混入するプリプレグの樹脂量の向上効果を得られることが示された。 Therefore, not limited to the coating method, by applying both the constituent element [E] and the constituent element [F] to the epoxy resin composition, the effect of suppressing the resin flow amount and the prepreg mixed in the epoxy resin composition during the molding process can be obtained. It was shown that the effect of improving the amount of resin can be obtained.

<実施例8、35〜45、比較例9〜10>
実施例35〜37では構成要素[A]の非芳香族エポキシ樹脂として2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルを用い、構成要素[C]の非芳香族熱可塑性樹脂にポリビニルホルマール、ポリビニルアセトアセタール、ポリビニルブチラールをそれぞれ1種類ずつ用いた。実施例35、36、37の順にエポキシ樹脂組成物の硬化物における弾性率の低下、曲げ歪の向上が見られた。また、実施例35と実施例8を比較すると発熱ピーク温度が実施例35は低い一方で、高いポットライフを示し、構成要素[A]の種類変更により反応性を制御することが可能であることが示された。従って、構成要素[A]の種類変更により反応性を制御でき、速硬化性とポットライフすなわち成形過程中での樹脂フロー量の抑制・樹脂硬化物に混入するプリプレグの樹脂量の抑制効果と工程通過性とのバランスを調整可能であることが示された。
<Examples 8, 35 to 45, Comparative Examples 9 to 10>
In Examples 35 to 37, diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane was used as the non-aromatic epoxy resin of the component [A], and the non-aromatic thermoplastic resin of the component [C] was used. One type each of polyvinyl formal, polyvinyl acetal acetal, and polyvinyl butyral was used. In the order of Examples 35, 36, and 37, a decrease in elastic modulus and an improvement in bending strain were observed in the cured product of the epoxy resin composition. Further, when Example 35 and Example 8 are compared, the exothermic peak temperature of Example 35 is low, but the pot life is high, and the reactivity can be controlled by changing the type of the component [A]. It has been shown. Therefore, the reactivity can be controlled by changing the type of the component [A], and the quick-curing property and the pot life, that is, the effect of suppressing the amount of resin flow in the molding process, the effect of suppressing the amount of resin of the prepreg mixed in the cured resin, and the process. It was shown that the balance with passability can be adjusted.

実施例38〜39では構成要素[G]ゴムのシリコーンゴムパウダーを用いた。構成要素[G]の含有量の増加によりエポキシ樹脂組成物の硬化物弾性率の低下、曲げ歪の向上、樹脂フロー量の抑制効果が示された。一方で、比較例9のように構成要素[G]が過小な場合は樹脂フロー量の抑制効果が十分に発揮されず、成形過程中で樹脂硬化物に混合するプリプレグの樹脂量が過剰となり不良と判定された。また、比較例10のように構成要素[G]が過剰な場合はスプレーする際ノズルにエポキシ樹脂組成物が詰まり、塗布することができなかった。 In Examples 38 to 39, silicone rubber powder of the component [G] rubber was used. By increasing the content of the component [G], the effect of lowering the elastic modulus of the cured product of the epoxy resin composition, improving the bending strain, and suppressing the amount of resin flow was shown. On the other hand, when the component [G] is too small as in Comparative Example 9, the effect of suppressing the amount of resin flow is not sufficiently exhibited, and the amount of resin of the prepreg mixed with the cured resin during the molding process becomes excessive, which is defective. Was determined. Further, when the component [G] was excessive as in Comparative Example 10, the nozzle was clogged with the epoxy resin composition when spraying, and the coating could not be performed.

実施例40〜41では構成要素[A]の非芳香族エポキシ樹脂に(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートと2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルの2種を用いた。実施例35,40〜41を比較すると(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートの含有量が多い程、発熱ピーク温度は低温になり、樹脂フロー量ならびに成形過程中での樹脂硬化物に混入するプリプレグの樹脂量が抑制されることが示された。構成要素[A]として(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート1種類のみ用いた実施例8は速硬化性に優れ、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテル1種類のみ用いた実施例35ではポットライフに優れることが示されており、実施例40〜41のように上記を2種類用いた場合は優れた速硬化性と優れたポットライフを両立することが可能となる。従って、構成要素[A]の非芳香族エポキシ樹脂を2種類用いることでエポキシ樹脂組成物反応性を制御でき、速硬化性とポットライフすなわち成形過程中での樹脂フロー量・樹脂硬化物に混入するプリプレグの樹脂量の抑制効果と工程通過性とのバランスを調整可能であることが示された。ここで、実施例8、35を比較すると構成要素[A]の非芳香族エポキシ樹脂に(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートを用いた実施例8よりも2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルを用いた実施例35の方がエポキシ樹脂硬化物の曲げ歪が高いことが示され、実施例40〜41を比較すると構成要素[A]の非芳香族エポキシ樹脂として用いる2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルの割合が高い方がエポキシ樹脂硬化物の曲げ歪が高くなることが示された。 In Examples 40 to 41, the non-aromatic epoxy resin of the component [A] is composed of (3', 4'-epoxycyclohexane) methyl 3,4-epoxycyclohexanecarboxylate and 2,2-bis (4-hydroxycyclohexyl) propane. Two kinds of diglycidyl ethers of the above were used. Comparing Examples 35, 40 to 41, the higher the content of (3', 4'-epoxycyclohexane) methyl3,4-epoxycyclohexanecarboxylate, the lower the exothermic peak temperature, the lower the resin flow amount and the molding process. It was shown that the amount of resin in the prepreg mixed in the cured resin product was suppressed. Example 8 in which only one type of (3', 4'-epoxycyclohexane) methyl3,4-epoxycyclohexanecarboxylate was used as the component [A] was excellent in quick-curing property and was 2,2-bis (4-hydroxycyclohexyl). ) In Example 35 using only one type of diglycidyl ether of propane, it was shown that the pot life was excellent, and when two types of the above were used as in Examples 40 to 41, excellent quick curing and excellent performance were achieved. It is possible to achieve both pot life. Therefore, the reactivity of the epoxy resin composition can be controlled by using two types of the non-aromatic epoxy resin of the component [A], and the epoxy resin composition is mixed with the quick-curing property, the pot life, that is, the amount of resin flow during the molding process and the cured resin product. It was shown that the balance between the effect of suppressing the amount of resin in the prepreg and the process passability can be adjusted. Here, when Examples 8 and 35 are compared, it is more than Example 8 in which (3', 4'-epoxycyclohexane) methyl 3,4-epoxycyclohexanecarboxylate is used for the non-aromatic epoxy resin of the component [A]. It was shown that Example 35 using diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane had a higher bending strain of the epoxy resin cured product, and when Examples 40 to 41 were compared, the constituent elements [ It was shown that the higher the proportion of diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane used as the non-aromatic epoxy resin of A], the higher the bending strain of the epoxy resin cured product.

実施例42では構成要素[A]の非芳香族エポキシ樹脂に(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート、実施例43では(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートと2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルを用い、両者とも構成要素[F]の硬化助剤に4−ヒドロキシフェニルジメチルスルホニウム=メチルスルフェートを用いた。実施例42は実施例35と実施例43は実施例41と比較すると、実施例42、43はそれぞれ発熱ピーク温度が向上し、構成要素[F]の含有によりエポキシ樹脂組成物の反応性を制御可能であることが示された。 In Example 42, (3', 4'-epoxycyclohexane) methyl 3,4-epoxycyclohexanecarboxylate was added to the non-aromatic epoxy resin of the component [A], and in Example 43, (3', 4'-epoxycyclohexane). Using methyl 3,4-epoxycyclohexanecarboxylate and diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane, both are 4-hydroxyphenyldimethylsulfonium = methylsul as a curing aid for component [F]. Fate was used. In Example 42, the exothermic peak temperature was improved in Examples 42 and 43 as compared with Example 35 and Example 43, respectively, and the reactivity of the epoxy resin composition was controlled by the inclusion of the component [F]. It was shown to be possible.

実施例44では構成要素[A]の非芳香族エポキシ樹脂に(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート、実施例45では(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートと2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルを用い、両者とも構成要素[E]チキソトロピー性付与剤のヒュームドシリカ、構成要素[F]硬化助剤の4−ヒドロキシフェニルジメチルスルホニウム=メチルスルフェート、構成要素[G]ゴムのシリコーンゴムパウダーを用いた。実施例44は実施例35と、実施例45は実施例41と比較すると、実施例44、45はそれぞれ構成要素[F]の含有によりエポキシ樹脂組成物の反応性を制御可能であることが示された。また、実施例44は実施例42、実施例45は実施例43と比較すると、実施例44、45は構成要素[E]および構成要素[G]の含有により樹脂フロー量が抑制されており、成形過程中で樹脂硬化物に混入するプリプレグの樹脂量も抑制が見られた。実施例44は実施例35と、実施例45は実施例41と比較すると、実施例44、45はそれぞれ構成要素[F]の含有によりさらにエポキシ樹脂組成物のポットライフを向上させる効果が示された。 In Example 44, the non-aromatic epoxy resin of the component [A] was coated with (3', 4'-epoxycyclohexane) methyl 3,4-epoxycyclohexanecarboxylate, and in Example 45, (3', 4'-epoxycyclohexane). Using methyl 3,4-epoxycyclohexanecarboxylate and diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane, both are constituents [E] fumed silica, a thixotropy-imparting agent, constituents [F]. A curing aid 4-hydroxyphenyldimethylsulfonium = methylsulfate and silicone rubber powder of component [G] rubber were used. Comparing Example 44 with Example 35 and Example 45 with Example 41, it is shown that the reactivity of the epoxy resin composition can be controlled by the inclusion of the component [F] in Examples 44 and 45, respectively. Was done. Further, as compared with Example 42 in Example 44 and Example 43 in Example 43, in Examples 44 and 45, the amount of resin flow is suppressed by the inclusion of the component [E] and the component [G]. The amount of prepreg resin mixed in the cured resin during the molding process was also suppressed. Comparing Example 44 with Example 35 and Example 45 with Example 41, Examples 44 and 45 show the effect of further improving the pot life of the epoxy resin composition by containing the component [F], respectively. rice field.

<実施例23、46〜56、比較例11>
実施例46〜48では構成要素[A]の非芳香族エポキシ樹脂として2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルを用い、構成要素[C]の非芳香族熱可塑性樹脂にポリビニルホルマール、ポリビニルアセトアセタール、ポリビニルブチラールをそれぞれ1種類ずつ用いた。実施例46、47、48の順に室温粘度の向上、エポキシ樹脂組成物の硬化物における弾性率の低下、曲げ歪の向上が見られた。また、実施例46と実施例23を比較すると発熱ピーク温度が実施例46は低い一方で、高いポットライフを示した。従って、構成要素[A]の種類変更により反応性を制御でき、速硬化性とポットライフすなわち成形過程中での樹脂フロー量の抑制・樹脂硬化物に混入するプリプレグの樹脂量の抑制効果と工程通過性とのバランスを調整可能であることが示された。
<Examples 23, 46 to 56, Comparative Example 11>
In Examples 46 to 48, diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane was used as the non-aromatic epoxy resin of the component [A], and the non-aromatic thermoplastic resin of the component [C] was used. One type each of polyvinyl formal, polyvinyl acetal acetal, and polyvinyl butyral was used. In the order of Examples 46, 47, and 48, the room temperature viscosity was improved, the elastic modulus of the cured product of the epoxy resin composition was lowered, and the bending strain was improved. Further, when Example 46 and Example 23 were compared, the exothermic peak temperature was lower in Example 46, but showed a high pot life. Therefore, the reactivity can be controlled by changing the type of the component [A], and the quick-curing property and the pot life, that is, the effect of suppressing the amount of resin flow in the molding process, the effect of suppressing the amount of resin of the prepreg mixed in the cured resin, and the process. It was shown that the balance with passability can be adjusted.

実施例49〜50では構成要素[G]ゴムのシリコーンゴムパウダーを用いた。構成要素[G]の含有量の増加により室温粘度の向上、エポキシ樹脂組成物の硬化物弾性率の低下、曲げ歪の向上、樹脂フロー量の抑制効果が示された。一方で、比較例11のように構成要素[G]が過剰な場合は室温粘度も過剰となり、貼り付き性が不良と判定された。 In Examples 49 to 50, silicone rubber powder of the component [G] rubber was used. By increasing the content of the component [G], the room temperature viscosity was improved, the elastic modulus of the cured product of the epoxy resin composition was lowered, the bending strain was improved, and the resin flow amount was suppressed. On the other hand, when the component [G] is excessive as in Comparative Example 11, the room temperature viscosity is also excessive, and it is determined that the stickability is poor.

実施例51〜52では構成要素[A]の非芳香族エポキシ樹脂に(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートと2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルの2種を用いた。実施例46,51〜52を比較すると(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートの含有量が多い程、発熱ピーク温度は低温になり、樹脂フロー量ならびに成形過程中での樹脂硬化物に混入するプリプレグの樹脂量が抑制されることが示された。構成要素[A]として(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート1種類のみ用いた実施例23は速硬化性に優れ、2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテル1種類のみ用いた実施例46ではポットライフに優れることが示されており、実施例51〜52のように上記を2種類用いた場合は優れた速硬化性と優れたポットライフを両立することが可能となる。従って、構成要素[A]の非芳香族エポキシ樹脂を2種類用いることでエポキシ樹脂組成物反応性を制御でき、速硬化性とポットライフすなわち成形過程中での樹脂フロー量・樹脂硬化物に混入するプリプレグの樹脂量の抑制効果と工程通過性とのバランスを調整可能であることが示された。ここで、実施例23、46を比較すると構成要素[A]の非芳香族エポキシ樹脂に(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートを用いた実施例23よりも2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルを用いた実施例46の方がエポキシ樹脂硬化物の曲げ歪が高いことが示され、実施例51〜52を比較すると構成要素[A]の非芳香族エポキシ樹脂として用いる2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルの割合が高い方がエポキシ樹脂硬化物の曲げ歪が高くなることが示された。 In Examples 51 to 52, the non-aromatic epoxy resin of the component [A] is composed of (3', 4'-epoxycyclohexane) methyl 3,4-epoxycyclohexanecarboxylate and 2,2-bis (4-hydroxycyclohexyl) propane. Two kinds of diglycidyl ethers of the above were used. Comparing Examples 46, 51 to 52, the higher the content of (3', 4'-epoxycyclohexane) methyl 3,4-epoxycyclohexane carboxylate, the lower the exothermic peak temperature, the lower the resin flow amount and the molding process. It was shown that the amount of resin in the prepreg mixed in the cured resin product was suppressed. Example 23 in which only one type of (3', 4'-epoxycyclohexane) methyl3,4-epoxycyclohexanecarboxylate was used as the component [A] was excellent in quick-curing property and was 2,2-bis (4-hydroxycyclohexyl). ) Example 46 using only one type of diglycidyl ether of propane has been shown to be excellent in pot life, and when two types of the above are used as in Examples 51 to 52, excellent quick curing and excellent properties are achieved. It is possible to achieve both pot life. Therefore, the reactivity of the epoxy resin composition can be controlled by using two types of the non-aromatic epoxy resin of the component [A], and the epoxy resin composition is mixed with the quick-curing property, the pot life, that is, the amount of resin flow during the molding process and the cured resin product. It was shown that the balance between the effect of suppressing the amount of resin in the prepreg and the process passability can be adjusted. Here, when Examples 23 and 46 are compared, it is more than that of Example 23 in which (3', 4'-epoxycyclohexane) methyl 3,4-epoxycyclohexanecarboxylate is used for the non-aromatic epoxy resin of the component [A]. It was shown that Example 46 using diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane had a higher bending strain of the epoxy resin cured product, and when Examples 51 to 52 were compared, the constituent elements [ It was shown that the higher the proportion of diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane used as the non-aromatic epoxy resin of A], the higher the bending strain of the epoxy resin cured product.

実施例53では構成要素[A]の非芳香族エポキシ樹脂に(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート、実施例54では(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートと2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルを用い、両者とも構成要素[F]の硬化助剤に4−ヒドロキシフェニルジメチルスルホニウム=メチルスルフェートを用いた。実施例53は実施例46と実施例54は実施例52と比較すると、実施例53、54はそれぞれ発熱ピーク温度が向上し、構成要素[F]の含有によりエポキシ樹脂組成物の反応性を制御可能であることが示された。 In Example 53, the non-aromatic epoxy resin of the component [A] was coated with (3', 4'-epoxycyclohexane) methyl 3,4-epoxycyclohexanecarboxylate, and in Example 54, (3', 4'-epoxycyclohexane). Using methyl 3,4-epoxycyclohexanecarboxylate and diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane, both are 4-hydroxyphenyldimethylsulfonium = methylsul as a curing aid for component [F]. Fate was used. Compared with Example 46 and Example 52 in Example 53, in Examples 53 and 54, the exothermic peak temperature was improved, respectively, and the reactivity of the epoxy resin composition was controlled by the inclusion of the component [F]. It was shown to be possible.

実施例55では構成要素[A]の非芳香族エポキシ樹脂に(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレート、実施例56では(3’,4’−エポキシシクロヘキサン)メチル3,4−エポキシシクロヘキサンカルボキシレートと2,2−ビス(4−ヒドロキシシクロヘキシル)プロパンのジグリシジルエーテルを用い、両者とも構成要素[E]チキソトロピー性付与剤のヒュームドシリカ、構成要素[F]硬化助剤の4−ヒドロキシフェニルジメチルスルホニウム=メチルスルフェート、構成要素[G]ゴムのシリコーンゴムパウダーを用いた。実施例55は実施例46と、実施例56は実施例52と比較すると、実施例55、56はそれぞれ構成要素[F]の含有によりさらにエポキシ樹脂組成物のポットライフを向上させる効果が示された。 In Example 55, the non-aromatic epoxy resin of the component [A] was coated with (3', 4'-epoxycyclohexane) methyl 3,4-epoxycyclohexanecarboxylate, and in Example 56, (3', 4'-epoxycyclohexane). Using methyl 3,4-epoxycyclohexanecarboxylate and diglycidyl ether of 2,2-bis (4-hydroxycyclohexyl) propane, both are constituents [E] fumed silica, a thixotropy-imparting agent, constituents [F]. A curing aid 4-hydroxyphenyldimethylsulfonium = methylsulfate and silicone rubber powder of component [G] rubber were used. Comparing Example 55 with Example 46 and Example 56 with Example 52, Examples 55 and 56 showed the effect of further improving the pot life of the epoxy resin composition by containing the component [F], respectively. rice field.

Figure 2021138924
Figure 2021138924

Figure 2021138924
Figure 2021138924

Figure 2021138924
Figure 2021138924

Figure 2021138924
Figure 2021138924

Figure 2021138924
Figure 2021138924

Figure 2021138924
Figure 2021138924

Figure 2021138924
Figure 2021138924

Figure 2021138924
Figure 2021138924

Claims (14)

少なくとも構成要素[A]〜[D]を含むエポキシ樹脂組成物からなるスプレー用または手塗り用の塗布剤であって、全エポキシ樹脂100質量部に対して[A]を90〜100質量部、[B]を15〜75質量部、[C]を0.05〜75質量部、[D]を0.1〜10質量部含む塗布剤。
[A]非芳香族エポキシ樹脂
[B]平均粒径0.1〜10μmの顔料
[C]非芳香族熱可塑性樹脂
[D]カチオンまたはアニオン硬化剤
A coating agent for spraying or hand-coating, which comprises an epoxy resin composition containing at least the components [A] to [D], and 90 to 100 parts by mass of [A] with respect to 100 parts by mass of the total epoxy resin. A coating agent containing 15 to 75 parts by mass of [B], 0.05 to 75 parts by mass of [C], and 0.1 to 10 parts by mass of [D].
[A] Non-aromatic epoxy resin [B] Pigment with average particle size of 0.1 to 10 μm [C] Non-aromatic thermoplastic resin [D] Cationic or anionic curing agent
エポキシ樹脂組成物がさらに構成要素[E]チキソトロピー性付与剤を含む請求項1に記載の塗布剤。 The coating agent according to claim 1, wherein the epoxy resin composition further comprises a component [E] thixotropy-imparting agent. 非芳香族化合物がエポキシ樹脂組成物全体に対して90質量%以上含まれる請求項1または2に記載の塗布剤。 The coating agent according to claim 1 or 2, wherein the non-aromatic compound is contained in an amount of 90% by mass or more based on the entire epoxy resin composition. エポキシ樹脂組成物がさらに構成要素[F]硬化助剤を含む請求項1〜3のいずれかに記載の塗布剤。 The coating agent according to any one of claims 1 to 3, wherein the epoxy resin composition further comprises a component [F] curing aid. エポキシ樹脂組成物がさらに構成要素[G]ゴムを含む請求項1〜4のいずれかに記載の塗布剤。 The coating agent according to any one of claims 1 to 4, wherein the epoxy resin composition further comprises a component [G] rubber. エポキシ樹脂組成物が構成要素[A]非芳香族エポキシを少なくとも2種類含む請求項1〜5のいずれかに記載の塗布剤。 The coating agent according to any one of claims 1 to 5, wherein the epoxy resin composition contains at least two kinds of component [A] non-aromatic epoxy. 構成要素[A]非芳香族エポキシ樹脂が脂環式エポキシ樹脂である請求項1〜6のいずれかに記載の塗布剤。 Component [A] The coating agent according to any one of claims 1 to 6, wherein the non-aromatic epoxy resin is an alicyclic epoxy resin. 構成要素[C]非芳香族熱可塑性樹脂がポリビニルアルコール、ポリビニルホルマール、ポリビニルブチラール、ポリビニルアセトアセタールおよびポリ酢酸ビニルからなる群から選ばれる少なくとも一つである請求項1〜7のいずれかに記載の塗布剤。 The component [C] according to any one of claims 1 to 7, wherein the non-aromatic thermoplastic resin is at least one selected from the group consisting of polyvinyl alcohol, polyvinyl formal, polyvinyl butyral, polyvinyl acetal acetal and polyvinyl acetate. Coating agent. DSC発熱ピーク温度が80〜120℃である請求項1〜8のいずれかに記載の塗布剤。 The coating agent according to any one of claims 1 to 8, wherein the DSC heat generation peak temperature is 80 to 120 ° C. 揮発量が10%以下である請求項1〜9のいずれかに記載の塗布剤。 The coating agent according to any one of claims 1 to 9, wherein the volatilization amount is 10% or less. エポキシ樹脂組成物の硬化物に対し波長300〜400nmの紫外線を1000kJ/m照射した後に式差ΔEabの値が4以下である請求項1〜10のいずれか記載の塗布剤。 The coating agent according to any one of claims 1 to 10, wherein the cured product of the epoxy resin composition is irradiated with ultraviolet rays having a wavelength of 300 to 400 nm at 1000 kJ / m 2 and the value of the formula difference ΔE * ab is 4 or less. 請求項1〜11のいずれかに記載の塗布剤が金属の表面に塗布されてなる中間基材。 An intermediate base material obtained by applying the coating agent according to any one of claims 1 to 11 to a metal surface. 請求項1〜11のいずれかに記載の塗布剤が繊維強化複合材料前駆体の表面に塗布されてなる中間基材。 An intermediate base material obtained by applying the coating agent according to any one of claims 1 to 11 to the surface of a fiber-reinforced composite material precursor. 請求項1〜11のいずれかに記載の塗布剤が繊維強化複合材料の表面に塗布されてなる中間基材。 An intermediate base material obtained by applying the coating agent according to any one of claims 1 to 11 to the surface of a fiber-reinforced composite material.
JP2021009277A 2020-03-02 2021-01-25 Coating agent and intermediate base material Pending JP2021138924A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020034764 2020-03-02
JP2020034764 2020-03-02

Publications (2)

Publication Number Publication Date
JP2021138924A true JP2021138924A (en) 2021-09-16
JP2021138924A5 JP2021138924A5 (en) 2024-01-04

Family

ID=77667864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021009277A Pending JP2021138924A (en) 2020-03-02 2021-01-25 Coating agent and intermediate base material

Country Status (1)

Country Link
JP (1) JP2021138924A (en)

Similar Documents

Publication Publication Date Title
TWI542657B (en) Adhesive film and adhesive composition for polarizing plate, polarizing plate and optical display
TWI443169B (en) Adhesive composition and optical member
KR101808365B1 (en) Radiation curable composition
JP5525152B2 (en) UV-curable coating composition, method for producing the same, and resin-coated article coated therewith
CN108624194A (en) Solventless epoxy coating, the corrosion-inhibiting coating based on its preparation and its application
CN102732201B (en) Wear-resistant and weather-resistant epoxy resin coating adhesive and its preparation method
JP6464732B2 (en) Polyisocyanate composition for two-component non-drying adhesive, polyol composition for two-component non-drying adhesive, non-drying adhesive, and laminated film
JP7412430B2 (en) Sealant for organic EL display elements and organic EL display devices
JP2018095679A (en) Sheet-like seal material, display element seal material, surface sealing material for organic el element, organic el device, and method for manufacturing organic el device
US20200002465A1 (en) Resin composition, molded article, laminate, coating material, and adhesive
CN109863023A (en) Stripping film
WO2016104039A1 (en) Photocurable resin composition and optical material using same
WO2021153487A1 (en) Coating agent, sheet-like intermediate base material, photocurable resin film, fiber-reinforced composite material intermediate, fiber-reinforced composite material, method for producing fiber-reinforced composite material intermediate, and method for producing fiber-reinforced composite material
JP2021120215A (en) Sheet-like intermediate substrate and fiber-reinforced composite material
JP2021138924A (en) Coating agent and intermediate base material
CN110105865A (en) A kind of environment protection damp-proof UV oil polish and preparation method thereof
KR20120080050A (en) Transparent substrate
JP5699835B2 (en) Curable composition, coating composition using the same, and cured products thereof
JP5621371B2 (en) Delay curable resin composition
JP2021138925A (en) Fiber-reinforced composite material intermediate, and method for producing fiber-reinforced composite material
KR100748149B1 (en) Cationically photopolymerizable resin composition and optical disk surface protection material
JP2021175605A (en) Method for producing fiber-reinforced composite material intermediate and fiber-reinforced composite material
JP2022153282A (en) Epoxy resin composition, surface protective intermediate base and fiber-reinforced composite material intermediate
JP7039391B2 (en) Sealant for display element, sealant for organic EL element and its cured product
JP2023033784A (en) Epoxy resin composition and prepreg

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231221