JP2006247484A - Method for granulating ceramic raw material and apparatus thereof - Google Patents

Method for granulating ceramic raw material and apparatus thereof Download PDF

Info

Publication number
JP2006247484A
JP2006247484A JP2005065135A JP2005065135A JP2006247484A JP 2006247484 A JP2006247484 A JP 2006247484A JP 2005065135 A JP2005065135 A JP 2005065135A JP 2005065135 A JP2005065135 A JP 2005065135A JP 2006247484 A JP2006247484 A JP 2006247484A
Authority
JP
Japan
Prior art keywords
slurry
filtration
filter
raw material
ceramic raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005065135A
Other languages
Japanese (ja)
Inventor
Masanori Nishi
政範 西
Kazuaki Kitamura
和昭 北村
Hideaki Hiramitsu
秀明 平光
Hirobumi Ozeki
博文 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2005065135A priority Critical patent/JP2006247484A/en
Publication of JP2006247484A publication Critical patent/JP2006247484A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Glanulating (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Mixers With Rotating Receptacles And Mixers With Vibration Mechanisms (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy-to-use granulating method capable of making structure, composition, particle size and shape unifom. <P>SOLUTION: Ceramic slurry is irradiated with ultrasonic waves from an ultrasonic wave irradiation part 142 to vibrate particles of barium titanate in a filtration chamber 140 of an ultrasonic dispersion/filtration unit 40 arranged between an agitator 34 and a spray-drying unit 42. As a result, agglomerated particles of barium titanate become single particles, which are then dispersed uniformly in a solvent. Ultrasonic dispersion and filtration for achieving such a good result are continued until the ceramic slurry is supplied to a spray nozzle 43. The ceramic slurry of such a state that particles of barium titanate are dispersed suitably in the solvent is sprayed from the spray nozzle 43, dried and sorted to produce uniform granulated particles (granules). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、セラミック原料の造粒方法に関する。   The present invention relates to a method for granulating a ceramic raw material.

セラミックは優れた電気的特性・熱的特性・耐久特性を備えると共に、その機械的強度にも優れることから、近年、電子デバイスの基材等に多用されている。ところで、セラミック部品はセラミック粉末を所定形状に成形、焼成して得られるので、成形に好適なセラミック粉末(顆粒状)を造粒するに当たっては、その粒径や形状の均一化が求められている。こうした要求に応えるため造粒過程において種々の技術が提案されている(例えば、特許文献1参照)。   Ceramics have been widely used in recent years as a base material for electronic devices because they have excellent electrical characteristics, thermal characteristics, durability characteristics, and excellent mechanical strength. By the way, since ceramic parts are obtained by molding and firing ceramic powder into a predetermined shape, when granulating ceramic powder (granular) suitable for molding, it is required to make the particle size and shape uniform. . In order to meet such demands, various techniques have been proposed in the granulation process (see, for example, Patent Document 1).

特開2001−130968号公報JP 2001-130968 A

この特許文献の技術によれば、セラミック粉末を分散媒に混合攪拌する際に、超音波照射を行う事によって、スラリーの均一化を確実に得ることができる。しかしながら、混合攪拌後にスラリーはスプレー装置に搬送されるため、この搬送過程においてセラミック粒子の再凝集が起き得ることから、セラミック顆粒の均質・均一化には改善の余地が残されていた。   According to the technique of this patent document, when the ceramic powder is mixed and stirred in the dispersion medium, the slurry can be made uniform by performing ultrasonic irradiation. However, since the slurry is transported to the spray device after mixing and stirring, reaggregation of the ceramic particles can occur during this transporting process, so there remains room for improvement in homogenization and homogenization of the ceramic granules.

本発明は、上記問題点を解決するための造粒手法、即ち、組織・組成並びに粒径・形状の均質・均一化が達成可能な簡便な造粒手法を提供することをその目的とする。   An object of the present invention is to provide a granulation technique for solving the above-described problems, that is, a simple granulation technique capable of achieving homogeneity / homogenization of structure / composition and particle diameter / shape.

かかる課題の少なくとも一部を解決するため、本発明のセラミック原料の造粒方法では、粉砕したセラミック原料を溶媒に懸濁させスラリー化したのち、スプレー装置から噴霧してセラミック顆粒を造粒するに際して、スプレー装置に至る配管路の濾過室において、スラリーが供給される間に亘ってスラリーヘ超音波照射濾過がなされる。すなわち、本発明では、セラミック懸濁スラリーに超音波分散濾過が施され、その直後にスラリーをスプレー装置に供給する方法を提供するものである。   In order to solve at least a part of such problems, in the method for granulating a ceramic raw material of the present invention, the pulverized ceramic raw material is suspended in a solvent and slurried, and then sprayed from a spray device to granulate the ceramic granules. In the filtration chamber of the pipe line leading to the spray device, the slurry is subjected to ultrasonic irradiation filtration while the slurry is supplied. That is, the present invention provides a method in which ultrasonic dispersion filtration is applied to a ceramic suspension slurry, and immediately after that, the slurry is supplied to a spray device.

スラリーに懸濁したセラミック粒子は、微細であるため、溶媒中での懸濁に際しては凝集し易く、再凝集も生じ易い。しかし、たとえ強固に凝集したセラミック粒子であっても、スプレー装置に至る直前の配管路の濾過室で超音波照射を受けることによって、その凝集は解かれ、分散化する。よって、濾過室で超音波分散濾過を経たスラリーは単一セラミック粒子とバインダーが均一に分散したスラリーとなり、スプレー装置に供給される。また、セラミック粒子の懸濁の際に、セラミック以外の粗大異物がスラリー中に混入する恐れもあるが、こうした粗大異物は、濾過室で捕獲されるため、超音波分散濾過を経たスラリーは、特性上有害となる不純物が除去され、高品位で高品質なスラリーとなり得る。   Since the ceramic particles suspended in the slurry are fine, they tend to agglomerate when suspended in a solvent and reagglomerate easily. However, even if the ceramic particles are strongly agglomerated, the agglomeration is released and dispersed by receiving ultrasonic irradiation in the filtration chamber of the pipe line just before reaching the spray device. Therefore, the slurry that has undergone ultrasonic dispersion filtration in the filtration chamber becomes a slurry in which single ceramic particles and a binder are uniformly dispersed, and is supplied to the spray device. In addition, coarse particles other than ceramic may be mixed in the slurry when the ceramic particles are suspended, but these coarse particles are trapped in the filtration chamber. Impurities that are harmful to the top are removed, and a high-quality and high-quality slurry can be obtained.

均一に分散し、単一粒子化したセラミックスラリーは、スプレー装置への直前の配管途中で超音波濾過を施されるので、粒子の再凝集を招かず、均質な噴霧乾燥が可能となる。この結果、得られるセラミック造粒粒子は均質で、組織や組成並びに粒径や形状の不揃いも生じない。こうした均質化は、スプレー装置の上流側で超音波分散濾過を行うことによって図ることができる。この場合、粒子の再凝集を招かないよう、スラリー噴霧に当たっては、超音波分散濾過室とスプレー装置の近接配置やスプレー装置ヘのスラリーの高流速圧送が重要となる。   The ceramic slurry that is uniformly dispersed and formed into a single particle is subjected to ultrasonic filtration in the middle of piping immediately before the spray device, so that the particles are not re-agglomerated and uniform spray drying is possible. As a result, the obtained ceramic granulated particles are homogeneous, and there is no irregularity in structure, composition, particle size or shape. Such homogenization can be achieved by performing ultrasonic dispersion filtration upstream of the spray device. In this case, in order to prevent reaggregation of the particles, it is important to arrange the ultrasonic dispersion filtration chamber and the spray device close to each other and to feed the slurry to the spray device at a high flow rate so that the particles are not re-aggregated.

また、本発明では、配管路に設けた濾過室においてセラミックスラリーを超音波分散濾過しながら、濾過フィルタを通過しない余剰のスラリーを濾過室上流側のスラリー調整部に還流させることもできる。こうすれば、以下の利点がある。一般に、濾過フィルタは、濾過に伴い、捕獲物(所謂、バインダーに起因する未溶解状のダマ)により、目詰まりを生じやすい。しかし、上記に示した如く、セラミックスラリーを還流させていることから、この際のスラリーの戻りにより、濾過フィルタのダマを濾過室外に持ち出すことができ、かつ繰り返し超音波を照射できるので、濾過フィルタの目詰まりの抑制及び効率良いダマの微細化、微小化が可能となる。ひいては、造粒中のトラブル(濾過フィルタ交換、清掃頻度)が減少し、生産性が高まる。   Moreover, in this invention, the excess slurry which does not pass a filtration filter can also be recirculated | refluxed to the slurry adjustment part upstream of a filtration chamber, carrying out ultrasonic dispersion filtration of the ceramic slurry in the filtration chamber provided in the piping. This has the following advantages. In general, a filtration filter is likely to be clogged due to trapped substances (so-called undissolved lumps caused by a binder) during filtration. However, as shown above, since the ceramic slurry is refluxed, the return of the slurry at this time allows the filter filter dams to be taken out of the filtration chamber and can be repeatedly irradiated with ultrasonic waves. It is possible to suppress clogging and to effectively reduce the size of the dama. Eventually, troubles during granulation (filter filter replacement, cleaning frequency) are reduced, and productivity is increased.

更に、超音波照射によるセラミック粒子の分散促進と濾過フィルタ(詳しくは濾過フィルタ細孔)による物理的な凝集抑制との相乗作用によって、濾過フィルタ通過後のセラミックスラリー粒子の再凝集をより一層抑制できる。   Furthermore, the reaggregation of the ceramic slurry particles after passing through the filter can be further suppressed by the synergistic effect of promoting the dispersion of the ceramic particles by ultrasonic irradiation and suppressing the physical aggregation by the filter (specifically, filter filter pores). .

この場合、濾過フィルタのメッシュサイズを10〜100μmとすれば、濾過室内の圧力上昇も顕著とはならず、また、濾過フィルタの目詰まりによる交換、洗浄周期(メンテナンスインターバル)も延び、即ち 造粒可能期間が延び、好ましい。   In this case, if the mesh size of the filtration filter is 10 to 100 μm, the pressure rise in the filtration chamber does not become significant, and the replacement due to clogging of the filtration filter and the cleaning cycle (maintenance interval) are extended, that is, granulation. The possible period is extended, which is preferable.

また、濾過室を濾過フィルタで上流側濾過室と下流側濾過室に区分した下流側濾過室において、濾過フィルタ下流の直管管路とスプレー装置に至る配管路を直結する連結管路において、直管管路の管路内径と直管管路長の比を1:0.5〜1:5の範囲にすることもできる。こうすれば、濾過フィルタ通過後のスラリーをスプレー装置に至る配管路ヘ流れ易くできるので、下流側濾過室内でのスラリーの沈殿及び閉塞を抑制でき、不用意な濾過室内の圧力上昇も避けることができる。この場合、望ましくは、上記比を1:1〜1:2とすることが、スラリーの滞留、沈降、閉塞抑制の点から好ましい。   In the downstream filtration chamber where the filtration chamber is divided into an upstream filtration chamber and a downstream filtration chamber by a filtration filter, a straight pipe line downstream of the filtration filter is directly connected to a pipe line leading to the spray device. The ratio between the pipe inner diameter and the straight pipe length of the pipe line can be in the range of 1: 0.5 to 1: 5. In this way, the slurry after passing through the filtration filter can be easily flowed to the pipe line leading to the spray device, so that sedimentation and blockage of the slurry in the downstream filtration chamber can be suppressed, and an inadvertent increase in pressure in the filtration chamber can be avoided. it can. In this case, it is desirable that the ratio is 1: 1 to 1: 2 in terms of slurry retention, sedimentation, and blockage suppression.

以下、本発明の実施の形態について、その実施例を図面に基づき説明する。図1は実施例のセラミック原料の造粒工程を模式的に示す概略図である。この図1に示すように、本実施例の造粒工程は、最終生産品として、チタン酸バリウムのセラミック顆粒を造粒するものであり、以下の手順にて実現される。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a schematic view schematically showing a granulation step of the ceramic raw material of the example. As shown in FIG. 1, the granulation step of the present embodiment granulates barium titanate ceramic granules as a final product, and is realized by the following procedure.

STEP S1では、セラミック原料となる高純度の酸化チタンおよび炭酸バリウムを準備し、これを溶媒(純水)と混合し、攪拌機10にて攪拌する。この際、酸化チタンおよび炭酸バリウムは、純水に対する最適配合比で秤量、調整する。次いで、適宜な粉砕機12(例えば、ボールミル、ビーズミル等)を用いて微粉砕し、酸化チタンと炭酸バリウムの混合粉(以下混合粉)をスラリー化する(STEP S2)。スラリーの粉砕粒度は、平均粒子径が約0.5〜1.5μmに調整することが望ましい。こうして粉砕したスラリーは、下流の攪拌機16に移送して、純水とより一層の均一混合化を図る(STEP S3)。   In STEP S1, high-purity titanium oxide and barium carbonate, which are ceramic raw materials, are prepared, mixed with a solvent (pure water), and stirred with a stirrer 10. At this time, titanium oxide and barium carbonate are weighed and adjusted at an optimum blending ratio with respect to pure water. Next, the mixture is finely pulverized using an appropriate pulverizer 12 (for example, a ball mill, a bead mill, etc.), and a mixed powder of titanium oxide and barium carbonate (hereinafter, mixed powder) is slurried (STEP S2). The pulverized particle size of the slurry is desirably adjusted to an average particle size of about 0.5 to 1.5 μm. The slurry thus pulverized is transferred to a downstream stirrer 16 for further uniform mixing with pure water (STEP S3).

攪拌機16で純水と混合したスラリーは噴霧乾燥装置18のスプレーノズルから噴霧し、顆粒状の乾燥粉末とする(STEP S4)。これにより、スラリーの水分はほぼ完全に除去されると共に、均質な脱水乾燥粉末ができる。次に、乾燥粉末を振動篩機20に投入し、分級する(STEP S5)。篩分級後の乾燥粉末は、仮焼サヤ21内に入れ、サヤ21ごと、仮焼炉22にて仮焼する(STEP S6)。この仮焼により、固相反応、粒成長促進を図り、組織、組成共均質なチタン酸バリウム仮焼粉末を得る。   The slurry mixed with pure water by the stirrer 16 is sprayed from the spray nozzle of the spray dryer 18 to obtain a granular dry powder (STEP S4). Thereby, the water | moisture content of a slurry is removed almost completely, and a homogeneous dehydrated dry powder is made. Next, the dry powder is put into the vibration sieve 20 and classified (STEP S5). The dried powder after sieving is put into a calcining sheath 21 and calcined together with the sheath 21 in a calcining furnace 22 (STEP S6). By this calcining, solid phase reaction and grain growth are promoted, and a barium titanate calcined powder having a homogeneous structure and composition is obtained.

得られたチタン酸バリウム仮焼粉末を純水と共に攪拌機24に投入し、混合攪拌させる(STEP S7)。この場合も、投入するチタン酸バリウム仮焼粉末は、純水に対し、好適な配合比で秤量、添加する。その後、粉砕機26による粗粉砕(STEP S8)を、次いで粉砕機30による微粉砕(STEP S9)とを連続して行う。   The obtained barium titanate calcined powder is put into a stirrer 24 together with pure water and mixed and stirred (STEP S7). Also in this case, the charged barium titanate calcined powder is weighed and added at a suitable blending ratio with respect to pure water. Thereafter, coarse pulverization (STEP S8) by the pulverizer 26 and then fine pulverization (STEP S9) by the pulverizer 30 are continuously performed.

この粗粉砕・微粉砕は、粗粉砕の平均粒子径が約2〜5μm、微粉砕では約0.5〜1.5μmに調整することが望ましいので、こうした粒度調整に適した粉砕機(ボールミル、ビーズミル等)が適宜用いられる。   In this coarse pulverization / fine pulverization, it is desirable to adjust the average particle diameter of coarse pulverization to about 2 to 5 μm, and fine pulverization to about 0.5 to 1.5 μm. Therefore, a pulverizer (ball mill, A bead mill or the like is used as appropriate.

続くSTEP S10では、攪拌機34において、粉砕されたチタン酸バリウム仮焼粉末をバインダーと混合攪拌して、均質なセラミックスラリーを調整する。この際、投入するバインダーは正確に秤量され、STEP S7における仮焼粉末量に対し、最適な配合比にて添加される。本実施例では、バインダーとして、結合剤ポリビニルアルコール(PVA)を、可塑剤ポリエチレングリコール(PEG)を、滑剤グリセリンを、分散剤ポリアクリル酸アンモニウムを用いた。なお、これらの配合例として、結合剤0.5wt%、可塑剤0.1wt%、滑剤0.1wt%、分散剤0.3wt%をあげることができる。   In the subsequent STEP S10, in the stirrer 34, the pulverized barium titanate calcined powder is mixed and stirred with a binder to prepare a homogeneous ceramic slurry. At this time, the binder to be added is accurately weighed and added at an optimum blending ratio with respect to the calcined powder amount in STEP S7. In this example, the binder polyvinyl alcohol (PVA), the plasticizer polyethylene glycol (PEG), the lubricant glycerin, and the dispersing agent ammonium polyacrylate were used as binders. Examples of these blends include 0.5 wt% binder, 0.1 wt% plasticizer, 0.1 wt% lubricant, and 0.3 wt% dispersant.

本実施例では、攪拌機34におけるチタン酸バリウム仮焼粉末の分散に際し、固形分濃度を30wt%とした。一般的に、セラミック粉末にバインダーを添加し、スラリー化を図る場合、その固形分濃度は、凡そ50〜60wt%とされるが、本実施例では、ここでのスラリー調整を、固形分濃度が30〜40wt%の範囲となるように行った。つまり、固形分濃度が30〜40wt%の範囲であれば、後述する超音波分散濾過による懸濁スラリーの分散が好適に行われる上、スプレーノズル43に至る配管内での再凝集も抑制でき好ましい。固形分濃度が低すぎる場合はセラミック顆粒の造粒効率が低下する問題が生じ、大きすぎる場合は、超音波の伝播が阻害され分散が不十分となる問題が生じ、懸濁スラリーの分散性、再凝集性の点で劣る結果となる。また、スラリー粘度についても、できる限り低粘度に調整(4mPaS(=4CPS))することによって、上記の固形分濃度調整と相俟って、超音波分散濾過による懸濁スラリーの分散促進、再凝集抑制の実効性を高めることができる。   In this example, the solid content concentration was set to 30 wt% when the barium titanate calcined powder was dispersed in the stirrer 34. Generally, when a binder is added to a ceramic powder to make a slurry, the solid content concentration is about 50 to 60 wt%. It carried out so that it might become the range of 30-40 wt%. That is, if the solid content concentration is in the range of 30 to 40 wt%, it is preferable that dispersion of the suspension slurry by ultrasonic dispersion filtration described later is suitably performed and reaggregation in the pipe reaching the spray nozzle 43 can be suppressed. . If the solid content concentration is too low, there is a problem that the granulation efficiency of the ceramic granule is reduced, and if it is too large, there is a problem that the propagation of the ultrasonic wave is hindered and the dispersion becomes insufficient. This results in poor reaggregation. In addition, by adjusting the slurry viscosity as low as possible (4 mPaS (= 4 CPS)), coupled with the solid content adjustment described above, the dispersion of suspended slurry is promoted and re-agglomerated by ultrasonic dispersion filtration. The effectiveness of suppression can be increased.

セラミックスラリーのバインダー添加調整を上記攪拌機34で行ったのち、強力電磁石を用いた磁力選別機39にて、スラリー内の磁性体異物(鉄、ステンレスを主体とする原料内およびプロセス内のコンタミ異物)を除去する(STEP S11)。このような磁力選別に加えて、超音波分散濾過装置40にても細孔濾過を行って(STEP S12)、噴霧乾燥装置42(STEP S13)のスプレーノズル43には、不純物の混入のない純度の高いチタン酸バリウムスラリーを供給する。この噴霧乾燥装置42で、スラリーの噴霧、脱水乾燥、造粒を行うことによって、高品質のチタン酸バリウム顆粒を生成することができる。その後、チタン酸バリウム顆粒は、振動篩機44に投入され、分級が施される(STEP S14)。この分級されたチタン酸バリウム顆粒は、種々のセラミック製品の原材料に用いることができる。なお、上述した造粒システムの各STEP間には、その配管経路において、スラリー移送・圧送用のポンプが適宜配設される。   After the binder addition adjustment of the ceramic slurry is performed with the agitator 34, the magnetic foreign matter in the slurry (contaminating foreign matter in the raw material mainly in iron and stainless steel and in the process) is detected by the magnetic separator 39 using a strong electromagnet. Is removed (STEP S11). In addition to such magnetic sorting, the ultrasonic dispersion filtering device 40 also performs pore filtration (STEP S12), and the spray nozzle 43 of the spray drying device 42 (STEP S13) has a purity free of impurities. A high barium titanate slurry is supplied. High quality barium titanate granules can be produced by spraying, dehydrating and granulating the slurry with this spray drying device 42. Thereafter, the barium titanate granules are put into the vibration sieve 44 and classified (STEP S14). This classified barium titanate granule can be used as a raw material for various ceramic products. In addition, between each STEP of the granulation system described above, a slurry transfer / pressure pump is appropriately disposed in the piping path.

次に、上記した超音波分散濾過装置40の詳細について説明する。図2は超音波分散濾過装置40を中心としたスラリー処理の様子を概略的に説明する説明図、図3は超音波分散濾過装置40の概略構成を示す概略断面図である。   Next, the details of the ultrasonic dispersion filtration device 40 described above will be described. FIG. 2 is an explanatory diagram for schematically explaining the state of the slurry treatment centering on the ultrasonic dispersion filtration device 40, and FIG. 3 is a schematic cross-sectional view showing a schematic configuration of the ultrasonic dispersion filtration device 40.

これら図面に示すように、超音波分散濾過装置40は、仮焼後のセラミックスラリー(チタン酸バリウム仮焼粉末を微粉砕化し、懸濁させたスラリー)をバインダーと調整する攪拌機34と、セラミックスラリーをスプレーノズル43から、乾燥搭内ヘ噴霧、乾燥させ、セラミック顆粒を造粒する上記の噴霧乾燥装置42との間の配管路に配設されている。この超音波分散濾過装置40は、濾過室140を備え、その濾過室140において、超音波照射部142と濾過フィルタ144とを対向させている。   As shown in these drawings, the ultrasonic dispersion filtration apparatus 40 includes a stirrer 34 for adjusting a ceramic slurry after calcination (a slurry obtained by pulverizing and suspending a barium titanate calcined powder) and a binder, and a ceramic slurry. Is sprayed from the spray nozzle 43 to the drying tower and dried to be arranged in a pipe line between the spray drying apparatus 42 for granulating ceramic granules. The ultrasonic dispersion filtration device 40 includes a filtration chamber 140, and the ultrasonic irradiation unit 142 and the filtration filter 144 are opposed to each other in the filtration chamber 140.

超音波照射部142は、超音波発振機146に接続され、超音波を濾過室140内のスラリー(超音波照射部142と濾過フィルタ144との間に供給されたスラリー)に照射する。この超音波照射は、スプレーノズル43にスラリーが供給される間に亘って行われる。超音波発振機146は、その発振周波数を種々に変更でき、本実施例では、f=約20kHzの周波数の超音波を超音波照射部142から照射するようにした。   The ultrasonic irradiation unit 142 is connected to the ultrasonic oscillator 146 and irradiates ultrasonic waves to the slurry in the filtration chamber 140 (slurry supplied between the ultrasonic irradiation unit 142 and the filtration filter 144). This ultrasonic irradiation is performed while the slurry is supplied to the spray nozzle 43. The ultrasonic oscillator 146 can change its oscillation frequency in various ways, and in this embodiment, the ultrasonic irradiation unit 142 irradiates ultrasonic waves having a frequency of f = about 20 kHz.

超音波分散濾過装置40は、その上流側ポンプ145の制御と濾過室140の入口・出口径、流量の調整によって、濾過室140においてセラミックスラリーに0.005〜0.1MPaの圧力を加えながら、スラリーに超音波照射が行なえる構造を有する。すなわち、濾過室140でスラリー圧力が0.1MPaを超えると、超音波振動が阻害され、超音波照射能力が低下し、照射不能となるが、本装置は、こうしたことを回避できる構造となっている。   The ultrasonic dispersion filtration device 40 applies pressure of 0.005 to 0.1 MPa to the ceramic slurry in the filtration chamber 140 by controlling the upstream pump 145 and adjusting the inlet / outlet diameter and flow rate of the filtration chamber 140. The slurry can be irradiated with ultrasonic waves. That is, when the slurry pressure exceeds 0.1 MPa in the filtration chamber 140, the ultrasonic vibration is hindered, the ultrasonic irradiation ability is reduced, and the irradiation becomes impossible, but this apparatus has a structure that can avoid such a situation. Yes.

超音波分散濾過装置40は、濾過室140から攪拌機34にかけてリターン管路148を備える。そして、この超音波分散濾過装置40は、濾過フィルタ144で濾過したスラリーをスプレーノズル43に供給しつつ、濾過フィルタ144を通過しない余剰のスラリーをリターン管路148を経て攪拌機34に環流させる。また、超音波分散濾過装置40は、濾過室140の上部においてこれを取り囲む水冷ジャケット150を備え、スラリー濾過時の濾過室温上昇を抑制している。本実施例では、水冷ジャケット150により、濾過室140内におけるスラリー温度を約20℃に維持した。   The ultrasonic dispersion filtration device 40 includes a return line 148 from the filtration chamber 140 to the stirrer 34. Then, the ultrasonic dispersion filtration device 40 supplies the slurry filtered by the filtration filter 144 to the spray nozzle 43 while circulating the excess slurry that does not pass through the filtration filter 144 to the stirrer 34 via the return line 148. In addition, the ultrasonic dispersion filtration device 40 includes a water cooling jacket 150 surrounding the filtration chamber 140 at the upper portion thereof, and suppresses an increase in filtration room temperature during slurry filtration. In this example, the water cooling jacket 150 maintained the slurry temperature in the filtration chamber 140 at about 20 ° C.

濾過室140は、フィルタ144で上流側濾過室140aと下流側濾過室140bに区分され、下流側濾過室140bは、濾過フィルタ下流の直管管路143aと、スプレーノズル43に至る配管管路をこの直管管路143aと連結するテーパ状の連結管路143bで形成されている。本実施例では、直管管路143aにおける管路内径と管路長の比を約1:1とし、濾過フィルタ144の下方に、フィルタ径と同等程度の長さで直管管路143aを延ばすこととした。そして、このテーパ状の連結管路143bとスプレーノズル43との間には、ポンプ147(図2参照)を配設し、当該ポンプにてスラリーをスプレーノズル43に圧送し、高い流速でスラリーをスプレーノズル43に供給する。こうしたポンプによる圧送に加え、本実施例では、連結管路143bにて配管経路の狭小化を図り、これによってもセラミックスラリーの停滞、沈降、再凝集を抑制することとした。具体的には、直管管路143aを直径47mmの管路とし、連結管路143b下流では、直径17.5mmの管路とし、ポンプ147の手前で直径8mmの管路とし、この管路のポンプ147でセラミックスラリーをスプレーノズル43に高流速で送り込む。   The filtration chamber 140 is divided into an upstream filtration chamber 140a and a downstream filtration chamber 140b by a filter 144. The downstream filtration chamber 140b has a straight pipe line 143a downstream of the filtration filter and a pipe line leading to the spray nozzle 43. The straight pipe line 143a is formed by a tapered connecting pipe line 143b. In this embodiment, the ratio of the pipe inner diameter and the pipe length in the straight pipe line 143a is set to about 1: 1, and the straight pipe line 143a is extended below the filtration filter 144 by a length equivalent to the filter diameter. It was decided. A pump 147 (see FIG. 2) is disposed between the tapered connecting pipe line 143b and the spray nozzle 43, and the slurry is pumped to the spray nozzle 43 by the pump, and the slurry is fed at a high flow rate. Supply to spray nozzle 43. In addition to the pumping by such a pump, in this embodiment, the pipe path is narrowed by the connecting pipe line 143b, thereby suppressing the stagnation, sedimentation, and re-aggregation of the ceramic slurry. Specifically, the straight pipe line 143a is a pipe line having a diameter of 47 mm, the pipe line having a diameter of 17.5 mm is provided downstream of the connecting pipe line 143b, and a pipe having a diameter of 8 mm is provided in front of the pump 147. The ceramic slurry is sent to the spray nozzle 43 at a high flow rate by the pump 147.

本実施例は、上記構成を有する超音波分散濾過装置40を噴霧乾燥装置42の上流側に設置し、超音波照射部142と濾過フィルタ144を有する超音波分散濾過装置40による超音波分散濾過を経たスラリーを噴霧乾燥させるので、次の利点がある。   In the present embodiment, the ultrasonic dispersion filtration apparatus 40 having the above-described configuration is installed on the upstream side of the spray drying apparatus 42, and ultrasonic dispersion filtration by the ultrasonic dispersion filtration apparatus 40 having the ultrasonic irradiation unit 142 and the filtration filter 144 is performed. Since the passed slurry is spray-dried, there are the following advantages.

攪拌機34にて混合されるセラミックスラリー(上記バインダー配合調整済みのスラリー)においては、チタン酸バリウム粒子が微粒子化され、高活性化しているので、セラミック粒子同士の凝集は避けられない。しかし、一旦凝集したチタン酸バリウム粒子であっても、超音波分散濾過装置内の濾過室140において超音波の照射を受ければ、凝集は解かれ、単一分散化し、個々に粒子が分散した状態に戻る。このスラリーはスプレーノズル43に供給される間に亘って継続して超音波の照射を受けることができ、この結果、濾過室140で超音波分散濾過を経たセラミック粒子は、単分散化した状態でスプレーノズル43から噴霧され、噴霧乾燥装置42で造粒、振動篩機44で分級がなされ、均質な高品位のチタン酸バリウム顆粒を生成することができる。   In the ceramic slurry mixed with the stirrer 34 (slurry having the binder blended and adjusted), the barium titanate particles are finely divided and highly activated, and thus aggregation of the ceramic particles is inevitable. However, even if the barium titanate particles are aggregated once, if they are irradiated with ultrasonic waves in the filtration chamber 140 in the ultrasonic dispersion filtration device, the aggregation is released and the particles are dispersed in a single state, and the particles are dispersed individually. Return to. The slurry can be continuously irradiated with ultrasonic waves while being supplied to the spray nozzle 43. As a result, the ceramic particles that have undergone ultrasonic dispersion filtration in the filtration chamber 140 are in a monodispersed state. It is sprayed from the spray nozzle 43, granulated by the spray dryer 42, and classified by the vibration sieve 44, so that uniform high-quality barium titanate granules can be produced.

本実施例では、超音波分散濾過装置40からスプレーノズル43までのスラリー供給経路長を約0.5m程度としたので、チタン酸バリウムスラリーの再凝集を招かない短時間のうちに、スラリーをスプレーノズル43から噴霧できる。このこともチタン酸バリウム造粒粒子生成の際には、顆粒の均質性、均一性の点で有利である。しかも、本実施例では、チタン酸バリウム粒子の再凝集抑制のため、以下の対策も図った。   In this embodiment, since the length of the slurry supply path from the ultrasonic dispersion filtering device 40 to the spray nozzle 43 is about 0.5 m, the slurry is sprayed within a short time that does not cause reaggregation of the barium titanate slurry. Spraying from the nozzle 43 is possible. This is also advantageous in terms of the homogeneity and uniformity of granules when producing barium titanate granulated particles. In addition, in this example, the following measures were also taken in order to suppress reaggregation of the barium titanate particles.

まず、第一に濾過フィルタ144を厚みが約2mmと、濾過装置一般の濾過フィルタより肉厚を厚くした。これにより、濾過フィルタ細孔をスラリーが通過するに当たって、肉厚が厚い分だけ、濾過フィルタ内で分散が促進でき、かつ再凝集を抑制する効果が期待できる。また、濾過室140内のセラミックスラリーに加わる圧力を調整(0.005〜0.1MPa)しながら、スラリーへの超音波振動伝播をより確実に、強力に行うことでより一層の分散促進、再凝集抑制の実効性を高めることができる。更には、固形分濃度調整、粘度調整、スプレーノズル43への管路径狭小化及び圧送ポンプ能力の向上によるスラリー流速の高速化によっても、噴霧直前のスラリーの再凝集を抑制でき、その実効性を高めることができる。   First, the thickness of the filtration filter 144 was about 2 mm, which was thicker than the filtration filter of a general filtration device. As a result, when the slurry passes through the filter filter pores, it can be expected that the dispersion can be promoted in the filter and the re-aggregation can be suppressed as much as the thickness increases. In addition, while adjusting the pressure applied to the ceramic slurry in the filtration chamber 140 (0.005 to 0.1 MPa), the ultrasonic vibration propagation to the slurry is performed more reliably and powerfully to further promote dispersion and re-use. The effectiveness of aggregation suppression can be enhanced. Furthermore, the reflocculation of the slurry immediately before spraying can be suppressed by adjusting the solid content concentration, adjusting the viscosity, narrowing the pipe diameter to the spray nozzle 43, and increasing the slurry flow rate by improving the pumping pump capacity. Can be increased.

本実施例では、濾過室140における濾過フィルタ144での物理的濾過も可能であることから、攪拌機34での磁力選別機によるスラリー内の磁性体異物除去と相俟って、超音波分散濾過を経たスラリーにおいては、磁性の有無に関わらず、粗大異物も完全に除去することができる。よって、得られるチタン酸バリウム顆粒の品質はより一層高まり、高付加価値化を図ることができる。   In this embodiment, since physical filtration with the filtration filter 144 in the filtration chamber 140 is also possible, coupled with the removal of magnetic foreign substances in the slurry by the magnetic separator in the stirrer 34, ultrasonic dispersion filtration is performed. In the passed slurry, coarse foreign matters can be completely removed regardless of the presence or absence of magnetism. Therefore, the quality of the barium titanate granules obtained can be further enhanced and high added value can be achieved.

これらの結果、噴霧乾燥を経て得られるチタン酸バリウム顆粒においては、顆粒の組織、組成並びに粒径や形状の均一化を図ることができる。しかも、こうした均質・均一化を図るに当たり、本実施例では、スプレーノズル43の上流側で超音波分散濾過装置40による超音波分散濾過を行えば足りることから、チタン酸バリウム顆粒の組織・組成並びに粒径・形状の均一化を容易に実現できる。   As a result, in the barium titanate granules obtained through spray drying, the structure, composition, particle size and shape of the granules can be made uniform. In addition, in order to achieve such homogeneity and uniformity, in this embodiment, it is sufficient to perform ultrasonic dispersion filtration with the ultrasonic dispersion filtration device 40 on the upstream side of the spray nozzle 43. Therefore, the structure and composition of the barium titanate granules and Uniform particle size and shape can be easily achieved.

また、本実施例では、濾過室140においてセラミックスラリーを超音波分散濾過する一方、濾過フィルタ144を通過しない余剰のスラリーを濾過室上流側の攪拌機34にリターン管路148を介して環流させる。このスラリー環流に伴う流れにより、濾過フィルタ144での捕獲物(ダマ)を、濾過フィルタ144から引き離し、攪拌機34に持ち還ることができる。よって、濾過フィルタ144の目詰まりを抑制でき、かつ繰り返し捕獲物に超音波を照射できるので、濾過フィルタ目詰まりによる装置停止、延いては造粒作業中断の頻度が小さくなり、その分、生産効率の向上を図ることができる。   In this embodiment, the ceramic slurry is subjected to ultrasonic dispersion filtration in the filtration chamber 140, while excess slurry that does not pass through the filtration filter 144 is circulated to the agitator 34 on the upstream side of the filtration chamber via the return line 148. By the flow accompanying the slurry recirculation, the trapped matter (dama) in the filtration filter 144 can be pulled away from the filtration filter 144 and brought back to the stirrer 34. Therefore, clogging of the filtration filter 144 can be suppressed, and ultrasonic waves can be repeatedly irradiated to the captured matter, so that the frequency of the apparatus stop due to clogging of the filtration filter and the interruption of the granulation operation is reduced, and the production efficiency is correspondingly reduced. Can be improved.

この場合、本実施例では、濾過フィルタ144のメッシュサイズを10〜100μmとしたので、濾過室140の内圧上昇も顕著とはならず、また、濾過フィルタ目詰まりによるフィルタメンテナンスを要するまでの時間、即ち造粒実行期間も延び、好ましい。   In this case, in this embodiment, since the mesh size of the filtration filter 144 is 10 to 100 μm, the increase in the internal pressure of the filtration chamber 140 does not become significant, and the time until filter maintenance due to clogging of the filtration filter is required, That is, the granulation execution period is extended, which is preferable.

しかも、濾過室140を濾過フィルタ144で区分した下流側濾過室140bを、濾過フィルタ径と同等程度の長さで直管状に延びた直管管路143aを有するようにした。よって、濾過フィルタ通過後のスラリーをその下流のテーパ状の連結管路143b、延いてはスプレーノズル43に流れ込み易くできると共に、下流側濾過室140b内でのスラリーの沈降、閉塞も抑制でき、不用意な濾過室内圧の上昇も生ぜず好ましい。   Moreover, the downstream-side filtration chamber 140b in which the filtration chamber 140 is divided by the filtration filter 144 has a straight pipe line 143a extending in a straight tube shape with a length equivalent to the diameter of the filtration filter. Therefore, the slurry after passing through the filtration filter can easily flow into the tapered connecting pipe line 143b on the downstream side, and then to the spray nozzle 43, and the settling and clogging of the slurry in the downstream filtration chamber 140b can be suppressed. It is preferable that the prepared pressure in the filtration chamber does not increase.

次に、上記した本実施例の造粒システムにおける超音波分散濾過の様子や、造粒したチタン酸バリウム顆粒の性状について説明する。図4はフィルタのメッシュ径を変えた場合とスラリー流量を変えた場合の濾過の様子を示す説明図、
図5は噴霧直前のチタン酸バリウムスラリーの粒度を示す説明図、図6は得られたチタン酸バリウム顆粒の電子顕微鏡写真(倍率100倍・500倍)を示す説明図である。
Next, the state of ultrasonic dispersion filtration in the granulation system of the above-described embodiment and the properties of the granulated barium titanate granules will be described. FIG. 4 is an explanatory view showing the state of filtration when the mesh diameter of the filter is changed and when the slurry flow rate is changed,
FIG. 5 is an explanatory view showing the particle size of the barium titanate slurry immediately before spraying, and FIG. 6 is an explanatory view showing an electron micrograph (magnification 100 × 500 times) of the obtained barium titanate granules.

図4(a)および(b)に示すように、スラリー供給の1パス分(約1リットル/分)の超音波分散濾過において、その濾過率はいずれも実用性を備えていた。また、濾過フィルタ径が10μmでは、濾過室内圧の上昇が見られ、これに伴って濾過率の低下(濾過フィルタ目詰まり)が起きたが、実用上の支障はなかった。特に、濾過フィルタ径が40μmであれば、濾過室内圧の上昇も少なく、濾過率維持・濾過フィルタ目詰まり抑制の点で好ましかった。スラリー流量については、低流量ほど濾過率の低下(濾過フィルタ目詰まり)が起きたが、これについても実用上の支障はなかった。   As shown in FIGS. 4A and 4B, in the ultrasonic dispersion filtration for one pass of slurry supply (about 1 liter / min), the filtration rate was practical. In addition, when the filtration filter diameter was 10 μm, an increase in the filtration chamber pressure was observed, and as a result, the filtration rate was reduced (filtration filter clogging), but there was no practical problem. In particular, when the diameter of the filter is 40 μm, the increase in the pressure in the filter chamber is small, which is preferable in terms of maintaining the filtration rate and suppressing clogging of the filter. Regarding the slurry flow rate, the lower the flow rate, the lower the filtration rate (filter filter clogging) occurred. However, there was no practical problem.

また、図5に示すように、超音波分散濾過装置40を用いずに、顆粒を造粒した場合の、噴霧直前のチタン酸バリウムスラリーの粒度は、平均粒子径が1.5μm、最大粒子径が5.12μmであった。一方、超音波分散濾過装置40による濾過分散を行った場合は、それぞれ図示するように粒度の微細、均一化を図ることができた。   In addition, as shown in FIG. 5, when the granules are granulated without using the ultrasonic dispersion filter 40, the particle size of the barium titanate slurry immediately before spraying is 1.5 μm in average particle size and the maximum particle size Was 5.12 μm. On the other hand, when the filtration dispersion was performed by the ultrasonic dispersion filtration apparatus 40, it was possible to achieve a fine and uniform particle size as shown in the figures.

更には、図6の写真から明らかなように、いずれの濾過フィルタ径のものであっても、ほぼ真球状のチタン酸バリウム造粒粒子を得ることができた。   Furthermore, as is apparent from the photograph in FIG. 6, almost spherical spherical barium titanate granulated particles could be obtained with any filter filter diameter.

以上本発明の実施例について説明したが、本発明は上記の実施例や実施形態になんら限定されるものではなく、本発明の要旨を逸脱しない範囲において種々なる態様で実施し得ることは勿論である。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments and embodiments, and can of course be implemented in various modes without departing from the gist of the present invention. is there.

実施例のセラミック原料の造粒工程を模式的に示す概略図である。It is the schematic which shows the granulation process of the ceramic raw material of an Example typically. 超音波分散濾過装置40を中心としたスラリー処理の様子を概略的に説明する説明図である。It is explanatory drawing which illustrates the mode of the slurry process centering on the ultrasonic dispersion filtration apparatus 40 roughly. 超音波分散濾過装置40の概略構成を示す概略断面図である。1 is a schematic cross-sectional view showing a schematic configuration of an ultrasonic dispersion filtration device 40. 濾過フィルタのメッシュ径を変えた場合とスラリー流量を変えた場合の濾過の様子を示す説明図である。It is explanatory drawing which shows the mode of filtration when the mesh diameter of a filtration filter is changed, and a slurry flow rate is changed. 噴霧直前のチタン酸バリウムスラリーの粒度を示す説明図である。It is explanatory drawing which shows the particle size of the barium titanate slurry just before spraying. 得られたチタン酸バリウム顆粒の電子顕微鏡写真(倍率100倍・500倍)を示す説明図である。It is explanatory drawing which shows the electron micrograph (magnification 100 time * 500 time) of the obtained barium titanate granule.

符号の説明Explanation of symbols

10...攪拌機
12...粉砕機
16...攪拌機
18...噴霧乾燥装置
20...振動篩機
21...容器
22...仮焼炉
24...攪拌機
26...粉砕機
28...攪拌機
30...粉砕機
34...攪拌機
39...磁力選別機
40...超音波分散濾過装置
42...噴霧乾燥装置
43...スプレーノズル
44...振動篩機
140...濾過室
140a...上流側濾過室
140b...下流側濾過室
142...超音波照射部
143a...直管管路
143b...連結管路
144...濾過フィルタ
145、147...ポンプ
146...超音波発振機
148...リターン管路
150...水冷ジャケット
10 ... Stirrer 12 ... Crusher 16 ... Stirrer 18 ... Spray dryer 20 ... Vibrating sieve 21 ... Container 22 ... Calciner 24 ... Stirrer 26 .. .Pulverizer 28 ... Agitator 30 ... Crusher 34 ... Agitator 39 ... Magnetic separator 40 ... Ultrasonic dispersion filter 42 ... Spray dryer 43 ... Spray nozzle 44. .. Vibrating sieve 140 ... Filtration chamber 140a ... Upstream filtration chamber 140b ... Downstream filtration chamber 142 ... Ultrasonic irradiation section 143a ... Straight pipe line 143b ... Connection pipe line 144 ... filtration filter 145, 147 ... pump 146 ... ultrasonic oscillator 148 ... return line 150 ... water cooling jacket

Claims (5)

セラミック原料の造粒方法であって、
セラミック原料を粉砕したセラミック粉体を得る工程と、
該セラミック粉体を懸濁したスラリーを調整する工程と、
該スラリーを噴霧乾燥装置内のスプレー装置から噴霧して、セラミック原料の顆粒を造粒する工程とを備え、
前記スプレー装置に至る配管路に設けた超音波分散濾過装置の濾過室において、前記スラリーに対する超音波照射を前記スプレー装置への前記スラリーの供給の間に亘って継続しつつ、前記濾過室で濾過したスラリーを前記スプレー装置に供給する
セラミック原料の造粒方法。
A method for granulating ceramic raw materials,
Obtaining ceramic powder obtained by pulverizing ceramic raw materials;
Adjusting the slurry in which the ceramic powder is suspended;
Spraying the slurry from a spray device in a spray drying device, and granulating ceramic raw material granules,
In the filtration chamber of the ultrasonic dispersion filtration device provided in the pipe line leading to the spray device, the ultrasonic filtration on the slurry is continued during the supply of the slurry to the spray device, and the filtration is performed in the filtration chamber. A method for granulating a ceramic raw material, wherein the slurry is supplied to the spray device.
請求項1記載のセラミック原料の造粒方法であって、
前記濾過室における前記超音波濾過は、
前記配管路に設けた濾過室において対向する超音波照射部と濾過フィルタの間に前記スラリーを供給しつつ、前記超音波照射部から前記スラリーに超音波を照射し、前記フィルタを通過しない余剰のスラリーを前記濾過室へのスラリー供給部に環流させる
セラミック原料の造粒方法。
A method for granulating the ceramic raw material according to claim 1,
The ultrasonic filtration in the filtration chamber is
While supplying the slurry between the ultrasonic irradiation unit and the filtration filter facing each other in the filtration chamber provided in the pipe line, the slurry is irradiated with ultrasonic waves from the ultrasonic irradiation unit, and the surplus that does not pass through the filter A method for granulating a ceramic raw material, wherein the slurry is circulated to a slurry supply section to the filtration chamber.
請求項2記載のセラミック原料の造粒方法であって、
前記フィルタのメッシュサイズが10〜100μmとされる
セラミック原料の造粒方法。
A method for granulating a ceramic raw material according to claim 2,
A method for granulating a ceramic raw material, wherein the filter has a mesh size of 10 to 100 μm.
セラミック原料の造粒装置であって、
セラミック原料を粉砕したセラミック粉体を懸濁させたスラリーを調整するスラリー調整部と
前記スラリーをスプレー装置から乾燥室内に噴霧して乾燥させ、セラミック原料の顆粒を造粒する噴霧乾燥装置とを備え、
更に、前記噴霧乾燥装置と前記スラリー調整部との間の配管路に超音波分散濾過装置を備え、
該超音波分散濾過装置は、
前記配管路に設けた濾過室と、
前記濾過室において対向する超音波照射部と濾過フィルタとを備え、
前記超音波照射部とフィルタとの間に供給された前記スラリーに対する前記超音波照射部からの超音波照射を、前記スプレー装置へのスラリー供給の間に亘って継続しつつ、前記フィルタで濾過したスラリーの前記スプレー装置への供給と、前記フィルタを通過しない余剰のスラリーを前記スラリー調整部に環流させるスラリー環流とを行う
セラミック原料の造粒装置。
A granulating device for ceramic raw material,
A slurry adjusting unit for adjusting a slurry in which ceramic powder obtained by pulverizing ceramic raw material is suspended, and a spray drying device for granulating ceramic raw material granules by spraying the slurry from a spray device into a drying chamber and drying the slurry. ,
Furthermore, an ultrasonic dispersion filtration device is provided in a pipe line between the spray drying device and the slurry adjusting unit,
The ultrasonic dispersion filtration device
A filtration chamber provided in the pipe line;
An ultrasonic irradiation section and a filtration filter facing each other in the filtration chamber;
The ultrasonic irradiation from the ultrasonic irradiation unit to the slurry supplied between the ultrasonic irradiation unit and the filter was filtered through the filter while continuing the slurry supply to the spray device. A ceramic raw material granulator that performs supply of slurry to the spray device and slurry recirculation for circulating excess slurry that does not pass through the filter to the slurry adjusting unit.
請求項4記載のセラミック原料の造粒装置であって、
前記濾過室は、
前記フィルタで上流側濾過室と下流側濾過室に区分され、
前記下流側濾過室をフィルタ下流の直管管路と、前記スプレー装置に至る配管路を前記直管管路と連結する連結管路で形成し、
前記直管管路における管路内径と管路長の比を、1:0.5〜1:5の範囲とした
セラミック原料の造粒装置。
A granulating device for a ceramic raw material according to claim 4,
The filtration chamber is
The filter is divided into an upstream filtration chamber and a downstream filtration chamber,
The downstream filtration chamber is formed by a straight pipe line downstream of the filter, and a pipe line leading to the spray device is connected to the straight pipe line,
A granulation apparatus for a ceramic raw material, wherein a ratio of a pipe inner diameter and a pipe length in the straight pipe pipe is in a range of 1: 0.5 to 1: 5.
JP2005065135A 2005-03-09 2005-03-09 Method for granulating ceramic raw material and apparatus thereof Pending JP2006247484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065135A JP2006247484A (en) 2005-03-09 2005-03-09 Method for granulating ceramic raw material and apparatus thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065135A JP2006247484A (en) 2005-03-09 2005-03-09 Method for granulating ceramic raw material and apparatus thereof

Publications (1)

Publication Number Publication Date
JP2006247484A true JP2006247484A (en) 2006-09-21

Family

ID=37088519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065135A Pending JP2006247484A (en) 2005-03-09 2005-03-09 Method for granulating ceramic raw material and apparatus thereof

Country Status (1)

Country Link
JP (1) JP2006247484A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127261A (en) * 2006-11-22 2008-06-05 Sumitomo Chemical Co Ltd Method for producing ceramic granule, method for producing ceramic formed body, and method for producing ceramic sintered compact
JP2010033785A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide powder
CN106391292A (en) * 2016-10-31 2017-02-15 中国矿业大学 Liquid-solid fluidized bed sorting machine and material sorting method employing same
JP2020001940A (en) * 2018-06-25 2020-01-09 株式会社トクヤマ Method of manufacturing granulated particle for producing ceramic
JP2021137725A (en) * 2020-03-04 2021-09-16 リンテック株式会社 Dispersion fluid production device
CN116082036A (en) * 2022-07-19 2023-05-09 广东爱斯库生物材料有限公司 Zirconia recovery method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384655A (en) * 1986-09-26 1988-04-15 Mitsubishi Kasei Corp Slurry treating device
JP2001019558A (en) * 1999-07-06 2001-01-23 Sumitomo Electric Ind Ltd Ceramic powder for dry pressure forming and its production

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6384655A (en) * 1986-09-26 1988-04-15 Mitsubishi Kasei Corp Slurry treating device
JP2001019558A (en) * 1999-07-06 2001-01-23 Sumitomo Electric Ind Ltd Ceramic powder for dry pressure forming and its production

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008127261A (en) * 2006-11-22 2008-06-05 Sumitomo Chemical Co Ltd Method for producing ceramic granule, method for producing ceramic formed body, and method for producing ceramic sintered compact
JP2010033785A (en) * 2008-07-25 2010-02-12 Mitsui Mining & Smelting Co Ltd Lithium transition metal oxide powder
CN106391292A (en) * 2016-10-31 2017-02-15 中国矿业大学 Liquid-solid fluidized bed sorting machine and material sorting method employing same
JP2020001940A (en) * 2018-06-25 2020-01-09 株式会社トクヤマ Method of manufacturing granulated particle for producing ceramic
JP2021137725A (en) * 2020-03-04 2021-09-16 リンテック株式会社 Dispersion fluid production device
JP7499580B2 (en) 2020-03-04 2024-06-14 リンテック株式会社 Dispersion Liquid Manufacturing Equipment
CN116082036A (en) * 2022-07-19 2023-05-09 广东爱斯库生物材料有限公司 Zirconia recovery method and application thereof

Similar Documents

Publication Publication Date Title
US11097347B2 (en) Method of producing atomized powder and method of manufacturing magnetic core
JP2006247484A (en) Method for granulating ceramic raw material and apparatus thereof
JP5032133B2 (en) Granulation method and granulation apparatus
CN101838136A (en) Preparation method of aluminium oxide and titanium dioxide compound ceramic powder
KR101800605B1 (en) The manufacturing method of silver powder
CN113526534B (en) Preparation method of monodisperse nano boehmite
CN109382193A (en) A kind of preparation method of superfine powdery material
CN110545929A (en) binder material for producing ceramic particles
JP2008285406A (en) Silica spherical particle
JP2015183200A (en) Silver powder and production method thereof
CN104129977A (en) Preparation method of alumina granulation powder specially used for hot pressing water valve block
CN104229875A (en) Improvement method of chlorination process titanium dioxide base material pulping and sand grinding classification process
JPH10216553A (en) Method and apparatus for grinding
WO2010114152A1 (en) Method for adding binder, device for adding binder, kneading machine and kneading method
JP5482684B2 (en) Pretreatment method of sintering raw materials
JPWO2004063097A1 (en) Method for adding activated carbon and water purification treatment in water purification treatment
JP2020037502A (en) Manufacturing method of alumina particles
WO2014087728A1 (en) Silver powder
JP5493937B2 (en) Classification method of metal fine powder
Mikami et al. Polyelectrolyte‐Assisted Reactive Crystallization of SrSO4 to Obtain Monodispersed Nano/Micro‐Particles
CN114409415A (en) Novel powder production process and production line thereof
KR20110030259A (en) Method for preparing cerium oxide nano powder
CN112226720A (en) Spray granulation preparation method of metal-ceramic composite powder suitable for atmospheric plasma spraying
CN113056542A (en) Method for coal fines agglomeration
CN109988122B (en) Method for preparing zinc thiazole with micro particle size

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081118