JP2021138583A - Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same - Google Patents

Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same Download PDF

Info

Publication number
JP2021138583A
JP2021138583A JP2020039505A JP2020039505A JP2021138583A JP 2021138583 A JP2021138583 A JP 2021138583A JP 2020039505 A JP2020039505 A JP 2020039505A JP 2020039505 A JP2020039505 A JP 2020039505A JP 2021138583 A JP2021138583 A JP 2021138583A
Authority
JP
Japan
Prior art keywords
magnetic powder
magnetoplumbite
hexagonal ferrite
ferrite magnetic
type hexagonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020039505A
Other languages
Japanese (ja)
Inventor
秀宜 山地
Hidenobu Yamaji
秀宜 山地
昌大 後藤
Masahiro Goto
昌大 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2020039505A priority Critical patent/JP2021138583A/en
Publication of JP2021138583A publication Critical patent/JP2021138583A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

To provide: magnetoplumbite-type hexagonal ferrite magnetic powder which is suitable for use as a material for radio wave absorber having excellent performance of absorbing radio wave in a 60-85 GHz zone; and a method for producing the same.SOLUTION: A method for producing magnetoplumbite-type hexagonal ferrite magnetic powder comprises: mixing SrCO3 powder, Fe2O3 powder, and Al2O3 powder as raw material powder of magnetoplumbite-type hexagonal ferrite magnetic powder represented by a composition formula SrFe(12-x)AlxO19 (where x=1.0 to 2.2); firing the mixture in a furnace; and pulverizing the fired product. At the time of firing, a mass ratio of CO2 in the raw material powder per volume inside the furnace is configured to be 1 g/L or more.SELECTED DRAWING: None

Description

本発明は、マグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法に関し、特に、電波吸収体などの材料として使用するのに適したマグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法に関する。 The present invention relates to a magnetoplumbite-type hexagonal ferrite magnetic powder and a method for producing the same, and more particularly to a magnetoplumbite-type hexagonal ferrite magnetic powder suitable for use as a material such as a radio wave absorber and a method for producing the same.

近年、情報通信技術の高度化に伴い、携帯電話、無線LAN、衛星放送、高度道路交通システム、自動料金徴収システム(ETC)、走行支援道路システム(AHS)などの種々の用途でGHz帯域の電波が使用されている。このような高周波帯域で電波の利用形態が多様化すると、電子部品同士の干渉による故障、誤動作、機能不全などが懸念され、その対策の一つとして、電波吸収体を用いて不要な電波を吸収し、電波の反射や侵入を防いでいる。 In recent years, with the advancement of information and communication technology, GHz band radio waves are used in various applications such as mobile phones, wireless LAN, satellite broadcasting, intelligent transportation systems, automatic toll collection systems (ETC), and driving support road systems (AHS). Is used. When the usage patterns of radio waves are diversified in such a high frequency band, there are concerns about failures, malfunctions, malfunctions, etc. due to interference between electronic components, and as one of the countermeasures, an unnecessary radio wave is absorbed by using a radio wave absorber. However, it prevents the reflection and intrusion of radio waves.

特に昨今では、自動運転支援システムの研究が盛んになり、(76GHz帯域などの)60〜85GHz帯域の電波(ミリ波)を利用して車間距離などの情報を検知する車載レーダーの開発が進められ、これに伴って、(76GHz付近などの)60〜85GHzで優れた電波吸収能を発揮する素材が求められている。 In particular, in recent years, research on autonomous driving support systems has become active, and the development of in-vehicle radar that detects information such as inter-vehicle distance using radio waves (millimeter waves) in the 60 to 85 GHz band (such as the 76 GHz band) has been promoted. Along with this, there is a demand for a material that exhibits excellent radio wave absorption ability at 60 to 85 GHz (such as around 76 GHz).

このような電波吸収能を発揮する素材として、組成式AFe(12−x)Al19(但し、AはSr、Ba、CaおよびPbの1種以上、x=1.0〜2.2)で表されるマグネトプランバイト型六方晶フェライトの粉体において、レーザー回折散乱粒度分布のピーク粒径が10μm以上である電波吸収体用磁性粉体が提案されている(例えば、特許文献1参照)。 As a material exhibiting such radio wave absorption ability, composition formula AFe (12-x) Al x O 19 (however, A is one or more of Sr, Ba, Ca and Pb, x = 1.0 to 2.2. ), A magnetic powder for a radio wave absorber having a peak particle size of 10 μm or more in the laser diffraction scattering particle size distribution has been proposed as a powder of a magnetoplumbite type hexagonal ferrite represented by (see, for example, Patent Document 1). ).

特開2007−250823号公報(段落番号0011)JP-A-2007-250823 (paragraph number 0011)

しかし、今後、60〜85GHz帯域の電波(ミリ波)の利用形態が多様化すると、特許文献1の電波吸収体用磁性粉体を材料として使用した電波吸収体でも、電波吸収能が十分でない場合も考えられ、さらに電波吸収能に優れた電波吸収体の材料として使用するのに適したマグネトプランバイト型六方晶フェライト磁性粉末が望まれている。 However, if the usage patterns of radio waves (millimeter waves) in the 60 to 85 GHz band are diversified in the future, even a radio wave absorber using the magnetic powder for a radio wave absorber of Patent Document 1 as a material may not have sufficient radio wave absorption capacity. Further, a magnetoplumbite-type hexagonal ferrite magnetic powder suitable for use as a material for a radio wave absorber having excellent radio wave absorbing ability is desired.

したがって、本発明は、このような従来の問題点に鑑み、60〜85GHz帯域の電波吸収能に優れた電波吸収体の材料として使用するのに適したマグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法を提供することを目的とする。 Therefore, in view of such conventional problems, the present invention is a magnetic powder of a magnetoplumbite type hexagonal ferrite, which is suitable for use as a material of a radio wave absorber having excellent radio wave absorption capacity in the 60 to 85 GHz band, and a magnetic powder thereof. It is an object of the present invention to provide a manufacturing method.

本発明者らは、上記課題を解決するために鋭意研究した結果、組成式SrFe(12−x)Al19(但し、x=1.0〜2.2)で示されるマグネトプランバイト型六方晶フェライト磁性粉末の原料となる粉末としてSrCO粉末とFe粉末とAl粉末を混合し、炉内で焼成し、得られた焼成体を粉砕して、マグネトプランバイト型六方晶フェライト磁性粉末を製造する方法において、焼成の際に炉内の容積当たりのSrCO粉末中のCOの質量の割合を1g/L以上にすることにより、60〜85GHz帯域の電波吸収能に優れた電波吸収体の材料として使用するのに適したマグネトプランバイト型六方晶フェライト磁性粉末を製造することができることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventors have made a magnetoplumbite type represented by the composition formula SrFe (12-x) Al x O 19 (however, x = 1.0 to 2.2). SrCO 3 powder, Fe 2 O 3 powder and Al 2 O 3 powder are mixed as raw materials for hexagonal ferrite magnetic powder, fired in a furnace, and the obtained fired body is crushed to form a magnetoplumbite type. In the method for producing hexagonal ferrite magnetic powder, by setting the ratio of the mass of CO 2 in the SrCO 3 powder to the volume in the furnace to 1 g / L or more at the time of firing, the radio wave absorption capacity in the 60 to 85 GHz band is achieved. We have found that it is possible to produce a magnetoplumbite-type hexagonal ferrite magnetic powder suitable for use as a material for an excellent radio wave absorber, and have completed the present invention.

すなわち、本発明によるマグネトプランバイト型六方晶フェライト磁性粉末の製造方法は、組成式SrFe(12−x)Al19(但し、x=1.0〜2.2)で示されるマグネトプランバイト型六方晶フェライト磁性粉末の原料となる粉末としてSrCO粉末とFe粉末とAl粉末を混合し、炉内で焼成し、得られた焼成体を粉砕して、マグネトプランバイト型六方晶フェライト磁性粉末を製造する方法において、焼成の際に炉内の容積当たりのSrCO粉末中のCOの質量の割合を1g/L以上にすることを特徴とする。 That is, the method for producing a magnetoplumbite-type hexagonal ferrite magnetic powder according to the present invention is a magnetoplumbite represented by the composition formula SrFe (12-x) Al x O 19 (where x = 1.0 to 2.2). SrCO 3 powder, Fe 2 O 3 powder and Al 2 O 3 powder are mixed as raw materials for the type hexagonal ferrite magnetic powder, fired in a furnace, and the obtained fired body is crushed to obtain a magnet plumbite. A method for producing a type hexagonal ferrite magnetic powder is characterized in that the ratio of the mass of CO 2 in the SrCO 3 powder to the volume in the furnace at the time of firing is 1 g / L or more.

このマグネトプランバイト型六方晶フェライト磁性粉末の製造方法において、焼成の温度が1150〜1400℃であるのが好ましい。また、焼成体の粉砕が、粗粉砕した後に湿式粉砕することによって行われるのが好ましい。 In this method for producing a magnetoplumbite-type hexagonal ferrite magnetic powder, the firing temperature is preferably 1150 to 1400 ° C. Further, it is preferable that the fired body is pulverized by coarse pulverization and then wet pulverization.

また、本発明によるマグネトプランバイト型六方晶フェライト磁性粉末は、組成式SrFe(12−x)Al19(但し、x=1.0〜2.2)で示され、レーザー回折式粒度分布測定装置により測定された体積基準の累積50%粒径(D50)が6μm以下、X線回折測定により求めた結晶子径Dxが90nm以上であり、Ba含有量が0.40質量%以下であることを特徴とする。 Further, the magnetoplumbite-type hexagonal ferrite magnetic powder according to the present invention is represented by the composition formula SrFe (12-x) Al x O 19 (where x = 1.0 to 2.2), and has a laser diffraction type particle size distribution. The cumulative 50% particle size (D 50 ) based on the volume measured by the measuring device is 6 μm or less, the crystallite diameter Dx determined by X-ray diffraction measurement is 90 nm or more, and the Ba content is 0.40 mass% or less. It is characterized by being.

このマグネトプランバイト型六方晶フェライト磁性粉末のBET比表面積は2m/g以下であるのが好ましい。また、BET比表面積と前記体積基準の累積50%粒径(D50)との積は6μm・m/g以下であるのが好ましい。 The BET specific surface area of this magnetoplumbite-type hexagonal ferrite magnetic powder is preferably 2 m 2 / g or less. The product of the BET specific surface area and the volume-based cumulative 50% particle size (D 50 ) is preferably 6 μm · m 2 / g or less.

また、本発明による電波吸収体は、上記のマグネトプランバイト型六方晶フェライト磁性粉末と樹脂を含むことを特徴とする。 Further, the radio wave absorber according to the present invention is characterized by containing the above-mentioned magnetoplumbite-type hexagonal ferrite magnetic powder and a resin.

本発明によれば、60〜85GHz帯域の電波吸収能に優れた電波吸収体の材料として使用するのに適したマグネトプランバイト型六方晶フェライト磁性粉末を製造することができる。 According to the present invention, it is possible to produce a magnetoplumbite-type hexagonal ferrite magnetic powder suitable for use as a material for a radio wave absorber having excellent radio wave absorption capacity in the 60 to 85 GHz band.

本発明によるマグネトプランバイト型六方晶フェライト磁性粉末の製造方法の実施の形態は、組成式SrFe(12−x)Al19(但し、x=1.0〜2.2(好ましくは1.3〜2.0))で示されるマグネトプランバイト型六方晶フェライト磁性粉末の原料となる粉末としてSrCO粉末とFe粉末とAl粉末を混合し、(好ましくは、造粒成形して得られたペレット状などの成形体を焼成用容器内に充填した後に容器の上面の開口部を蓋で塞いで)焼成炉内において(好ましくは1150〜1400℃で)焼成し、得られた焼成体を粉砕(好ましくはハンマーミルなどによる衝撃粉砕などによる粗粉砕した後に湿式粉砕)して、マグネトプランバイト型六方晶フェライト磁性粉末を製造する方法において、焼成の際に(炉外からガスを導入しないで)炉内の容積(L)当たりのSrCO粉末中のCOの質量(g)の割合を1g/L以上(好ましくは1〜1000g/L)にする。 An embodiment of the method for producing a magnetoplumbite-type hexagonal ferrite magnetic powder according to the present invention is a composition formula SrFe (12-x) Al x O 19 (provided that x = 1.0 to 2.2 (preferably 1. SrCO 3 powder, Fe 2 O 3 powder and Al 2 O 3 powder are mixed as the raw material of the magnetoplumbite type hexagonal ferrite magnetic powder shown in 3 to 2.0)) (preferably granulated). After filling the molded product such as pellets obtained by molding into a firing container, the opening on the upper surface of the container is closed with a lid and fired in a firing furnace (preferably at 1150 to 1400 ° C.) to obtain the obtained product. In a method for producing a magnetoplumbite-type hexagonal ferrite magnetic powder by crushing the fired body (preferably coarsely crushed by impact crushing with a hammer mill or the like and then wet crushing), during firing (from outside the furnace). The ratio of the mass (g) of CO 2 in the SrCO 3 powder to the volume (L) in the furnace (without introducing gas) is 1 g / L or more (preferably 1 to 1000 g / L).

なお、SrCO粉末中のCOの質量は、SrCOのモル数と1モル当たりのCOの質量(44.0(g/モル))との積である。また、炉内の容積のうち、焼成に有効な容積は、成形体を充填した後に炉内に入れる焼成用容器の容積を差し引いた容積であるが、焼成用容器の容積は、炉内の容積に比べて非常に小さいため、焼成用容器の容積を無視することができる。また、焼成炉が密閉型の焼成炉である場合には、炉内の容積は、成形体を充填した焼成用容器が配置される炉室の容積である。 The mass of CO 2 in the SrCO 3 powder is the product of the number of moles of SrCO 3 and the mass of CO 2 per mole (44.0 (g / mol)). Further, of the volume in the furnace, the volume effective for firing is the volume obtained by subtracting the volume of the firing container to be put into the furnace after filling the molded body, but the volume of the firing container is the volume in the furnace. Since it is very small compared to the above, the volume of the firing container can be ignored. When the firing furnace is a closed type firing furnace, the volume inside the furnace is the volume of the furnace chamber in which the firing container filled with the molded body is arranged.

このように焼成の際に炉内の容積当たりの原料粉末としてのSrCO粉末中のCOの質量の割合を多くすると、焼成の際にSrCOがある程度分解した段階でCOガスの濃度が高くなって、SrCOからSrOへの分解速度が遅くなる。焼成の初期には、(SrCOが分解して生成した)SrOから六方晶フェライト結晶の核が生成されると考えられるが、(SrCOが分解して)SrOが生成する速度が遅いため、焼成の初期に六方晶フェライト結晶の核が多量に生成されるのを抑制することができる。そのため、(SrCOが分解して生成した)SrOが、六方晶フェライト結晶の核生成ではなく、結晶成長に使用される割合が多くなり、結晶成長が進み易くなって結晶子径が大きくなると考えられる。 In this way, if the ratio of the mass of CO 2 in the SrCO 3 powder as the raw material powder per volume in the furnace is increased during firing, the concentration of CO 2 gas will increase when SrCO 3 is decomposed to some extent during firing. The higher the value, the slower the rate of decomposition of SrCO 3 into SrO. The initial firing, (SrCO 3 was formed by decomposition) is considered to nuclei from SrO hexagonal ferrite crystals is produced, due to the slow rate of producing the (SrCO 3 is decomposed) SrO, It is possible to suppress the formation of a large amount of hexagonal ferrite crystal nuclei at the initial stage of calcination. Therefore, it is considered that SrO (produced by decomposition of SrCO 3 ) is used more for crystal growth instead of nucleation of hexagonal ferrite crystals, which facilitates crystal growth and increases crystallite diameter. Be done.

上述したマグネトプランバイト型六方晶フェライト磁性粉末の製造方法の実施の形態により、本発明によるマグネトプランバイト型六方晶フェライト磁性粉末の実施の形態を製造することができる。 By the embodiment of the above-described method for producing a magnetoplumbite-type hexagonal ferrite magnetic powder, an embodiment of a magnetoplumbite-type hexagonal ferrite magnetic powder according to the present invention can be produced.

また、本発明によるマグネトプランバイト型六方晶フェライト磁性粉末の実施の形態は、組成式SrFe(12−x)Al19(但し、x=1.0〜2.2)で示され、レーザー回折式粒度分布測定装置により測定された体積基準の累積50%粒径(D50)が6μm以下(好ましくは1〜6μm、さらに好ましくは2〜5.5μm)、X線回折測定により求めた結晶子径Dxが90nm以上(好ましくは90〜180nm、さらに好ましくは100〜150nm)であり、Ba含有量(不純物としてのBaの含有量)が0.40質量%以下(好ましくは0.01〜0.30質量%、さらに好ましくは0.05〜0.20質量%)である。このように組成式SrFe(12−x)Al19(但し、x=1.0〜2.2)で示されるマグネトプランバイト型六方晶フェライト磁性粉末のレーザー回折式粒度分布測定装置により測定された体積基準の累積50%粒径(D50)を6μm以下にし且つX線回折測定により求めた結晶子径Dxを90nm以上にすれば、60〜85GHz帯域のミリ波の電波吸収能に優れた電波吸収体の材料として使用するのに適したマグネトプランバイト型六方晶フェライト磁性粉末を製造することができる。また、マグネトプランバイト型六方晶フェライト磁性粉末のレーザー回折式粒度分布測定装置により測定された体積基準の累積50%粒径(D50)を6μm以下にすれば、その磁性粉末を使用した電波吸収体シートの薄層化を図ることもできる。さらに、海外の環境規制を考慮すると、マグネトプランバイト型六方晶フェライト磁性粉末中のBa含有量が少ないのが好ましい。 Moreover, the embodiment of the magnetoplumbite type hexagonal ferrite magnetic powder according to the present invention is represented by the composition formula SrFe (12-x) Al x O 19 (where x = 1.0 to 2.2), and is represented by a laser. A volume-based cumulative 50% particle size (D 50 ) measured by a diffraction type particle size distribution measuring device is 6 μm or less (preferably 1 to 6 μm, more preferably 2 to 5.5 μm), and a crystal determined by X-ray diffraction measurement. The child diameter Dx is 90 nm or more (preferably 90 to 180 nm, more preferably 100 to 150 nm), and the Ba content (content of Ba as an impurity) is 0.40% by mass or less (preferably 0.01 to 0). .30% by mass, more preferably 0.05 to 0.20% by mass). As described above, the magnetoplumbite type hexagonal ferrite magnetic powder represented by the composition formula SrFe (12-x) Al x O 19 (however, x = 1.0 to 2.2) is measured by a laser diffraction type particle size distribution measuring device. If the cumulative 50% particle size (D 50 ) based on the volume is set to 6 μm or less and the crystallite diameter Dx determined by X-ray diffraction measurement is set to 90 nm or more, the radio wave absorption ability of millimeter waves in the 60 to 85 GHz band is excellent. It is possible to produce a magnetoplumbite-type hexagonal ferrite magnetic powder suitable for use as a material for a radio wave absorber. Further, if the cumulative 50% particle size (D 50 ) based on the volume measured by the laser diffraction type particle size distribution measuring device of the magnetic powder of the magnetoplumbite type hexagonal ferrite is set to 6 μm or less, radio wave absorption using the magnetic powder is performed. It is also possible to make the body sheet thinner. Further, in consideration of overseas environmental regulations, it is preferable that the Ba content in the magnetoplumbite-type hexagonal ferrite magnetic powder is low.

このマグネトプランバイト型六方晶フェライト磁性粉末のBET比表面積は、2m/g以下であるのが好ましく、0.5〜2m/g以下であるのがさらに好ましい。また、BET比表面積と前記体積基準の累積50%粒径(D50)との積は、6μm・m/g以下であるのが好ましく、1〜6μm・m/gであるのがさらに好ましく、3.5〜5.5μm・m/gであるのが最も好ましい。この積(BET×D50)が6μm・m/g以下であれば、磁性粉末の保磁力Hcを高く維持しながら、磁性粉末を使用した電波吸収体シートの透過減衰量を高く(電波吸収能を高く)することができる。 The BET specific surface area of this magnetoplumbite-type hexagonal ferrite magnetic powder is preferably 2 m 2 / g or less, and more preferably 0.5 to 2 m 2 / g or less. Moreover, the product of the cumulative 50% particle diameter of the volume-based and BET specific surface area (D 50), but preferably not more than 6μm · m 2 / g, in the range of 1~6μm · m 2 / g more It is preferably 3.5 to 5.5 μm · m 2 / g, most preferably 3.5 to 5.5 μm · m 2 / g. When this product (BET × D 50 ) is 6 μm · m 2 / g or less, the transmission attenuation of the radio wave absorber sheet using the magnetic powder is high (radio wave absorption) while maintaining the coercive force Hc of the magnetic powder high. The ability can be increased).

また、上述した実施の形態のマグネトプランバイト型六方晶フェライト磁性粉末を樹脂と混練することにより、電波吸収体を製造することができる。この電波吸収体は、用途に応じて様々な形状にすることができるが、シート状の電波吸収体(電波吸収体シート)を作製する場合には、マグネトプランバイト型六方晶フェライト磁性粉末を樹脂と混練して得られる電波吸収体素材(混練物)を圧延ロールなどにより所望の厚さ(好ましくは0.1〜4mm、さらに好ましくは0.2〜2.5mm)に圧延すればよい。また、電波吸収体素材(混練物)中のマグネトプランバイト型六方晶フェライト磁性粉末の含有量は、76GHz帯域の電波吸収能に優れた電波吸収体を得るために、70〜95質量%であるのが好ましい。また、電波吸収体素材(混練物)中の樹脂の含有量は、電波吸収体素材(混練物)中にマグネトプランバイト型六方晶フェライト磁性粉末を十分に分散させるために、5〜30質量%であるのが好ましい。また、電波吸収体素材(混練物)中のマグネトプランバイト型六方晶フェライト磁性粉末と樹脂の合計の含有量は99質量%以上であるのが好ましい。 Further, a radio wave absorber can be manufactured by kneading the magnetoplumbite-type hexagonal ferrite magnetic powder of the above-described embodiment with a resin. This radio wave absorber can be made into various shapes depending on the application, but when a sheet-shaped radio wave absorber (radio wave absorber sheet) is produced, a magnetic powder of a magnetoplobite type hexagonal ferrite is used as a resin. The radio wave absorber material (kneaded product) obtained by kneading with the above material may be rolled to a desired thickness (preferably 0.1 to 4 mm, more preferably 0.2 to 2.5 mm) by a rolling roll or the like. Further, the content of the magnetoplumbite-type hexagonal ferrite magnetic powder in the radio wave absorber material (kneaded material) is 70 to 95% by mass in order to obtain a radio wave absorber having excellent radio wave absorbing ability in the 76 GHz band. Is preferable. The content of the resin in the radio wave absorber material (kneaded product) is 5 to 30% by mass in order to sufficiently disperse the magnetoplumbite-type hexagonal ferrite magnetic powder in the radio wave absorber material (kneaded product). Is preferable. Further, the total content of the magnetoplumbite-type hexagonal ferrite magnetic powder and the resin in the radio wave absorber material (kneaded product) is preferably 99% by mass or more.

なお、本発明によるマグネトプランバイト型六方晶フェライト磁性粉末の実施の形態は、粉末X線回折法(XRD)によるX線回折測定の結果から、マグネトプランバイト型六方晶フェライト構造であることが確認され、SrFe1219の基本構造であることが決定される。マグネトプランバイト型六方晶フェライト構造では、AlはFeサイトに入るため、組成式はrFe(12−x)Al19で表すことができる。このマグネトプランバイト型六方晶フェライト磁性粉末では、組成分析の結果から、Sr×12/(Fe+Al)=1.0(0.95〜1.04)になるので、組成式SrFe(12−x)Al19(但し、x=1.0〜2.2)で表すことができる。 From the results of X-ray diffraction measurement by the powder X-ray diffraction method (XRD), it was confirmed that the embodiment of the magnetoplumbite-type hexagonal ferrite magnetic powder according to the present invention has a magnetoplumbite-type hexagonal ferrite structure. And it is determined that it is the basic structure of SrFe 12 O 19. In the magnetoplumbite-type hexagonal ferrite structure, Al enters the Fe site, so the composition formula can be represented by rFe (12-x) Al x O 19. In this magnetoplumbite-type hexagonal ferrite magnetic powder, Sr × 12 / (Fe + Al) = 1.0 (0.95 to 1.04) is obtained from the result of composition analysis. Therefore, the composition formula SrFe (12-x) It can be represented by Al x O 19 (where x = 1.0 to 2.2).

以下、本発明によるマグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法の実施例について詳細に説明する。 Hereinafter, examples of the magnetoplumbite-type hexagonal ferrite magnetic powder according to the present invention and a method for producing the same will be described in detail.

[実施例1]
まず、原料粉末として1325gのSrCO(純度99質量%)と730gのAl(純度99.9質量%)と6946gのFe(純度99質量%)を秤量し、この原料粉末をヘンシェルミキサーにより混合した後、さらに振動ミルにより乾式法で混合した。なお、この原料粉末中のSrとFeとAlのモル比は、Sr:Fe:Al=1.06:10.29:1.71であり、Sr×12/(Fe+Al)=1.06、Al/(Fe+Al)=0.143である。このようにして得られた混合粉末をペレット状に造粒成形して成形体を得た後、(幅300mm、奥行き300mm、高さ60mm、内容積300mm×300mm×60mm=5400cmの焼成サヤ(焼成用容器)を用意し、得られた成形体9kgを焼成サヤに充填し、この焼成サヤの上面の開口部を蓋で塞いで、常温で大気雰囲気の(幅500mm、奥行530mm、高さ720mm、内容積191Lの)箱型焼成炉内に入れ、この燃焼炉の扉を閉じた後、炉内を常温から800℃まで昇温速度3.2℃/分で昇温させ、800℃から1279℃(焼成温度)まで昇温速度2.1℃/分で昇温させ、この焼成温度で4時間保持して焼成した。この焼成により得られた焼成体の開気孔率をアルキメデス法により測定したところ、38.4%であった。この焼成体をハンマーミルで粗粉砕した後、得られた粗粉を(溶媒として水を使用して)アトライターにより10分間湿式粉砕し、得られたスラリーを固液分離し、得られたケーキを乾燥させ、解砕して磁性粉末を得た。なお、本実施例および以下に説明する実施例2では、焼成サヤに充填した成形体中のCOの質量は395gであり、焼成炉の内容積(L)に対する成形体中のCOの質量(g)は2.1g/Lである。
[Example 1]
First, 1325 g of SrCO 3 (purity 99% by mass), 730 g of Al 2 O 3 (purity 99.9% by mass), and 6946 g of Fe 2 O 3 (purity 99% by mass) were weighed as raw material powders, and the raw material powder was weighed. Was mixed by a Henschel mixer and then further mixed by a dry method using a vibration mill. The molar ratio of Sr, Fe, and Al in this raw material powder is Sr: Fe: Al = 1.06: 10.29: 1.71, Sr × 12 / (Fe + Al) = 1.06, Al. / (Fe + Al) = 0.143. The mixed powder thus obtained was granulated and molded into pellets to obtain a molded body, and then (width 300 mm, depth 300 mm, height 60 mm, internal volume 300 mm × 300 mm × 60 mm = 5400 cm 3 calcined sheath ( A firing container) is prepared, 9 kg of the obtained molded body is filled in the firing sheath, the opening on the upper surface of the firing sheath is closed with a lid, and the atmosphere is at room temperature (width 500 mm, depth 530 mm, height 720 mm). After putting it in a box-type firing furnace (with an internal volume of 191 L) and closing the door of this combustion furnace, the temperature inside the furnace is raised from room temperature to 800 ° C. at a heating rate of 3.2 ° C./min, and from 800 ° C. to 1279. The temperature was raised to ° C. (firing temperature) at a rate of temperature rise of 2.1 ° C./min, and the calcined product was held at this firing temperature for 4 hours before firing. However, it was 38.4%. After the calcined product was coarsely pulverized with a hammer mill, the obtained crude powder was wet pulverized with an attritor (using water as a solvent) for 10 minutes, and the obtained slurry was obtained. Was separated into solid and liquid, and the obtained cake was dried and crushed to obtain a magnetic powder. In this example and Example 2 described below, CO 2 in the compact packed in the calcined sheath was used. The mass (g) of CO 2 in the compact is 2.1 g / L with respect to the internal volume (L) of the firing furnace.

このようにして得られた磁性粉末について、組成分析を行い、BET比表面積および粒度分布を求めるとともに、X線回折(XRD)測定を行って結晶子径Dxを求めた。 The composition of the magnetic powder thus obtained was analyzed to determine the BET specific surface area and particle size distribution, and X-ray diffraction (XRD) measurement was performed to determine the crystallite diameter Dx.

磁性粉末の組成分析では、Sr、BaおよびAlの定量は、アジレントテクノロジー株式会社製の高周波誘導プラズマ発光分析装置ICP(720−ES)を使用して行い、Feの定量は、平沼産業株式会社製の平沼自動滴定装置(CONTIME−980型)を使用して行った。その結果、磁性粉末中のSr、Ba、FeおよびAlのモル比は、Sr:Ba:Fe:Al=1.01:0.01:10.21:1.79であり、Sr×12/(Fe+Al)=1.01であった。なお、磁性粉末中のBa含有量は、0.13質量%(1300ppm)であった。 In the composition analysis of the magnetic powder, the quantification of Sr, Ba and Al is performed using the high frequency inductively coupled plasma emission spectrometer ICP (720-ES) manufactured by Agilent Technologies Co., Ltd., and the quantification of Fe is performed by Hiranuma Sangyo Co., Ltd. Hiranuma automatic titrator (CONTIME-980 type) was used. As a result, the molar ratio of Sr, Ba, Fe and Al in the magnetic powder was Sr: Ba: Fe: Al = 1.01: 0.01: 10.21: 1.79, and Sr × 12 / ( Fe + Al) = 1.01. The Ba content in the magnetic powder was 0.13% by mass (1300 ppm).

磁性粉末のBET比表面積は、比表面積測定装置(株式会社マウンテック製のMacsorb model−1210)を用いて、BET1点法で測定した。その結果、磁性粉末のBET比表面積は1.11m/gであった。 The BET specific surface area of the magnetic powder was measured by the BET 1-point method using a specific surface area measuring device (Macsorb model-1210 manufactured by Mountech Co., Ltd.). As a result, the BET specific surface area of the magnetic powder was 1.11 m 2 / g.

磁性粉末の粒度分布は、レーザー回折式粒度分布測定装置(日本電子株式会社製のへロス粒度分布測定装置(HELOS&RODOS))を使用して、分散圧1.7barで乾式分散させて測定し、平均粒径として体積基準の累積50%粒子径(D50)を求めたところ、3.52μmであった。BET比表面積と体積基準の累積50%粒子径(D50)との積は3.91μm・m/gであった。 The particle size distribution of the magnetic powder is measured by dry dispersion at a dispersion pressure of 1.7 bar using a laser diffraction type particle size distribution measuring device (Heros particle size distribution measuring device (HELOS & RODOS) manufactured by Nippon Denshi Co., Ltd.), and average. When the cumulative 50% particle size (D 50 ) based on the volume was determined as the particle size, it was 3.52 μm. The product of the BET specific surface area and the volume-based cumulative 50% particle size (D 50 ) was 3.91 μm · m 2 / g.

磁性粉末のX線回折測定は、粉末X線回折装置(株式会社リガク製の水平型多目的X線回折装置Ultima IV)を使用して、線源をCuKα線、管電圧を40kV、管電流を40mA、測定範囲を2θ=10°〜75°として、粉末X線回折法(XRD)により行った。このX線回折測定の結果、得られた磁性粉末は、マグネトプランバイト型六方晶フェライトであることが確認された。なお、このマグネトプランバイト型六方晶フェライトは、組成分析の結果から、組成式SrFe(12−x)Al19(x=1.79)で表すことができる。 For X-ray diffraction measurement of magnetic powder, a powder X-ray diffractometer (horizontal multipurpose X-ray diffractometer Ultra IV manufactured by Rigaku Co., Ltd.) is used, the source is CuKα ray, the tube voltage is 40 kV, and the tube current is 40 mA. , The measurement range was set to 2θ = 10 ° to 75 °, and the measurement was performed by powder X-ray diffraction method (XRD). As a result of this X-ray diffraction measurement, it was confirmed that the obtained magnetic powder was a magnetoplumbite-type hexagonal ferrite. The magnetoplumbite-type hexagonal ferrite can be represented by the composition formula SrFe (12-x) Al x O 19 (x = 1.79) from the result of the composition analysis.

磁性粉末の結晶子径Dxは、Scherrerの式(Dx=Kλ/βcosθ)によって求めた。この式中、Dxは結晶子径の大きさ(オングストローム)、λは測定X線の波長(オングストローム)、βは結晶子の大きさによる回折線の広がり(rad)(半価幅を用いて表す)、θは回折角のブラッグ角(rad)、KはScherrer定数(K=0.94とした)である。なお、計算には(114)面(回折角2θ=34.0〜34.8°)のピークデータを使用した。その結果、磁性粉末の(114)面における結晶子径Dxは110.7nmであった。 The crystallite diameter Dx of the magnetic powder was determined by Scherrer's formula (Dx = Kλ / βcosθ). In this equation, Dx is the size of the crystallite diameter (Angstrom), λ is the wavelength of the measured X-ray (Angstrom), and β is the spread of the diffraction line according to the size of the crystallite (rad) (half-value width). ), θ is the Bragg angle (rad) of the diffraction angle, and K is the Scherrer constant (K = 0.94). The peak data of the (114) plane (diffraction angle 2θ = 34.0 to 34.8 °) was used for the calculation. As a result, the crystallite diameter Dx on the (114) plane of the magnetic powder was 110.7 nm.

また、磁性粉末の磁気特性として、振動試料型磁力計(VSM)(東英工業株式会社製のVSM−7P)を使用して、印加磁場1193kA/m(15kOe)でB−H曲線を測定し、保磁力Hc、飽和磁化σs、角形比SQの評価を行った。その結果、保磁力Hcは3424Oe(272kA/m)、飽和磁化σsは33.9emu/g、角形比SQは0.638であった。 As the magnetic characteristics of the magnetic powder, a vibrating sample magnetometer (VSM) (VSM-7P manufactured by Toei Kogyo Co., Ltd.) was used to measure the BH curve at an applied magnetic field of 1193 kA / m (15 kOe). , Coercive force Hc, saturation magnetization σs, and square ratio SQ were evaluated. As a result, the coercive force Hc was 3424 Oe (272 kA / m), the saturation magnetization σs was 33.9 emu / g, and the square ratio SQ was 0.638.

また、得られた磁性粉末0.36gと微結晶セルロース0.84gとを混合して得られた混合粉(粉体含有量30.0質量%)を28MPa(20kN)で加圧成形して直径13mm、厚さ5mmの圧粉体を得た。この圧粉体(試料)をテラヘルツ分光システム(株式会社アドバンテスト製のTAS7400SL)の(直径φ10mmの)試料ホルダ上に載せて、測定モードを透過、周波数分解能を1.9GHz、縦軸を吸収量、横軸を周波数(THz)、累積数を2048として、テラヘルツ波時間領域分光法により、透過減衰量を測定するとともに、試料をサンプルホルダに載せないで、同様の方法により、ブランクの透過減衰量を測定し、測定された試料の信号波形とブランクの参照波形を2112psまで拡張してフーリエ変換し、フーリエスペクトル比(Ssig/Sref)(Ssigは試料のフーリエスペクトルの振幅、Srefはブランクのフーリエスペクトルの振幅)を求めて、圧粉体(試料)の透過減衰量を算定した。その結果、圧粉体のピーク周波数は77.2GHzであり、透過減衰量は12.0dBであった。 Further, a mixed powder (powder content 30.0% by mass) obtained by mixing 0.36 g of the obtained magnetic powder and 0.84 g of microcrystalline cellulose was pressure-molded at 28 MPa (20 kN) to have a diameter. A green compact having a thickness of 13 mm and a thickness of 5 mm was obtained. This green compact (sample) is placed on a sample holder (diameter φ10 mm) of the Terrahertz spectroscopic system (TAS7400SL manufactured by Advantest Co., Ltd.), and the measurement mode is transmitted, the frequency resolution is 1.9 GHz, and the vertical axis is the absorption amount. With the horizontal axis as frequency (THz) and cumulative number as 2048, the transmission attenuation amount is measured by terahertz wave time region spectroscopy, and the transmission attenuation amount of the blank is measured by the same method without placing the sample on the sample holder. The signal waveform of the measured sample and the reference waveform of the blank are extended to 2112 ps and Fourier transformed, and the Fourier spectrum ratio (Sig / Sff) (Sig is the amplitude of the Fourier spectrum of the sample, Sref is the Fourier spectrum of the blank. The amplitude) was calculated, and the permeation attenuation of the green compact (sample) was calculated. As a result, the peak frequency of the green compact was 77.2 GHz, and the transmission attenuation was 12.0 dB.

[実施例2]
焼成時間を8時間にした以外は、実施例1と同様の方法により、磁性粉末を作製した。この焼成により得られた焼成体の開気孔率を実施例1と同様の方法により測定したところ、25.5%であった。
[Example 2]
A magnetic powder was produced by the same method as in Example 1 except that the firing time was set to 8 hours. The porosity of the fired body obtained by this firing was measured by the same method as in Example 1 and found to be 25.5%.

このようにして得られた磁性粉末について、実施例1と同様の方法により、組成分析を行い、BET比表面積および粒度分布を求めるとともに、X線回折(XRD)測定を行って結晶子径Dxを求めた。その結果、磁性粉末中のSr、Ba、FeおよびAlのモル比は、Sr:Ba:Fe:Al=1.04:0.01:10.23:1.77、Sr×12/(Fe+Al)=1.04であり、磁性粉末中のBa含有量は、0.13質量%(1300ppm)であった。また、磁性粉末のBET比表面積は1.08m/g、体積基準の累積50%粒子径(D50)は5.01μm、BET比表面積と体積基準の累積50%粒子径(D50)との積は5.41μm・m/gであり、結晶子径Dxは106.9nmであった。また、得られた磁性粉末は、実施例1と同様の方法により、マグネトプランバイト型六方晶フェライトからなることが確認され、組成分析の結果から、組成式SrFe(12−x)Al19(x=1.77)で表すことができる。さらに、実施例1と同様の方法により、磁性粉末の磁気特性を評価したところ、保磁力Hcは2836Oe(226kA/m)、飽和磁化σsは33.6emu/g、角形比SQは0.630であった。 The composition of the magnetic powder thus obtained is analyzed by the same method as in Example 1, the BET specific surface area and particle size distribution are obtained, and X-ray diffraction (XRD) measurement is performed to determine the crystallite diameter Dx. I asked. As a result, the molar ratios of Sr, Ba, Fe and Al in the magnetic powder were Sr: Ba: Fe: Al = 1.04: 0.01: 10.23: 1.77, Sr × 12 / (Fe + Al). = 1.04, and the Ba content in the magnetic powder was 0.13% by mass (1300 ppm). The BET specific surface area of the magnetic powder is 1.08 m 2 / g, the volume-based cumulative 50% particle size (D 50 ) is 5.01 μm, and the BET specific surface area and volume-based cumulative 50% particle size (D 50 ). The product was 5.41 μm · m 2 / g, and the crystallite diameter Dx was 106.9 nm. Further, it was confirmed that the obtained magnetic powder was composed of a magnetoplumbite-type hexagonal ferrite by the same method as in Example 1, and from the result of the composition analysis, the composition formula SrFe (12-x) Al x O 19 It can be represented by (x = 1.77). Further, when the magnetic properties of the magnetic powder were evaluated by the same method as in Example 1, the coercive force Hc was 2836 Oe (226 kA / m), the saturation magnetization σs was 33.6 emu / g, and the square ratio SQ was 0.630. there were.

また、この磁性粉末を用いて、実施例1と同様の方法により、圧粉体を作製し、圧粉体のピーク周波数と透過減衰量を求めたところ、ピーク周波数は77.7GHzであり、透過減衰量は11.5dBであった。 Further, using this magnetic powder, a green compact was prepared by the same method as in Example 1, and the peak frequency and the transmission attenuation of the green compact were determined. The peak frequency was 77.7 GHz, and the green powder was transmitted. The amount of attenuation was 11.5 dB.

[比較例1]
焼成サヤに充填した成形体の量を2kgとし、焼成サヤの上面の開口部を蓋で塞がないで、焼成温度を1240℃とした以外は、実施例1と同様の方法により、磁性粉末を作製した。この焼成により得られた焼成体の開気孔率を実施例1と同様の方法により測定したところ、27.04%であった。なお、本比較例および以下に説明する比較例2では、焼成サヤに充填した成形体中のCOの質量は88gであり、焼成炉の内容積(L)に対する成形体中のCOの質量(g)は0.5g/Lである。
[Comparative Example 1]
The magnetic powder was prepared by the same method as in Example 1 except that the amount of the molded body filled in the calcined sheath was 2 kg, the opening on the upper surface of the calcined sheath was not closed with a lid, and the firing temperature was set to 1240 ° C. Made. The porosity of the fired body obtained by this firing was measured by the same method as in Example 1 and found to be 27.04%. In Comparative Example 2 is described in this comparative example and the following, the mass of CO 2 in the filled firing sheath molded body is 88 g, the mass of CO 2 in the shaped body with respect to the internal volume of the sintering furnace (L) (G) is 0.5 g / L.

このようにして得られた磁性粉末について、実施例1と同様の方法により、組成分析を行い、BET比表面積および粒度分布を求めるとともに、X線回折(XRD)測定を行って結晶子径Dxを求めた。その結果、磁性粉末中のSr、Ba、FeおよびAlのモル比は、Sr:Ba:Fe:Al=1.02:0.01:10.25:1.75、Sr×12/(Fe+Al)=1.02であり、磁性粉末中のBa含有量は、0.13質量%(1300ppm)であった。また、磁性粉末のBET比表面積は1.54m/g、体積基準の累積50%粒子径(D50)は5.17μm、BET比表面積と体積基準の累積50%粒子径(D50)との積は7.97μm・m/gであり、結晶子径Dxは82.7nmであった。また、得られた磁性粉末は、実施例1と同様の方法により、マグネトプランバイト型六方晶フェライトからなることが確認され、組成分析の結果から、組成式SrFe(12−x)Al19(x=1.75)で表すことができる。さらに、実施例1と同様の方法により、磁性粉末の磁気特性を評価したところ、保磁力Hcは3812Oe(303kA/m)、飽和磁化σsは34.0emu/g、角形比SQは0.642であった。 The composition of the magnetic powder thus obtained is analyzed by the same method as in Example 1, the BET specific surface area and particle size distribution are obtained, and X-ray diffraction (XRD) measurement is performed to determine the crystallite diameter Dx. I asked. As a result, the molar ratios of Sr, Ba, Fe and Al in the magnetic powder were Sr: Ba: Fe: Al = 1.02: 0.01: 10.25: 1.75, Sr × 12 / (Fe + Al). = 1.02, and the Ba content in the magnetic powder was 0.13% by mass (1300 ppm). The BET specific surface area of the magnetic powder is 1.54 m 2 / g, the volume-based cumulative 50% particle size (D 50 ) is 5.17 μm, and the BET specific surface area and volume-based cumulative 50% particle size (D 50 ). The product was 7.97 μm · m 2 / g, and the crystallite diameter Dx was 82.7 nm. Further, it was confirmed that the obtained magnetic powder was composed of a magnetoplumbite-type hexagonal ferrite by the same method as in Example 1, and from the result of the composition analysis, the composition formula SrFe (12-x) Al x O 19 It can be represented by (x = 1.75). Further, when the magnetic properties of the magnetic powder were evaluated by the same method as in Example 1, the coercive force Hc was 3812 Oe (303 kA / m), the saturation magnetization σs was 34.0 emu / g, and the square ratio SQ was 0.642. there were.

また、この磁性粉末を用いて、実施例1と同様の方法により、圧粉体を作製し、圧粉体のピーク周波数と透過減衰量を求めたところ、ピーク周波数は77.2GHzであり、透過減衰量は9.2dBであった。 Further, using this magnetic powder, a green compact was prepared by the same method as in Example 1, and the peak frequency and the transmission attenuation of the green compact were determined. The peak frequency was 77.2 GHz, and the green powder was transmitted. The amount of attenuation was 9.2 dB.

[比較例2]
焼成温度を1279℃とした以外は、比較例1と同様の方法により、磁性粉末を作製した。この焼成により得られた焼成体の開気孔率を実施例1と同様の方法により測定したところ、1.12%であった。
[Comparative Example 2]
A magnetic powder was produced by the same method as in Comparative Example 1 except that the firing temperature was set to 1279 ° C. The porosity of the fired body obtained by this firing was measured by the same method as in Example 1 and found to be 1.12%.

このようにして得られた磁性粉末について、実施例1と同様の方法により、組成分析を行い、BET比表面積および粒度分布を求めるとともに、X線回折(XRD)測定を行って結晶子径Dxを求めた。その結果、磁性粉末中のSr、Ba、FeおよびAlのモル比は、Sr:Ba:Fe:Al=1.01:0.01:10.20:1.80、Sr×12/(Fe+Al)=1.01であり、磁性粉末中のBa含有量は、0.14質量%(1400ppm)であった。また、磁性粉末のBET比表面積は0.97m/g、体積基準の累積50%粒子径(D50)は12.42μm、BET比表面積と体積基準の累積50%粒子径(D50)との積は12.00μm・m/gであり、結晶子径Dxは90.4nmであった。また、得られた磁性粉末は、実施例1と同様の方法により、マグネトプランバイト型六方晶フェライトからなることが確認され、組成分析の結果から、組成式SrFe(12−x)Al19(x=1.80)で表すことができる。さらに、実施例1と同様の方法により、磁性粉末の磁気特性を評価したところ、保磁力Hcは2131Oe(170kA/m)、飽和磁化σsは33.8emu/g、角形比SQは0.631であった。 The composition of the magnetic powder thus obtained is analyzed by the same method as in Example 1, the BET specific surface area and particle size distribution are obtained, and X-ray diffraction (XRD) measurement is performed to determine the crystallite diameter Dx. I asked. As a result, the molar ratios of Sr, Ba, Fe and Al in the magnetic powder were Sr: Ba: Fe: Al = 1.01: 0.01: 10.20: 1.80, Sr × 12 / (Fe + Al). = 1.01, and the Ba content in the magnetic powder was 0.14% by mass (1400 ppm). The BET specific surface area of the magnetic powder is 0.97 m 2 / g, the volume-based cumulative 50% particle size (D 50 ) is 12.42 μm, and the BET specific surface area and volume-based cumulative 50% particle size (D 50 ). The product was 12.00 μm · m 2 / g, and the crystallite diameter Dx was 90.4 nm. Further, it was confirmed that the obtained magnetic powder was composed of a magnetoplumbite-type hexagonal ferrite by the same method as in Example 1, and from the result of the composition analysis, the composition formula SrFe (12-x) Al x O 19 It can be represented by (x = 1.80). Further, when the magnetic properties of the magnetic powder were evaluated by the same method as in Example 1, the coercive force Hc was 2131Oe (170 kA / m), the saturation magnetization σs was 33.8 emu / g, and the square ratio SQ was 0.631. there were.

また、この磁性粉末を用いて、実施例1と同様の方法により、圧粉体を作製し、圧粉体のピーク周波数と透過減衰量を求めたところ、ピーク周波数は80.7GHzであり、透過減衰量は10.4dBであった。 Further, using this magnetic powder, a green compact was prepared by the same method as in Example 1, and the peak frequency and the transmission attenuation of the green compact were determined. The peak frequency was 80.7 GHz, and the green powder was transmitted. The amount of attenuation was 10.4 dB.

これらの実施例および比較例で得られた磁性粉末の製造条件および特性と圧粉体の特性を表1〜表4に示す。 Tables 1 to 4 show the production conditions and characteristics of the magnetic powders obtained in these Examples and Comparative Examples and the characteristics of the green compact.

Figure 2021138583
Figure 2021138583

Figure 2021138583
Figure 2021138583

Figure 2021138583
Figure 2021138583

Figure 2021138583
Figure 2021138583

本発明によるマグネトプランバイト型六方晶フェライト磁性粉末は、76GHz帯域の電波吸収能に優れた電波吸収体シートの作製に利用することができる。 The magnetoplumbite-type hexagonal ferrite magnetic powder according to the present invention can be used for producing a radio wave absorber sheet having excellent radio wave absorption ability in the 76 GHz band.

Claims (7)

組成式SrFe(12−x)Al19(但し、x=1.0〜2.2)で示されるマグネトプランバイト型六方晶フェライト磁性粉末の原料となる粉末としてSrCO粉末とFe粉末とAl粉末を混合し、炉内で焼成し、得られた焼成体を粉砕して、マグネトプランバイト型六方晶フェライト磁性粉末を製造する方法において、焼成の際に炉内の容積当たりのSrCO粉末中のCOの質量の割合を1g/L以上にすることを特徴とする、マグネトプランバイト型六方晶フェライト磁性粉末の製造方法。 Composition formula SrFe (12-x) Al x O 19 (However, x = 1.0 to 2.2) SrCO 3 powder and Fe 2 O are the raw material powders of the magnetoplumbite type hexagonal ferrite magnetic powder. In a method of mixing 3 powder and Al 2 O 3 powder, firing in a furnace, and crushing the obtained fired body to produce a magnetoplumbite type hexagonal ferrite magnetic powder, in the furnace at the time of firing. A method for producing a magnetoplumbite-type hexagonal ferrite magnetic powder, wherein the ratio of the mass of CO 2 in the SrCO 3 powder per volume is 1 g / L or more. 前記焼成の温度が1150〜1400℃であることを特徴とする、請求項1に記載のマグネトプランバイト型六方晶フェライト磁性粉末の製造方法。 The method for producing a magnetoplumbite-type hexagonal ferrite magnetic powder according to claim 1, wherein the firing temperature is 1150 to 1400 ° C. 前記焼成体の粉砕が、粗粉砕した後に湿式粉砕することによって行われることを特徴とする、請求項1または2に記載のマグネトプランバイト型六方晶フェライト磁性粉末の製造方法。 The method for producing a magnetoplumbite-type hexagonal ferrite magnetic powder according to claim 1 or 2, wherein the fired body is pulverized by coarse pulverization and then wet pulverization. 組成式SrFe(12−x)Al19(但し、x=1.0〜2.2)で示され、レーザー回折式粒度分布測定装置により測定された体積基準の累積50%粒径(D50)が6μm以下、X線回折測定により求めた結晶子径Dxが90nm以上であり、Ba含有量が0.40質量%以下であることを特徴とする、マグネトプランバイト型六方晶フェライト磁性粉末。 Composition formula SrFe (12-x) Al x O 19 (where x = 1.0 to 2.2), and the cumulative 50% particle size (D) based on the volume measured by the laser diffraction type particle size distribution measuring device. 50 ) is 6 μm or less, the crystallite diameter Dx determined by X-ray diffraction measurement is 90 nm or more, and the Ba content is 0.40 mass% or less. .. 前記マグネトプランバイト型六方晶フェライト磁性粉末のBET比表面積が2m/g以下であることを特徴とする、請求項4に記載のマグネトプランバイト型六方晶フェライト磁性粉末。 The magnetoplumbite-type hexagonal ferrite magnetic powder according to claim 4, wherein the magnetoplumbite-type hexagonal ferrite magnetic powder has a BET specific surface area of 2 m 2 / g or less. 前記BET比表面積と前記体積基準の累積50%粒径(D50)との積が6μm・m/g以下であることを特徴とする、請求項4または5に記載のマグネトプランバイト型六方晶フェライト磁性粉末。 The magnetoplumbite-type hexagon according to claim 4 or 5, wherein the product of the BET specific surface area and the volume-based cumulative 50% particle size (D 50 ) is 6 μm · m 2 / g or less. Crystalline ferrite magnetic powder. 請求項4乃至6のいずれかに記載のマグネトプランバイト型六方晶フェライト磁性粉末と樹脂を含むことを特徴とする、電波吸収体。 A radio wave absorber comprising the magnetoplumbite-type hexagonal ferrite magnetic powder according to any one of claims 4 to 6 and a resin.
JP2020039505A 2020-03-09 2020-03-09 Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same Pending JP2021138583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020039505A JP2021138583A (en) 2020-03-09 2020-03-09 Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020039505A JP2021138583A (en) 2020-03-09 2020-03-09 Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same

Publications (1)

Publication Number Publication Date
JP2021138583A true JP2021138583A (en) 2021-09-16

Family

ID=77667733

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020039505A Pending JP2021138583A (en) 2020-03-09 2020-03-09 Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same

Country Status (1)

Country Link
JP (1) JP2021138583A (en)

Similar Documents

Publication Publication Date Title
Shirsath et al. Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion
Kaur et al. Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles
US9338932B2 (en) Magnetoplumbite-type hexagonal ferrite
Auwal et al. Magneto-optical properties of SrBixLaxFe12-2xO19 (0.0≤ x≤ 0.5) hexaferrites by sol-gel auto-combustion technique
JP7105435B2 (en) Magnetic material, manufacturing method thereof, and electromagnetic wave absorbing sheet
Angadi et al. Effect of Sm3+-Gd3+ co-doping on dielectric properties of Mn-Zn ferrites synthesized via combustion route
JP7292795B2 (en) Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same
JP5161813B2 (en) Mixed ferrite powder, method for producing the same, and radio wave absorber
JP2022024885A (en) Powder of magnetoplumbite-type hexagonal ferrite, and production method thereof
Nag et al. Influence of particle size on magnetic and electromagnetic properties of hexaferrite synthesised by sol-gel auto combustion route
JP7196345B6 (en) Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same, radio wave absorber and method for producing the same
JP2021138583A (en) Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same
WO2020158554A1 (en) Magnetoplumbite-type hexagonal ferrite magnetic powder and method for manufacturing same
JP2010260766A (en) Magnetoplumbite-type hexagonal ferrite and radiowave absorber using the same
JP2021125661A (en) Magnetic powder of magnetoplumbite type hexagonal ferrite and method for manufacturing the same
JP7376627B2 (en) Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same, radio wave absorber and method for producing the same
WO2022186060A1 (en) Magnetic powder of magnetoplumbite-type hexagonal ferrite and method for producing same, and radio wave absorber and method for producing same
JP2024037608A (en) Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing the same, and electromagnetic wave absorber and method for producing the same
JP2024037607A (en) Magnetoplumbite-type ferrite magnetic powder, manufacturing method thereof, radio wave absorber and manufacturing method thereof
CN116964696A (en) Magnetoplumbite-type hexagonal ferrite magnetic powder and method for producing same, and radio wave absorber and method for producing same
US11702349B2 (en) Electromagnetic-wave-absorbing particle for GHz band and electromagnetic-wave-absorbing material including the same
JPH10335132A (en) Ferrite sintered body, electric wave absorber and electric wave absorbing wall
Vagolu et al. Structural and magnetic studies of cobalt substituted nickel zinc ferrites
WO2020195990A1 (en) SUBSTITUTED ε-IRON OXIDE MAGNETIC PARTICLE POWDER, PRODUCTION METHOD FOR SUBSTITUTED ε-IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, PRODUCTION METHOD FOR GREEN COMPACT, AND ELECTROMAGNETIC WAVE ABSORBER
JP2020167365A (en) SUBSTITUTION-TYPE ε-IRON OXIDE MAGNETIC PARTICLE POWDER, METHOD FOR PRODUCING SUBSTITUTION-TYPE ε-IRON OXIDE MAGNETIC PARTICLE POWDER, GREEN COMPACT, METHOD FOR PRODUCING GREEN COMPACT, AND ELECTROMAGNETIC WAVE ABSORBER

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240214