JP2021135256A - Shape measurement device and shape measurement method - Google Patents

Shape measurement device and shape measurement method Download PDF

Info

Publication number
JP2021135256A
JP2021135256A JP2020033683A JP2020033683A JP2021135256A JP 2021135256 A JP2021135256 A JP 2021135256A JP 2020033683 A JP2020033683 A JP 2020033683A JP 2020033683 A JP2020033683 A JP 2020033683A JP 2021135256 A JP2021135256 A JP 2021135256A
Authority
JP
Japan
Prior art keywords
measurement
light
measuring device
shape measuring
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020033683A
Other languages
Japanese (ja)
Inventor
隆 坂口
Takashi Sakaguchi
隆 坂口
政次 中谷
Masaji Nakatani
政次 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2020033683A priority Critical patent/JP2021135256A/en
Publication of JP2021135256A publication Critical patent/JP2021135256A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

To provide a shape measurement device and a shape measurement method that can determine whether light blocking by a light-blocking member is properly performed on a measurement object.SOLUTION: A shape measurement device 1 measures a shape of a measurement object T1 in a measurement area AR. The shape measurement device 1 includes a light source 11 that emits light to the measurement area AR, a light-receiving element 12 that receives reflection light formed when the light emitted from the light source 11 is reflected in the measurement area AR, and a specifying unit 13 that specifies an ineffective image part where the measured height is ineffective in a light reception image obtained from the reflection light received by the light-receiving element 12.SELECTED DRAWING: Figure 1

Description

本発明は、測定対象の形状を測定する形状測定装置及び形状測定方法に関する。 The present invention relates to a shape measuring device and a shape measuring method for measuring the shape of a measurement target.

特許文献1には、低コヒーレンスの光源からの光束を参照光束と測定光束に分割して干渉させ、白色干渉計に対して対象物を相対的に光軸方向に走査して干渉縞を測定することにより、対象物の形状を測定する形状測定装置が開示されている。 In Patent Document 1, the luminous flux from a low coherence light source is divided into a reference luminous flux and a measurement luminous flux and interfered with each other, and an object is scanned relative to a white interferometer in the optical axis direction to measure interference fringes. Thereby, a shape measuring device for measuring the shape of an object is disclosed.

ところで、ハードディスクドライブの製造作業では、トップカバーに液状ガスケットを塗布し、当該トップカバーをハードディスクドライブの本体部側に装着して螺子止めを行う。この製造作業では、上記液状ガスケットの形状寸法の精度が要求される。そのため、ハードディスクドライブの製造作業では、白色干渉計等を用いて液状ガスケットの形状測定が行われる。 By the way, in the manufacturing work of the hard disk drive, a liquid gasket is applied to the top cover, the top cover is attached to the main body side of the hard disk drive, and screwing is performed. In this manufacturing operation, the accuracy of the shape and dimensions of the liquid gasket is required. Therefore, in the manufacturing work of the hard disk drive, the shape of the liquid gasket is measured by using a white interferometer or the like.

特開2017−26494号公報Japanese Unexamined Patent Publication No. 2017-26494

例えば、図8に示すように、ハードディスクドライブのトップカバー81の場合、測定対象外の部位であるエンボス部81aの周囲に測定対象である液状ガスケットGが塗布されている。このため、エンボス部81aの傾斜面で反射した光が、液状ガスケットGに到達することがある。そして、エンボス部81aの傾斜面で反射した後に液状ガスケットGで反射した光と、液状ガスケットGで直接反射した光の両方が形状測定装置82に入力されると、液状ガスケットGの形状を精度良く測定できない。 For example, as shown in FIG. 8, in the case of the top cover 81 of the hard disk drive, the liquid gasket G to be measured is applied around the embossed portion 81a which is a portion not to be measured. Therefore, the light reflected by the inclined surface of the embossed portion 81a may reach the liquid gasket G. Then, when both the light reflected by the liquid gasket G after being reflected by the inclined surface of the embossed portion 81a and the light directly reflected by the liquid gasket G are input to the shape measuring device 82, the shape of the liquid gasket G is accurately adjusted. Cannot measure.

そこで、光源からの測定対象外の部位に向かう光を、遮光部材によって遮ることが考えられるが、この場合、遮光部材による遮光が測定対象及び測定対象外の部位に対して適切に行われるかを判断することが重要となる。 Therefore, it is conceivable that the light from the light source directed to the part not to be measured is blocked by the light-shielding member. Judgment is important.

本発明の目的は、遮光部材による遮光が測定対象物に対して適切か否かを判断することができる形状測定装置及び形状測定方法を提供することにある。 An object of the present invention is to provide a shape measuring device and a shape measuring method capable of determining whether or not shading by a shading member is appropriate for an object to be measured.

本発明の一実施形態に係る形状測定装置は、
測定エリア内の測定対象の高さ情報より、当該測定対象の形状寸法を測定する形状測定装置であって、
前記測定エリアに光を出射する光源と、
前記光源から出射された光が前記測定エリアで反射した反射光を受光する受光素子と、
前記受光素子によって受光した反射光から得られる受光像の中で、測定された高さが無効である無効像部分を特定する特定部と、
を備える。
The shape measuring device according to the embodiment of the present invention is
It is a shape measuring device that measures the shape and dimensions of the measurement target from the height information of the measurement target in the measurement area.
A light source that emits light to the measurement area and
A light receiving element that receives the reflected light emitted from the light source and reflected in the measurement area.
Among the light-receiving images obtained from the reflected light received by the light-receiving element, a specific portion that identifies an invalid image portion whose measured height is invalid, and a specific portion.
To be equipped.

本発明の一実施形態に係る形状測定装置によれば、測定された高さが無効である無効像部分に基づいて、遮光部材による遮光が測定対象物に対して適切か否かを判断することが可能となる。これにより、当該形状測定装置による形状測定に際して、測定対象外の部位で反射した光が測定対象に到達するのを抑制し、測定対象の高さを正確に測定することができる。 According to the shape measuring device according to the embodiment of the present invention, it is determined whether or not the shading by the shading member is appropriate for the object to be measured based on the invalid image portion where the measured height is invalid. Is possible. As a result, when measuring the shape by the shape measuring device, it is possible to suppress the light reflected from the portion other than the measurement target from reaching the measurement target, and to accurately measure the height of the measurement target.

図1は、一実施形態の形状測定装置の概略の構成を示した説明図である。FIG. 1 is an explanatory diagram showing a schematic configuration of a shape measuring device of one embodiment. 図2は、一実施形態の形状測定装置に配備した遮光部材による遮光の態様を示した説明図である。FIG. 2 is an explanatory diagram showing an mode of shading by a shading member installed in the shape measuring device of one embodiment. 図3は、一実施形態の形状測定装置に配備した直径が互いに異なる遮光部材による第1遮光状態、第2遮光状態、第3遮光状態を示した説明図である。FIG. 3 is an explanatory diagram showing a first light-shielding state, a second light-shielding state, and a third light-shielding state by light-shielding members having different diameters and arranged in the shape measuring device of one embodiment. 図4は、他の実施形態の形状測定装置の概略の構成を示した説明図である。FIG. 4 is an explanatory diagram showing a schematic configuration of the shape measuring device of another embodiment. 図5は、図4に示す形状測定装置が備える移動機構の概略の縦断面構造を示した説明図である。FIG. 5 is an explanatory view showing a schematic vertical cross-sectional structure of a moving mechanism included in the shape measuring device shown in FIG. 図6は、図5の移動機構の概略の平面図である。FIG. 6 is a schematic plan view of the moving mechanism of FIG. 図7は、図4に示す形状測定装置を含む検査システムを示した説明図である。FIG. 7 is an explanatory view showing an inspection system including the shape measuring device shown in FIG. 図8は、従来の形状測定装置において、測定エリア内に測定対象外の部位が位置する場合に、この部位で光が反射することを示した説明図である。FIG. 8 is an explanatory diagram showing that when a portion other than the measurement target is located in the measurement area in the conventional shape measuring device, light is reflected at this portion.

(実施形態1)
以下、図面を参照しながら、本発明の実施形態について説明する。なお、本発明の範囲は、以下の実施形態に限定されず、本発明の技術的思想の範囲内で任意に変更可能である。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The scope of the present invention is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical idea of the present invention.

図1に示すように、形状測定装置1は、光干渉計部100と、特定部13と、記憶部14と、判断部15と、を備える。 As shown in FIG. 1, the shape measuring device 1 includes an optical interferometer unit 100, a specific unit 13, a storage unit 14, and a determination unit 15.

光干渉計部100は、光源11から出射された光を測定エリアARに導き、測定エリアARで生じた反射光を受光素子12に導く光路10aを有する光学系10を備えており、白色干渉計の原理によって、測定エリアAR内に位置する測定対象T1の高さ情報より、当該測定対象T1の形状寸法を測定する。ここで形状寸法とは、測定対象T1の高さ、幅などの形状に関する寸法である。一例として、光源11からの光は、レンズ101、ミラー102、レンズ103を介してビームスプリッタ104に照射される。ビームスプリッタ104は、光源11からの光を測定光束と参照光束の2つに分割する。 The optical interferometer unit 100 includes an optical system 10 having an optical path 10a that guides the light emitted from the light source 11 to the measurement area AR and guides the reflected light generated in the measurement area AR to the light receiving element 12, and is a white interferometer. According to the principle of, the shape and dimension of the measurement target T1 are measured from the height information of the measurement target T1 located in the measurement area AR. Here, the shape dimension is a dimension related to the shape such as the height and width of the measurement target T1. As an example, the light from the light source 11 is applied to the beam splitter 104 via the lens 101, the mirror 102, and the lens 103. The beam splitter 104 splits the light from the light source 11 into two, a measurement luminous flux and a reference luminous flux.

前記測定光束は、対物レンズ105によって、測定エリアARに集光される。測定エリアARで反射した光は、対物レンズ105及びビームスプリッタ104を透過した後、レンズ109を介して受光素子12に到達する。 The measured luminous flux is focused on the measurement area AR by the objective lens 105. The light reflected by the measurement area AR passes through the objective lens 105 and the beam splitter 104, and then reaches the light receiving element 12 via the lens 109.

前記参照光束は、レンズ106及びミラー107を介して、参照ミラー108に照射される。参照ミラー108で反射した光は、ミラー107及びレンズ106を介して、ビームスプリッタ104に入射した後、このビームスプリッタ104によってレンズ109が位置する方向に反射され、このレンズ109を介して、受光素子12に到達する。 The reference luminous flux is applied to the reference mirror 108 via the lens 106 and the mirror 107. The light reflected by the reference mirror 108 is incident on the beam splitter 104 through the mirror 107 and the lens 106, then is reflected by the beam splitter 104 in the direction in which the lens 109 is located, and is reflected by the beam splitter 104 in the direction in which the lens 109 is located. Reach 12

以上のように、受光素子12には、前記測定光束が測定エリアARで反射した光と、前記参照光束が参照ミラー108で反射した光が到達する。 As described above, the light received by the measured luminous flux in the measurement area AR and the light reflected by the reference luminous flux in the reference mirror 108 reach the light receiving element 12.

形状測定装置1は、光干渉計部100の筐体全体或いは筐体内の光学系10と測定対象物Tとの相対位置を光軸方向に移動させて干渉縞を測定することにより、測定エリアAR内の測定対象T1の高さ情報より、当該測定対象T1の形状寸法を測定する。例えば、ハードディスクドライブのトップカバーを測定対象物Tとすると、このトップカバーにおけるエンボス部の近傍に塗布された液状ガスケットが測定対象T1であり、前記エンボス部が測定対象外の部位Pである。 The shape measuring device 1 measures the interference fringes by moving the relative position of the entire housing of the optical interferometer unit 100 or the optical system 10 in the housing and the measurement object T in the optical axis direction to measure the interference fringes, thereby measuring the measurement area AR. From the height information of the measurement target T1 in the inside, the shape and dimension of the measurement target T1 are measured. For example, assuming that the top cover of the hard disk drive is the measurement target T, the liquid gasket applied in the vicinity of the embossed portion of the top cover is the measurement target T1, and the embossed portion is the non-measurement target portion P.

形状測定装置1による測定対象T1の形状測定に際しては、光学系10の光路10a上の対物レンズ105と測定エリアARとの間に、光源11から出射された光を遮る遮光部材2を配置する。また、遮光部材2と測定エリアARとの距離は、遮光部材2と対物レンズ105との距離よりも短い。遮光部材2は、光源11から出射された光を、測定エリアAR内の測定対象外の部位Pに到達する前に遮る。 When measuring the shape of the measurement target T1 by the shape measuring device 1, a light-shielding member 2 that blocks the light emitted from the light source 11 is arranged between the objective lens 105 on the optical path 10a of the optical system 10 and the measurement area AR. Further, the distance between the light-shielding member 2 and the measurement area AR is shorter than the distance between the light-shielding member 2 and the objective lens 105. The light-shielding member 2 blocks the light emitted from the light source 11 before reaching the non-measurement target portion P in the measurement area AR.

また、測定対象物Tの保持は、例えば、前記エンボス部の螺子通し孔に通した螺子を保持台4の螺子穴に螺着させて行うことができる。また、この際に、遮光部材2として、リング状のワッシャを前記螺子にて前記エンボス部に固定することができる。適切な直径のワッシャを前記エンボス部の適切な位置に固定することで、適切な範囲で測定エリアARに向かう光を遮ることができる。 Further, the measurement object T can be held, for example, by screwing a screw passed through the screw through hole of the embossed portion into the screw hole of the holding base 4. At this time, as the light-shielding member 2, a ring-shaped washer can be fixed to the embossed portion with the screw. By fixing a washer of an appropriate diameter at an appropriate position of the embossed portion, it is possible to block light toward the measurement area AR within an appropriate range.

特定部13は、受光素子12によって受光した反射光から得られる受光像の中で、測定された高さが無効である無効像部分を特定する。 The identification unit 13 identifies an invalid image portion whose measured height is invalid in the received image obtained from the reflected light received by the light receiving element 12.

前記無効像部分の特定は、少なくとも、無効像部分の輪郭、面積または像部分の所定箇所の長さのいずれか1つにより行われる。特定された無効像部分は、受光素子12上の無効像部分の画素数、或いはmm等の計量単位で表すことができる。 The identification of the invalid image portion is performed by at least one of the contour, the area, and the length of the predetermined portion of the image portion of the invalid image portion. The specified invalid image portion can be represented by the number of pixels of the invalid image portion on the light receiving element 12, or a unit of measurement such as mm.

遮光部材2を、形状測定装置1に対して、図2に示すように、形状測定を無効とする高さ、例えば、形状測定装置1の測定レンジ外の高さに配置すると、受光素子12の受光像の中で、測定された高さが無効である無効像部分は、遮光部材2の位置を示す。 When the light-shielding member 2 is arranged with respect to the shape measuring device 1 at a height at which shape measurement is invalid, for example, at a height outside the measurement range of the shape measuring device 1, the light receiving element 12 In the received image, the invalid image portion where the measured height is invalid indicates the position of the light-shielding member 2.

(遮光の判断例1)
記憶部14は、測定エリアARに対する遮光の判断の基準となる判断基準を記憶する。この判断基準は、例えば、測定エリアARに位置する遮光部材2の縁が、測定対象T1の縁から所定の範囲内で離間しているか否かを判断する距離範囲情報である。この距離範囲情報は、画素数、或いはmm等の計量単位で表すことができる。
(Judgment example 1 of shading)
The storage unit 14 stores a determination standard that serves as a reference for determining shading of the measurement area AR. This determination criterion is, for example, distance range information for determining whether or not the edge of the light-shielding member 2 located in the measurement area AR is separated from the edge of the measurement target T1 within a predetermined range. This distance range information can be expressed in units of measurement such as the number of pixels or mm.

判断部15は、図3に示すように、特定部13により特定された、測定された高さが無効である無効像部分の縁と、測定された高さが測定対象T1の高さを示す対象像部分の縁との間の像間距離L1を算出する。形状測定装置1は、例えば、当該形状測定装置1で測定された高さが、測定対象T1となる液体ガスケットが塗布される塗布面の高さよりも高く、且つ測定レンジ内の高さの範囲内を示す像部分を、前記対象像部分であると判断する。 As shown in FIG. 3, the determination unit 15 indicates the edge of the invalid image portion whose measured height is invalid, and the measured height indicates the height of the measurement target T1. The distance L1 between images with the edge of the target image portion is calculated. In the shape measuring device 1, for example, the height measured by the shape measuring device 1 is higher than the height of the coated surface to which the liquid gasket to be measured T1 is applied, and is within the range of the height within the measuring range. The image portion showing the above is determined to be the target image portion.

また、判断部15は、像間距離L1を、記憶部14から読み出した前記判断基準である前記距離範囲情報と比較して、遮光部材2による遮光が前記距離範囲情報で示される範囲内か否かを判断する。 Further, the determination unit 15 compares the inter-image distance L1 with the distance range information which is the determination standard read from the storage unit 14, and whether or not the light shielding by the light shielding member 2 is within the range indicated by the distance range information. To judge.

測定された高さが無効である無効像部分は、遮光部材2による遮光の範囲を示すため、この無効像部分を特定することにより、遮光部材2による遮光が測定対象T1及び測定対象外の部位Pに対して適切に行われているか否かを判断できる。 Since the invalid image portion whose measured height is invalid indicates the range of shading by the light-shielding member 2, by specifying this invalid image portion, the light-shielding by the light-shielding member 2 is the measurement target T1 and the portion not to be measured. It can be determined whether or not it is properly performed for P.

例えば、図3に示す第1遮光状態は、遮光部材2の縁と測定対象T1の縁との間の距離Lが長すぎるため、不適切な遮光である。第1遮光状態が生じた場合、判断部15は、像間距離L1が前記距離範囲情報で示される範囲外であると判断する。 For example, the first light-shielding state shown in FIG. 3 is inappropriate light-shielding because the distance L between the edge of the light-shielding member 2 and the edge of the measurement target T1 is too long. When the first light-shielding state occurs, the determination unit 15 determines that the inter-image distance L1 is outside the range indicated by the distance range information.

第2遮光状態は、遮光部材2の縁と測定対象T1の縁との間の距離Lが所定範囲内であるため、適切な遮光である。第2遮光状態が生じた場合、判断部15は、像間距離L1が前記距離範囲情報で示される範囲内であると判断する。 The second light-shielding state is an appropriate light-shielding state because the distance L between the edge of the light-shielding member 2 and the edge of the measurement target T1 is within a predetermined range. When the second light-shielding state occurs, the determination unit 15 determines that the inter-image distance L1 is within the range indicated by the distance range information.

第3遮光状態は、遮光部材2の縁と測定対象T1の縁との間の距離Lが短すぎるため、不適切な遮光である。第3遮光状態が生じた場合、判断部15は、像間距離L1が前記距離範囲情報で示される範囲外であると判断する。 The third light-shielding state is inappropriate light-shielding because the distance L between the edge of the light-shielding member 2 and the edge of the measurement target T1 is too short. When the third light-shielding state occurs, the determination unit 15 determines that the inter-image distance L1 is outside the range indicated by the distance range information.

このように、判断部15を備えることにより、人の判断能力に左右されず、遮光が基準内か否かの判断をすることができる。なお、この判断は、図示しないモニタ上での文字表示、或いは、所定色のLED(light emitting diode)の点灯等により作業者に提示することができる。 By providing the determination unit 15 in this way, it is possible to determine whether or not the shading is within the standard regardless of the judgment ability of a person. This determination can be presented to the operator by displaying characters on a monitor (not shown), lighting an LED (light emitting diode) of a predetermined color, or the like.

(遮光の判断例2)
記憶部14は、測定エリアARに対する遮光の判断の基準となる判断基準を記憶する。この判断基準は、例えば、測定された高さが無効である無効像部分の面積範囲情報である。この無効像部分の面積範囲情報は、無効像部分の面積の範囲、又は測定エリアARの面積に対する無効像部分の面積の比率の範囲を示す情報である。この面積範囲情報は、画素数、mm等の計量単位、或いは比率(%)で表すことができる。
(Judgment example 2 of shading)
The storage unit 14 stores a determination standard that serves as a reference for determining shading of the measurement area AR. This determination criterion is, for example, area range information of an invalid image portion in which the measured height is invalid. The area range information of the invalid image portion is information indicating the range of the area of the invalid image portion or the range of the ratio of the area of the invalid image portion to the area of the measurement area AR. This area range information can be expressed by the number of pixels, a unit of measurement such as mm 2 , or a ratio (%).

判断部15は、特定部13により特定された、前記無効像部分の面積を算出する。そして、判断部15は、前記無効像部分の面積を、前記記憶部14から読み出した前記判断基準である無効像部分の面積範囲情報と比較して、遮光部材2による遮光が基準内か否かを判断する。図3に示すように、大きさの異なる遮光部材2を用いることで、遮光部材2の遮光範囲が変化し、且つ、前記無効像部分の面積も変化する。例えば、前記第2遮光状態が生じた場合、判断部15は、算出した前記無効像部分の面積が、前記判断基準である無効像部分の面積範囲情報の範囲内である、と判断する。 The determination unit 15 calculates the area of the invalid image portion specified by the specific unit 13. Then, the determination unit 15 compares the area of the invalid image portion with the area range information of the invalid image portion, which is the determination standard read from the storage unit 14, and determines whether or not the light shielding by the light shielding member 2 is within the standard. To judge. As shown in FIG. 3, by using the light-shielding members 2 having different sizes, the light-shielding range of the light-shielding member 2 changes, and the area of the invalid image portion also changes. For example, when the second light-shielding state occurs, the determination unit 15 determines that the calculated area of the invalid image portion is within the range of the area range information of the invalid image portion which is the determination criterion.

或いは、判断部15は、特定部13により特定された、測定エリアARの面積に対する前記無効像部分の面積の比率を算出する。そして、判断部15は、前記無効像部分の面積の比率を、前記記憶部14から読み出した前記判断基準である無効像部分の面積範囲情報と比較して、遮光部材2による遮光が基準内か否かを判断する。 Alternatively, the determination unit 15 calculates the ratio of the area of the invalid image portion to the area of the measurement area AR specified by the specific unit 13. Then, the determination unit 15 compares the ratio of the area of the invalid image portion with the area range information of the invalid image portion which is the determination standard read from the storage unit 14, and whether the light shielding by the light shielding member 2 is within the standard. Judge whether or not.

測定対象物Tについて複数の測定箇所が存在する場合には、各測定箇所の測定対象外の部位Pに遮光部材2を留め付けてもよい。判断部15は、各測定箇所について、遮光部材2による遮光が前記基準内か否かを判断する。 When there are a plurality of measurement points for the measurement object T, the light-shielding member 2 may be fastened to the non-measurement target portion P of each measurement location. The determination unit 15 determines whether or not the light shielding by the light shielding member 2 is within the reference for each measurement point.

保持台4は、測定対象物Tを、例えば水平面内で互いに直交するX方向及びY方向に移動するXYテーブルを備えてもよい。このXYテーブルを備えることにより、保持台4は、同一の測定対象物Tについて、複数の測定箇所を順次に測定エリアAR内に位置させる測定箇所変更機構として機能することができる。判断部15は、保持台4によって変更された各測定箇所について、当該測定箇所に配置済の遮光部材2による遮光が基準内か否かを判断する The holding table 4 may include an XY table for moving the object T to be measured, for example, in the X and Y directions orthogonal to each other in a horizontal plane. By providing this XY table, the holding table 4 can function as a measurement point changing mechanism for sequentially locating a plurality of measurement points in the measurement area AR for the same measurement object T. The determination unit 15 determines whether or not the shading by the light-shielding member 2 arranged at the measurement point is within the standard for each measurement point changed by the holding table 4.

上記のように、遮光部材2であるワッシャを測定箇所に配置済である場合は、CAD(Computer-Aided Design)等から測定対象物Tにおける測定対象外の部位P等の位置データ、形状データ等が特に無くても、遮光の良否を判断できる。また、各測定箇所での遮光部材2の配置忘れも判断できる。また、遮光部材2の配置が不適切である場合に、遮光部材2の位置調整をその都度行うこともできる。複数の測定箇所の遮光部材2の遮光が基準内であると判断した後、複数の測定箇所について、順次に測定対象T1の形状測定を実行することも可能である。或いは、各測定箇所について、遮光が基準内であると判断した都度、測定対象T1の形状測定を実行することもできる。 As described above, when the washer, which is the light-shielding member 2, is already placed at the measurement location, the position data, shape data, etc. of the non-measurement target portion P, etc. on the measurement target object T from CAD (Computer-Aided Design) or the like. Even if there is no particular value, the quality of shading can be judged. In addition, it can be determined that the light-shielding member 2 is forgotten to be arranged at each measurement point. Further, when the arrangement of the light-shielding member 2 is inappropriate, the position of the light-shielding member 2 can be adjusted each time. After determining that the shading of the light-shielding member 2 at the plurality of measurement points is within the standard, it is also possible to sequentially execute the shape measurement of the measurement target T1 at the plurality of measurement points. Alternatively, the shape of the measurement target T1 can be measured each time it is determined that the shading is within the standard for each measurement point.

また、一実施形態の形状測定方法は、形状測定装置1を用いて測定対象T1の形状を測定する。そして、この形状測定方法では、測定エリアAR内の測定対象外の部位Pにおける少なくとも傾斜面を覆う位置に遮光部材2を配置した状態で、前記傾斜面の周囲に位置する測定対象T1の形状を測定する。 Further, in the shape measuring method of one embodiment, the shape of the measurement target T1 is measured by using the shape measuring device 1. Then, in this shape measurement method, the shape of the measurement target T1 located around the inclined surface is formed in a state where the light-shielding member 2 is arranged at a position covering at least the inclined surface in the portion P outside the measurement target in the measurement area AR. taking measurement.

(実施形態2)
次に、図4、図5、図6及び図7を用いて実施形態2の形状測定装置1の構成及びこの形状測定装置1を備える検査システム5を説明する。なお、先の実施形態と同一または相当部分については同一の符号を付してその説明は繰り返さない。
(Embodiment 2)
Next, the configuration of the shape measuring device 1 of the second embodiment and the inspection system 5 including the shape measuring device 1 will be described with reference to FIGS. 4, 5, 6 and 7. The same or corresponding parts as those in the previous embodiment are designated by the same reference numerals, and the description thereof will not be repeated.

形状測定装置1は、図4に示すように、板状の遮光部材2A及び移動機構3を備える。遮光部材2Aの縁形状は、直線に限らず、曲線であってもよい。 As shown in FIG. 4, the shape measuring device 1 includes a plate-shaped light-shielding member 2A and a moving mechanism 3. The edge shape of the light-shielding member 2A is not limited to a straight line, but may be a curved line.

移動機構3は、保持台4と、遮光部材2Aを移動する遮光部材移動機構30を備える。この実施形態における保持台4は、測定対象物Tについて、複数の測定箇所を順次に測定エリアAR内に位置させる。また、遮光部材移動機構30は、遮光部材2Aを例えば水平面内で互いに直交するX方向成分及びY方向成分に移動することにより、遮光部材2Aと測定対象外の部位Pとの相対位置を変位させる。すなわち、移動機構3は、同一の測定対象物Tについて複数の測定箇所を順次に測定エリアARに位置付け且つ、前記測定箇所と当該測定箇所に位置付ける遮光部材2Aとの相対位置を変更する。 The moving mechanism 3 includes a holding base 4 and a light-shielding member moving mechanism 30 that moves the light-shielding member 2A. The holding table 4 in this embodiment sequentially positions a plurality of measurement points of the measurement object T in the measurement area AR. Further, the light-shielding member moving mechanism 30 displaces the relative position between the light-shielding member 2A and the portion P not to be measured by moving the light-shielding member 2A to, for example, the X-direction component and the Y-direction component orthogonal to each other in the horizontal plane. .. That is, the moving mechanism 3 sequentially positions a plurality of measurement points for the same measurement object T in the measurement area AR, and changes the relative positions of the measurement points and the light-shielding member 2A positioned at the measurement points.

遮光部材移動機構30は、例えば、図5及び図6に示すように、中央側が空洞である中空回転テーブル31を備える。光干渉計部100の測定エリアARは、中空回転テーブル31の前記空洞内に位置する。また、中空回転テーブル31の中央側に保持台4を配置することができる。 The light-shielding member moving mechanism 30 includes, for example, a hollow rotary table 31 having a hollow center side, as shown in FIGS. 5 and 6. The measurement area AR of the optical interferometer unit 100 is located in the cavity of the hollow rotary table 31. Further, the holding table 4 can be arranged on the central side of the hollow rotary table 31.

中空回転テーブル31は、リング形状の下側基台部31aと、この下側基台部31a上に取り付けられたスラストベアリング31bと、このスラストベアリング31b上で回転自在に支持されたリング形状の上側回転部31cと、を備える。上側回転部31cは、例えば、周面にギヤ部を有する。モータの回転力が、例えば、ウオームギヤを介して前記ギヤ部に伝達されることで、上側回転部31cは、平面内で任意の角度、回転できる。なお、このような回転機構に限らず、スラスト方向にロータとステータが対向配置される所謂中空モータを利用して、上側回転部31cがダイレクトで駆動されてもよい。 The hollow rotary table 31 has a ring-shaped lower base portion 31a, a thrust bearing 31b mounted on the lower base portion 31a, and a ring-shaped upper side rotatably supported on the thrust bearing 31b. It includes a rotating portion 31c. The upper rotating portion 31c has, for example, a gear portion on the peripheral surface. By transmitting the rotational force of the motor to the gear portion via, for example, a worm gear, the upper rotating portion 31c can rotate at an arbitrary angle in a plane. Not limited to such a rotation mechanism, the upper rotating portion 31c may be directly driven by using a so-called hollow motor in which the rotor and the stator are arranged to face each other in the thrust direction.

上側回転部31cの上面には、前記X方向及びY方向に直交するZ方向に軸芯を位置させて支持軸32が埋め込まれている。この支持軸32の上部は上側回転部31cの上面から突出しており、この突出する部分が遮光部材2Aを水平面内で回転自在に支持する。なお、支持軸32に代えて、上側回転部31cにモータを埋め込み、このモータの回転軸に遮光部材2Aを取り付けることもできる。 A support shaft 32 is embedded in the upper surface of the upper rotating portion 31c with the shaft core positioned in the Z direction orthogonal to the X direction and the Y direction. The upper portion of the support shaft 32 projects from the upper surface of the upper rotating portion 31c, and the protruding portion rotatably supports the light-shielding member 2A in a horizontal plane. Instead of the support shaft 32, a motor may be embedded in the upper rotating portion 31c, and a light-shielding member 2A may be attached to the rotating shaft of the motor.

上側回転部31cの任意の角度θの回転と、支持軸32を中心とした遮光部材2Aの任意の角度θの回転とによって、遮光部材2Aの位置及び向きを任意に変化させることができる。これにより、遮光部材2Aを、測定対象T1に重ならない向きで、測定エリアAR内の測定対象外の部位Pの傾斜面を含む位置の上方に位置させ、光源11から出射された光を、測定対象外の部位Pに到達する前に遮ることができる。 The position and orientation of the light-shielding member 2A can be arbitrarily changed by rotating the upper rotating portion 31c at an arbitrary angle θ 1 and rotating the light-shielding member 2A around the support shaft 32 at an arbitrary angle θ 2. .. As a result, the light-shielding member 2A is positioned above the position including the inclined surface of the non-measurement target portion P in the measurement area AR in a direction that does not overlap the measurement target T1, and the light emitted from the light source 11 is measured. It can be blocked before reaching the non-target part P.

検査システム5は、図7に示すように、コンピュータ51と、コントローラ52と、ディスプレイ53と、を備える。コントローラ52は、光干渉計部100を制御する装置コントローラ52a及び移動機構3を制御するステージコントローラ52bを備える。例えば、光干渉計部100に付随するドライバソフトウェアがコンピュータ51にインストールされ、コンピュータ51へのキー操作等によって、光干渉計部100に対する各種制御を行うことができ、また、形状測定時において、受光素子12の受光像から作成された測定エリアARの画像が、ディスプレイ53に表示される。この表示画像は、例えば、高さの相違が色の相違で表されたカラー画像である。 As shown in FIG. 7, the inspection system 5 includes a computer 51, a controller 52, and a display 53. The controller 52 includes a device controller 52a that controls the optical interferometer unit 100 and a stage controller 52b that controls the moving mechanism 3. For example, the driver software attached to the optical interferometer unit 100 is installed in the computer 51, and various controls can be performed on the optical interferometer unit 100 by key operation on the computer 51 or the like, and light reception is performed during shape measurement. The image of the measurement area AR created from the light receiving image of the element 12 is displayed on the display 53. This display image is, for example, a color image in which the difference in height is represented by the difference in color.

移動機構3の操作は、例えば、コンピュータ51のキーボードにおける所定の2つのキーの操作により、図示しないモータで中空回転テーブル31の上側回転部31cを時計回り及び反時計回りに回転させ、他の所定の2つのキーの操作により、支持軸32の位置に回転軸を備えるモータによって遮光部材2Aを時計回り及び反時計回りに回転させることができる。コントローラ52は、キーボードの操作信号を受信し、操作されたキーに応じて、前記モータを駆動する。 In the operation of the moving mechanism 3, for example, by operating two predetermined keys on the keyboard of the computer 51, the upper rotating portion 31c of the hollow rotary table 31 is rotated clockwise and counterclockwise by a motor (not shown), and the other predetermined movement mechanism 3 is operated. By operating the two keys, the light-shielding member 2A can be rotated clockwise and counterclockwise by a motor provided with a rotating shaft at the position of the support shaft 32. The controller 52 receives the operation signal of the keyboard and drives the motor according to the operated keys.

また、このような移動機構3等の操作を測定者のキー操作で行うのではなく、移動機構3による遮光部材2Aの移動等が自動で実行されてもよい。例えば、コンピュータ51の記憶部51aに、測定対象物Tである特定のトップカバーの設計データが格納される。設計データは、例えば、複数の測定対象T1の位置、形状等を示す対象情報及び複数の測定対象外の部位Pの位置、形状等を示す部位情報が記憶される。なお、この実施形態では、測定エリアARに対する遮光の判断の基準となる判断基準は、記憶部14において記憶される。 Further, instead of performing such an operation of the moving mechanism 3 or the like by the key operation of the measurer, the moving mechanism 3 may automatically move the light-shielding member 2A or the like. For example, the storage unit 51a of the computer 51 stores the design data of a specific top cover, which is the measurement target T. As the design data, for example, target information indicating the positions, shapes, etc. of a plurality of measurement targets T1 and site information indicating the positions, shapes, etc. of a plurality of non-measurement targets P are stored. In this embodiment, the determination standard that is the criterion for determining the shading of the measurement area AR is stored in the storage unit 14.

コンピュータ51は、保持台4に保持された測定対象物Tにおける各測定対象T1の位置を、前記対象情報に基づいて、所定の原点位置からのX−Y座標上のX距離とY距離で判断する。また、コンピュータ51は、前記X−Y座標上の測定エリアARの位置と任意の測定対象T1の位置との差異を順次に算出する。測定対象T1を、保持台4によって、前記差異に相当する距離、移動させることにより、任意の測定対象T1を測定エリアARに位置付けることができる。このとき、測定対象T1の近傍の測定対象外の部位Pも測定エリアAR内に位置する場合がある。 The computer 51 determines the position of each measurement target T1 on the measurement target T held on the holding table 4 based on the target information based on the X distance and the Y distance on the XY coordinates from the predetermined origin position. do. Further, the computer 51 sequentially calculates the difference between the position of the measurement area AR on the XY coordinates and the position of the arbitrary measurement target T1. By moving the measurement target T1 by the holding table 4 by a distance corresponding to the difference, any measurement target T1 can be positioned in the measurement area AR. At this time, the non-measurement target portion P in the vicinity of the measurement target T1 may also be located in the measurement area AR.

コンピュータ51は、コンピュータ51の記憶部51aに記憶されている測定対象外の部位Pの部位情報に基づいて、コントローラ52を介して、移動機構3を動作させることにより、測定エリアAR内に位置する測定対象外の部位Pを遮光部材2Aで遮光する。例えば、コンピュータ51は、測定エリアAR内に位置する測定対象外の部位Pの前記X−Y座標上の位置を算出する。また、コンピュータ51の記憶部51aには、例えば、測定対象外の部位Pの前記X−Y座標上の位置に対する、移動機構3の原点位置からの必要な回転の角度θ、θを出力するデータテーブル並びに、必要な回転の角度θ、θの回転に必要な各モータの駆動パルス数データテーブルが格納される。なお、教示操作として、測定対象物Tの複数の測定対象外の部位Pに遮光部材2Aを手動操作で適切に位置させ、当該位置のX距離及びY距離或いは、当該位置についての必要な回転の角度θ、θを、前記記憶部に記憶してもよい。 The computer 51 is located in the measurement area AR by operating the moving mechanism 3 via the controller 52 based on the site information of the non-measurement target portion P stored in the storage unit 51a of the computer 51. The portion P not to be measured is shielded by the light-shielding member 2A. For example, the computer 51 calculates the position of the non-measurement target portion P located in the measurement area AR on the XY coordinates. Further, for example, the storage unit 51a of the computer 51 outputs the necessary rotation angles θ 1 and θ 2 from the origin position of the moving mechanism 3 with respect to the position on the XY coordinates of the portion P not to be measured. The data table to be used and the data table of the number of drive pulses of each motor required for the required rotation angles θ 1 and θ 2 are stored. As a teaching operation, the light-shielding member 2A is manually positioned appropriately on a plurality of non-measurement target portions P of the measurement target object T, and the X distance and Y distance of the position or the necessary rotation for the position is performed. The angles θ 1 and θ 2 may be stored in the storage unit.

コンピュータ51は、例えば、測定者によって入力される、保持台4にセットしたトップカバーの型番情報から、当該トップカバーの設計データである複数の測定対象外の部位Pの部位情報を読み出す。また、コンピュータ51は、前記データテーブル内のデータに基づいて、コントローラ52を介して、移動機構3を動作させ、複数箇所の測定において、遮光部材2Aを測定対象外の部位Pの上方に自動的に移動させる。 The computer 51 reads, for example, the part information of a plurality of non-measurement target parts P, which is the design data of the top cover, from the model number information of the top cover set on the holding table 4 input by the measurer. Further, the computer 51 operates the moving mechanism 3 via the controller 52 based on the data in the data table, and automatically moves the light-shielding member 2A above the portion P not to be measured in the measurement at a plurality of locations. Move to.

すなわち、コンピュータ51は、当該コンピュータ51の記憶部51aから読み出される測定対象外の部位Pの部位情報に基づいて、移動機構3を制御し、測定対象外の部位Pと遮光部材2Aとの相対位置を変化させる。このように、測定対象外の部位Pと遮光部材2Aとの相対位置を変化させる構成では、複数の測定エリアARに遮光部材2であるワッシャを事前に配置しなくてもよい。 That is, the computer 51 controls the moving mechanism 3 based on the part information of the non-measurement target part P read from the storage unit 51a of the computer 51, and the relative position between the non-measurement target part P and the light-shielding member 2A. To change. In this way, in the configuration in which the relative positions of the portion P not to be measured and the light-shielding member 2A are changed, the washer, which is the light-shielding member 2, does not have to be arranged in advance in the plurality of measurement areas AR.

遮光部材2Aは、形状測定装置1の測定レンジ外の高さ位置で移動する。このような高さ位置で遮光部材2Aが移動すると、先にも述べたが、受光素子12の受光像の中で、前記無効像部分は、遮光部材2Aの位置を示す。 The light-shielding member 2A moves at a height position outside the measurement range of the shape measuring device 1. When the light-shielding member 2A moves at such a height position, as described above, in the light-receiving image of the light-receiving element 12, the invalid image portion indicates the position of the light-shielding member 2A.

判断部15は、実施形態1と同様、例えば、像間距離L1を前記距離範囲情報と比較することによって、遮光部材2Aによる遮光が基準内か否かを判断することができる。 Similar to the first embodiment, the determination unit 15 can determine whether or not the light shielding by the light shielding member 2A is within the standard by comparing the image-to-image distance L1 with the distance range information.

或いは、判断部15は、以下のように、遮光部材2Aによる遮光が基準内か否かを判断することができる。判断部15は、前記無効像部分と、記憶部14から読み出した測定対象外の部位Pとの差分を算出する。この差分は、例えば、測定対象外の部位Pの縁と、前記無効像部分の縁との距離である縁間差である。なお、測定対象外の部位Pの情報は、コンピュータ51の記憶部51aから記憶部14に転送してもよい。 Alternatively, the determination unit 15 can determine whether or not the light shielding by the light shielding member 2A is within the standard as follows. The determination unit 15 calculates the difference between the invalid image portion and the non-measurement target portion P read from the storage unit 14. This difference is, for example, an edge difference which is the distance between the edge of the portion P not to be measured and the edge of the invalid image portion. The information of the portion P that is not the measurement target may be transferred from the storage unit 51a of the computer 51 to the storage unit 14.

また、記憶部14は、測定エリアARに対する遮光の判断の基準となる判断基準として、測定対象外の部位Pの縁と前記無効像部分の縁との距離の許容範囲を記憶している。 Further, the storage unit 14 stores the permissible range of the distance between the edge of the portion P that is not the measurement target and the edge of the invalid image portion as a determination standard that serves as a criterion for determining the shading of the measurement area AR.

判断部15は、前記算出された縁間差が、記憶部14が記憶している前記許容範囲内であると判断したとき、遮光部材2による遮光が基準内であると判断する。一方、判断部15は、前記算出された縁間差が、記憶部14が記憶している前記許容範囲外であると判断したとき、遮光部材2による遮光が基準外であると判断する。 When the determination unit 15 determines that the calculated edge difference is within the permissible range stored by the storage unit 14, the determination unit 15 determines that the light shielding by the light shielding member 2 is within the reference. On the other hand, when the determination unit 15 determines that the calculated edge difference is outside the permissible range stored in the storage unit 14, the determination unit 15 determines that the light shielding by the light shielding member 2 is out of the standard.

なお、判断部15及び記憶部14をコンピュータ51が備え、このコンピュータ51を含めて形状測定装置1としてもよい。 The computer 51 may include the determination unit 15 and the storage unit 14, and the shape measuring device 1 may include the computer 51.

上記の例では、光干渉計部100をX方向及びY方向(例えば、水平方向)に対して固定し、保持台4によって、複数の測定対象T1を順次に測定エリアAR内に移動させたが、これに限らない。光干渉計部100自体をX方向及びY方向に移動自在に設け、この光干渉計部100の移動によって、当該光干渉計部100の測定エリアAR内に順次に複数の測定対象T1を位置させてもよい。また、この構成において、光干渉計部100及び遮光部材移動機構30が一緒にX方向及びY方向に移動する構成とすることができる。 In the above example, the optical interferometer unit 100 is fixed in the X direction and the Y direction (for example, the horizontal direction), and a plurality of measurement target T1s are sequentially moved into the measurement area AR by the holding table 4. , Not limited to this. The optical interferometer unit 100 itself is provided so as to be movable in the X and Y directions, and by moving the optical interferometer unit 100, a plurality of measurement target T1s are sequentially positioned in the measurement area AR of the optical interferometer unit 100. You may. Further, in this configuration, the optical interferometer unit 100 and the light shielding member moving mechanism 30 can be configured to move together in the X direction and the Y direction.

測定対象外の部位Pと遮光部材2Aとの相対位置が変位すればよいので、遮光部材2Aを固定し、測定対象物TをX方向及びY方向に移動させてもよい。この場合、測定対象物Tを移動可能に保持する保持台4が、測定エリアAR内に位置する測定対象外の部位Pと遮光部材2Aとの相対位置を、少なくとも平面上で互いに直交するX方向成分及びY方向成分について、変位させる移動機構である。このように保持台4を移動機構として機能させる場合、保持台4が測定対象物TをX方向及びY方向を含む面内で回転させる回転機構をさらに備え、固定配置の遮光部材2Aに対して測定対象T1が向きを変化させてもよい。 Since the relative position between the portion P not to be measured and the light-shielding member 2A may be displaced, the light-shielding member 2A may be fixed and the measurement object T may be moved in the X direction and the Y direction. In this case, the holding table 4 that movably holds the measurement object T sets the relative position of the non-measurement target portion P located in the measurement area AR and the light-shielding member 2A in the X direction at least orthogonal to each other on a plane. It is a moving mechanism that displaces the component and the component in the Y direction. When the holding table 4 functions as a moving mechanism in this way, the holding table 4 further includes a rotating mechanism for rotating the measurement object T in a plane including the X direction and the Y direction, with respect to the light-shielding member 2A in a fixed arrangement. The measurement target T1 may change its direction.

なお、受光素子12の受光像から作成された測定エリアARの画像を、ディスプレイ53に表示する際に、特定部13により特定された前記無効像部分を、ディスプレイ53に特定色で表示することができる。また、測定対象像部分も、ディスプレイ53に前記特定色と異なる色で表示することができる。測定者は、測定エリアAR内で遮光部材2、2Aがどのような範囲で位置するかを、ディスプレイ53上の色の範囲で視認することができる。すなわち、形状測定装置1が判断部15を備えなくても、測定者による遮光の適否判断が可能である。 When displaying the image of the measurement area AR created from the light receiving image of the light receiving element 12 on the display 53, the invalid image portion specified by the specific unit 13 may be displayed on the display 53 in a specific color. can. Further, the measurement target image portion can also be displayed on the display 53 in a color different from the specific color. The measurer can visually recognize the range in which the light-shielding members 2 and 2A are located in the measurement area AR in the color range on the display 53. That is, even if the shape measuring device 1 does not include the determination unit 15, the measurer can determine the suitability of shading.

測定対象物Tとしてハードディスクドライブのトップカバーを例示したが、トップカバー以外の物品を測定対象物Tとすることができる。また、白色干渉計の光学系に限らず、他の光学系を用いて形状を測定する形状測定装置を構成できる。また、以上の例では、測定対象T1に上方から光を照射したが、測定対象T1に対する光の照射方向は限定しない。 Although the top cover of the hard disk drive is illustrated as the measurement object T, an article other than the top cover can be used as the measurement object T. Further, the shape measuring device for measuring the shape can be configured by using not only the optical system of the white interferometer but also another optical system. Further, in the above example, the measurement target T1 is irradiated with light from above, but the irradiation direction of the light with respect to the measurement target T1 is not limited.

本発明は、例えば、液状パッキンをカバー部材に所定の形状で塗布する工程を有するハードディスクドライブ等の製造分野において利用可能である。 The present invention can be used, for example, in the manufacturing field of a hard disk drive or the like having a step of applying a liquid packing to a cover member in a predetermined shape.

1 :形状測定装置
2 :遮光部材
2A :遮光部材
3 :移動機構
4 :保持台
5 :検査システム
10 :光学系
10a :光路
11 :光源
12 :受光素子
13 :特定部
14 :記憶部
15 :判断部
30 :遮光部材移動機構
31 :中空回転テーブル
31a :下側基台部
31b :スラストベアリング
31c :上側回転部
32 :支持軸
51 :コンピュータ
51a :記憶部
52 :コントローラ
52a :装置コントローラ
52b :ステージコントローラ
53 :ディスプレイ
100 :光干渉計部
101 :レンズ
102 :ミラー
103 :レンズ
104 :ビームスプリッタ
105 :対物レンズ
106 :レンズ
107 :ミラー
108 :参照ミラー
109 :レンズ
AR :測定エリア
P :測定対象外の部位
T :測定対象物
T1 :測定対象
θ1 :角度
θ2 :角度
1: Shape measuring device 2: Light-shielding member 2A: Light-shielding member 3: Moving mechanism 4: Holding table 5: Inspection system 10: Optical system 10a: Optical path 11: Light source 12: Light receiving element 13: Specific unit 14: Storage unit 15: Judgment Unit 30: Light-shielding member moving mechanism 31: Hollow rotary table 31a: Lower base portion 31b: Thrust bearing 31c: Upper rotating portion 32: Support shaft 51: Computer 51a: Storage unit 52: Controller 52a: Device controller 52b: Stage controller 53: Display 100: Optical interferometer 101: Lens 102: Mirror 103: Lens 104: Beam splitter 105: Objective lens 106: Lens 107: Mirror 108: Reference mirror 109: Lens AR: Measurement area P: Area not to be measured T: Measurement target T1: Measurement target θ1: Angle θ2: Angle

Claims (8)

測定エリア内の測定対象の高さ情報より、当該測定対象の形状寸法を測定する形状測定装置であって、
前記測定エリアに光を出射する光源と、
前記光源から出射された光が前記測定エリアで反射した反射光を受光する受光素子と、
前記受光素子によって受光した反射光から得られる受光像の中で、測定された高さが無効である無効像部分を特定する特定部と、
を備える、
形状測定装置。
It is a shape measuring device that measures the shape and dimensions of the measurement target from the height information of the measurement target in the measurement area.
A light source that emits light to the measurement area and
A light receiving element that receives the reflected light emitted from the light source and reflected in the measurement area.
Among the light-receiving images obtained from the reflected light received by the light-receiving element, a specific portion that identifies an invalid image portion whose measured height is invalid, and a specific portion.
To prepare
Shape measuring device.
請求項1に記載の形状測定装置において、
前記測定エリアに対する遮光の判断の基準となる判断基準を記憶する記憶部と、
前記無効像部分の縁と、測定された高さが測定対象の高さを示す対象像部分の縁との間の距離を算出し、この距離を、前記記憶部から読み出した前記判断基準と比較して、前記遮光が基準内か否かを判断する判断部と、
をさらに備える、
形状測定装置。
In the shape measuring device according to claim 1,
A storage unit that stores a judgment standard that serves as a judgment standard for shading the measurement area, and a storage unit.
The distance between the edge of the invalid image portion and the edge of the target image portion whose measured height indicates the height of the measurement target is calculated, and this distance is compared with the determination criterion read from the storage unit. Then, a judgment unit for determining whether or not the shading is within the standard, and
Further prepare,
Shape measuring device.
請求項1に記載の形状測定装置において、
前記測定エリアに対する遮光の判断の基準となる判断基準を記憶する記憶部と、
前記無効像部分の面積、又は前記測定エリアの面積に対する前記無効像部分の面積の比率を算出し、前記無効像部分の面積又は前記比率を、前記記憶部から読み出した前記判断基準と比較して、前記遮光が基準内か否かを判断する判断部と、
をさらに備える、
形状測定装置。
In the shape measuring device according to claim 1,
A storage unit that stores a judgment standard that serves as a judgment standard for shading the measurement area, and a storage unit.
The area of the invalid image portion or the ratio of the area of the invalid image portion to the area of the measurement area is calculated, and the area of the invalid image portion or the ratio is compared with the determination criterion read from the storage unit. , A judgment unit that determines whether the shading is within the standard,
Further prepare,
Shape measuring device.
請求項1に記載の形状測定装置において、
前記測定エリアに対する遮光の判断の基準となる判断基準及び測定箇所の測定対象外の部位の情報を記憶する記憶部と、
前記無効像部分と、前記記憶部から読み出した前記測定対象外の部位との差分を算出し、この差分を、前記記憶部から読み出した判断基準と比較して、前記遮光が基準内か否かを判断する判断部と、
をさらに備える、
形状測定装置。
In the shape measuring device according to claim 1,
A storage unit that stores information on a determination standard that serves as a criterion for determining shading of the measurement area and a portion of the measurement location that is not subject to measurement, and a storage unit.
The difference between the invalid image portion and the non-measurement target portion read from the storage unit is calculated, and this difference is compared with the judgment standard read from the storage unit to determine whether or not the shading is within the standard. Judgment department to judge
Further prepare,
Shape measuring device.
請求項2〜4のいずれか1項に記載の形状測定装置において、
前記記憶部は複数の測定箇所について前記判断基準を記憶していて、
前記判断部は、各測定箇所の前記判断基準を用いて、前記遮光が基準内か否かを判断する、
形状測定装置。
In the shape measuring device according to any one of claims 2 to 4.
The storage unit stores the determination criteria for a plurality of measurement points.
The determination unit determines whether or not the shading is within the reference by using the determination criteria at each measurement point.
Shape measuring device.
請求項5に記載の形状測定装置において、
同一の測定対象物について複数の測定箇所を順次に前記測定エリアに位置付ける測定箇所変更機構をさらに備え、
前記判断部は、前記測定箇所変更機構によって変更された各測定箇所について、当該測定箇所に配置済の遮光部材による遮光が基準内か否かを判断する、形状測定装置。
In the shape measuring device according to claim 5,
Further provided with a measurement point changing mechanism for sequentially positioning a plurality of measurement points for the same measurement object in the measurement area.
The determination unit is a shape measuring device that determines whether or not the shading by the light-shielding member arranged at the measurement point is within the standard for each measurement point changed by the measurement point changing mechanism.
請求項5に記載の形状測定装置において、
同一の測定対象物について複数の測定箇所を順次に前記測定エリアに位置付け且つ、前記測定箇所と当該測定箇所に位置付ける遮光部材との相対位置を変更する移動機構をさらに備え、
前記判断部は、前記移動機構によって変更された各測定箇所について、遮光が基準内か否かを判断する、
形状測定装置。
In the shape measuring device according to claim 5,
A moving mechanism for sequentially positioning a plurality of measurement points for the same measurement object in the measurement area and changing the relative positions of the measurement points and the light-shielding member positioned at the measurement points is further provided.
The determination unit determines whether or not the shading is within the standard for each measurement point changed by the moving mechanism.
Shape measuring device.
前記測定エリア内の少なくとも傾斜面を覆う位置に遮光部材を配置した状態で、請求項1〜請求項7のいずれか1項に記載の形状測定装置を用いて、前記傾斜面の周囲に位置する測定対象の形状を測定する、形状測定方法。 The shape measuring device according to any one of claims 1 to 7 is used to be located around the inclined surface in a state where the light-shielding member is arranged in the measurement area so as to cover at least the inclined surface. A shape measuring method for measuring the shape of a measurement target.
JP2020033683A 2020-02-28 2020-02-28 Shape measurement device and shape measurement method Pending JP2021135256A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020033683A JP2021135256A (en) 2020-02-28 2020-02-28 Shape measurement device and shape measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020033683A JP2021135256A (en) 2020-02-28 2020-02-28 Shape measurement device and shape measurement method

Publications (1)

Publication Number Publication Date
JP2021135256A true JP2021135256A (en) 2021-09-13

Family

ID=77661029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020033683A Pending JP2021135256A (en) 2020-02-28 2020-02-28 Shape measurement device and shape measurement method

Country Status (1)

Country Link
JP (1) JP2021135256A (en)

Similar Documents

Publication Publication Date Title
EP3418681B1 (en) Calibration of a triangulation sensor
JP4926180B2 (en) How to determine the virtual tool center point
RU2653771C2 (en) Two bodies misalignment device and determination method
TWI623724B (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
JPH1183438A (en) Position calibration method for optical measuring device
CN105102925A (en) Three-dimensional coordinate scanner and method of operation
JP4791118B2 (en) Image measuring machine offset calculation method
EP2138803A1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
JP5776282B2 (en) Shape measuring apparatus, shape measuring method, and program thereof
JP2017150993A (en) Inner wall measurement device and offset amount calculation method
JP6288280B2 (en) Surface shape measuring device
JP7448397B2 (en) Surveying equipment and surveying systems
JP7223939B2 (en) Shape measuring machine and its control method
JP2018036255A (en) Lens measurement device and lens measurement device index plate
JP3768822B2 (en) 3D measuring device
JP2003035517A (en) Lead pin pitch/levelness testing device using two- dimensional laser displacement sensor
JP2021135256A (en) Shape measurement device and shape measurement method
EP2366091B1 (en) Cartesian coordinate measurement for a rotating system
JP2018109544A (en) Optical scanning height measuring device
JP2018109540A (en) Optical scanning height measuring device
JP6248510B2 (en) Shape measuring device, structure manufacturing system, shape measuring method, structure manufacturing method, shape measuring program, and recording medium
JP2021135255A (en) Shape measurement device and shape measurement method
KR100479412B1 (en) Straightness measurement device
JPWO2019069926A1 (en) Surface shape measuring device, surface shape measuring method, structure manufacturing system, structure manufacturing method, and surface shape measuring program
JP2020056615A (en) Surveying system, surveying instrument, and surveying method