JP2021135105A - Radiation temperature measurement device using multireflection between mirrors - Google Patents

Radiation temperature measurement device using multireflection between mirrors Download PDF

Info

Publication number
JP2021135105A
JP2021135105A JP2020029813A JP2020029813A JP2021135105A JP 2021135105 A JP2021135105 A JP 2021135105A JP 2020029813 A JP2020029813 A JP 2020029813A JP 2020029813 A JP2020029813 A JP 2020029813A JP 2021135105 A JP2021135105 A JP 2021135105A
Authority
JP
Japan
Prior art keywords
measurement sample
mirror
measurement
angle
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020029813A
Other languages
Japanese (ja)
Other versions
JP7350672B2 (en
Inventor
大亮 寺田
Daisuke Terada
大亮 寺田
徹 井内
Toru Iuchi
徹 井内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chino Corp
Original Assignee
Chino Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chino Corp filed Critical Chino Corp
Priority to JP2020029813A priority Critical patent/JP7350672B2/en
Publication of JP2021135105A publication Critical patent/JP2021135105A/en
Application granted granted Critical
Publication of JP7350672B2 publication Critical patent/JP7350672B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

To provide a radiation temperature measurement device that enlarges nominal emissivity by multireflection between mirrors when an inclination mirror cannot be installed above a measurement sample.SOLUTION: A radiation temperature measurement device and the like are provided that have a radiation thermometer for measuring radiance having nominal emissivity of the measurement sample enlarged by multi-reflected light between one or more type 1 mirrors configured to reflect light to be radiated from the measurement sample at an angle θ of a prescribed range with respect to a measurement surface normal of a measurement sample to be arranged in an arrangement part, cause the reflected light to be incident upon the measurement sample again, and cause the light to be radiated at an angle -θ of the prescribed range with respect to the measurement surface normal of the measurement sample from an incidence point, and one or more type 2 mirrors configured to reflect light to be radiated from the measurement sample at the angle -θ of the prescribed range with respect to the measurement surface normal of the measurement sample to be arranged in the arrangement part, cause the light to be incident upon the measurement sample again, and cause the light to be radiated at the angle θ of the prescribed range with respect to the measurement surface normal of the measurement sample from the incidence point.SELECTED DRAWING: Figure 1

Description

本発明は、測定試料から放射される光を反射して再び測定試料に入射させるためのミラーを用いて、ミラーによる反射光をも受光することにより、測定試料の見かけの放射率を大きくして、温度測定を行う放射温度計に関する。 In the present invention, the apparent emissivity of the measurement sample is increased by receiving the reflected light from the mirror by using a mirror for reflecting the light emitted from the measurement sample and making it incident on the measurement sample again. , Regarding a radiation thermometer that measures temperature.

圧延や連続焼きなましなどの金属材の製造プロセスにおける金属材の表面温度の測定には、金属材の表面を傷つけることのない非接触の放射温度計が広く用いられている。放射温度計は対象からの熱放射の強度(放射輝度)を測定し、熱放射の強度から温度への換算を、黒体の熱放射強度と温度との関係に基づいて行う。温度測定の対象となる物質の放射率が黒体の放射率と異なる場合には、その物質の放射率に応じた補正により温度を得ることができる。しかし、圧延プロセス実行中の鋼板は、加熱や冷却により生じる金属表面の酸化膜により金属表面の性状は変動し、それに伴い放射率も変動するため放射率に応じた補正を行うことができず、正確な温度測定は困難であった。 A non-contact radiation thermometer that does not damage the surface of the metal material is widely used for measuring the surface temperature of the metal material in the manufacturing process of the metal material such as rolling and continuous annealing. The radiation thermometer measures the intensity of thermal radiation from the object (radiance) and converts the intensity of thermal radiation into temperature based on the relationship between the thermal radiation intensity of the blackbody and the temperature. When the emissivity of the substance to be measured for temperature is different from the emissivity of the black body, the temperature can be obtained by correction according to the emissivity of the substance. However, the properties of the metal surface of the steel sheet during the rolling process fluctuate due to the oxide film on the metal surface generated by heating and cooling, and the emissivity also fluctuates accordingly, so it is not possible to make corrections according to the emissivity. Accurate temperature measurement was difficult.

そこで、鋼板などの測定対象に対して反射板を傾けて配置し、鋼板からの放射光を反射板と鋼板表面とで多重反射させることにより、鋼板表面の見かけの放射率を大きくして黒体の放射率に近づけることで、黒体放射とみなして温度換算する測温方法が提案されている(特許文献1)。 Therefore, by arranging the reflector at an angle with respect to the measurement target such as a steel plate and multiple-reflecting the radiated light from the steel plate between the reflector and the surface of the steel plate, the apparent emissivity of the surface of the steel plate is increased and a blackbody is formed. A temperature measurement method has been proposed in which the emissivity of a blackbody radiation is regarded as blackbody radiation and the temperature is converted by approaching the emissivity of (Patent Document 1).

特開昭59−87329号公報JP-A-59-87329

特許文献1の測温方法では、鋼板に対向して反射板を配置しなくてはならず、鋼板の真上の空間に反射板を配置する余地がない測定環境においては、かかる測温方法は適用できないという問題があった。 In the temperature measurement method of Patent Document 1, the reflector must be arranged so as to face the steel plate, and in a measurement environment where there is no room for the reflector to be arranged in the space directly above the steel plate, such a temperature measurement method is used. There was a problem that it could not be applied.

そこで、上記課題を解決するために本発明において、少なくとも測定面は平面状の測定試料を配置するための配置部と、配置部に配置される測定試料の測定面法線に対して所定範囲の角度θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度−θで放射させるように構成される第一種のミラーと、配置部に配置される測定試料の測定面法線に対して所定範囲の角度−θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度θで放射させるように構成される第二種のミラーと、からなり、第一種のミラーと、第二種のミラーとは、それぞれ一以上のミラーから構成されており、前記複数のミラー間で多重反射した光によって測定試料の見かけの放射率を大きくした放射輝度を測定するための放射温度計を有する放射測温装置を提供する。 Therefore, in order to solve the above problems, in the present invention, at least the measurement surface has a predetermined range with respect to the arrangement portion for arranging the flat measurement sample and the measurement surface normal line of the measurement sample arranged in the arrangement portion. The first configuration is such that the light emitted from the measurement sample at an angle θ is reflected and incident on the measurement sample again, and is emitted from the incident point at an angle −θ within a predetermined range with respect to the measurement surface normal line of the measurement sample. The light emitted from the measurement sample is reflected at an angle −θ within a predetermined range with respect to the mirror of the seed and the measurement surface normal line of the measurement sample placed in the arrangement portion, and is incident on the measurement sample again, and is measured from the incident point. It consists of a second-class mirror configured to radiate at an angle θ within a predetermined range with respect to the measurement surface normal of the sample, and the first-class mirror and the second-class mirror are each one or more. Provided is a radiation temperature measuring device including a radiation thermometer for measuring radiation brightness in which the apparent radiation coefficient of a measurement sample is increased by light multiple reflected between the plurality of mirrors.

また、上記の放射測温装置において、前記放射温度計は第一種のミラー又は/及び第二種のミラーの背後に配置され、自身の前方のミラーに設けられた穴部から前記多重反射した光を取り込むように構成される放射測温装置を提供する。 Further, in the above-mentioned radiation temperature measuring device, the radiation thermometer is arranged behind a first-class mirror and / and a second-class mirror, and multiple reflections are made from a hole provided in the mirror in front of the radiation thermometer. Provided is a radiation thermometer configured to capture light.

また、上記いずれかの放射測温装置において、放射温度計の光取込面の前方にp偏光子を有する偏光部を設けた放射測温装置を提供する。 Further, in any of the above radiation temperature measuring devices, there is provided a radiation temperature measuring device in which a polarizing portion having a p-polarizer is provided in front of the light intake surface of the radiation thermometer.

また、上記いずれかの放射測温装置において、θの値が60度以上である放射測温装置を提供する。 Further, in any of the above radiation temperature measuring devices, a radiation temperature measuring device having a value of θ of 60 degrees or more is provided.

また、上記いずれかの放射測温装置において、内部観察用窓を備えたチャンバーを有し、前記配置部はチャンバー内に配置され、第一種のミラー及び第二種のミラー、並びに放射温度計の光取込面は、チャンバー外部に配置され、測定試料からの光を内部観察用窓を介して入射させるように構成されている放射測温装置を提供する。 Further, in any of the above radiation temperature measuring devices, a chamber provided with an internal observation window is provided, and the arrangement portion is arranged in the chamber, and is a first-class mirror, a second-class mirror, and a radiation thermometer. The light intake surface of the above provides a radiation thermometer which is arranged outside the chamber and is configured to allow light from a measurement sample to enter through an internal observation window.

また、上記いずれかの放射測温装置において、配置部は、測定試料を配置部上で移動可能とする移動手段を有する放射測温装置を提供する。 Further, in any of the above-mentioned radiation temperature measuring devices, the arrangement unit provides a radiation temperature measuring device having a moving means for moving the measurement sample on the arrangement unit.

また、少なくとも測定面は平面状の測定試料を配置するための配置部と、配置部に配置される測定試料の測定面法線に対して所定範囲の角度θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度−θで放射させるように構成される第一種のミラーと、配置部に配置される測定試料の測定面法線に対して所定範囲の角度−θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度θで放射させるように構成される第二種のミラーと、放射温度計と、からなり、第一種のミラーと、第二種のミラーとは、それぞれ一以上のミラーから構成されている放射測温装置の測温方法であって、配置部に測定試料を配置する配置ステップと、前記複数のミラー間で多重反射した光によって測定試料の見かけの放射率を大きくした放射輝度を放射温度計で測定する測定ステップと、を有する測温方法を提供する。 Further, at least the measurement surface has an arrangement portion for arranging a flat measurement sample and light emitted from the measurement sample at an angle θ within a predetermined range with respect to the measurement surface normal line of the measurement sample arranged in the arrangement portion. It is arranged in a first-class mirror configured to reflect and re-enter the measurement sample and radiate from the incident point to the measurement surface normal line of the measurement sample at an angle −θ in a predetermined range, and an arrangement portion. The light emitted from the measurement sample is reflected at an angle −θ of a predetermined range with respect to the measurement surface normal line of the measurement sample and is incident on the measurement sample again, and the predetermined range from the incident point with respect to the measurement surface normal line of the measurement sample. It consists of a second-class mirror and a radiation thermometer that are configured to radiate at an angle of θ, and each of the first-class mirror and the second-class mirror is composed of one or more mirrors. It is a temperature measurement method of the radiation temperature measuring device, and emits radiation brightness in which the apparent radiation coefficient of the measurement sample is increased by the arrangement step of arranging the measurement sample in the arrangement portion and the light multiple reflected between the plurality of mirrors. Provided is a temperature measuring method including a measuring step for measuring with a thermometer.

また、少なくとも測定面は平面状の測定試料を配置するための配置部と、配置部に配置される測定試料の測定面法線に対して所定範囲の角度θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度−θで放射させるように構成される第一種のミラーと、配置部に配置される測定試料の測定面法線に対して所定範囲の角度−θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度θで放射させるように構成される第二種のミラーと、からなり、第一種のミラーと、第二種のミラーとは、それぞれN個のミラーから正N角形に配置構成されており、Nの値は、3以上で無限大以下であり、前記複数のミラー間で多重反射した光によって測定試料の見かけの放射率を大きくした放射輝度を測定するための放射温度計を有する放射測温装置を提供する。 Further, at least the measurement surface has an arrangement portion for arranging a flat measurement sample and light emitted from the measurement sample at an angle θ within a predetermined range with respect to the measurement surface normal line of the measurement sample arranged in the arrangement portion. It is arranged in a first-class mirror configured to reflect and re-enter the measurement sample and radiate from the incident point to the measurement surface normal line of the measurement sample at an angle −θ in a predetermined range, and an arrangement portion. The light emitted from the measurement sample is reflected at an angle −θ of a predetermined range with respect to the measurement surface normal line of the measurement sample and is incident on the measurement sample again, and the predetermined range from the incident point with respect to the measurement surface normal line of the measurement sample. It consists of a second-class mirror that is configured to radiate at an angle θ of, and the first-class mirror and the second-class mirror are arranged and configured in a regular N-side shape from N mirrors, respectively. The value of N is 3 or more and infinity or less, and the radiation having a radiation thermometer for measuring the radiation brightness in which the apparent radiation coefficient of the measurement sample is increased by the light multiple reflected between the plurality of mirrors. Provide a temperature measuring device.

本発明により、測定試料の測定面の上方空間に余裕のない場合であっても、多重反射により見かけの放射率を大きくすることができ、温度測定の精度を向上させることができる。 According to the present invention, even when there is no margin in the space above the measurement surface of the measurement sample, the apparent emissivity can be increased by multiple reflections, and the accuracy of temperature measurement can be improved.

また、傾斜ミラーを用いる場合に対して、測定試料とミラー面との間の多重反射の回数を多くすることもできる。また、複数のミラーを用いることで温度測定のレイアウトの自由度が高く、かつレイアウトの設定や変更が容易である。 In addition, the number of multiple reflections between the measurement sample and the mirror surface can be increased as compared with the case of using a tilted mirror. Further, by using a plurality of mirrors, the degree of freedom in the layout of temperature measurement is high, and the layout can be easily set or changed.

実施形態1の放射測温装置の一例を示す概念図Conceptual diagram showing an example of the radiation temperature measuring device of the first embodiment 数式6に基づき見かけの放射率εeffの変化を、試料放射率、反射回数をそれぞれパラメータとしてプロットした図 The figure which plotted the change of the apparent emissivity ε eff based on the equation 6 with the sample emissivity and the number of reflections as parameters respectively. 図2に示した見かけの放射率εeffの変化を示した表A table showing changes in the apparent emissivity ε eff shown in FIG. 実施形態1の放射測温装置の他の例を示す概念図Conceptual diagram showing another example of the radiation temperature measuring device of the first embodiment. 多重反射を利用した放射測温の態様を一般化して示す概念図Conceptual diagram showing a generalized mode of radiation temperature measurement using multiple reflections 第一種のミラー及び第二種のミラーに平面ミラーを用いた放射測温装置の一例を示す概念図Conceptual diagram showing an example of a radiation temperature measuring device using a plane mirror for a first-class mirror and a second-class mirror. 第一種のミラー及び第二種のミラーにシリンドリカルミラー(円筒面ミラー)を用いた放射測温装置の一例を示す概念図Conceptual diagram showing an example of a radiation temperature measuring device using a cylindrical mirror (cylindrical surface mirror) for a first-class mirror and a second-class mirror. 第一種のミラー及び第二種のミラーに直角ミラーを用いた放射測温装置の一例を示す概念図Conceptual diagram showing an example of a radiation temperature measuring device using a first-class mirror and a second-class mirror with a right-angled mirror. 第一種のミラーと第二種のミラーとでリング状ミラーを構成した放射測温装置の一例を示す概念図Conceptual diagram showing an example of a radiation temperature measuring device in which a ring-shaped mirror is composed of a first-class mirror and a second-class mirror. 実施形態1の放射測温装置の測温方法の流れの一例を示すフロー図A flow chart showing an example of the flow of the temperature measuring method of the radiation temperature measuring device of the first embodiment. 実施形態2の放射測温装置の一例を示す概念図Conceptual diagram showing an example of the radiation temperature measuring device of the second embodiment Siウェハについて半導体レーザを使用して入射角度θごとに±10度の範囲での反射分布測定結果を示す図The figure which shows the reflection distribution measurement result in the range of ± 10 degrees for every incident angle θ using a semiconductor laser for a Si wafer. 各種試料の偏光方向の偏光方向放射率の実験ないしシミュレーション結果Experimental or simulation results of polarization direction emissivity in the polarization direction of various samples 放射測温装置を加熱装置に適用した例を示す概念図Conceptual diagram showing an example of applying a radiation temperature measuring device to a heating device

以下、本発明の実施の形態について、添付図面を用いて説明する。なお、本発明は、これら実施形態に何ら限定されるべきものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The present invention should not be limited to these embodiments, and may be implemented in various embodiments without departing from the gist thereof.

なお、実施形態1では、主に請求項1、2、6−8について説明する。実施形態2では、主に請求項3、4について説明する。実施形態3では、主に請求項5について説明する。
<実施形態1>
<実施形態1 概要>
In the first embodiment, claims 1, 2, and 6-8 will be mainly described. In the second embodiment, claims 3 and 4 will be mainly described. In the third embodiment, claim 5 will be mainly described.
<Embodiment 1>
<Outline of Embodiment 1>

本実施形態の放射測温装置は、測定試料を挟んで、測定試料の測定面法線に対して角度θと角度−θとで放射される光を測定対象に対して反射し得る球面型の第一種のミラーと球面型の第二種のミラーとを用いて、それぞれのミラーと測定試料の測定面とで放射光を多重反射させるとともに、一方のミラー面において放射温度計の入射光軸と交差する部分に穴部を設け、その穴部を通して入射した光を放射温度計に取込んで測温するように構成されている。このように構成することで、多重反射により見かけの放射率を大きくした放射輝度を測定することができる。
<実施形態1 構成>
The radiation temperature measuring device of the present embodiment is a spherical type capable of reflecting light emitted at an angle θ and an angle −θ with respect to the measurement surface normal line of the measurement sample with the measurement sample sandwiched therein. Using a first-class mirror and a second-class spherical mirror, the emitted light is multiple-reflected on each mirror and the measurement surface of the measurement sample, and the incident optical axis of the radiation thermometer on one mirror surface. A hole is provided at the intersection with the hole, and the light incident through the hole is taken into a radiation thermometer to measure the temperature. With this configuration, it is possible to measure the radiance in which the apparent emissivity is increased by multiple reflections.
<Embodiment 1 Configuration>

図1は、本実施形態の放射測温装置の一例を示す概念図である。図1(a)は、上方から視た図であり、図1(b)は、側方から視た図である。本実施形態の放射測温装置は、測定試料0101を配置するための配置部0106と、第一種のミラー0102と、第二種のミラー0103と、放射温度計0105と、からなる。
<実施形態1 測定試料>
FIG. 1 is a conceptual diagram showing an example of the radiation temperature measuring device of the present embodiment. FIG. 1 (a) is a view viewed from above, and FIG. 1 (b) is a view viewed from the side. The radiation temperature measuring device of the present embodiment includes an arrangement unit 0106 for arranging the measurement sample 0101, a first-class mirror 0102, a second-class mirror 0103, and a radiation thermometer 0105.
<Example 1 Measurement sample>

まず、測定試料0101は、少なくともその測定面(測定点は測定面に含まれる)が平面状になっている。すなわち、後述する放射温度計による測定は、放射温度計の焦点を測定試料の平面状になっている領域に合わせて行う。また、測定試料は、例えば鋼板や半導体ウェハ、アルミニウムなど種々である。また、温度測定が行われる場面としては、鉄鋼やアルミニウムの圧延プロセス、シリコンウェハのランプアニール、連続鋳造プロセス、車体の塗装プロセスなど温度管理を要する各種のプロセスで温度測定が行われる。なお、図1においては、測定試料として圧延プロセスにおける鋼板を示している。また、配置部などの基準面に対して同じ方向に法線方向があるスポットがあれば、測定面は必ずしも平面状でなくてもよい。
<実施形態1 配置部>
First, the measurement sample 0101 has at least a flat measurement surface (measurement points are included in the measurement surface). That is, the measurement by the radiation thermometer described later is performed by focusing the focus of the radiation thermometer on the flat region of the measurement sample. Further, the measurement sample is various such as a steel plate, a semiconductor wafer, and aluminum. Further, as a scene where the temperature is measured, the temperature is measured in various processes requiring temperature control such as a rolling process of steel or aluminum, a lamp annealing of a silicon wafer, a continuous casting process, and a painting process of a car body. Note that FIG. 1 shows a steel sheet in the rolling process as a measurement sample. Further, if there is a spot having a normal direction in the same direction as the reference surface such as the arrangement portion, the measurement surface does not necessarily have to be flat.
<Embodiment 1 Arrangement Unit>

図1(b)に示すように、配置部0106は、測定試料0101を配置するためのものである。配置部による測定試料の配置は、測定試料を固定して配置するものであってもよいし、ローラーコンベアーなどのように測定試料を配置部上で移動可能とする移動手段を設けて測定試料を移動しつつ配置するものであってもよい。
<実施形態1 放射温度計>
As shown in FIG. 1 (b), the arrangement unit 0106 is for arranging the measurement sample 0101. The measurement sample may be arranged by the arrangement portion by fixing the measurement sample, or by providing a moving means such as a roller conveyor so that the measurement sample can be moved on the arrangement portion. It may be arranged while moving.
<Embodiment 1 Radiation Thermometer>

放射温度計0105は、第一種ミラーと第二種のミラーとの間で多重反射した光によって測定試料の見かけの放射率を大きくした放射輝度を測定する。放射温度計は、サーモパイルなどの赤外光検出素子と、対象から放射される赤外光を赤外光検出素子に集光するレンズなどの光学系とから構成されている。
<実施形態1 第一種のミラー>
The radiation thermometer 0105 measures the radiance in which the apparent emissivity of the measurement sample is increased by the light multiplely reflected between the first-class mirror and the second-class mirror. The radiation thermometer is composed of an infrared light detection element such as a thermopile and an optical system such as a lens that collects infrared light emitted from an object onto the infrared light detection element.
<Embodiment 1 Type 1 Mirror>

図1(a)に示すように、第一種のミラー0102は球面型ミラーであり、測定面の地点Pがそれぞれのミラーの集光点として略一致するように配置されている。また、第一種のミラーには、その反射面の略中心に穴部0107が設けられている。 As shown in FIG. 1A, the first-class mirror 0102 is a spherical mirror, and is arranged so that the points P on the measurement surface substantially coincide with each other as the focusing points of the mirrors. Further, the first-class mirror is provided with a hole portion 0107 at substantially the center of the reflecting surface thereof.

図1(b)に示すように、第一種のミラー0102は、測定面の地点Pから測定面法線0104に対して角度θで放射される光を反射して再び測定試料に入射させ、入射点から測定面法線に対して角度−θで放射させるように構成される。 As shown in FIG. 1 (b), the first-class mirror 0102 reflects light emitted at an angle θ from the point P on the measurement surface with respect to the measurement surface normal 0104, and is made to enter the measurement sample again. It is configured to radiate from the incident point at an angle −θ with respect to the measurement surface normal.

また、第一種のミラーの反射面形状が半径Rの球面である場合には、第一種のミラーの中心と測定面の地点Pとの距離が半径Rと同じ長さになるように、第一種のミラーを測定試料に対して配値する。 When the shape of the reflecting surface of the first-class mirror is a spherical surface with a radius R, the distance between the center of the first-class mirror and the point P on the measurement surface is the same as the radius R. A first-class mirror is placed on the measurement sample.

そして、第一種のミラーは、測定面上の集光点Pから測定面法線0104に対して角度θで放射される光が穴部0107を通過して放射温度計0105に入射するとともに、集光点Pから放射された光であって穴部を通過せずミラー面に到達した光を再び集光点Pの方へ反射するように構成される。 Then, in the first-class mirror, the light emitted from the condensing point P on the measurement surface with respect to the measurement surface normal line 0104 at an angle θ passes through the hole portion 0107 and is incident on the radiation thermometer 0105. The light emitted from the condensing point P that has reached the mirror surface without passing through the hole is reflected back toward the condensing point P.

そして、放射温度計0105は、第一種のミラーの背後に配置され、自身の前方に設けられた穴部0107から多重反射した光を取り込むように構成され、その受光軸が集光点Pに向くように配置され、集光点Pに焦点が合わせられている。 Then, the radiation thermometer 0105 is arranged behind the first-class mirror, is configured to take in the light multiplely reflected from the hole 0107 provided in front of itself, and its light receiving axis is set at the focusing point P. It is arranged to face and is focused on the focusing point P.

また、第一種のミラーの反射率は高いことが好ましく、反射率ρが0.95以上であることが望ましい。第一種のミラーの反射率が高いほど、見かけの放射率を大きくすることができるからである。これは第二種のミラーについても同様である。
<実施形態1 第二種のミラー>
Further, the reflectance of the first-class mirror is preferably high, and the reflectance ρ is preferably 0.95 or more. This is because the higher the reflectance of the first-class mirror, the higher the apparent emissivity can be. This also applies to the second type of mirror.
<Embodiment 1 Type 2 Mirror>

第二種のミラー0103は、配置部に配置される測定試料の測定面法線に対して所定範囲の角度−θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度θで放射させるように構成される。 The second type mirror 0103 reflects the light radiated from the measurement sample at an angle −θ within a predetermined range with respect to the measurement surface normal line of the measurement sample arranged in the arrangement portion, and is incident on the measurement sample again. It is configured to radiate from a point at an angle θ within a predetermined range with respect to the measurement surface normal line of the measurement sample.

また、第二種のミラーは、第一種のミラーと同様にその反射面の形状が半径Rの球面となる球面型ミラーであり、第二種のミラーの中心と測定面の地点Pとの距離が半径Rと同じ長さになるように測定試料に対して配値される。
<実施形態1 測定原理>
Further, the second type mirror is a spherical mirror in which the shape of the reflecting surface is a spherical surface having a radius R like the first type mirror, and the center of the second type mirror and the point P of the measurement surface The price is assigned to the measurement sample so that the distance is the same as the radius R.
<Embodiment 1 Measurement Principle>

上記の構成において、第一種のミラーと第二種のミラーと間で生じる多重反射と、それにより測定試料の見かけの放射率を大きくして温度測定を行う原理を以下に説明する。 In the above configuration, the multiple reflections generated between the first-class mirror and the second-class mirror, and the principle of increasing the apparent emissivity of the measurement sample to measure the temperature will be described below.

第一種のミラーは半径Rの球面型ミラーであり、その焦点距離はf=R/2となるので、下記の数式1で示す光学の集光公式が成り立つ。

Figure 2021135105
Since the first-class mirror is a spherical mirror having a radius R and its focal length is f = R / 2, the optical focusing formula shown by the following mathematical formula 1 holds.
Figure 2021135105

測定試料の地点Pと球面型ミラーとの距離をa=Rとすると、数式1からb=Rとなる。すなわち球面型の第一種のミラーが測定試料の地点Pから発せられた放射束はミラー面で反射し再び地点Pに戻る(第二種のミラーにおいても同様である)。そして、第一種のミラーと第二種のミラーは、測定試料の測定面法線に対して鏡面対象となる角度θにて向き合っている。したがって、放射束は、地点P、第一種のミラー、地点P、第二種のミラー、地点Pといった具合に進み、両ミラーと地点Pとで多重反射する。 Assuming that the distance between the point P of the measurement sample and the spherical mirror is a = R, equations 1 to b = R. That is, the radiant flux emitted from the point P of the measurement sample by the spherical first-class mirror is reflected by the mirror surface and returns to the point P again (the same applies to the second-class mirror). Then, the first-class mirror and the second-class mirror face each other at an angle θ that is a mirror surface target with respect to the measurement surface normal of the measurement sample. Therefore, the radiant flux proceeds to a point P, a first-class mirror, a point P, a second-class mirror, a point P, and so on, and is reflected multiple times at both mirrors and the point P.

ここで、いま試料試料のθ方向の(分光)放射率εθをとし、測定試料面を完全鏡面的な反射面だとすると、両ミラー間で永久的に多重反射を繰り返す。しかし実際には試料面での吸収や、球面型ミラーの反射率の影響により有限回の反射に収束する。そのため、第一種のミラーでの反射時に穴部から出る放射束φは実質ミラー間を有限のn回往復の積算とみなすと、下記の数式2に比例する量となる。

Figure 2021135105
Here, now cities specimen sample theta direction of the (spectral) emissivity epsilon theta, when the measurement sample surface that it completely specularly reflecting surface, permanently repeated multiple reflections between the two mirrors. However, in reality, it converges to a finite number of reflections due to absorption on the sample surface and the influence of the reflectance of the spherical mirror. Therefore, the amount of the radiant flux φ that comes out of the hole when reflected by the first-class mirror is proportional to the following formula 2 when the integration between the mirrors is regarded as a finite number of n round trips.
Figure 2021135105

放射温度計は数式2の放射束φに対応する放射束を見かけの分光放射輝度Leffとして数式3を検出する。

Figure 2021135105
The radiation thermometer detects Equation 3 as the apparent spectral radiance L eff of the radiant flux corresponding to the radiant flux φ of Equation 2.
Figure 2021135105

ここで、ρは第一種のミラーと第二種のミラーの反射率、Lb,λ(T)は温度T、波長λの黒体分光放射輝度である。数式3の見かけの分光放射輝度Leffは、パラメータαを下記の数式4のようにとれば、下記の数式5のように変形できる。

Figure 2021135105
Figure 2021135105
Here, ρ is the reflectance of the first-class mirror and the second-class mirror, and L b and λ (T) are the blackbody spectral radiances of the temperature T and the wavelength λ. The apparent spectral radiance L eff of Equation 3 can be transformed into Equation 5 below if the parameter α is taken as Equation 4 below.
Figure 2021135105
Figure 2021135105

したがって、見かけの分光放射率εeffは、数式6となる。

Figure 2021135105
Therefore, the apparent spectral emissivity ε eff is given by Equation 6.
Figure 2021135105

ここで、n→∞のとき、ρ(1−εθ)<1であるため、ρn+1(1−εθ)n+1→0となり、数式5は数式7で表せる。この式は測定試料が完全鏡面的反射面であるときの究極的な見かけの放射輝度を表す。

Figure 2021135105
ちなみにρ=0.95のとき、数式4よりα=0.053となる。 Here, when n → ∞, ρ (1-ε θ ) <1, so ρ n + 1 (1- ε θ) n + 1 → 0, and Equation 5 can be expressed by Equation 7. This equation represents the ultimate apparent radiance when the measurement sample is a perfectly mirror-reflecting surface.
Figure 2021135105
By the way, when ρ = 0.95, α = 0.053 from the mathematical formula 4.

図2は、数式6に基づき、見かけの放射率εeff の変化を往復反射回数n、および測定試料の放射率εθをそれぞれパラメータとしてプロットしたものである。図2(a)では、横軸は試料放射率ελを表し、図2(b)では、横軸は反射回数nを表している。なお、第一種ミラーと第二種ミラーの反射率ρは、ρ=0.95とした。また、図3は、図2に示した見かけの放射率εeffの変化を、表に示したものである。 FIG. 2 is a plot of changes in the apparent emissivity ε eff based on Equation 6 with the number of reciprocating reflections n and the emissivity ε θ of the measurement sample as parameters. In FIG. 2A, the horizontal axis represents the sample emissivity ε λ , and in FIG. 2B, the horizontal axis represents the number of reflections n. The reflectance ρ of the first-class mirror and the second-class mirror was ρ = 0.95. Further, FIG. 3 shows the changes in the apparent emissivity ε eff shown in FIG. 2 in a table.

図2及び図3に示すように、もとの試料放射率が0.6あれば、反射回数n=5でも見かけの放射率は0.95以上になる。見かけの放射率がこの程度まで高くなれば、黒体放射とみなすことができ、実際の試料の放射率が不明かつ変動的であっても、黒体放射とみなして温度測定をすることができる。
<実施形態1 他の態様>
As shown in FIGS. 2 and 3, if the original sample emissivity is 0.6, the apparent emissivity is 0.95 or more even if the number of reflections is n = 5. If the apparent emissivity is as high as this, it can be regarded as blackbody radiation, and even if the emissivity of the actual sample is unknown and fluctuating, it can be regarded as blackbody radiation and the temperature can be measured. ..
<Embodiment 1 Other Aspects>

これまで、第一種のミラー及び第二種のミラーをそれぞれ球面型のミラーによって構成するとともに第一種のミラーに設けられる穴部を通して測定試料の放射輝度を測定した放射測温装置を示してきた。以下では、放射測温装置の他の種々の態様を示す。いずれの態様においても、上述した実施形態と同様に、測定試料を配置するための配置部、測定試料から放射される第一種のミラー、第二種のミラー及び放射温度計の各構成要素を有し、第一種のミラー及び第二種のミラーの形態などが異なる。
<穴部を有さないミラーによる多重反射>
So far, we have shown a radiation temperature measuring device in which a first-class mirror and a second-class mirror are each composed of a spherical mirror, and the radiance of a measurement sample is measured through a hole provided in the first-class mirror. rice field. In the following, various other aspects of the radiation temperature measuring device will be shown. In any of the embodiments, as in the above-described embodiment, the components for arranging the measurement sample, the first-class mirror emitted from the measurement sample, the second-class mirror, and the radiation thermometer are provided. It has different forms such as a first-class mirror and a second-class mirror.
<Multiple reflection by a mirror without holes>

図1で示した放射測温装置は、第一種のミラー及び第二種のミラーを球面型のミラーとするとともに、いずれかのミラーに穴部を設けることで、多重反射した放射束を放射温度計が測定し得るように構成した。このように構成することで、最小限のミラー数で測温可能であるため設置スペースをコンパクトにすることができるという利点がある。 In the radiation thermometer shown in FIG. 1, the first-class mirror and the second-class mirror are spherical mirrors, and a hole is provided in one of the mirrors to radiate a radiant flux that is repeatedly reflected. It was configured so that the thermometer could measure it. With such a configuration, there is an advantage that the installation space can be made compact because the temperature can be measured with the minimum number of mirrors.

以下の態様は、穴部を有する球面型ミラーという相対的に加工精度が求められるミラーを用いることなく多重反射により見かけの放射率を大きくして温度測定を行えるものである。図4は、穴部を有さないミラーを用いる基本的な放射測温装置の態様を示すものである。 In the following embodiment, the temperature can be measured by increasing the apparent emissivity by multiple reflection without using a spherical mirror having a hole, which requires relatively high processing accuracy. FIG. 4 shows an aspect of a basic radiation temperature measuring device using a mirror having no hole.

図4は、複数のミラーによる多重反射を利用する放射測温装置の一例を示す概念図である。図4(a)は、上方から視た図であり、図4(b)は、側方から視た図である。本実施形態の放射測温装置は、測定試料0401を配置するための配置部0406と、第一種のミラー0402と、二つの第二種のミラー0403、0404と、放射温度計0405と、からなる。第一種のミラー、第二種のミラー、測定試料の測定面における地点P、P、P、及び放射温度計のそれぞれの間に示されている矢印は、地点Pから放射温度計に入射し得る光の経路を示している。 FIG. 4 is a conceptual diagram showing an example of a radiation temperature measuring device that utilizes multiple reflections by a plurality of mirrors. FIG. 4A is a view viewed from above, and FIG. 4B is a view viewed from the side. The radiation temperature measuring device of the present embodiment is composed of an arrangement unit 0406 for arranging the measurement sample 0401, a first-class mirror 0402, two second-class mirrors 0403 and 0404, and a radiation thermometer 0405. Become. The arrows shown between the first type mirror, the second type mirror, the points P 1 , P 2 , P 3 on the measurement surface of the measurement sample, and the radiation thermometer are the radiation temperature from the point P 3. It shows the path of light that can enter the meter.

図4(a)及び図4(b)に示すように、第一種のミラー0402は、測定面の地点Pから測定面法線に対して角度θで放射される光を反射して再び測定面の地点Pに入射させるように構成されている。また、逆に測定面の地点Pから測定面法線に対して角度θで放射される光を反射して再び測定面の地点Pに入射させることができるように構成されている。 4 (a) and as shown in FIG. 4 (b), the mirror 0402 of the first species, again reflecting the light emitted at an angle θ with respect to the measurement surface normal from a point P 1 of the measuring surface It is configured to be incident on a point P 2 of the measurement surface. On the contrary, it is configured so that the light radiated from the measurement surface point P 2 at an angle θ with respect to the measurement surface normal can be reflected and made to enter the measurement surface point P 1 again.

また、第二種のミラー0403は、測定面の地点Pから測定面法線に対して角度−θで放射される光を反射して再び測定面の地点Pに入射させるように構成されている。また、逆に測定面の地点Pから測定面法線に対して角度−θで放射される光を反射して再び測定面の地点Pに入射させることができるように構成されている。また、地点Pから放射される光を反射する第二種のミラー0404は、地点Pに正対しており、Pから放射される光を反射してPに入射し得るように構成されている。このような第二種のミラーを再帰反射型ミラーという。 The mirror 0403 of the second kind reflects the light emitted at the angle -θ is configured to be incident on a point P 3 of the measurement surface again to the measuring surface normal from the point P 2 of the measuring surface ing. Also configured to be able to enter the point P 2 of the measurement surface again reflects light emitted at an angle -θ with respect to the measurement surface normal from the point P 3 of the measurement surface reversed. The second kind of mirror 0404 for reflecting the light emitted from the point P 1 is directly opposite the point P 1, configured to be able to enter the P 1 reflects the light emitted from P 1 Has been done. Such a second type mirror is called a retroreflective mirror.

本例においても、第一種のミラーとして球面の凹面を反射面とする球面型ミラーを用いており、ミラーの反射率は高いことが好ましく、反射率ρが0.95以上であることが望ましい。 Also in this example, a spherical mirror having a concave spherical surface as a reflecting surface is used as the first type mirror, and the reflectance of the mirror is preferably high, and the reflectance ρ is preferably 0.95 or more. ..

放射温度計0405は、測定面に対して斜め方向から焦点を合わす位置に存在する。したがって、測定面から放射される光を十分に受光するために、放射温度計の光学系について被写界深度と焦点深度とを大きくするように構成することが望ましい。測定面上で焦点の合う領域を広くとれるようにすることで、測定面からの受光量及び受光強度を高めることができ、放射輝度を高くすることに寄与するからである。例えば、被写界深度は20〜30cm、焦点深度は2〜3cm程度が好ましく、このように構成することで直径3cm程度の領域をフォーカスすることができる。 The radiation thermometer 0405 exists at a position where the radiation thermometer 0405 is focused obliquely with respect to the measurement surface. Therefore, in order to sufficiently receive the light emitted from the measurement surface, it is desirable to configure the optical system of the radiation thermometer so that the depth of field and the depth of focus are increased. This is because the amount of light received from the measurement surface and the intensity of light received from the measurement surface can be increased by making the area of focus wide on the measurement surface, which contributes to increasing the radiance. For example, the depth of field is preferably 20 to 30 cm, and the depth of focus is preferably about 2 to 3 cm. With this configuration, a region having a diameter of about 3 cm can be focused.

続いて、本態様における多重反射について説明する。図4(a)に示すように、放射温度計が受光する光は、次の六つの光の総和であると考えられる。まず、地点Pから直接受光する光である。そして、地点Pから発せられ第二種のミラー0403で反射して地点Pに入射し、地点Pで反射して放射温度計に達する光である。そして、地点Pから発せられ第一種のミラー0402で反射して地点Pに入射し、地点Pで反射してから第二種のミラー0403で反射して地点Pに入射し、地点Pで反射して放射温度計に達する光である。ここまでで三つの光である。なお、このような経路をとる多重反射のことを、本明細書では順方向の多重反射という。 Subsequently, the multiple reflection in this embodiment will be described. As shown in FIG. 4A, the light received by the radiation thermometer is considered to be the sum of the following six lights. First of all, it is the light received directly from the point P 3. Then, incident on point P 3 is reflected by the mirror 0403 of the second type generated from the point P 2, a light reaching the radiation thermometer is reflected at point P 3. Then, incident on point P 2 is reflected by the first type of mirror 0402 is emitted from the point P 1, incident on point P 3 after reflected at a point P 2 is reflected by the second kind of mirror 0403, a light reaching the radiation thermometer is reflected at point P 3. So far, there are three lights. In this specification, multiple reflections that take such a path are referred to as forward multiple reflections.

また、P、P、Pの各地点から発せられた光であって、地点Pに正対する第二種のミラー0404による反射を経た光も放射温度計に入射する。例えば、地点Pからは、第一種のミラー0402が位置する方向だけでなく、第二種のミラー0404が位置する方向にも光が放射される。地点Pから第二種のミラー0404に発せられた光は、反射し再び地点Pに入射する。地点Pに入射した光は地点Pにて反射し、第一種のミラー0402に入射して反射する。以降、地点P、第二種のミラー0403、を経由し、最終的に地点Pから放射温度計に入射する。同様に、地点P及び地点Pから発せられ、第二種のミラー0404による反射を経由して放射温度計に到達する。これらが、さらなる三つの光である。なお、このような経路とる多重反射のことを、本明細書では逆方向を含む多重反射という。 Further, a light emitted from each point of P 1, P 2, P 3, even light that has passed through the reflection by the second kind of mirror 0404 directly facing the point P 1 is incident on the radiation thermometer. For example, from the point P 1, not only the direction in which the mirror 0402 of the first kind are located, light is emitted in a direction in which the mirror 0404 of the second type is located. Light emitted in the second kind of mirror 0404 from the point P 1 is reflected is incident at a point P 1 again. The light incident on the point P 1 is reflected at point P 1, and reflects incident on the first kind of mirror 0402. Thereafter, the point P 2, the second kind of mirror 0403, through, eventually entering from point P 3 to the radiation thermometer. Likewise, it emitted from the point P 2 and the point P 3, via the reflection by the mirror 0404 of the second kind to reach a radiation thermometer. These are three more lights. In addition, the multiple reflection which takes such a path is referred to as a multiple reflection including a reverse direction in this specification.

以上のように、放射温度計が受光する光は、上述した六つの光の総和になる。つづいて、それら六つの光のそれぞれの分光放射輝度について考える。測定面の温度T、測定試料の角度θ方向の放射率εθ、第一種のミラー及び第二種のミラーの反射率ρ、波長λで角度θ方向で温度Tにおける黒体の分光放射輝度をLb,λ(T)とした場合、地点Pから発せられ、直接放射温度計に入射する光の分光放射輝度は、εθb,λ(T)となる。 As described above, the light received by the radiation thermometer is the sum of the above-mentioned six lights. Next, consider the spectral radiance of each of these six lights. Spectral radiation brightness of black body at temperature T at angle θ direction at temperature T of measurement surface, radiation coefficient ε θ in the angle θ direction of the measurement sample, reflectance ρ of the first type mirror and second type mirror, wavelength λ the L b, when the lambda (T), emitted from the point P 3, the spectral radiance of the light entering the direct radiation thermometer, ε θ L b, the lambda (T).

また、地点Pから発せられ、第二種のミラー0403で反射してPに入射し、Pにて反射して放射温度計に入射する光の分光放射輝度は、ρ(1−εθ)εθb,λ(T)となる。ここで、(1−εθ)は、キルヒホッフの法則とエネルギー保存則から測定試料の角度θ方向での反射率である。なお、測定試料は非透過体であるとみなしている。 Also, emitted from the point P 2, is reflected by the mirror 0403 of the two entering the P 3, the spectral radiance of the light entering the radiation thermometer is reflected at P 3 is, ρ (1-ε θ ) ε θ L b, λ (T). Here, (1-ε θ ) is the reflectance of the measurement sample in the angle θ direction from Kirchhoff's law and energy conservation law. The measurement sample is considered to be a non-permeable material.

このように、地点Pから発せられた光は、第一種のミラーによる反射と測定試料による反射とをそれぞれ1回ずつ経由して放射温度計に入射する。したがって、この光の分光放射輝度は、Pから発せられた光の分光放射輝度εθb,λ(T)に第一種のミラーの反射率ρと、測定試料の反射率(1−εθ)とを乗じた、ρ(1−εθ)εθb,λ(T)となる。 Thus, the light emitted from the point P 2, and the reflection by the sample and the reflection by the first kind of mirror through once respectively incident on the radiation thermometer. Therefore, the spectral radiance of the light is spectral radiance of the light emitted from the P 2 ε θ L b, and the reflectivity of the first kind of mirror lambda (T) [rho, the reflectance of the measurement sample (1 Multiplyed by ε θ ), it becomes ρ (1-ε θ ) ε θ L b, λ (T).

そして、六つの光の総和は、以下のように示すことができる。
εθ{1+ρ(1−εθ)+ρ(1−εθ+・・・+ρ(1−εθ}Lb,λ(T)
And the sum of the six lights can be shown as follows.
ε θ {1 + ρ (1-ε θ ) + ρ 2 (1-ε θ ) 2 + ... + ρ 5 (1-ε θ ) 5 } L b, λ (T)

また、図5は、上記のような多重反射を利用した放射測温の態様を一般化して示す概念図である。図示するように、複数の第一種のミラー0502と複数の第二種のミラー0503(一の再帰反射型の第二種のミラー0504を含む)とにより測定面から発せられた光は反射を繰り返し、地点「P」から放射温度計0505に入射する。この放射温度計に入射する光の分光放射輝度Leffは、以下の数式8で示すことができる。

Figure 2021135105
Further, FIG. 5 is a conceptual diagram showing a generalized mode of radiation temperature measurement using the multiple reflections as described above. As shown, the light emitted from the measurement surface by the plurality of first-class mirrors 0502 and the plurality of second-class mirrors 0503 (including one retroreflective second-class mirror 0504) reflects. Repeatedly, it is incident on the radiation thermometer 0505 from the point "P n". The spectral radiance L eff of the light incident on the radiation thermometer can be expressed by the following mathematical formula 8.
Figure 2021135105

この数式8は、すでに説明した数式3と同じである。そして、本態様においても上述したように、n→∞とし、測定試料が完全鏡面的反射面であるとすれば、見かけの放射輝度は、数式7で示したものとなる。したがって本態様に放射測温装置においても、見かけの放射率を大きくして温度測定を行うことができる。
<平面ミラーによる多重反射>
This formula 8 is the same as the formula 3 already described. Then, also in this embodiment, as described above, if n → ∞ and the measurement sample is a perfect mirror reflection surface, the apparent radiance is as shown by Equation 7. Therefore, even in the radiation temperature measuring device in this embodiment, the temperature can be measured by increasing the apparent emissivity.
<Multiple reflection by flat mirror>

図6は、第一種のミラー及び第二種のミラーに平面ミラーを用いた放射測温装置の一例を示す概念図である。図6(b)に示すように、第一種のミラー0601は、測定対象0602の測定面法線0603に対して角度θにてミラー面が向くように配置され、第二種のミラー0604は、測定面法線に対して角度−θにてミラー面が向くように配置されている。 FIG. 6 is a conceptual diagram showing an example of a radiation temperature measuring device using a plane mirror for a first-class mirror and a second-class mirror. As shown in FIG. 6B, the first-class mirror 0601 is arranged so that the mirror surface faces the measurement surface normal 0603 of the measurement target 0602 at an angle θ, and the second-class mirror 0604 , The mirror surface is arranged so as to face the measurement surface normal at an angle −θ.

図6(a)に示すように、測定面の地点Pに焦点を合わせた放射温度計0605は、対向する第二種のミラーのミラー面法線方向から角度φの方向に受光軸が向くように配置されている。また、第二種のミラー0604の一端には、測定面の地点Pから入射する光を再び地点Pに入射するように反射面が第二種のミラーの主たるミラー面法線方向から角度φ傾けた再帰反射型ミラー0606が備わる。 As shown in FIG. 6 (a), the radiation thermometer 0605 focused on a point P 5 of the measuring surface is oriented light receiving axis of the mirror surface normal direction of the second type mirror facing the direction of the angle φ It is arranged like this. Further, the one end of the second kind of mirror 0604, an angle from the main mirror surface normal direction of the mirror reflecting surface of the second kind to be incident again point P 1 the light incident from the point P 1 of the measuring surface It is equipped with a φ-tilted retroreflective mirror 0606.

以上のような構成により、測定面から放射される光が第一種のミラー及び第二種のミラーとの間で多重反射し、多重反射によって放射温度計に入射する光の見かけの放射率を大きくすることができる。
<シリンドリカルミラーによる多重反射>
With the above configuration, the light emitted from the measurement surface is multiple-reflected between the first-class mirror and the second-class mirror, and the apparent emissivity of the light incident on the radiation thermometer due to the multiple reflection is determined. Can be made larger.
<Multiple reflection by cylindrical mirror>

図7は、第一種のミラー及び第二種のミラーにシリンドリカルミラー(円筒面ミラー)を用いた放射測温装置の一例を示す概念図である。図7(b)に示すように、第一種のミラー0701は、測定対象0702の測定面法線0703に対して角度θにてミラー面が向くように配置され、第二種のミラー0704は、測定面法線に対して角度−θにてミラー面が向くように配置されている。 FIG. 7 is a conceptual diagram showing an example of a radiation temperature measuring device using a cylindrical mirror (cylindrical surface mirror) for a first-class mirror and a second-class mirror. As shown in FIG. 7B, the first-class mirror 0701 is arranged so that the mirror surface faces the measurement surface normal 0703 of the measurement target 0702 at an angle θ, and the second-class mirror 0704 , The mirror surface is arranged so as to face the measurement surface normal at an angle −θ.

図7(a)に示すように、測定面の地点Pに焦点を合わせた放射温度計0705は、対向する第二種のミラーのミラー面法線方向から角度φの方向に受光軸が向くように配置されている。また、第二種のミラーの一端には、測定面の地点Pから入射する光を再び地点Pに入射するように反射面が第二種のミラーの主たるミラー面法線方向から角度φ傾けた再帰反射型ミラー0706が備わる。 As shown in FIG. 7 (a), the radiation thermometer 0705 focused on a point P 5 of the measuring surface is oriented light receiving axis of the mirror surface normal direction of the second type mirror facing the direction of the angle φ It is arranged like this. Further, the one end of the second kind of mirror, the angle from the primary mirror surface normal direction of the mirror reflecting surface of the second kind to be incident again point P 1 the light incident from the point P 1 of the measurement surface φ A tilted retroreflective mirror 0706 is provided.

以上のような構成により、測定面から放射される光が第一種のミラー及び第二種のミラーとの間で多重反射し、多重反射により放射温度計に入射する光の見かけの放射率を高めることができる。
<直角ミラーによる多重反射>
With the above configuration, the light emitted from the measurement surface is multiple-reflected between the first-class mirror and the second-class mirror, and the apparent emissivity of the light incident on the radiation thermometer due to the multiple reflection is determined. Can be enhanced.
<Multiple reflection by right angle mirror>

図8は、第一種のミラー及び第二種のミラーに直角ミラーを用いた放射測温装置の一例を示す概念図である。図8(b)に示すように、第一種のミラー0801は、測定対象0802の測定面法線0803に対して角度θにてミラー面が向くように配置され、第二種のミラー0804は、測定面法線に対して角度−θにてミラー面が向くように配置されている。 FIG. 8 is a conceptual diagram showing an example of a radiation temperature measuring device using a first-class mirror and a second-class mirror with a right-angled mirror. As shown in FIG. 8B, the first-class mirror 0801 is arranged so that the mirror surface faces the measurement surface normal 0803 of the measurement target 0802 at an angle θ, and the second-class mirror 0804 , The mirror surface is arranged so as to face the measurement surface normal at an angle −θ.

図8(a)に示すように、第一種のミラーと第二種のミラーとは、互いに対向するミラー面を図中のy軸方向に平行にずらして配置している。また、第二種のミラーの一端には、測定面の地点Pから入射する光を再び地点Pに入射するように反射面が地点Pに正対する再帰反射部0806が備わる。また、上述のようにずらすことで、ミラー面間での多重反射を経由して第二種のミラーの他端から放射される光は、対向する第一種のミラーに干渉することなく放射温度計0805に入射するように構成されている。 As shown in FIG. 8A, the first-class mirror and the second-class mirror are arranged so that their mirror surfaces facing each other are shifted parallel to each other in the y-axis direction in the drawing. Further, the one end of the second kind of mirror, retroreflective portion 0806 reflective surface directly facing the point P 1 to be incident again point P 1 the light incident from the point P 1 of the measurement surface facilities. Further, by shifting as described above, the light radiated from the other end of the second type mirror via multiple reflections between the mirror surfaces does not interfere with the opposite first type mirror and the radiation temperature. It is configured to be incident on a total of 0805.

以上のような構成により、測定面から放射される光が第一種のミラー及び第二種のミラーとの間で多重反射し、多重反射により放射温度計に入射する光の見かけの放射率を高めることができる。なお、直角ミラーを直角プリズムに代えても同様の作用効果を奏することができる。
<リング状ミラーによる多重反射>
With the above configuration, the light emitted from the measurement surface is multiple-reflected between the first-class mirror and the second-class mirror, and the apparent emissivity of the light incident on the radiation thermometer due to the multiple reflection is determined. Can be enhanced. Even if the right-angled mirror is replaced with a right-angled prism, the same effect can be obtained.
<Multiple reflection by ring-shaped mirror>

本態様は、上述の放射測温装置を基本とし、第一種のミラーと第二種のミラーの配置などに特徴を有するものである。すなわち、本態様における第一種のミラーと、第二種のミラーとは、それぞれN個のミラーから正N角形に配置構成されており、Nの値は、3以上で無限大以下である。 This aspect is based on the above-mentioned radiation temperature measuring device, and is characterized by the arrangement of a first-class mirror and a second-class mirror. That is, the first-class mirror and the second-class mirror in this embodiment are each arranged and configured in a regular N-sided shape from N mirrors, and the value of N is 3 or more and infinity or less.

図9は、Nの値が無限大の場合を示す一例である。図9(a)に示すように、第一種のミラーと第二種のミラーとが正N角形に配置構成されるところ、Nの値を無限大とすることで、結果的に一のリング状ミラー0901を構成している。 FIG. 9 is an example showing a case where the value of N is infinite. As shown in FIG. 9A, where the first-class mirror and the second-class mirror are arranged in a regular N-sided shape, by setting the value of N to infinity, one ring is eventually formed. The shape mirror 0901 constitutes.

リング状ミラーは、測定試料の測定面法線0906に対して角度θ(角度−θ)で測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度−θ(角度θ)で放射させるように構成される。そして、放射温度計0903は、リング状ミラーの中心から少しずれた地点Pから測定面法線に対して角度θで放射される光を穴部0902を通して受光するように配置される。このような構成により、放射温度計は、リング状ミラーと測定面の地点Pを中心とする領域との間で多重反射することで見かけの放射率を大きくした放射輝度を測定することができる。
<実施形態1 測温方法>
The ring-shaped mirror reflects the light emitted from the measurement sample at an angle θ (angle −θ) with respect to the measurement surface normal line 0906 of the measurement sample and makes it incident on the measurement sample again, and the measurement surface of the measurement sample is reflected from the incident point. It is configured to radiate at an angle −θ (angle θ) within a predetermined range with respect to the normal line. Then, the radiation thermometer 0903 is arranged so as to receive the light radiated from the point P slightly deviated from the center of the ring-shaped mirror at an angle θ with respect to the measurement surface normal through the hole portion 0902. With such a configuration, the radiation thermometer can measure the radiance with an increased apparent emissivity by multiple reflections between the ring-shaped mirror and the region centered on the point P on the measurement surface.
<Embodiment 1 Temperature measurement method>

上述した本実施形態の放射測温装置に係る発明は、測温方法に係る発明としても表すことができる。すなわち、上述した配置部と第一種のミラーと第二種のミラーと放射温度計とからなり、第一種のミラーと第二種のミラーとはそれぞれ一以上のミラーから構成されている放射測温装置の測温方法として表すことができる。 The invention relating to the radiation temperature measuring device of the present embodiment described above can also be expressed as an invention relating to a temperature measuring method. That is, it is composed of the above-mentioned arrangement part, the first-class mirror, the second-class mirror, and the radiation thermometer, and the first-class mirror and the second-class mirror are each composed of one or more mirrors. It can be expressed as a temperature measuring method of a thermometer.

図10は、本実施形態の放射測温装置の測温方法の流れの一例を示すフロー図である。図示するように、まず、配置部に測定試料を配置する(1001 配置ステップ)。そして、前記複数のミラー間で多重反射した光によって測定試料の見かけの放射率を大きくした放射輝度を放射温度計で測定する(1002 測定ステップ)。
<実施形態1 効果>
FIG. 10 is a flow chart showing an example of the flow of the temperature measuring method of the radiation temperature measuring device of the present embodiment. As shown in the figure, first, the measurement sample is placed in the placement section (1001 placement step). Then, the radiance in which the apparent emissivity of the measurement sample is increased by the light multiplely reflected between the plurality of mirrors is measured with a radiation thermometer (1002 measurement step).
<Effect of Embodiment 1>

本実施形態の放射測温装置により、測定試料の測定面の上方空間に余裕のない場合であっても、多重反射により見かけの放射率を高くすることができ、放射率が不明で変動的な対象についても精度よく温度測定を行うことができる。
<実施形態2>
<実施形態2 概要>
With the radiation temperature measuring device of the present embodiment, even when there is no room above the measurement surface of the measurement sample, the apparent emissivity can be increased by multiple reflections, and the emissivity is unknown and variable. It is possible to measure the temperature of the object with high accuracy.
<Embodiment 2>
<Outline of Embodiment 2>

本実施形態は、実施形態1を基本とし、p偏光を受光することで見かけの放射率をより大きくし、また前述の角度θの範囲をより鏡面反射特性を示す範囲に特定することで見かけの放射率をより大きくするものである。
<実施形態2 構成>
This embodiment is based on the first embodiment, and the apparent emissivity is increased by receiving p-polarized light, and the above-mentioned range of the angle θ is specified as a range showing more specular reflection characteristics. It increases the emissivity.
<Embodiment 2 Configuration>

図11は、本実施形態の放射測温装置の一例を示す概念図である。この放射測温装置は、実施形態1において図1にて示した放射測温装置と基本的な構成を同じくし、さらに放射温度計の前方にp偏光子を有する偏光部を設けるものである。 FIG. 11 is a conceptual diagram showing an example of the radiation temperature measuring device of the present embodiment. This radiation temperature measuring device has the same basic configuration as the radiation temperature measuring device shown in FIG. 1 in the first embodiment, and further provides a polarizing portion having a p-polarizer in front of the radiation thermometer.

図11(a)に示すように、第一種のミラー1102及び第二種のミラー1103はそれぞれ球面型ミラーであり、それぞれの集光点が測定試料1101の測定面の地点Pにおいて略一致するように配置されている。また、第一種のミラーには、その反射面の略中心に穴部1107が設けられている。そして、第一種のミラーの後方であって、放射温度計1105の光取込面の前方にp偏光子を有する偏光部1108が設けられている。 As shown in FIG. 11A, the first-class mirror 1102 and the second-class mirror 1103 are spherical mirrors, respectively, and their respective focusing points substantially coincide with each other at the point P on the measurement surface of the measurement sample 1101. It is arranged like this. Further, the first-class mirror is provided with a hole 1107 at substantially the center of the reflecting surface thereof. A polarizing unit 1108 having a p-polarizer is provided behind the first-class mirror and in front of the light capture surface of the radiation thermometer 1105.

また、図11(b)に示すように、第一種のミラー1102は、測定面上の地点Pから測定面法線に対して角度θで放射される光が穴部1107を通過して放射温度計1105に入射するとともに、地点Pから発せられた光であって穴部を通過せずミラー面に到達した光を再び地点Pの方へ反射するように構成される。また、第二種のミラー1103は、測定面上の地点Pから測定面法線に対して角度−θで放射される光を反射して、再び地点Pの方に入射するように構成される。
<実施形態2 角度θ>
Further, as shown in FIG. 11B, in the first-class mirror 1102, light radiated from a point P on the measurement surface at an angle θ with respect to the measurement surface normal passes through the hole 1107 and radiates. It is configured to be incident on the thermometer 1105 and to reflect the light emitted from the point P, which has reached the mirror surface without passing through the hole, toward the point P again. Further, the second type mirror 1103 is configured to reflect the light radiated from the point P on the measurement surface at an angle −θ with respect to the normal of the measurement surface and to enter the point P again. ..
<Embodiment 2 Angle θ>

本実施形態において、角度θは60度以上であると限定する。より好ましくは70度以上であると限定する。実施形態1において説明したように、多重反射における反射回数nが多いことが見かけの放射率を高くすることに寄与する。したがって、測定試料が鏡面的な反射特性を有することが好ましい。換言すれば、測定試料が拡散反射の少ない反射特性を有することが好ましいと言える。 In the present embodiment, the angle θ is limited to 60 degrees or more. More preferably, it is limited to 70 degrees or higher. As described in the first embodiment, a large number of reflections n in multiple reflections contributes to increasing the apparent emissivity. Therefore, it is preferable that the measurement sample has a mirror-like reflection characteristic. In other words, it can be said that it is preferable that the measurement sample has a reflection characteristic with little diffuse reflection.

図12は、Siウェハ(粗さRa=0.28μm)について半導体レーザ(λ=532nm、無偏光)を使用して入射角度θ(30度〜80度)ごとに±10度の範囲での反射分布測定結果である。入射角度θが小さいところでは拡散的な広がりのある反射分布であるが、θ=70度以上で反射の拡散分布が著しく縮小し、鏡面的反射特性を示しており、反射回数nを高めることができ、多重反射により見かけの放射率を高めるという本発明における効果を高めることに大いに寄与する。また、以下に示す偏光特性との関係で相乗効果を奏し得る。
<実施形態2 p偏光子による作用>
FIG. 12 shows reflection of a Si wafer (roughness Ra = 0.28 μm) in a range of ± 10 degrees for each incident angle θ (30 to 80 degrees) using a semiconductor laser (λ = 532 nm, unpolarized light). This is the distribution measurement result. Where the incident angle θ is small, the reflection distribution has a diffuse spread, but when θ = 70 degrees or more, the diffuse distribution of the reflection is remarkably reduced, showing mirror reflection characteristics, and the number of reflections n can be increased. It can greatly contribute to enhancing the effect in the present invention of increasing the apparent emissivity by multiple reflections. In addition, a synergistic effect can be achieved in relation to the polarization characteristics shown below.
<Action 2 by p-polarizer>

図13は、各種試料((a)Siウェハ、(b)アルミニウム、(c)冷延鋼板、(d)ステンレス鋼板)の偏光方向の偏光方向放射率の実験ないしシミュレーション結果である(下記の文献を参考にした)。Siウェハや各種金属放射率および反射率は偏光によって大きく変化する。いずれもθ=70度〜80度の方向でp偏光放射率は増大する(p偏光反射率は減少する)。逆にs偏光放射率は減少する(s偏光反射率は増大する)。したがって、本手法はθ=70度〜80度の方向でp偏光を利用すれば放射率が増大するので、本発明の効果をより高めることができる(参考文献 井内徹,石井,偏光輝度を利用した常温付近における光沢金属の放射測温法,計測自動制御学会論文集,36, 395/401 (2000))。 FIG. 13 shows the results of experiments or simulations of the emissivity of the polarization direction in the polarization direction of various samples ((a) Si wafer, (b) aluminum, (c) cold-rolled steel sheet, (d) stainless steel sheet) (the following documents). Was referred to). The emissivity and reflectance of Si wafers and various metals vary greatly depending on the polarization. In both cases, the p-polarized emissivity increases (the p-polarized reflectance decreases) in the direction of θ = 70 to 80 degrees. On the contrary, the s-polarized emissivity decreases (the s-polarized reflectance increases). Therefore, in this method, the emissivity increases if p-polarized light is used in the direction of θ = 70 to 80 degrees, so that the effect of the present invention can be further enhanced (References Toru Inuchi, Ishii, Polarized Brightness). Radiation temperature measurement method for bright metals near room temperature, Proceedings of the Society of Instrument and Control Engineers, 36, 395/401 (2000)).

なお、角度θを60度以上とすることの作用及び効果や、偏光部を設けることによる作用及び効果は、実施形態1で示した種々の放射測温装置においても同様に生じるものである。
<実施形態2 効果>
The action and effect of setting the angle θ to 60 degrees or more and the action and effect of providing the polarizing portion also occur in the various radiation temperature measuring devices shown in the first embodiment.
<Effect of Embodiment 2>

本実施形態の放射測温装置によれば、見かけの放射率をより高めることができ、放射率が不明で変動的な対象についても精度よく温度測定を行うことができる。
<実施形態3>
<実施形態3 概要>
According to the radiation temperature measuring device of the present embodiment, the apparent emissivity can be further increased, and the temperature can be accurately measured even for a variable object whose emissivity is unknown.
<Embodiment 3>
<Outline of Embodiment 3>

本実施形態の放射測温装置は、実施形態1又は2を基本とし、加熱手段を備えるチャンバー内に配置される測定試料の温度を測定するための放射測温装置である。
<実施形態3 構成>
The radiant temperature measuring device of the present embodiment is a radiant temperature measuring device for measuring the temperature of a measurement sample arranged in a chamber provided with heating means based on the first or second embodiment.
<Structure 3 of Embodiment>

図14は、本実施形態の放射測温装置を加熱装置に適用した例を示す概念図である。図示するように、チャンバー1401には、その内部にシリコンウェハなどの測定試料1402を下方から加熱するための加熱手段1403と、内部観察用窓1404とを備えている。そして、上述した配置部1405は、チャンバー内に配置されている。なお、内部観察用窓には、赤外光を透過するフッ化カルシウム、合成石英、ゲルマニウム、フッ化マグネシウム臭化カリウム、サファイア、シリコン、塩化ナトリウム、ジンクセレン、硫化亜鉛などを用いることができる。 FIG. 14 is a conceptual diagram showing an example in which the radiation temperature measuring device of the present embodiment is applied to a heating device. As shown in the figure, the chamber 1401 is provided with a heating means 1403 for heating the measurement sample 1402 such as a silicon wafer from below, and an internal observation window 1404. The above-mentioned arrangement portion 1405 is arranged in the chamber. For the internal observation window, calcium fluoride, synthetic quartz, germanium, magnesium fluoride potassium bromide, sapphire, silicon, sodium chloride, zinc selenium, zinc sulfide, etc., which transmit infrared light, can be used.

第一種のミラー1406及び第二種のミラー1407、並びに放射温度計1408の光取込面は、チャンバー外部に配置され、測定試料からの光を内部観察用窓を介して入射させるように構成されている。なお、本図の例では、第一種のミラー及び第二種のミラーはいずれも球面型ミラーであり、第一種のミラーには前述した穴部が設けられ、第一種のミラーの後方に配置されている放射温度計は穴部を通った光を受光するように構成されている。 The light intake surface of the first-class mirror 1406 and the second-class mirror 1407, and the radiation thermometer 1408 are arranged outside the chamber so that the light from the measurement sample is incident through the internal observation window. Has been done. In the example of this figure, both the first-class mirror and the second-class mirror are spherical mirrors, and the first-class mirror is provided with the above-mentioned hole and is behind the first-class mirror. The radiation thermometer located in is configured to receive light that has passed through the hole.

このように放射測温装置を構成することにより、チャンバー内で加熱処理などに供される測定試料から放射される光が内部観察用窓を介して第一種のミラー及び第二種のミラーと多重反射し、多重反射した光が放射温度計に入射し、実施形態1などで説明したように、見かけの放射率を高くして温度測定を行うことができる。 By configuring the radiation thermometer in this way, the light radiated from the measurement sample subjected to heat treatment in the chamber can be combined with the first-class mirror and the second-class mirror through the internal observation window. Multiple reflections and multiple reflections of light enter the radiation thermometer, and as described in the first embodiment, the apparent emissivity can be increased to measure the temperature.

また、上述した加熱装置に適用する場合には、測定試料は配置部に載置して止まった状態で測定されるが、配置部はこのような態様に限られるものではなく、測定試料を配置部上で移動可能とする移動手段を有するように構成することもできる。 Further, when applied to the above-mentioned heating device, the measurement sample is placed on the placement portion and measured in a stopped state, but the placement portion is not limited to such an embodiment, and the measurement sample is placed. It can also be configured to have a moving means that makes it movable on the part.

例えば、コンベア焼成炉やコンベア加熱炉などのように、チャンバーの内外を通るコンベアにより測定試料をチャンバー内に搬送するとともに、チャンバー内にて測定試料をチャンバー入口からチャンバー出口まで移動させ、再びチャンバー外に測定試料を搬送するように構成することができる。係る構成によれば、搬送される測定試料に対して熱処理等を行うチャンバー内で測定対象の温度測定を行うことができる。
<実施形態3 効果>
For example, a measurement sample is conveyed into the chamber by a conveyor that passes through the inside and outside of the chamber, such as a conveyor firing furnace or a conveyor heating furnace, and the measurement sample is moved from the chamber inlet to the chamber outlet inside the chamber, and then outside the chamber again. It can be configured to transport the measurement sample to the chamber. According to such a configuration, the temperature of the measurement target can be measured in a chamber where heat treatment or the like is performed on the transported measurement sample.
<Effect of Embodiment 3>

本実施形態の放射測温装置により、チャンバー内に配置される測定試料についても多重反射により見かけの放射率を高めることができ、放射率が不明で変動的な対象についても精度よく温度測定を行うことができる。 With the radiation temperature measuring device of the present embodiment, the apparent emissivity of the measurement sample arranged in the chamber can be increased by multiple reflections, and the temperature can be accurately measured even for an object whose emissivity is unknown and fluctuating. be able to.

0101 測定試料
0102 第一種のミラー
0103 第二種のミラー
0104 測定面法線
0105 放射温度計
0106 配置部
0107 穴部
0101 Measurement sample 0102 Type 1 mirror 0103 Type 2 mirror 0104 Measurement surface normal 0105 Radiation thermometer 0106 Arrangement part 0107 Hole part

Claims (8)

少なくとも測定面は平面状の測定試料を配置するための配置部と、
配置部に配置される測定試料の測定面法線に対して所定範囲の角度θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度−θで放射させるように構成される第一種のミラーと、
配置部に配置される測定試料の測定面法線に対して所定範囲の角度−θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度θで放射させるように構成される第二種のミラーと、
からなり、
第一種のミラーと、第二種のミラーとは、それぞれ一以上のミラーから構成されており、
前記複数のミラー間で多重反射した光によって測定試料の見かけの放射率を大きくした放射輝度を測定するための放射温度計を有する放射測温装置。
At least the measurement surface is an arrangement part for arranging a flat measurement sample,
The light emitted from the measurement sample is reflected at an angle θ within a predetermined range with respect to the measurement surface normal line of the measurement sample placed in the arrangement portion, and is made to enter the measurement sample again. A first-class mirror configured to radiate at an angle −θ within a predetermined range with respect to
The measurement surface method of the measurement sample from the incident point by reflecting the light radiated from the measurement sample at an angle −θ within a predetermined range with respect to the measurement surface normal line of the measurement sample arranged in the arrangement portion and making it enter the measurement sample again. A second-class mirror that is configured to radiate at an angle θ within a predetermined range with respect to the line,
Consists of
The first type mirror and the second type mirror are each composed of one or more mirrors.
A radiation thermometer having a radiation thermometer for measuring radiance in which the apparent emissivity of a measurement sample is increased by the light multiplely reflected between the plurality of mirrors.
前記放射温度計は第一種のミラー又は/及び第二種のミラーの背後に配置され、自身の前方のミラーに設けられた穴部から前記多重反射した光を取り込むように構成される請求項1に記載の放射測温装置。 A claim that the radiation thermometer is located behind a first-class mirror and / and a second-class mirror and is configured to capture the multiple-reflected light from a hole provided in a mirror in front of it. The radiation thermometer according to 1. 放射温度計の光取込面の前方にp偏光子を有する偏光部を設けた請求項1又は請求項2に記載の放射測温装置。 The radiation temperature measuring device according to claim 1 or 2, wherein a polarizing portion having a p-polarizer is provided in front of the light intake surface of the radiation thermometer. θの値が60度以上である請求項1から請求項3のいずれか一に記載の放射測温装置。 The radiation temperature measuring device according to any one of claims 1 to 3, wherein the value of θ is 60 degrees or more. 内部観察用窓を備えたチャンバーを有し、
前記配置部はチャンバー内に配置され、
第一種のミラー及び第二種のミラー、並びに放射温度計の光取込面は、チャンバー外部に配置され、測定試料からの光を内部観察用窓を介して入射させるように構成されている請求項1から請求項4のいずれか一に記載の放射測温装置。
Has a chamber with an internal observation window
The arrangement portion is arranged in the chamber and
The first-class mirror, the second-class mirror, and the light intake surface of the radiation thermometer are arranged outside the chamber so that the light from the measurement sample is incident through the internal observation window. The radiation thermometer according to any one of claims 1 to 4.
配置部は、測定試料を配置部上で移動可能とする移動手段を有する請求項1から請求項5のいずれか一に記載の放射測温装置。 The radiation temperature measuring device according to any one of claims 1 to 5, wherein the arranging unit has a moving means for moving a measurement sample on the arranging unit. 少なくとも測定面は平面状の測定試料を配置するための配置部と、
配置部に配置される測定試料の測定面法線に対して所定範囲の角度θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度−θで放射させるように構成される第一種のミラーと、
配置部に配置される測定試料の測定面法線に対して所定範囲の角度−θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度θで放射させるように構成される第二種のミラーと、
放射温度計と、
からなり、
第一種のミラーと、第二種のミラーとは、それぞれ一以上のミラーから構成されている放射測温装置の測温方法であって、
配置部に測定試料を配置する配置ステップと、
前記複数のミラー間で多重反射した光によって測定試料の見かけの放射率を大きくした放射輝度を放射温度計で測定する測定ステップと、
を有する測温方法。
At least the measurement surface is an arrangement part for arranging a flat measurement sample,
The light emitted from the measurement sample is reflected at an angle θ within a predetermined range with respect to the measurement surface normal line of the measurement sample placed in the arrangement portion, and is made to enter the measurement sample again. A first-class mirror configured to radiate at an angle −θ within a predetermined range with respect to
The measurement surface method of the measurement sample from the incident point by reflecting the light radiated from the measurement sample at an angle −θ within a predetermined range with respect to the measurement surface normal line of the measurement sample arranged in the arrangement portion and making it enter the measurement sample again. A second-class mirror that is configured to radiate at an angle θ within a predetermined range with respect to the line,
Radiation thermometer and
Consists of
The first-class mirror and the second-class mirror are temperature measuring methods of a radiation temperature measuring device each composed of one or more mirrors.
The placement step of placing the measurement sample in the placement section and
A measurement step of measuring the radiance with a radiation thermometer in which the apparent emissivity of the measurement sample is increased by the light multiple reflected between the plurality of mirrors.
A temperature measuring method having.
少なくとも測定面は平面状の測定試料を配置するための配置部と、
配置部に配置される測定試料の測定面法線に対して所定範囲の角度θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度−θで放射させるように構成される第一種のミラーと、
配置部に配置される測定試料の測定面法線に対して所定範囲の角度−θで測定試料から放射される光を反射して再び測定試料に入射させ、入射点から測定試料の測定面法線に対して所定範囲の角度θで放射させるように構成される第二種のミラーと、
からなり、
第一種のミラーと、第二種のミラーとは、それぞれN個のミラーから正N角形に配置構成されており、
Nの値は、3以上で無限大以下であり、
前記複数のミラー間で多重反射した光によって測定試料の見かけの放射率を大きくした放射輝度を測定するための放射温度計を有する放射測温装置。
At least the measurement surface is an arrangement part for arranging a flat measurement sample,
The light emitted from the measurement sample is reflected at an angle θ within a predetermined range with respect to the measurement surface normal line of the measurement sample placed in the arrangement portion, and is made to enter the measurement sample again. A first-class mirror configured to radiate at an angle −θ within a predetermined range with respect to
The measurement surface method of the measurement sample from the incident point by reflecting the light radiated from the measurement sample at an angle −θ within a predetermined range with respect to the measurement surface normal line of the measurement sample arranged in the arrangement portion and making it enter the measurement sample again. A second-class mirror that is configured to radiate at an angle θ within a predetermined range with respect to the line,
Consists of
The first-class mirror and the second-class mirror are arranged in a regular N-sided shape from N mirrors, respectively.
The value of N is 3 or more and infinity or less,
A radiation thermometer having a radiation thermometer for measuring radiance in which the apparent emissivity of a measurement sample is increased by the light multiplely reflected between the plurality of mirrors.
JP2020029813A 2020-02-25 2020-02-25 Radiation thermometer using multiple reflections between mirrors Active JP7350672B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020029813A JP7350672B2 (en) 2020-02-25 2020-02-25 Radiation thermometer using multiple reflections between mirrors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020029813A JP7350672B2 (en) 2020-02-25 2020-02-25 Radiation thermometer using multiple reflections between mirrors

Publications (2)

Publication Number Publication Date
JP2021135105A true JP2021135105A (en) 2021-09-13
JP7350672B2 JP7350672B2 (en) 2023-09-26

Family

ID=77660946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020029813A Active JP7350672B2 (en) 2020-02-25 2020-02-25 Radiation thermometer using multiple reflections between mirrors

Country Status (1)

Country Link
JP (1) JP7350672B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987329A (en) * 1982-11-10 1984-05-19 Nippon Kokan Kk <Nkk> Method for measuring temperature of steel
JPH0285731A (en) * 1988-09-22 1990-03-27 Kobe Steel Ltd Non-contact-type thermometer
JPH02208527A (en) * 1989-02-08 1990-08-20 Sumitomo Metal Ind Ltd Measurement of temperature
JPH02245646A (en) * 1989-03-17 1990-10-01 Agency Of Ind Science & Technol Measurement of emissivity
JP2002303551A (en) * 2001-04-03 2002-10-18 Tama Tlo Kk Method and device for measuring temperature of in- furnace metallic material
JP2007078394A (en) * 2005-09-12 2007-03-29 Sumitomo Metal Ind Ltd Apparatus and method for measuring surface temperature of metallic body, and method for manufacturing metallic body
WO2009081748A1 (en) * 2007-12-20 2009-07-02 Toyo University Radiometric temperature measuring method and radiometric temperature measuring system
JP2014032068A (en) * 2012-08-02 2014-02-20 Koptic Inc Gas concentration measuring device
JP2017156111A (en) * 2016-02-29 2017-09-07 シャープ株式会社 Electromagnetic wave irradiator
JP2018054546A (en) * 2016-09-30 2018-04-05 タキカワエンジニアリング株式会社 Radiation temperature measurement unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4465382A (en) 1980-03-04 1984-08-14 Nippon Steel Corporation Method of and an apparatus for measuring surface temperature and emmissivity of a heated material

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5987329A (en) * 1982-11-10 1984-05-19 Nippon Kokan Kk <Nkk> Method for measuring temperature of steel
JPH0285731A (en) * 1988-09-22 1990-03-27 Kobe Steel Ltd Non-contact-type thermometer
JPH02208527A (en) * 1989-02-08 1990-08-20 Sumitomo Metal Ind Ltd Measurement of temperature
JPH02245646A (en) * 1989-03-17 1990-10-01 Agency Of Ind Science & Technol Measurement of emissivity
JP2002303551A (en) * 2001-04-03 2002-10-18 Tama Tlo Kk Method and device for measuring temperature of in- furnace metallic material
JP2007078394A (en) * 2005-09-12 2007-03-29 Sumitomo Metal Ind Ltd Apparatus and method for measuring surface temperature of metallic body, and method for manufacturing metallic body
WO2009081748A1 (en) * 2007-12-20 2009-07-02 Toyo University Radiometric temperature measuring method and radiometric temperature measuring system
JP2014032068A (en) * 2012-08-02 2014-02-20 Koptic Inc Gas concentration measuring device
JP2017156111A (en) * 2016-02-29 2017-09-07 シャープ株式会社 Electromagnetic wave irradiator
JP2018054546A (en) * 2016-09-30 2018-04-05 タキカワエンジニアリング株式会社 Radiation temperature measurement unit

Also Published As

Publication number Publication date
JP7350672B2 (en) 2023-09-26

Similar Documents

Publication Publication Date Title
US8152365B2 (en) Method and system for determining optical properties of semiconductor wafers
JP5361713B2 (en) Method for determining wafer temperature
EP0942268A1 (en) Apparatus and method for determining the temperature of an object in thermal processing chambers
JP2002539423A (en) Method and apparatus for active pyrometry of the temperature of an object whose emissivity varies with wavelength
US10139283B2 (en) Non-contact thermal measurements of VUV optics
US20080018897A1 (en) Methods and apparatuses for assessing overlay error on workpieces
Yamada et al. Toward reliable industrial radiation thermometry
JP2021135105A (en) Radiation temperature measurement device using multireflection between mirrors
TWI628730B (en) Apparatus and method to measure temperature of 3d semiconductor structures via laser diffraction
EP0708318A1 (en) Radiance measurement by angular filtering for use in temperature determination of radiant object
Kawate et al. New scatterometer for spatial distribution measurements of light scattering from materials
TWI733911B (en) Spectrometer, metrology tool and method for spectral sampling
JP7136136B2 (en) Light-receiving characteristic evaluation device and light-receiving characteristic evaluation method for optical sensor
Burnell et al. Scattering model for rough oxidized metal surfaces applicable to radiation thermometry of reformer furnaces
JPH10111186A (en) Method and apparatus for measuring temperature of semiconductor substrate
US20100213377A1 (en) Method, Apparatus and Kit for Measuring Optical Properties of Materials
OGASAWARA et al. Image Processing for Reduction of Background Reflection from Thermal Image
JP2020165794A (en) Inclined mirror multiple reflection type radiation thermometer
JP2023155400A (en) Optical measurement device and optical measurement method
JP2012177560A (en) Radiation thermometer
JPS6049852B2 (en) How to measure object surface temperature
JPH10123075A (en) Thermal-diffusivity measuring method by hemispherical mirror-type laser flash system
JP2018151354A (en) Radiant temperature measurement apparatus and radiant temperature measurement method
Ohno et al. BRDF color mapping using line scan camera
JP2008224287A (en) Apparatus and method for measuring emissivity of surface of metal body and steel sheet manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230911

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230913

R150 Certificate of patent or registration of utility model

Ref document number: 7350672

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150