JP2021135208A - Method for measuring chlorine concentration of chlorine containing ash - Google Patents
Method for measuring chlorine concentration of chlorine containing ash Download PDFInfo
- Publication number
- JP2021135208A JP2021135208A JP2020032489A JP2020032489A JP2021135208A JP 2021135208 A JP2021135208 A JP 2021135208A JP 2020032489 A JP2020032489 A JP 2020032489A JP 2020032489 A JP2020032489 A JP 2020032489A JP 2021135208 A JP2021135208 A JP 2021135208A
- Authority
- JP
- Japan
- Prior art keywords
- chlorine
- chlorine concentration
- concentration
- sulfate
- measured
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 title claims abstract description 131
- 229910052801 chlorine Inorganic materials 0.000 title claims abstract description 131
- 239000000460 chlorine Substances 0.000 title claims abstract description 131
- 238000000034 method Methods 0.000 title claims abstract description 67
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims abstract description 66
- 239000002002 slurry Substances 0.000 claims abstract description 41
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 claims abstract description 22
- 229910052788 barium Inorganic materials 0.000 claims abstract description 18
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 238000005443 coulometric titration Methods 0.000 claims description 36
- 239000010802 sludge Substances 0.000 claims description 21
- 239000002244 precipitate Substances 0.000 claims description 10
- IWOUKMZUPDVPGQ-UHFFFAOYSA-N barium nitrate Chemical compound [Ba+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O IWOUKMZUPDVPGQ-UHFFFAOYSA-N 0.000 claims description 7
- 238000000691 measurement method Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 3
- 238000004448 titration Methods 0.000 abstract 2
- 238000001556 precipitation Methods 0.000 abstract 1
- 239000002956 ash Substances 0.000 description 37
- 238000005259 measurement Methods 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 15
- -1 silver ions Chemical class 0.000 description 8
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 239000004568 cement Substances 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 229910002651 NO3 Inorganic materials 0.000 description 3
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000010612 desalination reaction Methods 0.000 description 3
- 238000011033 desalting Methods 0.000 description 3
- 230000002452 interceptive effect Effects 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000002351 wastewater Substances 0.000 description 3
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 2
- 229910001863 barium hydroxide Inorganic materials 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 239000010881 fly ash Substances 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- XFXPMWWXUTWYJX-UHFFFAOYSA-N Cyanide Chemical compound N#[C-] XFXPMWWXUTWYJX-UHFFFAOYSA-N 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 229940006460 bromide ion Drugs 0.000 description 1
- 238000003869 coulometry Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-M iodide Chemical compound [I-] XMBWDFGMSWQBCA-UHFFFAOYSA-M 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910001961 silver nitrate Inorganic materials 0.000 description 1
- KKCBUQHMOMHUOY-UHFFFAOYSA-N sodium oxide Chemical compound [O-2].[Na+].[Na+] KKCBUQHMOMHUOY-UHFFFAOYSA-N 0.000 description 1
- 229910001948 sodium oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
Abstract
Description
本発明は、塩素含有灰の塩素濃度を電量滴定法によって正確に測定する方法に関する。 The present invention relates to a method for accurately measuring the chlorine concentration of chlorine-containing ash by a coulometric titration method.
飛灰やセメント工場の塩素バイパスダストなどから回収される塩素含有灰は脱塩してセメント原料として再利用することができる。セメント工場で脱塩後の灰をセメント原料として受け入れるには、塩素の含有量を正確に把握する必要がある。従来、焼却灰などを硝酸溶液のスラリーにして含有塩素を溶出させ、このスラリー中の塩化物イオン量を電量滴定法によって測定する塩素濃度の測定方法が知られている(特許文献1)。この電量滴定法による塩素濃度の測定は、銀の電気分解によって生じた銀イオンとスラリー中の塩素を反応させて塩化銀沈殿を生成させ、塩素が無くなった時点で銀イオンが過剰になるのを検出して塩素濃度を測定する方法である。 Chlorine-containing ash recovered from fly ash and chlorine bypass dust in cement factories can be desalted and reused as a raw material for cement. In order to accept desalted ash as a raw material for cement at a cement factory, it is necessary to accurately grasp the chlorine content. Conventionally, there is known a method for measuring chlorine concentration in which incineration ash or the like is made into a slurry of a nitric acid solution to elute the contained chlorine, and the amount of chloride ions in the slurry is measured by a coulometric titration method (Patent Document 1). In the measurement of chlorine concentration by this coulometric titration method, silver ions generated by electrolysis of silver react with chlorine in the slurry to form a silver chloride precipitate, and when the chlorine is exhausted, the silver ions become excessive. This is a method of detecting and measuring the chlorine concentration.
電量滴定法による塩素濃度の測定は、銀イオンと反応して析出物ができてしまうような妨害元素が液中に存在すると測定値が影響を受けて変わり、あるいは測定自体が困難になるという問題がある。例えば、日本工業規格では、妨害元素として亜硫酸イオン、ヒドラジニウムイオン、ヒドロキシルアミン等の還元性物質、臭化物イオン、よう化物イオン、シアン化物イオン、硫化物イオン等が例示されている(JIS K0101「32.3 硝酸銀測定法、JIS K0101「32.4イオン電極法」]。 The measurement of chlorine concentration by the coulometric titration method has a problem that if there is an interfering element in the liquid that reacts with silver ions to form a precipitate, the measured value is affected and changes, or the measurement itself becomes difficult. There is. For example, Japanese Industrial Standards exemplify reducing substances such as sulfite ion, hydrazinium ion, and hydroxylamine, bromide ion, iodine ion, cyanide ion, and sulfide ion as interfering elements (JIS K0101 "32.3"). Silver nitrate measurement method, JIS K 0101 "32.4 Ion electrode method"].
上記塩素含有灰のスラリーには電量滴定法による測定妨害元素となる硫化物イオン等が暫しば含まれており、これが塩素含有灰の正確な塩素濃度の測定の問題となっていた。さらに、脱塩の後段工程において、廃水処理の汚泥を脱塩灰に混合してリサイクル処理することがあり、この汚泥には硫化物イオン等が含まれているため、塩素濃度の正確な測定が一層難しくなると云う問題があった。 The chlorine-containing ash slurry contains sulfide ions and the like, which are measurement interfering elements by the coulometric titration method, for a while, which has been a problem for accurate measurement of the chlorine concentration of chlorine-containing ash. Furthermore, in the subsequent step of desalination, sludge from wastewater treatment may be mixed with desalted ash for recycling, and since this sludge contains sulfide ions, etc., accurate measurement of chlorine concentration can be performed. There was a problem that it became more difficult.
本発明の塩素濃度の測定方法は、従来の測定方法における上記問題を解決したものであり、塩素含有灰スラリーに含まれる硫酸イオンの影響を排除し、塩素含有灰の塩素濃度を正確に測定できるようにした測定方法を提供する。
〔1〕硫酸イオンを含む塩素含有灰スラリーの塩素濃度を電量滴定法によって測定する方法であって、該スラリーにバリウム源を添加して硫酸バリウム沈澱を生成させて硫酸イオンの影響を排除し、あるいは、バリウム源を添加せずに測定した塩素濃度に、硫酸イオン濃度1.77〜2.63wt%の範囲で、該硫酸イオン濃度に対応した補正係数を乗じて硫酸イオンの影響を排除した塩素濃度を測定することを特徴とする塩素濃度の測定方法。
〔2〕上記塩素含有灰スラリーに、硝酸バリウムを添加し、pHを0.5以上の範囲に調整して硫酸バリウム沈澱を生成させた後に該スラリーの塩素濃度を電量滴定法によって測定する上記〔1〕に記載する測定方法。
〔3〕バリウム源を添加せずに電量滴定法によって測定した塩素濃度(A)に、次式[1]によって示される硫酸イオン濃度(x)に対応した補正係数(y)を乗じて、硫酸イオンの影響を排除した塩素濃度(B;B=A・y)を算定する上記〔1〕に記載する測定方法。
y=0.6345(x)−0.1227・・・・[1]
〔4〕バリウム源を添加せずに電量滴定法によって測定した塩素濃度(A)に、次式[2]によって示される汚泥添加量(z)に対応した補正係数(y2)を乗じて、硫酸イオンの影響を排除した塩素濃度(B;B=A・y2)を算定する上記〔1〕に記載する測定方法。
y2=0.0165(z)+0.9902・・・・[2]
The chlorine concentration measuring method of the present invention solves the above-mentioned problems in the conventional measuring method, eliminates the influence of sulfate ions contained in the chlorine-containing ash slurry, and can accurately measure the chlorine concentration of the chlorine-containing ash. Such a measurement method is provided.
[1] A method of measuring the chlorine concentration of a chlorine-containing ash slurry containing sulfate ions by a coulometric titration method, in which a barium source is added to the slurry to generate barium sulfate precipitates to eliminate the influence of sulfate ions. Alternatively, chlorine obtained by multiplying the chlorine concentration measured without adding a barium source by a correction coefficient corresponding to the sulfate ion concentration in the range of 1.77 to 2.63 wt% of the sulfate ion concentration to eliminate the influence of the sulfate ion. A method for measuring a chlorine concentration, which comprises measuring the concentration.
[2] Barium nitrate is added to the chlorine-containing ash slurry, the pH is adjusted to a range of 0.5 or more to generate barium sulfate precipitate, and then the chlorine concentration of the slurry is measured by a coulometric titration method. 1] The measuring method described in.
[3] Sulfuric acid by multiplying the chlorine concentration (A) measured by the coulometric titration method without adding a barium source by the correction coefficient (y) corresponding to the sulfate ion concentration (x) represented by the following equation [1]. The measuring method according to the above [1] for calculating the chlorine concentration (B; B = A · y) excluding the influence of ions.
y = 0.6345 (x) -0.1227 ... [1]
[4] Sulfate is obtained by multiplying the chlorine concentration (A) measured by the coulometric titration method without adding a barium source by the correction coefficient (y2) corresponding to the sludge addition amount (z) represented by the following equation [2]. The measuring method according to the above [1] for calculating the chlorine concentration (B; B = A · y2) excluding the influence of ions.
y2 = 0.0165 (z) +0.9902 ... [2]
〔具体的な説明〕
本発明の測定方法は、硫酸イオンを含む塩素含有灰スラリーの塩素濃度を電量滴定法によって測定する方法であって、該スラリーにバリウム源を添加して硫酸バリウム沈澱を生成させて硫酸イオンの影響を排除し、あるいは、バリウム源を添加せずに測定した塩素濃度に、硫酸イオン濃度1.77〜2.63wt%の範囲で、該硫酸イオン濃度に対応した補正係数を乗じて硫酸イオンの影響を排除した塩素濃度を測定することを特徴とする塩素濃度の測定方法である。
[Specific explanation]
The measuring method of the present invention is a method of measuring the chlorine concentration of a chlorine-containing ash slurry containing sulfate ions by a coulometric titration method, in which a barium source is added to the slurry to generate barium sulfate precipitates and the influence of sulfate ions. The effect of sulfate ion by multiplying the chlorine concentration measured without adding a barium source by the correction coefficient corresponding to the sulfate ion concentration in the range of 1.77 to 2.63 wt%. This is a method for measuring a chlorine concentration, which comprises measuring the chlorine concentration excluding the above.
本発明の測定方法は、硫酸イオンを含む塩素含有灰スラリーの塩素濃度を電量滴定法によって正確に測定する方法である。硫酸イオンを含む塩素含有灰スラリーは、例えば、飛灰やセメント工場の塩素バイパスダストなどから回収される塩素含有灰を水に分散してppH6〜10前後に調整後にろ過された脱塩灰などを硝酸に溶解させて当該灰に含まれる塩素を溶出させたスラリーである。pH調整剤として硫酸が添加されたスラリーや、塩素含有灰に硫酸化合物が含まれているもの、脱塩処理後の廃水汚泥を塩素含有灰と共にスラリーにしたものなどである。 The measuring method of the present invention is a method for accurately measuring the chlorine concentration of a chlorine-containing ash slurry containing sulfate ions by a coulometric titration method. The chlorine-containing ash slurry containing sulfate ions is, for example, demineralized ash obtained by dispersing chlorine-containing ash recovered from fly ash or chlorine bypass dust of a cement factory in water, adjusting the pH to around 6 to 10, and then filtering the ash. It is a slurry in which chlorine contained in the ash is eluted by dissolving it in nitric acid. Slurry to which sulfuric acid is added as a pH adjuster, sulfuric acid compound contained in chlorine-containing ash, and wastewater sludge after desalting treatment is made into a slurry together with chlorine-containing ash.
本発明の測定方法の一つは、硫酸イオンを含む塩素含有灰スラリーに、バリウム源を添加して硫酸バリウム沈澱を生成させた後に塩素濃度を測定する方法である。塩素濃度の測定に先立ち、塩素含有灰スラリーにバリウム源を添加して硫酸バリウム沈澱を生成させて液中の硫酸イオンを除去し、硫酸イオンの影響を排除した後に塩素濃度を電量滴定法によって測定する。 One of the measuring methods of the present invention is a method of measuring the chlorine concentration after adding a barium source to a chlorine-containing ash slurry containing sulfate ions to generate barium sulfate precipitate. Prior to measuring the chlorine concentration, a barium source is added to the chlorine-containing ash slurry to generate barium sulfate precipitate, the sulfate ion in the liquid is removed, the influence of the sulfate ion is eliminated, and then the chlorine concentration is measured by the coulometric titration method. do.
塩素含有灰スラリーに添加するバリウム源としては、硝酸バリウム〔Ba(NO3)2〕、水酸化バリウム〔Ba(OH)2〕などを用いることができる。硝酸バリウムや水酸化バリウムなどのバリウム源を塩素含有灰スラリーに添加してpH0.5以上の範囲に調整すれば、液中の硫酸イオンは硫酸バリウムを生じて沈澱し、液中から除去することができる。その後、電量滴定法の通常の測定方法によって塩素濃度を測定すれば、硫酸イオンの影響を排除した正確な塩素濃度を測定することができる。 As the barium source to be added to the chlorine-containing ash slurry, barium nitrate [Ba (NO 3 ) 2 ], barium hydroxide [Ba (OH) 2 ], or the like can be used. If a barium source such as barium nitrate or barium hydroxide is added to the chlorine-containing ash slurry to adjust the pH to 0.5 or higher, the sulfate ions in the liquid will generate barium sulfate, precipitate, and be removed from the liquid. Can be done. After that, if the chlorine concentration is measured by the usual measuring method of the coulometric titration method, the accurate chlorine concentration excluding the influence of sulfate ions can be measured.
本発明の他の測定方法は、塩素含有灰スラリーについて、バリウム源を添加せずに、電量滴定法によって測定した塩素濃度(A)に、硫酸イオン濃度1.77〜2.63wt%の範囲で、次式[1]によって示される硫酸イオン濃度(x)に対応した補正係数(y)を乗じて、硫酸イオンの影響を排除した塩素濃度(B;B=Ay)を算定する測定方法である。
y=0.6345(x)−0.1227・・・・[1]
In another measuring method of the present invention, the sulfuric acid ion concentration is in the range of 1.77 to 2.63 wt% in the chlorine concentration (A) measured by the coulometric titration method for the chlorine-containing ash slurry without adding a barium source. , A measurement method for calculating the chlorine concentration (B; B = Ay) excluding the influence of sulfate ions by multiplying the correction coefficient (y) corresponding to the sulfate ion concentration (x) represented by the following equation [1]. ..
y = 0.6345 (x) -0.1227 ... [1]
塩素含有灰を10%硝酸に分散させた塩素含有灰スラリー(硫酸イオン濃度1.77)について、イオンクロマトグラフによって硫酸イオンの影響を受けない塩素濃度(B1.77)を測定し、次に電量滴定法によって塩素濃度(A1.77)を再度測定し、その後、このスラリーに、硫酸イオンが3.3wt%、塩素が1.8wt%含まれる汚泥を10wt%、20wt%および40wt%になるように添加して、スラリー中の硫酸イオン濃度を2.14wt%、2.33wt%、2.63wt%に増加すると共に塩素濃度を増加させ、この増加した硫酸イオン濃度における塩素濃度の変化を電量滴定法とイオンクロマトグラフによって測定すると表1の結果が得られる。 For a chlorine-containing ash slurry (sulfate ion concentration 1.77) in which chlorine-containing ash was dispersed in 10% nitrate, the chlorine concentration (B 1.77 ) unaffected by sulfate ions was measured by an ion chromatograph, and then The chlorine concentration (A 1.77 ) was measured again by the coulometric method, and then the sludge containing 3.3 wt% sulfate ion and 1.8 wt% chlorine was added to 10 wt%, 20 wt% and 40 wt%. The sulfate ion concentration in the slurry was increased to 2.14 wt%, 2.33 wt%, and 2.63 wt%, and the chlorine concentration was increased. The results shown in Table 1 are obtained when measured by the coulometric titration method and the ion chromatograph.
イオンクロマトグラフによる塩素濃度の測定値は硫酸イオンの影響を受けないので、電量滴定法によって測定した塩素濃度(A1.77・・・A2.63)とイオンクロマトグラフによって測定した塩素濃度(B1.77・・・B2.63)とを比較し、電量滴定法の測定塩素濃度(A1.77・・・A2.63)がイオンクロマトグラフの測定塩素濃度(B1.77・・・B2.63)に一致するための補正係数を最小二乗法によって求めると、図1に示すように、硫酸イオン濃度の変化に対応した塩素濃度の式[1]が得られる。 Since the measured value of the chlorine concentration by the ion chromatograph is not affected by the sulfate ion, the chlorine concentration measured by the coulometric titration method (A 1.77 ... A 2.63 ) and the chlorine concentration measured by the ion chromatograph (A 1.77 ... A 2.63) Compared with B 1.77 ... B 2.63 ), the measured chlorine concentration of the coulometric titration method (A 1.77 ... A 2.63 ) is the measured chlorine concentration of the ion chromatograph (B 1.77). When the correction coefficient for matching B 2.63 ) is obtained by the minimum square method, the formula [1] of the chlorine concentration corresponding to the change in the sulfate ion concentration is obtained as shown in FIG.
なお、硫酸イオン濃度が1.77未満の範囲では、電量滴定法による塩素濃度の測定において、硫酸イオンの影響は殆ど見られないので補正係数を用いる必要は無く、あるいは補正係数を1とすればよい。また、硫酸イオン濃度が2.63wt%を超えると、電量滴定法による塩素濃度はエラーになる。 In the range where the sulfate ion concentration is less than 1.77, it is not necessary to use the correction coefficient because the influence of the sulfate ion is hardly seen in the measurement of the chlorine concentration by the coulometric titration method, or if the correction coefficient is set to 1. good. Further, if the sulfate ion concentration exceeds 2.63 wt%, the chlorine concentration by the coulometric titration method becomes an error.
この結果から、硫酸イオンを含む塩素含有灰スラリーの塩素濃度を電量滴定法によって測定する場合、硫酸イオン濃度が1.77wt%未満の範囲では、電量滴定法による測定値が硫酸イオンの影響のない塩素濃度と見做してよく、一方、硫酸イオン濃度が1.77〜2.63wt%の範囲では、硫酸イオンの影響を受けない正確な塩素濃度(B)は、測定した各塩素濃度(A:A1.77、A2.14、A2.33、A2.63)に、上記式[1]よる補正係数(y)を乗じた値(B=A・y)として得られる。この補正係数を用いれば、測定した塩素濃度について、硫酸イオンの影響を受けない塩素濃度(B)に近似した塩素濃度が得られる。 From this result, when the chlorine concentration of the chlorine-containing ash slurry containing sulfate ion is measured by the coulometric titration method, the value measured by the coulometric titration method is not affected by the sulfate ion in the range where the sulfate ion concentration is less than 1.77 wt%. It can be regarded as the chlorine concentration. On the other hand, when the sulfate ion concentration is in the range of 1.77 to 2.63 wt%, the accurate chlorine concentration (B) that is not affected by the sulfate ion is the measured chlorine concentration (A). : A 1.77 , A 2.14 , A 2.33 , A 2.63 ) is multiplied by the correction coefficient (y) according to the above equation [1] to obtain a value (B = A · y). By using this correction coefficient, it is possible to obtain a chlorine concentration that is close to the chlorine concentration (B) that is not affected by sulfate ions with respect to the measured chlorine concentration.
塩素含有灰の脱塩処理においては、塩素含有灰スラリーに脱塩処理後の廃水汚泥を塩素含有灰スラリーに添加して脱塩を進めることが多く、この脱塩処理後の廃水汚泥には硫酸イオンおよび塩素が含まれている。そこで、このような硫酸イオンおよび塩素を含む汚泥を添加した塩素含有灰スラリーの塩素濃度を電量滴定法によって測定する場合、汚泥の添加量に基づいた補正係数を利用できれば便利である。そこで、汚泥の添加量に基づいた補正係数を、表1の結果に基づき、最小二乗法によって求めると、図2に示す次式[2]が得られる。電量滴定法によって測定した塩素濃度(A)に、式[2]よる補正係数(y2)を乗じた値(B=A・y2)が硫酸イオンの影響を受けない塩素濃度(B)として得られる。
y2=0.0165(z)+0.9902・・・・[2]
In the desalination treatment of chlorine-containing ash, wastewater sludge after desalting treatment is often added to the chlorine-containing ash slurry to proceed with desalting, and the wastewater sludge after this desalination treatment is sulfated. Contains ions and chlorine. Therefore, when measuring the chlorine concentration of a chlorine-containing ash slurry to which sludge containing sulfate ions and chlorine is added by a coulometric titration method, it is convenient if a correction coefficient based on the amount of sludge added can be used. Therefore, when the correction coefficient based on the amount of sludge added is obtained by the least squares method based on the results in Table 1, the following equation [2] shown in FIG. 2 is obtained. A value (B = A · y2) obtained by multiplying the chlorine concentration (A) measured by the coulometric titration method by the correction coefficient (y2) according to the formula [2] is obtained as the chlorine concentration (B) that is not affected by sulfate ions. ..
y2 = 0.0165 (z) +0.9902 ... [2]
工場等の現場では、予め硫酸イオン濃度を測定した汚泥であれば、灰と汚泥の重量を測定すればよいので、上記式[2]に示す汚泥添加量に応じた補正係数式が使用しやすい。 At the site such as a factory, if the sludge has a sulfate ion concentration measured in advance, the weights of ash and sludge may be measured. Therefore, the correction coefficient formula according to the amount of sludge added shown in the above formula [2] is easy to use. ..
本発明の測定方法によれれば、塩素含有灰スラリーに含まれる硫酸イオンの影響を排除した正確な塩素濃度を測定することができる。 According to the measuring method of the present invention, it is possible to measure an accurate chlorine concentration excluding the influence of sulfate ions contained in the chlorine-containing ash slurry.
以下、本発明の実施例を示す。
〔実施例1〕
塩素含有灰を10%硝酸に分散させた塩素含有灰スラリー(硫酸イオン濃度1.77)について、イオンクロマトグラフによって硫酸イオンの影響を受けない塩素濃度(B1.77)を測定した。次に電量滴定法によって塩素濃度(A1.77)を再度測定した。その後、このスラリーに、硫酸イオンが3.3wt%、塩素が1.8wt%含まれる汚泥を10wt%、20wt%および40wt%になるように添加して、スラリー中の硫酸イオン濃度を2.14wt%、2.33wt%、2.63wt%に増加すると共に塩素濃度を増加させた。この増加した硫酸イオン濃度における塩素濃度の変化を電量滴定法とイオンクロマトグラフによって測定した。この結果を表1に示す。
表1に示すように、電量滴定法の塩素濃度はイオンクロマトグラフによって測定した塩素濃度より低く測定される。そこで、イオンクロマトグラフによる塩素濃度の測定値は硫酸イオンの影響を受けないので、
電量滴定法によって測定した塩素濃度(A1.77・・・A2.63)とイオンクロマトグラフによって測定した塩素濃度(B1.77・・・B2.63)とを比較し、電量滴定法の測定塩素濃度(A1.77・・・A2.63)がイオンクロマトグラフの測定塩素濃度(B1.77・・・B2.63)に一致するための補正係数を最小二乗法によって求め、硫酸イオン濃度の変化に対応した塩素濃度の式[1]を得た。この式[1]を図1に示す。
Hereinafter, examples of the present invention will be shown.
[Example 1]
For the chlorine-containing ash slurry (sulfate ion concentration 1.77) in which chlorine-containing ash was dispersed in 10% nitric acid, the chlorine concentration (B 1.77 ) unaffected by sulfate ions was measured by an ion chromatograph. Next, the chlorine concentration (A 1.77 ) was measured again by the coulometric titration method. Then, sludge containing 3.3 wt% of sulfate ion and 1.8 wt% of chlorine was added to this slurry so as to be 10 wt%, 20 wt% and 40 wt%, and the sulfate ion concentration in the slurry was 2.14 wt. %, 2.33 wt%, 2.63 wt%, and the chlorine concentration was increased. The change in chlorine concentration with this increased sulfate ion concentration was measured by coulometric titration and ion chromatography. The results are shown in Table 1.
As shown in Table 1, the chlorine concentration of the coulometric titration method is measured lower than the chlorine concentration measured by ion chromatography. Therefore, the measured value of chlorine concentration by ion chromatograph is not affected by sulfate ion, so
The chlorine concentration measured by the coulometric titration method (A 1.77 ... A 2.63 ) is compared with the chlorine concentration measured by the ion chromatograph (B 1.77 ... B 2.63 ), and the coulometric titration is performed. The minimum square method for the correction coefficient for the measured chlorine concentration (A 1.77 ... A 2.63 ) of the method to match the measured chlorine concentration (B 1.77 ... B 2.63) of the ion chromatograph. The formula [1] of the chlorine concentration corresponding to the change in the sulfate ion concentration was obtained. This equation [1] is shown in FIG.
〔実施例2〕
実施例1の試験において、表1に示す電量滴定法によって測定した塩素濃度(A1.77・・・A2.63)とイオンクロマトグラフによって測定した塩素濃度(B1.77・・・B2.63)とを比較し、電量滴定法の測定塩素濃度(A1.77・・・A2.63)がイオンクロマトグラフの測定塩素濃度(B1.77・・・B2.63)に一致するための補正係数を最小二乗法によって求め、汚泥添加量に対応した塩素濃度の式[2]を得た。この式[2]を図2に示す。
[Example 2]
In the test of Example 1, the chlorine concentration measured by the coulometric titration method shown in Table 1 (A 1.77 ... A 2.63 ) and the chlorine concentration measured by the ion chromatograph (B 1.77 ... B). Compared with 2.63 ), the measured chlorine concentration of the coulometric titration method (A 1.77 ... A 2.63 ) is the measured chlorine concentration of the ion chromatograph (B 1.77 ... B 2.63 ). The correction coefficient for matching with was obtained by the minimum square method, and the formula [2] of the chlorine concentration corresponding to the amount of sludge added was obtained. This equation [2] is shown in FIG.
〔比較例1〕
硫酸イオンが含まれる汚泥(硫酸イオン濃度3.3wt%)を添加した塩素含有灰スラリー(濃度10wt%の硝酸スラリー)について、バリウム源を添加せずに電量滴定法による塩素濃度の測定を繰り返した。この結果を図3に示した。汚泥添加量が20wt%(図中△印)の試料は、測定回数が10回を超えると測定値が低下し、測定回数が12回で測定不能になった。また、汚泥添加量40wt%の試料では、わずか3回で測定不能になった。
[Comparative Example 1]
For the chlorine-containing ash slurry (nitrate slurry with a concentration of 10 wt%) to which sludge containing sulfate ions (sulfate ion concentration 3.3 wt%) was added, the measurement of the chlorine concentration by the coulometric titration method was repeated without adding a barium source. .. The result is shown in FIG. In the sample in which the sludge addition amount was 20 wt% (Δ mark in the figure), the measured value decreased when the number of measurements exceeded 10, and the measurement became impossible after the number of measurements was 12. Further, in the sample having a sludge addition amount of 40 wt%, the measurement became impossible after only 3 times.
〔実施例3〕
硫酸イオンが含まれる汚泥(硫酸イオン濃度3.3wt%)を40wt%添加した塩素含有灰スラリー(濃度10wt%の硝酸スラリー)について、硝酸バリウム[Ba(NO3)2]を添加し、さらに水酸化ナトリウムを添加してpH0.5以上に調整して硫酸バリウムを沈澱させた後に、電量滴定法による塩素濃度の測定を繰り返した。この結果を図4に示した。図示するように、本例では、硫酸イオンの妨害がないので、27回の繰返し測定が可能であった。
[Example 3]
Barium sulfate [Ba (NO 3 ) 2 ] is added to a chlorine-containing ash slurry (nitrate slurry with a concentration of 10 wt%) to which 40 wt% of sludge containing sulfate ions (sulfate ion concentration 3.3 wt%) is added, and further water is added. After adding sodium oxide to adjust the pH to 0.5 or higher and precipitating barium sulfate, the measurement of the chlorine concentration by the coulometric titration method was repeated. The result is shown in FIG. As shown in the figure, in this example, since there was no interference of sulfate ions, 27 repeated measurements were possible.
Claims (4)
y=0.6345(x)−0.1227・・・・[1] The effect of sulfate ion by multiplying the chlorine concentration (A) measured by the coulometric titration method without adding a barium source by the correction coefficient (y) corresponding to the sulfate ion concentration (x) represented by the following equation [1]. The measuring method according to claim 1, wherein the chlorine concentration (B; B = Ay) excluding the above is calculated.
y = 0.6345 (x) -0.1227 ... [1]
y2=0.0165(z)+0.9902・・・・[2]
The effect of sulfate ion by multiplying the chlorine concentration (A) measured by the coulometric titration method without adding a barium source by the correction coefficient (y2) corresponding to the sludge addition amount (z) represented by the following equation [2]. The measuring method according to claim 1, wherein the chlorine concentration (B; B = A · y2) excluding the above is calculated.
y2 = 0.0165 (z) +0.9902 ... [2]
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020032489A JP7365581B2 (en) | 2020-02-27 | 2020-02-27 | Method for measuring chlorine concentration in chlorine-containing ash |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020032489A JP7365581B2 (en) | 2020-02-27 | 2020-02-27 | Method for measuring chlorine concentration in chlorine-containing ash |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021135208A true JP2021135208A (en) | 2021-09-13 |
JP7365581B2 JP7365581B2 (en) | 2023-10-20 |
Family
ID=77661081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020032489A Active JP7365581B2 (en) | 2020-02-27 | 2020-02-27 | Method for measuring chlorine concentration in chlorine-containing ash |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7365581B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750649A (en) * | 1980-09-12 | 1982-03-25 | Hitachi Ltd | Analyzing method for chloride ion in urine |
JP2002228629A (en) * | 2001-01-31 | 2002-08-14 | Horiba Ltd | Method for measuring nitrate ion concentration |
US20070224086A1 (en) * | 2006-03-22 | 2007-09-27 | Dia Instruments Co., Ltd. | Chlorine analyzing apparatus |
JP2012008070A (en) * | 2010-06-28 | 2012-01-12 | Central Res Inst Of Electric Power Ind | SEPARATION METHOD OF CHLORIDE ION CONTAINING 36Cl AND MANUFACTURING METHOD OF SAMPLE FOR ACCELERATOR MASS SPECTROMETRY |
JP2016077976A (en) * | 2014-10-17 | 2016-05-16 | 三菱マテリアル株式会社 | Desalination method and desalination device of chlorine-containing ash |
-
2020
- 2020-02-27 JP JP2020032489A patent/JP7365581B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5750649A (en) * | 1980-09-12 | 1982-03-25 | Hitachi Ltd | Analyzing method for chloride ion in urine |
JP2002228629A (en) * | 2001-01-31 | 2002-08-14 | Horiba Ltd | Method for measuring nitrate ion concentration |
US20070224086A1 (en) * | 2006-03-22 | 2007-09-27 | Dia Instruments Co., Ltd. | Chlorine analyzing apparatus |
JP2007286032A (en) * | 2006-03-22 | 2007-11-01 | Dia Instr:Kk | Apparatus for analyzing chlorine |
JP2012008070A (en) * | 2010-06-28 | 2012-01-12 | Central Res Inst Of Electric Power Ind | SEPARATION METHOD OF CHLORIDE ION CONTAINING 36Cl AND MANUFACTURING METHOD OF SAMPLE FOR ACCELERATOR MASS SPECTROMETRY |
JP2016077976A (en) * | 2014-10-17 | 2016-05-16 | 三菱マテリアル株式会社 | Desalination method and desalination device of chlorine-containing ash |
Also Published As
Publication number | Publication date |
---|---|
JP7365581B2 (en) | 2023-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Legin et al. | Analytical applications of chalcogenide glass chemical sensors in environmental monitoring and process control | |
Dobbs et al. | Elimination of Chloride Interference in the Chemical Oxygen Demand Test. | |
Greulach et al. | Analysis of arsenic (V) by cathodic stripping voltammetry | |
JP5284196B2 (en) | Method for quantitative analysis of selenium | |
WO2016031265A1 (en) | Device for determining addition amount of chelating agent, and method for determining addition amount of chelating agent | |
JP2021135208A (en) | Method for measuring chlorine concentration of chlorine containing ash | |
CN112292599A (en) | Method for determining Chemical Oxygen Demand (COD) of high-chloride sample | |
US20070158211A1 (en) | Arsenic measurement using anodic stripping voltammetry | |
Selig | Semimicrodetermination of oxalate with a lead-specific electrode | |
Karwas | Ammonia complexation in the analysis of hexavalent chromium in fly ash | |
Sharma | Sequential trace determination of arsenic (III) and arsenic (V) by differential pulse polarography | |
Momotov et al. | Coulometric methods for uranium and plutonium determination | |
JP5260446B2 (en) | Fluorine concentration automatic measuring method and fluorine concentration automatic measuring device | |
Jones et al. | Determination of mercaptobenzothiazole (MBT) in flotation liquors by solvent extraction and ultraviolet spectrometry | |
Jasinski et al. | Application of a sulfate-sensitive electrode to natural waters | |
Steinbach et al. | Preparation of Standard Sodium Hydroxide Solutions by Use of Strong Anion Exchange Resin | |
Muravyeva et al. | Determination of fluorine in aluminum production waste | |
JP4797902B2 (en) | Determination of iron | |
JP2573919B2 (en) | Method for measuring chloride ion concentration in ready-mixed concrete | |
Kabasakalis | Fluorimetric determination of silver with brilliant green in aqueous systems and its application in photographic fixing solutions | |
TW201815695A (en) | A method for reducing chemical oxygen demand of the waste water | |
Nakareseisoon et al. | Determination of chlorite at very low levels by using differential pulse polarography | |
Hanif et al. | Oxidation of some inorganic systems by means of cobalt (III) acetate | |
JP3843551B2 (en) | Determination method of required amount of liquid chelating agent for fly ash treatment | |
Pal et al. | DPASV analytical technique for ppb level uranium analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230512 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230609 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230731 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230921 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7365581 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |