JP2021137725A - Dispersion fluid production device - Google Patents

Dispersion fluid production device Download PDF

Info

Publication number
JP2021137725A
JP2021137725A JP2020037097A JP2020037097A JP2021137725A JP 2021137725 A JP2021137725 A JP 2021137725A JP 2020037097 A JP2020037097 A JP 2020037097A JP 2020037097 A JP2020037097 A JP 2020037097A JP 2021137725 A JP2021137725 A JP 2021137725A
Authority
JP
Japan
Prior art keywords
particle
dispersion
particles
dispersion medium
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020037097A
Other languages
Japanese (ja)
Inventor
秀平 久保
Shuhei KUBO
秀平 久保
剛志 森
Tsuyoshi Mori
剛志 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lintec Corp
Original Assignee
Lintec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lintec Corp filed Critical Lintec Corp
Priority to JP2020037097A priority Critical patent/JP2021137725A/en
Publication of JP2021137725A publication Critical patent/JP2021137725A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Colloid Chemistry (AREA)

Abstract

To provide a dispersion fluid production device capable of maintaining a function in which, a preparation ratio amount and an assumed composition ratio of a functional coat can be made substantially match, and producing particle dispersion fluid having no particle aggregation.SOLUTION: A dispersion fluid production device MS for producing particle dispersion fluid in which particles having a prescribed particle diameter or smaller are dispersed in a dispersant, comprises: cracking means 1 for cracking particle aggregate in the dispersant, in which the particle aggregate being obtained by aggregation of the particles whose particle diameter exceeds a prescribed particle diameter in the dispersant; classifying means 2 for classifying particles and particle aggregate in the dispersant; and a circulation line 3 for circulating the dispersant including any one of the particles and particle aggregate, between the cracking means and classifying means, in which a circulation line directed to the classifying means from the cracking means is a primary line 31, and a circulation line directed to the cracking means from the classifying means is a secondary line 32, and the classifying means is configured to return the dispersant including the particle aggregate, to the secondary line.SELECTED DRAWING: Figure 1

Description

本発明は、所定粒径以下の粒子が分散媒に分散した粒子分散液を製造する分散液製造装置に関する。 The present invention relates to a dispersion liquid manufacturing apparatus for producing a particle dispersion liquid in which particles having a predetermined particle size or smaller are dispersed in a dispersion medium.

従来から、プラスチックフィルム等の基材の表面に所謂機能性塗膜を形成したものがあり、このような機能性塗膜の形成(塗工)には、その機能に応じて選択される所定粒径以下の粒子が分散媒に分散した粒子分散液が利用される。ここで、機能性塗膜の想定組成比に応じて、分散媒中に所定量(仕込み比量)の粒子を混合したとき、分散媒中で粒子が凝集して所定粒径を超える粒子凝集体を形成することがある。このような粒子凝集体の存在は、粘着力や破断強度といった機能性塗膜の性能の低下を招くため、粒子凝集体のない粒子分散液を如何に得るかが重要となる。 Conventionally, there are those in which a so-called functional coating film is formed on the surface of a base material such as a plastic film, and in the formation (coating) of such a functional coating film, predetermined particles selected according to the function are formed. A particle dispersion liquid in which particles having a diameter or smaller are dispersed in a dispersion medium is used. Here, when a predetermined amount (charged ratio amount) of particles is mixed in the dispersion medium according to the assumed composition ratio of the functional coating film, the particles aggregate in the dispersion medium and exceed the predetermined particle size. May form. Since the presence of such particle agglomerates causes deterioration of the performance of the functional coating film such as adhesive strength and breaking strength, it is important how to obtain a particle dispersion liquid without particle agglomerates.

上記粒子分散液を製造する分散液製造装置は例えば特許文献1で知られている。このものは、分散媒中の粒子凝集体を解砕する撹拌手段(解砕手段)と、分散媒を循環させる循環ラインと、循環ラインに設けられるフィルターとを備える。そして、フィルターにより分散媒中の粒子凝集体を捕捉して除去することで、粒子凝集体のない粒子分散液が得られるようにしている。然し、上記従来例のように、粒子凝集体を捕捉して除去したのでは、粒子分散液中に含まれる粒子の量が仕込み量よりも少なくなってしまい、仕込み比量と機能性塗膜の想定組成比とが一致しないという問題がある。 A dispersion liquid producing apparatus for producing the particle dispersion liquid is known, for example, in Patent Document 1. This includes a stirring means (crushing means) for crushing particle aggregates in the dispersion medium, a circulation line for circulating the dispersion medium, and a filter provided on the circulation line. Then, by capturing and removing the particle agglomerates in the dispersion medium with a filter, a particle dispersion liquid without the particle agglomerates can be obtained. However, if the particle agglomerates are captured and removed as in the above-mentioned conventional example, the amount of particles contained in the particle dispersion liquid becomes smaller than the charged amount, and the charged ratio amount and the functional coating film There is a problem that the composition ratio does not match the assumed composition ratio.

特許第3635170号公報Japanese Patent No. 3635170

本発明は、以上の点に鑑み、仕込み比量と機能性塗膜の想定組成比とを略一致させることできるという機能を損なうことなく、粒子凝集体のない粒子分散液を製造することができる分散液製造装置を提供することをその課題とする。 In view of the above points, the present invention can produce a particle dispersion liquid without particle agglomerates without impairing the function of being able to substantially match the charged ratio amount and the assumed composition ratio of the functional coating film. The subject is to provide a dispersion liquid manufacturing apparatus.

上記課題を解決するために、所定粒径以下の粒子が分散媒に分散した粒子分散液を製造する本発明の分散液製造装置は、前記分散媒中で所定粒径を超えて前記粒子が凝集したものを粒子凝集体とし、前記分散媒中の前記粒子凝集体を解砕する解砕手段と、前記分散媒中の前記粒子と前記粒子凝集体とを分級する分級手段と、前記解砕手段と前記分級手段との間で前記粒子と前記粒子凝集体との少なくともいずれか一方を含む分散媒を循環させる循環ラインとを備え、前記解砕手段から前記分級手段に向かう循環ラインを一次ラインと、前記分級手段から解砕手段に向かう循環ラインを二次ラインとし、前記分級手段は、前記粒子凝集体を含む前記分散媒を二次ラインに戻すように構成されることを特徴とする。この場合、前記分級手段から前記一次ラインに前記粒子を含む前記分散媒を戻すバイパスラインを更に備えることが好ましい。 In order to solve the above problems, the dispersion liquid manufacturing apparatus of the present invention for producing a particle dispersion in which particles having a predetermined particle size or smaller are dispersed in a dispersion medium has the particles that exceed a predetermined particle size in the dispersion medium and aggregate. A crushing means for crushing the particle agglomerates in the dispersion medium, a classification means for classifying the particles in the dispersion medium and the particle agglomerates, and the crushing means. A circulation line for circulating a dispersion medium containing at least one of the particles and the particle agglomerates is provided between the crushing means and the classification means, and a circulation line from the crushing means to the classification means is referred to as a primary line. The circulation line from the classification means to the crushing means is a secondary line, and the classification means is configured to return the dispersion medium containing the particle agglomerates to the secondary line. In this case, it is preferable to further provide a bypass line for returning the dispersion medium containing the particles from the rating means to the primary line.

以上によれば、分級手段から、更なる解砕を必要とする粒子凝集体を含む分散媒(分散未達成液)のみが二次ラインを経て解砕手段に戻され、分散媒中の粒子凝集体に対する解砕が更に施される。その後、一次ラインにより分級手段へと送られる。そして、分級手段から送られる、更なる解砕を必要としない粒子を含む分散媒(分散達成液)と合流された後、再び分級手段へと送られる。分級手段から解砕手段へと戻される分散媒中に粒子凝集体が含まれなくなるまで、この操作を繰り返すことで、所定粒径以下の粒子が分散媒に分散した粒子分散液が得られる。このように本発明では、分級手段を設けて分散未達成液のみが解砕手段に戻される構成を採用することで、粒子凝集体の解砕処理が効率的に実施できる。このとき、得られた粒子分散液は、上記従来例のように粒子凝集体を捕捉して除去したものではないため、粒子分散液中に含まれる粒子の量を仕込み量と同等にでき、結果として、得られた粒子分散液を利用して機能性塗膜を形成したときにはその機能性塗膜の想定組成比を仕込み比量と略一致させることができる。 According to the above, only the dispersion medium (dispersion unachieved liquid) containing the particle agglomerates requiring further crushing is returned to the crushing means from the classification means via the secondary line, and the particle coagulation in the dispersion medium. Further crushing is applied to the aggregate. After that, it is sent to the rating means by the primary line. Then, after being merged with the dispersion medium (dispersion achievement liquid) containing the particles that do not require further crushing, which is sent from the classification means, it is sent to the classification means again. By repeating this operation until the dispersion medium returned from the classification means to the crushing means does not contain particle aggregates, a particle dispersion liquid in which particles having a predetermined particle size or smaller are dispersed in the dispersion medium can be obtained. As described above, in the present invention, the crushing treatment of the particle agglomerates can be efficiently carried out by adopting the structure in which the classification means is provided and only the undispersed liquid is returned to the crushing means. At this time, since the obtained particle dispersion liquid does not capture and remove the particle agglomerates as in the above-mentioned conventional example, the amount of particles contained in the particle dispersion liquid can be made equal to the charged amount, and the result is As a result, when a functional coating film is formed using the obtained particle dispersion liquid, the assumed composition ratio of the functional coating film can be substantially matched with the charged ratio amount.

本発明の実施形態の分散液製造装置を示す模式図。The schematic diagram which shows the dispersion liquid production apparatus of embodiment of this invention.

以下、図面を参照して、所定粒径以下の粒子が分散媒に分散した粒子分散液を製造するものを例に、本発明の実施形態の分散液製造装置を説明する。 Hereinafter, the dispersion liquid production apparatus according to the embodiment of the present invention will be described with reference to the drawings, exemplifying an example of producing a particle dispersion liquid in which particles having a predetermined particle size or smaller are dispersed in a dispersion medium.

図1を参照して、MSは、分散液製造装置であり、分散液製造装置MSは、分散媒中で所定粒径を超えて粒子が凝集したものを粒子凝集体とし、この分散媒中の粒子凝集体を解砕する解砕手段1を備える。解砕手段1としては、例えば高速撹拌機、ロータ・ステータ型分散機、ジェットミル及びビーズミル等の中から選択される少なくとも1つを単独でまたは組み合わせて用いることができる。以下、解砕手段1として高速撹拌機を用いる場合を例に説明する。この高速撹拌機1は、上部が解放された所定容積の撹拌槽11と、撹拌槽11の底壁及び側壁に設けられた排出口12a及び供給口12bと、撹拌槽11内に設けられる、図外の駆動部により回転可能な高速撹拌翼13とを備える。撹拌槽11内には、粒子と分散媒とが所定の仕込み比量で夫々投入されるか、あるいは、予め分散媒に所定の仕込み量で粒子を混合(調製)したものが投入される。また、撹拌槽11には、図示省略する温度制御手段が付設され、高速撹拌翼13を回転させて粒子凝集体を解砕する間、分散媒の温度を所定温度に制御できるようになっている。高速撹拌機1を含めて解砕手段としては公知のものを用いることができるため、これ以上の詳細な説明は省略する。 With reference to FIG. 1, the MS is a dispersion liquid manufacturing apparatus, and the dispersion liquid manufacturing apparatus MS regards particles that exceed a predetermined particle size in a dispersion medium as particle agglomerates and is contained in the dispersion medium. The crushing means 1 for crushing the particle agglomerates is provided. As the crushing means 1, for example, at least one selected from a high-speed stirrer, a rotor-stator type disperser, a jet mill, a bead mill, and the like can be used alone or in combination. Hereinafter, a case where a high-speed stirrer is used as the crushing means 1 will be described as an example. The high-speed stirrer 1 is provided in a stirring tank 11 having a predetermined volume with an open upper portion, a discharge port 12a and a supply port 12b provided on the bottom wall and side walls of the stirring tank 11, and a stirring tank 11. A high-speed stirring blade 13 that can be rotated by an external drive unit is provided. The particles and the dispersion medium are charged into the stirring tank 11 at a predetermined charging ratio, or the particles are mixed (prepared) with the dispersion medium at a predetermined charging amount in advance. Further, the stirring tank 11 is provided with a temperature control means (not shown) so that the temperature of the dispersion medium can be controlled to a predetermined temperature while the high-speed stirring blade 13 is rotated to crush the particle agglomerates. .. Since a known crushing means including the high-speed stirrer 1 can be used, further detailed description thereof will be omitted.

上記分散液製造装置MSは、分散媒中の粒子と粒子凝集体とを分級する分級手段2と、高速撹拌機1と分級手段2との間で粒子と粒子疑集体との少なくともいずれか一方を含む分散媒を循環させる循環ライン3とを更に備える。分級手段2としては、例えば自由渦型や強制渦型の湿式分級機を用いることができ、このような湿式分級機は公知であるため、これ以上の詳細な説明を省略する。循環ライン3は、高速撹拌機1から湿式分級機2に向かう一次ライン31と、湿式分級機2から高速撹拌機1に向かう二次ライン32とを有し、湿式分級機2と一次ライン31とを接続するバイパスライン33を更に有する。一次ライン31のバイパスライン33との合流箇所の下流側には送液用のポンプ4が設けられている。ポンプ4としては公知のものを用いることができるため、ここでは詳細な説明を省略する。このような構成を採用することで、湿式分級機2は、分級した粒子凝集体を含む分散媒(分散未達成液)を二次ライン32に戻すことができる一方で、分級した粒子を含む分散媒(分散達成液)をバイパスライン33を介して一次ライン31に戻すことができるようになっている。また、一次ライン31のバイパスライン33との合流箇所の下流側には、バルブ35が介設された分岐ライン34が接続されており、バルブ35を開くことで、分岐ライン34を介して粒子分散液が得られるようになっている。以下、上記分散液製造装置MSを用い、粒子分散液を製造する粒子分散液の製造方法について説明する。 In the dispersion liquid production apparatus MS, at least one of the particles and the particle aggregate is used between the classification means 2 for classifying the particles and the particle aggregates in the dispersion medium and the high-speed stirrer 1 and the classification means 2. A circulation line 3 for circulating the containing dispersion medium is further provided. As the classification means 2, for example, a free vortex type or a forced vortex type wet classifier can be used, and since such a wet classifier is known, further detailed description thereof will be omitted. The circulation line 3 has a primary line 31 from the high-speed stirrer 1 to the wet classifier 2, and a secondary line 32 from the wet classifier 2 to the high-speed stirrer 1. Further has a bypass line 33 for connecting the above. A liquid feeding pump 4 is provided on the downstream side of the confluence of the primary line 31 with the bypass line 33. Since a known pump 4 can be used, detailed description thereof will be omitted here. By adopting such a configuration, the wet classifier 2 can return the dispersion medium (dispersion unachieved liquid) containing the classified particle aggregates to the secondary line 32, while dispersing the classified particles. The medium (dispersion achieved liquid) can be returned to the primary line 31 via the bypass line 33. Further, a branch line 34 having a valve 35 interposed therebetween is connected to the downstream side of the junction of the primary line 31 with the bypass line 33, and by opening the valve 35, particles are dispersed via the branch line 34. The liquid is ready to be obtained. Hereinafter, a method for producing a particle dispersion liquid for producing a particle dispersion liquid will be described using the dispersion liquid production apparatus MS.

先ず、分散媒中に所定の仕込み比量で粒子を予め混合したものを高速撹拌機1の撹拌槽11内に投入する(あるいは、撹拌槽11内に分散媒と粒子とを所定の仕込み比量で別々に投入する。この場合、撹拌槽11内で分散媒中に粒子が混合される)。分散媒としては、樹脂を溶媒で希釈することで得た樹脂溶液(ポリマー溶液)を用いることができる。樹脂としては、(メタ)アクリル酸エステル重合体や(メタ)アクリル酸エステル共重合体のようなアクリル系樹脂、塩化ビニル・酢酸ビニル共重合体,塩化ビニル,塩化ビニル・アクリロニトリル共重合体,エチレン・酢酸ビニル共重合体等のビニル系共重合体、ポリエチレン,ポリプロピレンのようなポリオレフィン樹脂を例示することができる。溶媒としては、メタノール、エタノール、メチルエチルケトン、アセトン、シクロヘキサノン、ベンゼン、トルエン、キシレン、酢酸エチル等の有機溶剤を例示することができる。粒子としては、機能性塗膜の機能に応じて適宜選択することができ、シリカ、二酸化チタン、アルミナ、硫酸バリウム、炭酸カルシウム、ガラスのような無機粒子(無機フィラー)や、ポリメタクリル酸メチル、ポリカーボネイト、ポリスチレン、ポリ塩化ビニル、シリコーン、メラミン・シリカ複合樹脂のような有機粒子の中から選択される少なくとも1種を単独でまたは組み合わせて用いることができる。また、粒子としては、フュームドシリカのように非常に小さな一次粒子が凝集して二次粒子を形成するものでもよい。 First, particles are mixed in advance in a dispersion medium at a predetermined charging ratio amount and charged into the stirring tank 11 of the high-speed stirrer 1 (or, the dispersion medium and particles are charged into the stirring tank 11 at a predetermined charging ratio amount. In this case, the particles are mixed in the dispersion medium in the stirring tank 11). As the dispersion medium, a resin solution (polymer solution) obtained by diluting the resin with a solvent can be used. Examples of the resin include acrylic resins such as (meth) acrylic acid ester polymers and (meth) acrylic acid ester copolymers, vinyl chloride / vinyl acetate copolymers, vinyl chloride, vinyl chloride / acrylonitrile copolymers, and ethylene. -Vinyl-based copolymers such as vinyl acetate copolymers and polyolefin resins such as polyethylene and polypropylene can be exemplified. Examples of the solvent include organic solvents such as methanol, ethanol, methyl ethyl ketone, acetone, cyclohexanone, benzene, toluene, xylene, and ethyl acetate. The particles can be appropriately selected according to the function of the functional coating film, and include inorganic particles (inorganic fillers) such as silica, titanium dioxide, alumina, barium sulfate, calcium carbonate, and glass, polymethyl methacrylate, and the like. At least one selected from organic particles such as polycarbonate, polystyrene, polyvinyl chloride, silicone, and melamine-silica composite resin can be used alone or in combination. Further, the particles may be those in which very small primary particles such as fumed silica aggregate to form secondary particles.

このように分散媒中に粒子を混合すると、混合直後に粒子が分散媒中で均一に分散するのではなく、分散媒中で粒子が凝集して所定粒径を超える粒子凝集体が形成されることがある。この粒子凝集体を解砕して粒子とするため、撹拌槽11内の高速撹拌翼13を所定回転数(例えば1000〜20000rpm)で回転させる。これと併せて、ポンプ4を稼働させると、撹拌槽11の排出口12aから排出された粒子凝集体と粒子とを含む分散媒が一次ライン31を介して湿式分級機2へと送られ、湿式分級機2により分散媒に含まれる粒子と粒子凝集体とが分級される。 When the particles are mixed in the dispersion medium in this way, the particles are not uniformly dispersed in the dispersion medium immediately after mixing, but the particles are aggregated in the dispersion medium to form particle agglomerates exceeding a predetermined particle size. Sometimes. In order to crush the particle agglomerates into particles, the high-speed stirring blade 13 in the stirring tank 11 is rotated at a predetermined rotation speed (for example, 1000 to 20000 rpm). At the same time, when the pump 4 is operated, the dispersion medium containing the particle aggregates and particles discharged from the discharge port 12a of the stirring tank 11 is sent to the wet classifier 2 via the primary line 31 and is wet. The classifier 2 classifies the particles contained in the dispersion medium and the particle aggregates.

湿式分級機2により分級された粒子凝集体は更なる解砕を必要とするため、この粒子凝集体を含む分散媒(分散未達成液)が二次ライン32を経て高速撹拌機1に戻され、分散媒中の粒子凝集体に対する解砕が更に施され、その後、一次ライン31に送られる。そして、湿式分級機2からバイパスライン33を介して送られる、更なる解砕を必要としない粒子を含む分散液(分散達成液)と合流された後、湿式分級機2へと送られる。湿式分級機2から高速撹拌機1へと戻される分散媒中に粒子凝集体が含まれなくなるまで(つまり解砕処理の終点まで)、この操作を繰り返すことで、所定粒径以下の粒子が分散媒に分散した粒子が得られる。尚、解砕処理の終点は、撹拌槽11から分散媒をサンプリングし、このサンプリングしたものの粒度分布を公知の粒度分布計を用いて測定し、その測定値が許容範囲内である場合に判定することができる。解砕処理が終了したと判定された場合、バルブ35を開き、分岐ライン34から粒子分散液を得ることができる。 Since the particle agglomerates classified by the wet classifier 2 require further crushing, the dispersion medium (dispersion unachieved liquid) containing the particle agglomerates is returned to the high-speed stirrer 1 via the secondary line 32. , The particle agglomerates in the dispersion medium are further crushed and then sent to the primary line 31. Then, after merging with the dispersion liquid (dispersion achievement liquid) containing the particles that do not require further crushing, which is sent from the wet classifier 2 via the bypass line 33, the wet classifier 2 is sent. By repeating this operation until the dispersion medium returned from the wet classifier 2 to the high-speed stirrer 1 does not contain particle agglomerates (that is, until the end point of the crushing process), particles having a predetermined particle size or less are dispersed. Particles dispersed in the medium are obtained. The end point of the crushing treatment is determined when the dispersion medium is sampled from the stirring tank 11, the particle size distribution of the sampled material is measured using a known particle size distribution meter, and the measured value is within the permissible range. be able to. When it is determined that the crushing process is completed, the valve 35 can be opened and the particle dispersion liquid can be obtained from the branch line 34.

このように本実施形態では、湿式分級機2を設けて分散未達成液のみが高速撹拌機1に戻される構成を採用することで、粒子凝集体の解砕処理が効率的に実施できる。このとき、得られた粒子分散液は、上記従来例のように粒子凝集体を捕捉して除去したものではないため、粒子分散液中に含まれる粒子の量を仕込み比量と同等にでき、結果として、得られた粒子分散液を利用して機能性塗膜を形成したときにはその機能性塗膜の想定組成比を仕込み比量と略一致させることできる。 As described above, in the present embodiment, by adopting a configuration in which the wet classifier 2 is provided and only the undispersed liquid is returned to the high-speed stirrer 1, the particle agglomerate can be efficiently crushed. At this time, since the obtained particle dispersion liquid does not capture and remove the particle agglomerates as in the above-mentioned conventional example, the amount of particles contained in the particle dispersion liquid can be made equal to the charged ratio amount. As a result, when a functional coating film is formed using the obtained particle dispersion liquid, the assumed composition ratio of the functional coating film can be substantially matched with the charged ratio amount.

次に、本発明の実施例について説明する。尚、表1には、各実施例及び後述する各比較例における液条件、分級機条件や結果の一部を示す。 Next, examples of the present invention will be described. Table 1 shows some of the liquid conditions, the classifier conditions, and the results in each Example and each Comparative Example described later.

Figure 2021137725
Figure 2021137725

(実施例1)
本実施例1では、アクリル酸2−エチルヘキシル80質量部とアクリル酸5質量部とメタクリル酸n−ブチル15質量部とを溶液重合法により共重合させてアクリル系樹脂としての(メタ)アクリル酸エステル重合体を得て、この(メタ)アクリル酸エステル重合体をメチルエチルケトンで希釈することで、分散媒としての樹脂溶液を得た。この樹脂溶液に粒子としての所定の一次粒径(0.6μm)を持つシリカ(デンカ社製、商品名「SFP−30M」)を混合した。シリカを混合した樹脂溶液の量は2000ml、樹脂溶液全体に対する(メタ)アクリル酸エステル重合体の含有量は21質量%、シリカの含有量は15質量%とした。このようにシリカを混合した樹脂溶液を解砕手段1としてのロータ・ステータ型分散機(プライミクス社製、商品名「ネオミクサー」)の槽内に投入した。投入直後に樹脂溶液中のシリカはシリカ凝集体を形成しており(このときのメジアン径D50は5.4μm)、ロータ・ステータ型分散機(以下「分散機」という)1を所定回転数(10000rpm)で回転させることでシリカ凝集体の解砕処理を実施した。解砕処理中、温度調節設備を用いて槽内の樹脂溶液の温度を20℃に維持した。これと併せて、分級手段2としての湿式分級機(佐竹化学機械工業社製、商品名「SATAKE i Classifier」)により、樹脂溶液に含まれるシリカとシリカ凝集体とを分級した。湿式分級機2の回転数は3000rpm、液処理量(湿式分級機2から流出する樹脂溶液の総量)は10L/hrとした。湿式分級機2により分級されたシリカ凝集体を含む樹脂溶液(分散未達成液)は二次ライン32を介して分散機1に戻した。湿式分散機2の槽内から定期的に樹脂溶液をサンプリングし、その粒度分布をレーザー回折式の粒度分布計(マルバーン社製、商品名「Mastersizer3000」)により測定し、測定される全ての粒径が目標粒径である0.8μm(一次粒径0.6μm+0.2μm)以下となった時間(分散達成時間)を求めたところ、分散達成時間は20分であり(このときのメジアン径d50は0.62μm)、分散機1によりシリカ凝集体を効率的に解砕できることが判った。以上のようにして得られた粒子分散液に架橋剤としてのイソシアネート化合物(トーヨーケム株式会社製、商品名「BHS−8515」)を添加し、ロールナイフ方式で乾燥膜厚5μmとなるようにプラスチックフィルムの表面に塗工して機能性塗膜を得た。得られた機能性塗膜の塗工面を目視で観察したところ、凝集物欠点が無く、また、この機能性塗膜の断面を光学顕微鏡(倍率100倍)で観察したところ、膜厚よりも大きい凝集体がなく、粒子分散液にシリカ凝集体がないことが確認された。また、本実施例1で得られた粒子分散液10gを電気炉で800℃の温度で24時間加熱して灰分を分離し、この灰分の重量(最終粒子重量)を求めた。求めた最終粒子重量(1.5067g)と、シリカの含有量(仕込み比量)から求めた初期粒子重量(1.5068g)とを下式に代入して粒子減少率を求めたところ、目標値(1%)よりも小さい0・01%未満(表1には0%と示す。)であり、粒子分散液中に含まれる粒子の量を仕込み比量と同等にできることが確認された。
粒子減少率(%)=(初期粒子重量−最終粒子重量)/初期粒子重量×100
(Example 1)
In Example 1, 80 parts by mass of 2-ethylhexyl acrylate, 5 parts by mass of acrylic acid, and 15 parts by mass of n-butyl methacrylate are copolymerized by a solution polymerization method to obtain a (meth) acrylic acid ester as an acrylic resin. A polymer was obtained, and this (meth) acrylic acid ester polymer was diluted with methyl ethyl ketone to obtain a resin solution as a dispersion medium. Silica (manufactured by Denka, trade name "SFP-30M") having a predetermined primary particle size (0.6 μm) as particles was mixed with this resin solution. The amount of the resin solution mixed with silica was 2000 ml, the content of the (meth) acrylic acid ester polymer with respect to the entire resin solution was 21% by mass, and the content of silica was 15% by mass. The resin solution mixed with silica in this way was put into the tank of a rotor-stator type disperser (manufactured by Primix Corporation, trade name "Neomixer") as the crushing means 1. Immediately after charging, the silica in the resin solution forms silica aggregates (the median diameter D50 at this time is 5.4 μm), and the rotor-stator type disperser (hereinafter referred to as “disperser”) 1 is rotated at a predetermined number of revolutions (hereinafter referred to as “disperser”). The silica aggregate was crushed by rotating at 10000 rpm). During the crushing process, the temperature of the resin solution in the tank was maintained at 20 ° C. using a temperature control facility. At the same time, silica and silica aggregates contained in the resin solution were classified by a wet classifier (manufactured by Satake Chemical Machinery Co., Ltd., trade name "SATAKE i Classifier") as the classifying means 2. The rotation speed of the wet classifier 2 was 3000 rpm, and the liquid treatment amount (total amount of resin solution flowing out from the wet classifier 2) was 10 L / hr. The resin solution (dispersion unachieved liquid) containing the silica aggregates classified by the wet classifier 2 was returned to the disperser 1 via the secondary line 32. The resin solution is periodically sampled from the inside of the wet disperser 2, and the particle size distribution is measured by a laser diffraction type particle size distribution meter (manufactured by Malvern, trade name "Mastersizer 3000"), and all the measured particle sizes are measured. When the time (dispersion achievement time) at which the target particle size was 0.8 μm (primary particle size 0.6 μm + 0.2 μm) or less was determined, the dispersion achievement time was 20 minutes (the median diameter d50 at this time was 0.62 μm), it was found that the silica aggregate can be efficiently crushed by the disperser 1. An isocyanate compound (manufactured by Toyochem Co., Ltd., trade name "BHS-8515") as a cross-linking agent is added to the particle dispersion obtained as described above, and a plastic film is used to obtain a dry film thickness of 5 μm by a roll knife method. A functional coating film was obtained by coating on the surface of. When the coated surface of the obtained functional coating film was visually observed, there were no agglomerate defects, and when the cross section of this functional coating film was observed with an optical microscope (magnification 100 times), it was larger than the film thickness. It was confirmed that there were no aggregates and that the particle dispersion had no silica aggregates. Further, 10 g of the particle dispersion obtained in Example 1 was heated in an electric furnace at a temperature of 800 ° C. for 24 hours to separate ash, and the weight of this ash (final particle weight) was determined. The final particle weight (1.5067 g) obtained and the initial particle weight (1.5068 g) obtained from the silica content (charge ratio) were substituted into the following equation to obtain the particle reduction rate, and the target value was obtained. It was less than 0.01% (shown as 0% in Table 1), which was smaller than (1%), and it was confirmed that the amount of particles contained in the particle dispersion could be made equal to the charged ratio amount.
Particle reduction rate (%) = (initial particle weight-final particle weight) / initial particle weight x 100

(実施例2)
本実施例2では、上記実施例1と同じ樹脂溶液を用い、混合するシリカの量を変えて樹脂溶液全体に対するシリカの含有量を20質量%とした点を除いて、上記実施例1と同様の方法で粒子分散液を得た。シリカ含有量を上記実施例1よりも高くしたが、分散達成時間は上記実施例1と同等の20分であった。尚、投入直後のシリカ凝集体のメジアン径D50は6.1μm、分散達成時のシリカのメジアン径d50は0.62μmであり、上記実施例1と略同等の値であった。また、上記実施例1と同様にして機能性塗膜を得て、その塗工面や断面を観察したところ、粒子分散液にシリカ凝集体がないことが確認された。また、上記実施例1と同様にして粒子減少率を求めたところ、目標値(0.1%)よりも小さい0.01%であり、粒子分散液中に含まれる粒子の量を仕込み比量と同等にできることが確認された。
(Example 2)
In Example 2, the same resin solution as in Example 1 is used, and the amount of silica to be mixed is changed to make the silica content with respect to the entire resin solution 20% by mass, which is the same as in Example 1. A particle dispersion was obtained by the above method. Although the silica content was higher than that of Example 1, the dispersion achievement time was 20 minutes, which was the same as that of Example 1. The median diameter D50 of the silica aggregate immediately after charging was 6.1 μm, and the median diameter d50 of silica when dispersion was achieved was 0.62 μm, which were substantially the same values as in Example 1 above. Further, when a functional coating film was obtained in the same manner as in Example 1 and the coated surface and cross section thereof were observed, it was confirmed that the particle dispersion liquid did not contain silica aggregates. Further, when the particle reduction rate was obtained in the same manner as in Example 1, it was 0.01%, which was smaller than the target value (0.1%), and the amount of particles contained in the particle dispersion was the amount of the charged ratio. It was confirmed that it can be made equivalent to.

(実施例3)
本実施例3では、上記実施例1と同じ樹脂溶液を用い、混合するシリカの量を変えて樹脂溶液全体に対するシリカの含有量を30質量%とした点を除いて、上記実施例1,2と同様の方法で粒子分散液を得た。シリカ含有量を上記実施例2よりも更に高くしたため(投入直後のシリカ凝集体のメジアン径D50は6.6μm)、分散達成時間は上記実施例1,2よりも長い30分であったものの、分散達成時のシリカのメジアン径d50は上記実施例1と同等の0.63μmであった。また、上記実施例1と同様にして機能性塗膜を得て、その塗工面や断面を観察したところ、粒子分散液にシリカ凝集体がないことが確認された。また、上記実施例1と同様にして粒子減少率を求めたところ、目標値(0.1%)よりも小さい0.01%であり、粒子分散液中に含まれる粒子の量を仕込み比量と同等にできることが確認された。
(Example 3)
In Example 3, the same resin solution as in Example 1 was used, and the amount of silica to be mixed was changed so that the silica content with respect to the entire resin solution was 30% by mass. A particle dispersion was obtained in the same manner as in the above. Since the silica content was further increased as compared with Example 2 (the median diameter D50 of the silica aggregate immediately after charging was 6.6 μm), the dispersion achievement time was 30 minutes, which was longer than that of Examples 1 and 2. The median diameter d50 of silica at the time of achieving dispersion was 0.63 μm, which was the same as in Example 1 above. Further, when a functional coating film was obtained in the same manner as in Example 1 and the coated surface and cross section thereof were observed, it was confirmed that the particle dispersion liquid did not contain silica aggregates. Further, when the particle reduction rate was obtained in the same manner as in Example 1, it was 0.01%, which was smaller than the target value (0.1%), and the amount of particles contained in the particle dispersion was the amount of the charged ratio. It was confirmed that it can be made equivalent to.

(実施例4)
本実施例4では、粒子を所定の一次粒径(0.6μm)を持つ硫酸バリウム(堺化学工業社製、商品名「BARIACE−55」)とし(樹脂溶液全体に対する硫酸バリウムの含有量は15質量%)、湿式分級機2の液処理量を20L/hrとした点を除いて、上記実施例1と同様の方法で粒子分散液を得た。分散達成時間(全ての粒子の粒径が一次粒径+0.2μmである0.8μm以下となった時間)は、上記実施例1と同等の20分であった。尚、投入直後に樹脂溶液中の硫酸バリウムは硫酸バリウム凝集体を形成しており、このときのメジアン径D50は5.8μm、分散達成時の硫酸バリウムのメジアン径d50は0.60μmであり、上記実施例1と略同等の値であった。また、上記実施例1と同様にして機能性塗膜を得て、その塗工面や断面を観察したところ、粒子分散液に硫酸バリウム凝集体がないことが確認された。また、上記実施例1と同様にして粒子減少率を求めたところ、目標値(0.1%)よりも小さい0.01%未満であり、粒子分散液中に含まれる粒子の量を仕込み比量と同等にできることが確認された。
(Example 4)
In Example 4, the particles are barium sulfate having a predetermined primary particle size (0.6 μm) (manufactured by Sakai Chemical Industry Co., Ltd., trade name “BARIACE-55”) (the content of barium sulfate in the entire resin solution is 15). A particle dispersion was obtained in the same manner as in Example 1 above, except that the liquid treatment amount of the wet classifier 2 was 20 L / hr. The dispersion achievement time (the time when the particle size of all the particles became 0.8 μm or less, which is the primary particle size + 0.2 μm) was 20 minutes, which was the same as in Example 1 above. Immediately after charging, barium sulfate in the resin solution forms barium sulfate aggregates, and the median diameter D50 at this time is 5.8 μm, and the median diameter d50 of barium sulfate when dispersion is achieved is 0.60 μm. The values were substantially the same as those in Example 1 above. Further, when a functional coating film was obtained in the same manner as in Example 1 and the coated surface and cross section were observed, it was confirmed that the particle dispersion liquid did not contain barium sulfate aggregates. Further, when the particle reduction rate was determined in the same manner as in Example 1, it was less than 0.01%, which was smaller than the target value (0.1%), and the amount of particles contained in the particle dispersion was set as the charging ratio. It was confirmed that it can be equal to the amount.

(実施例5)
本実施例5では、粒子を所定の一次粒径(0.7μm)を持つアルミナとし(樹脂溶液全体に対するアルミナの含有量は15質量%)、湿式分級機2の液処理量を20L/hrとした点を除いて、上記実施例1と同様の方法で粒子分散液を得た。分散達成時間(全ての粒子の粒径が一次粒径+0.2μmである0.9μm以下となった時間)は、上記実施例1と同等の20分であった。尚、投入直後に樹脂溶液中のアルミナはアルミナ凝集体を形成しており、このときのメジアン径D50は6.1μm、分散達成時のアルミナのメジアン径d50は0.74μmであった。また、上記実施例1と同様にして機能性塗膜を得て、その塗工面や断面を観察したところ、粒子分散液にアルミナ凝集体がないことが確認された。また、上記実施例1と同様にして粒子減少率を求めたところ、目標値(0.1%)よりも小さい0.01%であり、粒子分散液中に含まれる粒子の量を仕込み比量と同等にできることが確認された。
(Example 5)
In Example 5, the particles are made of alumina having a predetermined primary particle size (0.7 μm) (the content of alumina in the entire resin solution is 15% by mass), and the liquid treatment amount of the wet classifier 2 is 20 L / hr. A particle dispersion was obtained in the same manner as in Example 1 above, except for the above points. The dispersion achievement time (the time when the particle size of all the particles became 0.9 μm or less, which is the primary particle size + 0.2 μm) was 20 minutes, which was the same as in Example 1 above. Immediately after charging, the alumina in the resin solution formed an alumina aggregate, and the median diameter D50 at this time was 6.1 μm, and the median diameter d50 of the alumina when dispersion was achieved was 0.74 μm. Further, when a functional coating film was obtained in the same manner as in Example 1 and the coated surface and cross section thereof were observed, it was confirmed that the particle dispersion liquid did not contain alumina aggregates. Further, when the particle reduction rate was obtained in the same manner as in Example 1, it was 0.01%, which was smaller than the target value (0.1%), and the amount of particles contained in the particle dispersion was the amount of the charged ratio. It was confirmed that it can be made equivalent to.

(実施例6)
本実施例6では、粒子を所定の一次粒径(1μm以下)を持つシリコーン微粒子(タナック社製、商品名「XC99−A8808」)とし(樹脂溶液全体に対するシリコーン微粒子の含有量は15質量%)、湿式分級機2の回転数を500rpm、液処理量を20L/hrとした点を除いて、上記実施例1と同様の方法で粒子分散液を得た。分散達成時間(全ての粒子の粒径が一次粒径+0.2μmである1.2μm以下となった時間)は、上記実施例1と同等の20分であった。尚、投入直後に樹脂溶液中のシリコーンはシリコーン凝集体を形成しており、このときのメジアン径D50は3.8μm、分散達成時のシリコーン微粒子のメジアン径d50は1μmであった。また、上記実施例1と同様にして機能性塗膜を得て、その塗工面や断面を観察したところ、粒子分散液にシリコーン凝集体がないことが確認された。また、上記実施例1と同様にして粒子減少率を求めたところ、目標値(0.1%)よりも小さい0.01%であり、粒子分散液中に含まれる粒子の量を仕込み比量と同等にできることが確認された。
(Example 6)
In Example 6, the particles are silicone fine particles having a predetermined primary particle size (1 μm or less) (manufactured by Tanac Co., Ltd., trade name “XC99-A8808”) (the content of the silicone fine particles in the entire resin solution is 15% by mass). A particle dispersion was obtained in the same manner as in Example 1 above, except that the rotation speed of the wet classifier 2 was 500 rpm and the liquid treatment amount was 20 L / hr. The dispersion achievement time (the time when the particle size of all the particles became 1.2 μm or less, which is the primary particle size + 0.2 μm) was 20 minutes, which was the same as in Example 1 above. Immediately after charging, the silicone in the resin solution formed a silicone aggregate, and the median diameter D50 at this time was 3.8 μm, and the median diameter d50 of the silicone fine particles at the time of achieving dispersion was 1 μm. Further, when a functional coating film was obtained in the same manner as in Example 1 and the coated surface and cross section thereof were observed, it was confirmed that the particle dispersion liquid did not contain silicone aggregates. Further, when the particle reduction rate was obtained in the same manner as in Example 1, it was 0.01%, which was smaller than the target value (0.1%), and the amount of particles contained in the particle dispersion was the amount of the charged ratio. It was confirmed that it can be made equivalent to.

(実施例7)
本実施例7では、粒子を所定の一次粒径(0.5μm)を持つメラミン樹脂・シリカ複合粒子(日産化学社製、商品名「オプトビーズ500SL」)とし(樹脂溶液全体に対するメラミン樹脂・シリカ複合粒子の含有量は15質量%)、湿式分級機2の回転数を500rpm、液処理量を20L/hrとした点を除いて、上記実施例1と同様の方法で粒子分散液を得た。分散達成時間(全ての粒子の粒径が一次粒径+0.2μmである0.7μm以下となった時間)は、上記実施例1と同等の20分であった。尚、投入直後に樹脂溶液中のメラミン樹脂・シリカ複合粒子は凝集体を形成しており、このときのメジアン径D50は2.9μm、分散達成時のメラミン樹脂・シリカ複合粒子のメジアン径d50は0.51μmであった。また、上記実施例1と同様にして機能性塗膜を得て、その塗工面や断面を観察したところ、粒子分散液に凝集体がないことが確認された。また、上記実施例1と同様にして粒子減少率を求めたところ、目標値(0.1%)よりも小さい0.02%であり、粒子分散液中に含まれる粒子の量を仕込み比量と同等にできることが確認された。
(Example 7)
In Example 7, the particles are melamine resin / silica composite particles (manufactured by Nissan Chemical Industries, Ltd., trade name "Optobeads 500SL") having a predetermined primary particle size (0.5 μm) (melamine resin / silica for the entire resin solution). A particle dispersion was obtained in the same manner as in Example 1 above, except that the content of the composite particles was 15% by mass), the rotation speed of the wet classifier 2 was 500 rpm, and the liquid treatment amount was 20 L / hr. .. The dispersion achievement time (the time when the particle size of all the particles became 0.7 μm or less, which is the primary particle size + 0.2 μm) was 20 minutes, which was the same as in Example 1 above. Immediately after charging, the melamine resin / silica composite particles in the resin solution form aggregates, and the median diameter D50 at this time is 2.9 μm, and the median diameter d50 of the melamine resin / silica composite particles when dispersion is achieved is It was 0.51 μm. Further, when a functional coating film was obtained in the same manner as in Example 1 and the coated surface and cross section thereof were observed, it was confirmed that the particle dispersion liquid had no agglomerates. Further, when the particle reduction rate was obtained in the same manner as in Example 1, it was 0.02%, which was smaller than the target value (0.1%), and the amount of particles contained in the particle dispersion was set as the charging ratio. It was confirmed that it can be made equivalent to.

(実施例8)
本実施例8では、粒子をフュームドシリカ(日本アエロジル社製、商品名「AEROSIL(登録商標)R972」)とした(樹脂溶液全体に対するフュームドシリカの含有量は5質量%)点を除いて、上記実施例1と同様の方法で粒子分散液を得た。上記実施例1と同様に粒度分布を測定し、測定される全ての粒径が目標粒径(10μm)以下となった時間(分散達成時間)は20分であり(このときのメジアン径d50は8μm)、分散機により効率的に解砕できることが判った。尚、投入前のフュームドシリカはその複数が凝集して凝集体となっており、投入直後の樹脂溶液中のフュームドシリカ凝集体のメジアン径D50は上記実施例1〜7よりも一桁大きい15μmであった。また、上記実施例1と同様にして機能性塗膜を得て、その塗工面や断面を観察したところ、投入直後に観察されたようなフュームドシリカ凝集体が粒子分散液中に存在しないことが確認された。また、上記実施例1と同様にして粒子減少率を求めたところ、目標値(0.1%)よりも小さい0.08%であり、粒子分散液中に含まれる粒子の量を仕込み比量と同等にできることが確認された。
(Example 8)
In Example 8, the particles were fumed silica (manufactured by Nippon Aerosil Co., Ltd., trade name “AEROSIL® R972”) (the content of fumed silica in the entire resin solution was 5% by mass). , A particle dispersion was obtained in the same manner as in Example 1 above. The particle size distribution was measured in the same manner as in Example 1 above, and the time (dispersion achievement time) at which all the measured particle sizes were equal to or less than the target particle size (10 μm) was 20 minutes (the median diameter d50 at this time was 8 μm), it was found that it can be efficiently crushed by a disperser. A plurality of the fumed silica before charging is aggregated to form an agglomerate, and the median diameter D50 of the fumed silica aggregate in the resin solution immediately after charging is an order of magnitude larger than that of Examples 1 to 7 above. It was 15 μm. Further, when a functional coating film was obtained in the same manner as in Example 1 and the coated surface and cross section thereof were observed, the fumed silica aggregates as observed immediately after the injection were not present in the particle dispersion liquid. Was confirmed. Further, when the particle reduction rate was obtained in the same manner as in Example 1, it was 0.08%, which was smaller than the target value (0.1%), and the amount of particles contained in the particle dispersion was set as the charging ratio. It was confirmed that it can be made equivalent to.

次に、上記実施例に対する比較例について説明する。 Next, a comparative example with respect to the above embodiment will be described.

(比較例1)
本比較例1では、分級機を用いない点(つまり、分散機1のみを用いて分散処理を実施する点)を除き、上記実施例1と同様の方法で粒子分散液を得た。分散達成時間は上記実施例1の4.5倍の90分であった。これは、分級機を用いないため、分散機によりシリカ凝集体を効率的に解砕できないためであると考えられる。尚、投入時のシリカ凝集体のメジアン径D50は5.4μm、分散達成時のシリカのメジアン径d50は0.67μmであり、上記実施例1と略同等の値であった。
(Comparative Example 1)
In Comparative Example 1, a particle dispersion was obtained in the same manner as in Example 1 above, except that the classifier was not used (that is, the dispersion treatment was performed using only the disperser 1). The dispersion achievement time was 90 minutes, which was 4.5 times that of Example 1. It is considered that this is because the silica agglomerates cannot be efficiently crushed by the disperser because the classifier is not used. The median diameter D50 of the silica aggregate at the time of charging was 5.4 μm, and the median diameter d50 of the silica at the time of achieving dispersion was 0.67 μm, which were substantially the same values as in Example 1 above.

(比較例2)
本比較例2では、上記比較例1と同様に分級機を用いない点を除き、上記実施例4と同様の方法で粒子分散液を得た。分散達成時間は上記実施例4の5倍の100分であり、これは、上記比較例1と同様、分散機により硫酸バリウム凝集体を効率的に解砕できないためであると考えられる。尚、投入時の硫酸バリウム凝集体のメジアン径D50は5.8μm、分散達成時の硫酸バリウムのメジアン径d50は0.63μmであり、上記実施例4と略同等の値であった。
(Comparative Example 2)
In Comparative Example 2, a particle dispersion was obtained in the same manner as in Example 4 except that a classifier was not used as in Comparative Example 1. The dispersion achievement time is 100 minutes, which is five times that of Example 4, which is considered to be because the barium sulfate aggregate cannot be efficiently crushed by the disperser as in Comparative Example 1. The median diameter D50 of the barium sulfate aggregate at the time of charging was 5.8 μm, and the median diameter d50 of the barium sulfate aggregate at the time of achieving dispersion was 0.63 μm, which were substantially the same values as in Example 4 above.

(比較例3)
本比較例3では、上記比較例1と同様に分級機を用いない点を除き、上記実施例5と同様の方法で粒子分散液を得た。分散達成時間は上記実施例5の5倍の100分であり、これは、上記比較例1と同様、分散機によりアルミナ凝集体を効率的に解砕できないためであると考えられる。尚、投入時のアルミナ凝集体のメジアン径D50は6.1μm、分散達成時のアルミナのメジアン径d50は0.72μmであり、上記実施例5と略同等の値であった。
(Comparative Example 3)
In Comparative Example 3, a particle dispersion was obtained in the same manner as in Example 5 except that a classifier was not used as in Comparative Example 1. The dispersion achievement time is 100 minutes, which is five times that of Example 5, which is considered to be because the alumina agglomerates cannot be efficiently crushed by the disperser as in Comparative Example 1. The median diameter D50 of the alumina aggregate at the time of charging was 6.1 μm, and the median diameter d50 of the alumina at the time of achieving dispersion was 0.72 μm, which were substantially the same values as in Example 5 above.

(比較例4)
本比較例4では、上記比較例1と同様に分級機を用いない点を除き、上記実施例6と同様の方法で粒子分散液を得た。分散達成時間は上記実施例6の6倍の120分であり、これは、上記比較例1と同様、分散機によりシリコーン凝集体を効率的に解砕できないためであると考えられる。尚、投入時のシリコーン凝集体のメジアン径D50は3.8μm、分散達成時のシリコーン微粒子のメジアン径d50は1μmであり、上記実施例6と略同等の値であった。
(Comparative Example 4)
In Comparative Example 4, a particle dispersion was obtained in the same manner as in Example 6 except that a classifier was not used as in Comparative Example 1. The dispersion achievement time is 120 minutes, which is 6 times that of Example 6, which is considered to be because the silicone aggregate cannot be efficiently crushed by the disperser as in Comparative Example 1. The median diameter D50 of the silicone aggregate at the time of charging was 3.8 μm, and the median diameter d50 of the silicone fine particles at the time of achieving dispersion was 1 μm, which were substantially the same values as in Example 6 above.

(比較例5)
本比較例5では、上記比較例1と同様に分級機を用いない点を除き、上記実施例7と同様の方法で粒子分散液を得た。分散達成時間は上記実施例7の6倍の120分であり、これは、上記比較例1と同様、分散機により凝集体を効率的に解砕できないためであると考えられる。尚、投入時の凝集体のメジアン径D50は2.9μm、分散達成時のメラミン樹脂・シリカ複合粒子のメジアン径d50は0.53μmであり、上記実施例7と略同等の値であった。
(Comparative Example 5)
In Comparative Example 5, a particle dispersion was obtained in the same manner as in Example 7 except that a classifier was not used as in Comparative Example 1. The dispersion achievement time is 120 minutes, which is 6 times that of Example 7, which is considered to be because the agglomerates cannot be efficiently crushed by the disperser as in Comparative Example 1. The median diameter D50 of the aggregate at the time of charging was 2.9 μm, and the median diameter d50 of the melamine resin / silica composite particles at the time of achieving dispersion was 0.53 μm, which were substantially the same values as in Example 7 above.

(比較例6)
本比較例6では、上記比較例1と同様に分級機を用いない点を除き、上記実施例8と同様の方法で粒子分散液を得た。分散達成時間は上記実施例8の7.5倍の150分であり、これは、上記比較例1と同様、分散機により凝集体を効率的に解砕できないためであると考えられる。尚、投入時の凝集体のメジアン径D50は15μm、分散達成時のフュームドシリカのメジアン径d50は8μmであり、上記実施例8と略同等の値であった。
(Comparative Example 6)
In Comparative Example 6, a particle dispersion was obtained in the same manner as in Example 8 except that a classifier was not used as in Comparative Example 1. The dispersion achievement time is 150 minutes, which is 7.5 times that of Example 8, which is considered to be because the agglomerates cannot be efficiently crushed by the disperser as in Comparative Example 1. The median diameter D50 of the aggregate at the time of charging was 15 μm, and the median diameter d50 of the fumed silica at the time of achieving dispersion was 8 μm, which were substantially the same values as in Example 8 above.

以上の実施例及び比較例によれば、分級手段2としての分級機を用いることで、粒子凝集体のない粒子分散液が得られることが判った。また、粒子減少率は1%未満であり、仕込み比量と機能性塗膜の想定組成比とが略一致することが判った。尚、比較例のように分級機を用いないと、解砕手段により効率的に解砕することができず、分散達成時間が大幅に長くなり、粒子分散液の製造(量産)に適さないことが判った。 According to the above Examples and Comparative Examples, it was found that a particle dispersion liquid without particle agglomerates can be obtained by using a classifying machine as the classifying means 2. Further, it was found that the particle reduction rate was less than 1%, and the charged ratio amount and the assumed composition ratio of the functional coating film were substantially the same. If a classifier is not used as in the comparative example, the particles cannot be efficiently crushed by the crushing means, the dispersion achievement time becomes significantly long, and the particle dispersion liquid is not suitable for production (mass production). I found out.

以上本発明の実施形態及び実施例について説明したが、本発明の技術思想の範囲を逸脱しない限り、種々の変形が可能である。上記実施形態及び実施例では、解砕手段1として高速撹拌機及びロータ・ステータ型分散機を用いる場合を例に説明したが、ジェットミルやビーズミルを用いることができる。但し、ビーズミルを用いると、ビーズが粒子凝集体と衝突することで生じる欠片が粒子分散液ひいては機能性塗膜に混入する所謂コンタミネーションが生じる場合がある。 Although the embodiments and examples of the present invention have been described above, various modifications are possible as long as they do not deviate from the scope of the technical idea of the present invention. In the above embodiments and examples, the case where a high-speed stirrer and a rotor-stator type disperser are used as the crushing means 1 has been described as an example, but a jet mill or a bead mill can be used. However, when a bead mill is used, so-called contamination may occur in which fragments generated by the beads colliding with the particle agglomerates are mixed in the particle dispersion liquid and thus in the functional coating film.

MS…分散液製造装置、1…高速撹拌機,分散機(解砕手段)、2…湿式分級機(分級手段)、3…循環ライン、31…一次ライン、32…二次ライン。 MS ... Dispersion liquid manufacturing equipment, 1 ... High-speed stirrer, Disperser (crushing means), 2 ... Wet classifier (classification means), 3 ... Circulation line, 31 ... Primary line, 32 ... Secondary line.

Claims (2)

所定粒径以下の粒子が分散媒に分散した粒子分散液を製造する分散液製造装置において、
前記分散媒中で所定粒径を超えて前記粒子が凝集したものを粒子凝集体とし、前記分散媒中の前記粒子凝集体を解砕する解砕手段と、前記分散媒中の前記粒子と前記粒子凝集体とを分級する分級手段と、前記解砕手段と前記分級手段との間で前記粒子と前記粒子凝集体との少なくともいずれか一方を含む分散媒を循環させる循環ラインとを備え、
前記解砕手段から前記分級手段に向かう循環ラインを一次ラインと、前記分級手段から解砕手段に向かう循環ラインを二次ラインとし、前記分級手段は、前記粒子凝集体を含む前記分散媒を二次ラインに戻すように構成されることを特徴とする分散液製造装置。
In a dispersion liquid manufacturing apparatus for producing a particle dispersion liquid in which particles having a predetermined particle size or less are dispersed in a dispersion medium.
Particle agglomerates in which the particles exceed a predetermined particle size in the dispersion medium are used as particle agglomerates, and a crushing means for crushing the particle agglomerates in the dispersion medium, the particles in the dispersion medium, and the above. A classifying means for classifying the particle agglomerates and a circulation line for circulating a dispersion medium containing at least one of the particles and the particle agglomerates between the crushing means and the classifying means are provided.
The circulation line from the crushing means to the classification means is a primary line, the circulation line from the classification means to the crushing means is a secondary line, and the classification means has two dispersion media containing the particle aggregates. A dispersion liquid manufacturing apparatus characterized in that it is configured to return to the next line.
前記分級手段から前記一次ラインに前記粒子を含む前記分散媒を戻すバイパスラインを更に備えることを特徴とする請求項1記載の分散液製造装置。
The dispersion liquid manufacturing apparatus according to claim 1, further comprising a bypass line for returning the dispersion medium containing the particles to the primary line from the classification means.
JP2020037097A 2020-03-04 2020-03-04 Dispersion fluid production device Pending JP2021137725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020037097A JP2021137725A (en) 2020-03-04 2020-03-04 Dispersion fluid production device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020037097A JP2021137725A (en) 2020-03-04 2020-03-04 Dispersion fluid production device

Publications (1)

Publication Number Publication Date
JP2021137725A true JP2021137725A (en) 2021-09-16

Family

ID=77667269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037097A Pending JP2021137725A (en) 2020-03-04 2020-03-04 Dispersion fluid production device

Country Status (1)

Country Link
JP (1) JP2021137725A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384655A (en) * 1986-09-26 1988-04-15 Mitsubishi Kasei Corp Slurry treating device
JPH09187731A (en) * 1996-01-04 1997-07-22 Canon Inc Preparation of toner
JP2006247484A (en) * 2005-03-09 2006-09-21 Ngk Spark Plug Co Ltd Method for granulating ceramic raw material and apparatus thereof
JP2007121463A (en) * 2005-10-25 2007-05-17 Fuji Xerox Co Ltd Method for manufacturing electrostatic image developing toner
JP2008259946A (en) * 2007-04-11 2008-10-30 Mitsui Mining Co Ltd Crushing and distribution system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384655A (en) * 1986-09-26 1988-04-15 Mitsubishi Kasei Corp Slurry treating device
JPH09187731A (en) * 1996-01-04 1997-07-22 Canon Inc Preparation of toner
JP2006247484A (en) * 2005-03-09 2006-09-21 Ngk Spark Plug Co Ltd Method for granulating ceramic raw material and apparatus thereof
JP2007121463A (en) * 2005-10-25 2007-05-17 Fuji Xerox Co Ltd Method for manufacturing electrostatic image developing toner
JP2008259946A (en) * 2007-04-11 2008-10-30 Mitsui Mining Co Ltd Crushing and distribution system

Similar Documents

Publication Publication Date Title
JP3329884B2 (en) Granular pigment composite material and production method thereof
US20210278574A1 (en) Composite system comprising a polymer matrix and core-shell nanoparticles, process for preparing it and use thereof
CN1589237A (en) Nanoparticles having a rutile-like crystalline phase and method of preparing the same
DE19713054A1 (en) Process for the preparation of thermosetting resin particles for use as a powder coating
WO2002064669A1 (en) Process for producing colored resin composition and utilization thereof
KR102029829B1 (en) Composite aggregate resin particle and composition containing same particle
JP2021137725A (en) Dispersion fluid production device
JP5392696B2 (en) Core-shell type cobalt oxide fine particles or dispersion containing the same, production method and use thereof
JPH01149841A (en) Pigment for resin
JP5421141B2 (en) Amino resin crosslinked particles and process for producing the same
TWI582154B (en) Composite agglomerated resin particles and compositions containing the particles
DE10008473A1 (en) UV-absorbent plastic composite, especially for production of food packaging film, contains finely-dispersed metal oxide, metal titanate or metal zirconate, e.g. titanium oxide or barium titanate
JP2017102413A (en) Black fluorescent toner, toner storage unit, and image forming apparatus
JP2007121663A (en) Negative charge type encapsulated silica, method for manufacturing same, and toner
JP2010024329A (en) Inorganic fine particle agglomeration and resin composition containing inorganic fine particle
EP3141962A2 (en) Polymer-encapsulated carbon nanotube: process for its preparation and use thereof
KR102584137B1 (en) Manufacturing method for dispersion liquid including inorganic particle
JP7407711B2 (en) Composite material manufacturing method
KR960005188B1 (en) Toner for electrophotography
KR960005187B1 (en) Method for production of microfine colored particles
JP6368990B2 (en) Particle mixture of optical adhesive composition, optical adhesive composition, and method for producing optical adhesive layer
JP2021142482A (en) Dispersion liquid production device and dispersion liquid production method
JP2001029822A (en) Manufacture of antistatic coating material
JP2003147089A (en) Composite particle of amino resin
JP2022025722A (en) Highly concentrated highly dispersed slurry composition and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240528