JP2021134997A - Cooling device and cooling method for continuous type steel heating furnace - Google Patents

Cooling device and cooling method for continuous type steel heating furnace Download PDF

Info

Publication number
JP2021134997A
JP2021134997A JP2020031791A JP2020031791A JP2021134997A JP 2021134997 A JP2021134997 A JP 2021134997A JP 2020031791 A JP2020031791 A JP 2020031791A JP 2020031791 A JP2020031791 A JP 2020031791A JP 2021134997 A JP2021134997 A JP 2021134997A
Authority
JP
Japan
Prior art keywords
exhaust gas
furnace
suction
combustion
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020031791A
Other languages
Japanese (ja)
Other versions
JP7136145B2 (en
Inventor
隆 西村
Takashi Nishimura
隆 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020031791A priority Critical patent/JP7136145B2/en
Publication of JP2021134997A publication Critical patent/JP2021134997A/en
Application granted granted Critical
Publication of JP7136145B2 publication Critical patent/JP7136145B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Tunnel Furnaces (AREA)
  • Furnace Details (AREA)

Abstract

To provide a cooling device and a cooling method for a continuous type steel heating furnace, in a continuous type steel heating furnace in which all combustion burners in a furnace body are made into heat storage type switching combustion burners, capable of reducing cooling time without damaging refractories in the furnace body.SOLUTION: A cooling device 10 for a continuous type steel heating furnace comprises a fan 27 for suction exhaust gas suction sucking a suction exhaust gas from all heat storage type switching burners 20 via a suction exhaust gas flow rate adjustment valve 26, a furnace tail exhaust gas exhaust apparatus 12 installed in a flue 8 provided at a position on the downstream side than a combustion control zone 3 on the most downstream side in the exhaust gas flow of a furnace body 2 and comprising a furnace pressure damper 9 adjusting furnace pressure and a chimney 11 exhausting a furnace tail exhaust gas passed through the furnace pressure damper and a fan 16 for furnace tail exhaust gas suction connected to an exhaust gas exhaust passage 13 provided at a position on the downstream side than the combustion control zone 3 and sucking the furnace tail exhaust gas from the combustion control zone 3 via a furnace tail exhaust gas flow rate adjustment valve 15.SELECTED DRAWING: Figure 1

Description

本発明は、炉体内の燃焼バーナのすべてを蓄熱式切替燃焼バーナとした連続式鋼材加熱炉の冷却装置及び冷却方法に関する。 The present invention relates to a cooling device and a cooling method for a continuous steel heating furnace in which all of the combustion burners in the furnace are heat storage type switching combustion burners.

スラブ等の被加熱材を連続的に加熱する連続式鋼材加熱炉では、通常の操業時に加熱炉内の炉圧を調整し、被加熱材を装入するための装入扉や当該被加熱材を抽出するための抽出扉から加熱炉の内部ガスが排出されたり、空気が侵入したりしないように操業している。そして、加熱炉内の排ガスは、炉体の排ガス流れにおいて最も下流側の位置に設置された煙道を介して煙突へと導かれ、外部へ排出される。また、加熱炉内の炉圧は、前述の煙道内に設置された炉圧ダンパにより調整される。 In a continuous steel heating furnace that continuously heats a material to be heated such as a slab, the furnace pressure in the heating furnace is adjusted during normal operation, and the charging door for charging the material to be heated and the material to be heated are used. It is operated so that the internal gas of the heating furnace is not discharged from the extraction door for extracting the furnace and the air does not enter. Then, the exhaust gas in the heating furnace is guided to the chimney through the flue installed at the most downstream position in the exhaust gas flow of the furnace body, and is discharged to the outside. Further, the furnace pressure in the heating furnace is adjusted by the furnace pressure damper installed in the flue described above.

ここで、炉体内の燃焼バーナとして蓄熱式切替燃焼バーナを用いない通常の加熱炉においては、加熱炉内の排ガスのすべてが炉圧ダンパを通過してドラフト効果によって煙突から外部に排出される。
これに対して、炉体内の燃焼バーナのすべてを蓄熱式切替燃焼バーナとした加熱炉の場合には、すべての蓄熱式切替燃焼バーナから、発生した排ガスの80〜100%が吸引され、その吸引された排ガスは蓄熱体を通して排ガス誘引ファンに導かれ、その後、煙突に戻されて外部に排出される。一方、蓄熱式切替燃焼バーナによって吸引されなかった0〜20%の排ガスは煙道に設置された炉圧ダンパを通過して煙突から外部に排出される。
Here, in a normal heating furnace that does not use a heat storage type switching combustion burner as the combustion burner in the furnace, all the exhaust gas in the heating furnace passes through the furnace pressure damper and is discharged to the outside from the chimney by the draft effect.
On the other hand, in the case of a heating furnace in which all the combustion burners in the furnace are heat storage type switching combustion burners, 80 to 100% of the generated exhaust gas is sucked from all the heat storage type switching combustion burners, and the suction thereof. The exhaust gas is guided to the exhaust gas attraction fan through the heat storage body, and then returned to the chimney and discharged to the outside. On the other hand, 0 to 20% of the exhaust gas that is not sucked by the heat storage type switching combustion burner passes through the furnace pressure damper installed in the flue and is discharged to the outside from the chimney.

このような炉体内の燃焼バーナのすべてを蓄熱式切替燃焼バーナとした加熱炉において、炉内の冷却を伴う定期修理においては、加熱炉内の温度を早く低下させることで、操業が終了してから修理が完了し次の操業が開始されるまでの時間を短くすることができる。このような加熱炉の冷却を行う場合、一般的には、炉圧ダンパを全開として加熱炉から煙突になるべく多くの空気を排出するようにしている。このとき、装入扉及び抽出扉は全開とし周囲の空気を吸引しやすいようにしている。また、蓄熱式切替燃焼バーナからは燃焼空気を吹き込み、煙突から排出される空気量をなるべく大きくするように工夫している。 In a heating furnace in which all of the combustion burners in the furnace are heat storage type switching combustion burners, in the periodic repair involving cooling in the furnace, the operation is terminated by quickly lowering the temperature in the heating furnace. It is possible to shorten the time from the completion of the repair to the start of the next operation. When cooling such a heating furnace, generally, the furnace pressure damper is fully opened so that as much air as possible is discharged from the heating furnace to the chimney. At this time, the charging door and the extraction door are fully opened so that the surrounding air can be easily sucked. In addition, combustion air is blown from the heat storage type switching combustion burner to increase the amount of air discharged from the chimney as much as possible.

なお、従来の特許文献1には、炉内の耐火物及び雰囲気温度が800℃超の状態で行う空冷工程と、炉内の耐火物及び雰囲気温度が800℃以下になったときに冷却水を炉内に供給して行う水冷工程を備えてなる加熱炉の水冷方法が記載されている。そして、この水冷工程は、冷却水を霧状にして炉内全体に噴霧すると共に炉底の堆積スケールに向けて散水するものである。 In addition, the conventional patent document 1 describes an air cooling step performed in a state where the refractory and the atmospheric temperature in the furnace are over 800 ° C., and cooling water when the refractory and the atmospheric temperature in the furnace becomes 800 ° C. or less. A water cooling method for a heating furnace including a water cooling process performed by supplying it into the furnace is described. In this water cooling process, the cooling water is atomized and sprayed over the entire furnace and sprinkled toward the sedimentary scale at the bottom of the furnace.

特許第5736657号公報Japanese Patent No. 5736657

ここで、前述した従来の、炉体内の燃焼バーナのすべてを蓄熱式切替燃焼バーナとした加熱炉の冷却においては、炉圧ダンパを全開として加熱炉から煙突になるべく多くの空気を排出するようにしている。しかし、煙突の高さが低く設定されているために(燃焼バーナとして蓄熱式切替燃焼バーナを用いない通常の加熱炉の煙突の高さは約100mであるのに対し、炉体内の燃焼バーナのすべてを蓄熱式切替燃焼バーナとした加熱炉では40m程度)、ドラフト効果を十分に得ることができず、加熱炉の冷却を行うときに燃焼バーナとして蓄熱式切替燃焼バーナを用いない通常の加熱炉より多くの冷却時間を要するという問題があった。 Here, in the above-mentioned cooling of the heating furnace in which all of the combustion burners in the furnace are heat storage type switching combustion burners, the furnace pressure damper is fully opened and as much air as possible is discharged from the heating furnace to the chimney. ing. However, because the height of the chimney is set low (the height of the chimney of a normal heating furnace that does not use a heat storage type switching combustion burner as a combustion burner is about 100 m, whereas the height of the combustion burner inside the furnace is about 100 m. A heating furnace that uses a heat storage type switching combustion burner for all (about 40 m) cannot obtain a sufficient draft effect, and a normal heating furnace that does not use a heat storage type switching combustion burner as a combustion burner when cooling the heating furnace. There was a problem that it required more cooling time.

これに対して、当該加熱炉の冷却を早めるためにだけに通常操業時に不必要なほど煙突を高くすることは、通常操業時の炉圧調整を困難な状況にしてしまうため、侵入空気の増加などの影響があり望ましくない。
なお、特許文献1に記載したような冷却水を霧状(ミスト)にして炉内に噴霧する方法においては、ミストを発生させるノズルは液滴径を小さくする必要があることから噴射できる水量をあまり大きくとれず、冷却効果が限定的であったり、ノズルが詰まってしまうことがあった。ノズルが詰まってしまうと、液滴径が大きくなり、加熱炉内に水たまりができることで、炉内耐火物を傷めるなどの問題が生じていた。
On the other hand, raising the chimney unnecessarily during normal operation just to accelerate the cooling of the heating furnace makes it difficult to adjust the furnace pressure during normal operation, resulting in an increase in invading air. It is not desirable because of the influence of such factors.
In the method of atomizing the cooling water into a mist and spraying it into the furnace as described in Patent Document 1, the amount of water that can be sprayed is increased because the nozzle that generates the mist needs to reduce the droplet diameter. It was not so large, the cooling effect was limited, and the nozzle was sometimes clogged. When the nozzle is clogged, the diameter of the droplet becomes large and a puddle is formed in the heating furnace, which causes a problem such as damage to the refractory in the furnace.

従って、本発明はこれら従来の問題点を解決するためになされたものであり、その目的は、炉体内の燃焼バーナのすべてを蓄熱式切替燃焼バーナとした連続式鋼材加熱炉において、炉体内の耐火物を傷めることなく、冷却時間を短縮することができる連続式鋼材加熱炉の冷却装置及び冷却方法を提供することにある。 Therefore, the present invention has been made to solve these conventional problems, and an object of the present invention is to use a continuous steel heating furnace in which all of the combustion burners in the furnace are heat storage type switching combustion burners. It is an object of the present invention to provide a cooling device and a cooling method for a continuous steel heating furnace capable of shortening the cooling time without damaging the refractory.

上記目的を達成するために、本発明の一態様に係る連続式鋼材加熱炉の冷却装置は、炉長方向に沿って複数の燃焼制御帯を有する炉体と、前記複数の燃焼制御帯の各々に設置された複数の燃焼バーナとを備え、該複数の燃焼バーナのすべてを蓄熱式切替燃焼バーナとした連続式鋼材加熱炉の冷却装置であって、すべての前記蓄熱式切替燃焼バーナからの吸引排ガスを吸引排ガス流量調整弁を介して吸引する吸引排ガス吸引用ファンと、前記炉体の排ガス流れにおいて最も下流側の燃焼制御帯よりも下流側の位置に設けられた煙道内に設置され、炉圧を調整する炉圧ダンパ及び炉圧ダンパを通過した炉尻排ガスを排出する煙突を備えた炉尻排ガス排出装置と、前記炉体の排ガス流れにおいて最も下流側の燃焼制御帯よりも下流側の位置に設けられた排ガス排出路に接続され、前記最も下流側の燃焼制御帯からの炉尻排ガスを炉尻排ガス流量調整弁を介して吸引する炉尻排ガス吸引用ファンとを備えていることを要旨とする。 In order to achieve the above object, the cooling device of the continuous steel heating furnace according to one aspect of the present invention includes a furnace body having a plurality of combustion control zones along the direction of the furnace length, and each of the plurality of combustion control zones. It is a cooling device of a continuous steel heating furnace provided with a plurality of combustion burners installed in the above and all of the plurality of combustion burners are heat storage type switching combustion burners, and suction from all the heat storage type switching combustion burners. A suction exhaust gas suction fan that sucks exhaust gas through a suction exhaust gas flow rate adjusting valve, and a furnace installed in a flue provided at a position downstream of the combustion control zone on the most downstream side in the exhaust gas flow of the furnace body. A furnace pressure damper equipped with a furnace pressure damper for adjusting the pressure and a chimney for discharging the furnace tail exhaust gas passing through the furnace pressure damper, and a furnace tail exhaust gas discharge device on the downstream side of the combustion control zone on the most downstream side in the exhaust gas flow of the furnace body. It is provided with a furnace tail exhaust gas suction fan that is connected to the exhaust gas discharge path provided at the position and sucks the furnace tail exhaust gas from the most downstream combustion control band through the furnace tail exhaust gas flow rate adjusting valve. It is a summary.

また、本発明の別の態様に係る連続式鋼材加熱炉の冷却方法は、前述の連続式鋼材加熱炉の冷却装置を用いて連続式鋼材加熱炉の炉体内の冷却を行う連続式鋼材加熱炉の冷却方法であって、前記炉体内の冷却を行う際に、装入扉及び抽出扉を開いた状態で、前記吸引排ガス流量調整弁の弁開度を全開にして前記吸引排ガス吸引用ファンを駆動することによって前記吸引排ガスを吸引して排出し、前記炉圧ダンパを全開にして前記炉圧ダンパを通過した空気を前記煙突から排出し、前記炉尻排ガス流量調整弁の弁開度を全開にして前記炉尻排ガス吸引用ファンを駆動するによって最も下流側の燃焼制御帯からの空気を吸引して排出することを要旨とする。 Further, the cooling method of the continuous steel heating furnace according to another aspect of the present invention is a continuous steel heating furnace that cools the inside of the continuous steel heating furnace by using the cooling device of the continuous steel heating furnace described above. When cooling the inside of the furnace, the suction exhaust gas suction fan is opened by fully opening the valve opening of the suction exhaust gas flow rate adjusting valve with the charging door and the extraction door open. By driving, the suction exhaust gas is sucked and discharged, the furnace pressure damper is fully opened, the air that has passed through the furnace pressure damper is discharged from the chimney, and the valve opening of the furnace tail exhaust gas flow rate adjusting valve is fully opened. The gist is that the air from the most downstream combustion control band is sucked and discharged by driving the furnace tail exhaust gas suction fan.

本発明に係る連続式鋼材加熱炉の冷却装置及び冷却方法によれば、炉体内の燃焼バーナのすべてを蓄熱式切替燃焼バーナとした連続式鋼材加熱炉において、炉体内の耐火物を傷めることなく、冷却時間を短縮することができる連続式鋼材加熱炉の冷却装置及び冷却方法を提供できる。 According to the cooling device and cooling method of the continuous steel heating furnace according to the present invention, in the continuous steel heating furnace in which all the combustion burners in the furnace are heat storage type switching combustion burners, the fireproof material in the furnace is not damaged. It is possible to provide a cooling device and a cooling method for a continuous steel heating furnace capable of shortening the cooling time.

本発明の一実施形態に係る連続式鋼材加熱炉の冷却装置の概略構成を示す図である。It is a figure which shows the schematic structure of the cooling device of the continuous steel material heating furnace which concerns on one Embodiment of this invention.

以下、本発明の実施の形態を図面を参照して説明する。以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記の実施形態に特定するものではない。
また、図面は模式的なものである。そのため、厚みと平面寸法との関係、比率等は現実のものとは異なることに留意すべきであり、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiments shown below exemplify devices and methods for embodying the technical idea of the present invention, and the technical idea of the present invention describes the material, shape, structure, arrangement, etc. of the components. It is not specified in the following embodiments.
The drawings are schematic. Therefore, it should be noted that the relationship, ratio, etc. between the thickness and the plane dimension are different from the actual ones, and there are parts where the relationship and ratio of the dimensions are different between the drawings.

図1には、本発明の一実施形態に係る連続式鋼材加熱炉の冷却装置の概略構成が示されている。
図1において、連続式鋼材加熱炉1は、被加熱材としての鋼材Sを加熱するものであり、鋼材Sの搬送方向である炉長方法(図1の左右で示される前後方向)に延びる炉体2を備えている。この炉体2は、鋼材Sの装入側から抽出側に向けて炉長方向に沿って燃焼制御帯としての予熱帯3、第1加熱帯4、第2加熱帯5及び均熱帯6をこの順に備えている。なお、図1においては、予熱帯3の抽出側では炉体2の幅方向である左右方向が上下で図示され、予熱帯3の装入側では炉体2の高さ方向である上下方向が上下で図示されている。
FIG. 1 shows a schematic configuration of a cooling device for a continuous steel heating furnace according to an embodiment of the present invention.
In FIG. 1, the continuous steel heating furnace 1 heats the steel material S as the material to be heated, and extends in the furnace length method (front-rear direction shown on the left and right in FIG. 1) which is the transport direction of the steel material S. It has a body 2. The furnace body 2 includes a pre-tropical 3, a first heating zone 4, a second heating zone 5, and an average tropical 6 as combustion control zones along the furnace length direction from the charging side to the extraction side of the steel material S. Prepared in order. In FIG. 1, the horizontal direction, which is the width direction of the furnace body 2, is shown vertically on the extraction side of the pre-tropical 3 and the vertical direction, which is the height direction of the furnace body 2, is shown on the charging side of the pre-tropical 3 Illustrated above and below.

また、炉体2の装入側(後側)端には、炉体2の装入口を開閉する装入扉7aが設置され、炉体2の抽出側(前側)端には、炉体2の抽出口を開閉する抽出扉7bが設置されている。
また、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々には、複数(本実施形態にあっては6つ、上部に3つ、下部に3つ)の燃焼バーナ20が設けられている。複数の燃焼バーナ20のすべては蓄熱式燃焼切替バーナで構成されており、炉体2内の燃焼バーナ20のすべては蓄熱式燃焼切替バーナとされている。以後、この蓄熱式燃焼切替バーナを蓄熱式切替燃焼バーナ20として説明する。
Further, a charging door 7a for opening and closing the charging inlet of the furnace body 2 is installed at the charging side (rear side) end of the furnace body 2, and the furnace body 2 is installed at the extraction side (front side) end of the furnace body 2. An extraction door 7b that opens and closes the extraction port of the above is installed.
In addition, each of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the average tropical 6 has a plurality (6 in the present embodiment, 3 in the upper part, 3 in the lower part). A combustion burner 20 is provided. All of the plurality of combustion burners 20 are composed of heat storage type combustion switching burners, and all of the combustion burners 20 in the furnace body 2 are heat storage type combustion switching burners. Hereinafter, this heat storage type combustion switching burner will be described as the heat storage type switching combustion burner 20.

各蓄熱式切替燃焼バーナ20は、各予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の炉壁に対向して左右に設置された一対の蓄熱式バーナ20a,20bで構成される。各蓄熱式バーナ20a,20bは、それぞれセラミックボール等で構成される蓄熱体21a,21bを備えている。そして、蓄熱式バーナ20a及び20bで交互に燃焼を行うと共に、非燃焼状態の蓄熱式バーナ20aあるいは20bを介して炉体2内、即ち各予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6から吸引放出し、このとき燃焼に伴う排ガスを蓄熱体21aあるいは21bを介して排出する。これによって、この吸引排ガスの熱を蓄熱体21aあるいは21bに蓄えておき、次回の燃焼時には燃焼用空気を蓄熱体21aあるいは21bを介して蓄熱式バーナ20aあるいは20bに供給することによって、排ガス熱を燃料ガスの予熱に利用するようになっている。 Each heat storage type switching combustion burner 20 is a pair of heat storage type burners 20a, 20b installed on the left and right facing the furnace walls of each pre-tropical 3, first heating zone 4, second heating zone 5, and average tropical 6. Consists of. Each of the heat storage type burners 20a and 20b includes heat storage bodies 21a and 21b made of ceramic balls or the like, respectively. Then, the heat storage type burners 20a and 20b are alternately burned, and the inside of the furnace body 2 through the non-combustion type heat storage type burners 20a or 20b, that is, each pre-tropical 3, first heating zone 4, second heating zone. The exhaust gas from combustion is discharged from the heat storage body 21a or 21b through the heat storage body 21a or 21b. As a result, the heat of the sucked exhaust gas is stored in the heat storage body 21a or 21b, and the combustion air is supplied to the heat storage type burner 20a or 20b via the heat storage body 21a or 21b at the time of the next combustion, thereby supplying the exhaust gas heat. It is used for preheating fuel gas.

そして、一方側の蓄熱式バーナ20aの蓄熱体21aは、排ガス切替弁22aを設置した排ガスヘッダ管23aに接続され、他方側の蓄熱式バーナ10bの蓄熱体11bは、排ガス切替弁22bを設置した排ガスヘッダ管23bに接続されている。そして、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々における全ての排ガスヘッダ管23aは第1排ガス集合管24aに集合し、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々における全ての排ガスヘッダ管23bは第2排ガス集合管24bに集合している。そして、第1排ガス集合管24a及び第2排ガス集合管24bは、共通の排ガス集合管25に集合している。この排ガス集合管25は、後述する煙道8の炉圧ダンパ9の下流側に接続され、排ガス集合管25内を流れる各蓄熱式切替燃焼バーナ20からの吸引排ガスが煙道8に排出されるようになっている。
また、排ガス集合管25には、すべての蓄熱式切替燃焼バーナ20からの吸引排ガスの吸引排ガス流量調整弁26と、この吸引排ガス流量調整弁26を介して吸引排ガスを吸引する吸引排ガス吸引用ファン27とが設置されている。
The heat storage body 21a of the heat storage type burner 20a on one side is connected to the exhaust gas header pipe 23a in which the exhaust gas switching valve 22a is installed, and the heat storage body 11b of the heat storage type burner 10b on the other side is provided with the exhaust gas switching valve 22b. It is connected to the exhaust gas header pipe 23b. Then, all the exhaust gas header pipes 23a in each of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the average tropical 6 are gathered in the first exhaust gas collecting pipe 24a, and the pre-tropical 3, the first heating zone 4. All the exhaust gas header pipes 23b in each of the second heating zone 5 and the solitary tropics 6 are gathered in the second exhaust gas collecting pipe 24b. The first exhaust gas collecting pipe 24a and the second exhaust gas collecting pipe 24b are gathered in the common exhaust gas collecting pipe 25. The exhaust gas collecting pipe 25 is connected to the downstream side of the furnace pressure damper 9 of the flue 8 described later, and the sucked exhaust gas from each heat storage type switching combustion burner 20 flowing in the exhaust gas collecting pipe 25 is discharged to the flue 8. It has become like.
Further, the exhaust gas collecting pipe 25 includes a suction exhaust gas flow rate adjusting valve 26 for the suction exhaust gas from all the heat storage type switching combustion burners 20 and a suction exhaust gas suction fan for sucking the suction exhaust gas through the suction exhaust gas flow rate adjustment valve 26. 27 and are installed.

また、一方側の蓄熱式バーナ20aの蓄熱体21aは、排ガスヘッダ管23aから分岐した、燃焼用空気切替弁28aを設置した燃焼用空気ヘッダ管29aに接続され、他方側の蓄熱式バーナ20bの蓄熱体21bは、排ガスヘッダ管23bから分岐した、燃焼用空気切替弁28bを設置した燃焼用空気ヘッダ管29bに接続されている。そして、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々における燃焼用空気ヘッダ管29aは燃焼制御帯毎の燃焼用空気集合管30aに集合し、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の各々の燃焼用空気ヘッダ管29bは燃焼制御帯毎の燃焼用空気集合管30bに集合している。そして、各燃焼用空気集合管30a及び各燃焼用空気集合管30bには、燃焼用空気流量調節弁31a,31b設置されている。そして、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の全ての燃焼用空気集合管30aは、第1燃焼用空気集合管32aに集合し、予熱帯3、第1加熱帯4、第2加熱帯5、及び均熱帯6の全ての燃焼用空気集合管30bは、第2燃焼用空気集合管32bに集合している。そして、第1燃焼用空気集合管32a及び第2燃焼用空気集合管32bは共通の燃焼用空気供給本管33に接続され、燃焼用空気供給本管33は燃焼用空気ブロワ34に接続されている。 Further, the heat storage body 21a of the heat storage type burner 20a on one side is connected to the combustion air header pipe 29a in which the combustion air switching valve 28a is installed, which is branched from the exhaust gas header pipe 23a, and is connected to the heat storage type burner 20b on the other side. The heat storage body 21b is connected to a combustion air header pipe 29b in which a combustion air switching valve 28b is installed, which is branched from the exhaust gas header pipe 23b. Then, the combustion air header pipes 29a in each of the pre-tropics 3, the first heating zone 4, the second heating zone 5, and the average tropics 6 gather in the combustion air collecting pipes 30a for each combustion control zone, and the pre-tropics 3 , The first heating zone 4, the second heating zone 5, and the combustion air header pipe 29b of the solitary tropics 6 are gathered in the combustion air collecting pipe 30b for each combustion control zone. Combustion air flow rate control valves 31a and 31b are installed in each combustion air collecting pipe 30a and each combustion air collecting pipe 30b. Then, all the combustion air collecting pipes 30a of the pre-tropical 3, the first heating zone 4, the second heating zone 5, and the average tropical 6 are gathered in the first combustion air collecting pipe 32a, and the pre-tropical 3 and the first All the combustion air collecting pipes 30b of the 1 heating zone 4, the 2nd heating zone 5, and the solitary tropics 6 are gathered in the 2nd combustion air collecting pipe 32b. The first combustion air collecting pipe 32a and the second combustion air collecting pipe 32b are connected to the common combustion air supply main 33, and the combustion air supply main 33 is connected to the combustion air blower 34. There is.

なお、図示はしないが、一方側の蓄熱式バーナ20a及び他方側の蓄熱式バーナ20bのそれぞれには燃料ガスヘッダ管が接続され、それぞれの蓄熱式バーナ20a、20bに交互に燃料ガスが供給されるようになっている。
また、炉体2において、排ガス流れにおいて最も下流側の燃焼制御帯よりも下流側(後側)の位置、即ち予熱帯3よりも下流側の位置には、煙道8が設置されている。炉体2内において排ガスは、炉体2の抽出側から装入側に向けて流れるため、予熱帯3よりも下流側の位置というのは予熱帯3よりも装入側(図1では後側)の位置ということになる。煙道8内には、炉圧を調整するための炉圧ダンパ9が設置されている。
Although not shown, a fuel gas header pipe is connected to each of the heat storage type burner 20a on one side and the heat storage type burner 20b on the other side, and fuel gas is alternately supplied to the heat storage type burners 20a and 20b, respectively. It has become like.
Further, in the furnace body 2, the flue 8 is installed at a position on the downstream side (rear side) of the combustion control zone on the most downstream side in the exhaust gas flow, that is, a position on the downstream side of the pretropical zone 3. Since the exhaust gas flows from the extraction side of the furnace body 2 toward the charging side in the furnace body 2, the position on the downstream side of the pre-tropical 3 is the charging side of the pre-tropical 3 (rear side in FIG. 1). ) Position. A furnace pressure damper 9 for adjusting the furnace pressure is installed in the flue 8.

また、煙道8の排ガス流れにおいて下流側には、煙突11が設置されている。予熱帯3からの炉尻排ガスは、煙道8に導かれ、炉圧ダンパ9を介して煙突11に到達し、ドラフト効果によって上昇して外部に排出される。この煙突11の高さhは、燃焼バーナとして蓄熱式切替燃焼バーナ20を用いない通常の加熱炉の煙突の高さが約100mであるのに対し、約40m程度と低くなっている。この理由は、通常の加熱炉の場合、燃焼ガスを煙突のドラフト力を使って排出しているのに対して、炉体2内の燃焼バーナ20のすべては蓄熱式燃焼切替バーナとした加熱炉の場合、吸引排ガス吸引用ファン27を用いて燃焼ガスの排出を行っているからである。 Further, a chimney 11 is installed on the downstream side of the exhaust gas flow of the flue 8. The furnace butt exhaust gas from the pre-tropical 3 is guided to the flue 8, reaches the chimney 11 through the furnace pressure damper 9, rises due to the draft effect, and is discharged to the outside. The height h of the chimney 11 is as low as about 40 m, while the height of the chimney of a normal heating furnace that does not use the heat storage type switching combustion burner 20 as the combustion burner is about 100 m. The reason for this is that in the case of a normal heating furnace, the combustion gas is discharged using the draft force of the chimney, whereas all of the combustion burners 20 in the furnace body 2 are heating furnaces using a heat storage type combustion switching burner. In this case, the combustion gas is discharged using the suction exhaust gas suction fan 27.

また、連続式鋼材加熱炉1では、定期修理等のために操業を一旦停止して炉体2の冷却を行うことがある。このため、連続式鋼材加熱炉1は、炉体2の冷却を行うための冷却装置10を備えている。
この冷却装置10は、前述の装入扉7a及び抽出扉7bと、炉体2の排ガス流れにおいて最も下流側の燃焼制御帯、即ち予熱帯3よりも下流側の位置に設けられた煙道8内に設置され、炉圧を調整する前述の炉圧ダンパ9及び炉圧ダンパ9を通過した炉尻排ガスを排出する前述の煙突11を備えた炉尻排ガス排出装置12とを備えている。
Further, in the continuous steel heating furnace 1, the operation may be temporarily stopped for periodic repair or the like to cool the furnace body 2. Therefore, the continuous steel heating furnace 1 is provided with a cooling device 10 for cooling the furnace body 2.
The cooling device 10 includes the above-mentioned charging door 7a and extraction door 7b, and a flue 8 provided at a position downstream of the combustion control zone on the most downstream side in the exhaust gas flow of the furnace body 2, that is, the pre-tropical zone 3. It is equipped with the above-mentioned furnace pressure damper 9 for adjusting the furnace pressure and the furnace butt exhaust gas discharge device 12 provided with the above-mentioned chimney 11 for discharging the furnace butt exhaust gas passing through the furnace pressure damper 9.

炉体2内の燃焼バーナのすべてを蓄熱式切替燃焼バーナ20とした連続式鋼材加熱炉1の冷却を行う際には、一般的には、炉尻排ガス排出装置12の炉圧ダンパ9を全開として炉体2から煙突11になるべく多くの空気を排出するようにしている。このとき、装入扉7a及び抽出扉7bは全開とし周囲の空気を吸引しやすいようにしている。また、複数の蓄熱式切替燃焼バーナ20の各々からは燃焼空気を吹き込み、煙突11から排出される空気量をなるべく大きくするように工夫している。 When cooling the continuous steel heating furnace 1 in which all of the combustion burners in the furnace body 2 are heat storage type switching combustion burners 20, generally, the furnace pressure damper 9 of the furnace tail exhaust gas discharge device 12 is fully opened. As much air as possible is discharged from the furnace body 2 to the chimney 11. At this time, the charging door 7a and the extraction door 7b are fully opened so that the surrounding air can be easily sucked. Further, combustion air is blown from each of the plurality of heat storage type switching combustion burners 20 to increase the amount of air discharged from the chimney 11 as much as possible.

しかしながら、前述したように、煙突11の高さhが40m程度と低く設定されているために、ドラフト効果を十分に得ることができず、炉体2の冷却を行うときに燃焼バーナとして蓄熱式切替燃焼バーナを用いない通常の加熱炉より多くの冷却時間を要することになってしまう。冷却時間が長いと、操業が終了してから修理が完了し次の操業が開始されるまでの時間が長くなり、生産性が悪化してしまうことになる。
これに対して、炉体2の冷却を早めるためにだけに通常操業時に不必要なほど煙突を高くすることは、通常操業時の炉圧調整を困難な状況にしてしまうため、侵入空気の増加などの影響があり望ましくない。
However, as described above, since the height h of the chimney 11 is set as low as about 40 m, a sufficient draft effect cannot be obtained, and a heat storage type is used as a combustion burner when cooling the furnace body 2. It will take more cooling time than a normal heating furnace that does not use a switching combustion burner. If the cooling time is long, the time from the end of the operation to the completion of the repair and the start of the next operation becomes long, and the productivity deteriorates.
On the other hand, raising the chimney unnecessarily during normal operation just to accelerate the cooling of the furnace body 2 makes it difficult to adjust the furnace pressure during normal operation, resulting in an increase in invading air. It is not desirable because of the influence of such factors.

そこで、本実施形態においては、冷却装置10は、前述の炉圧ダンパ9及び煙突11を備えた炉尻排ガス排出装置12の他に、前述のすべての蓄熱式切替燃焼バーナ20からの吸引排ガスを吸引排ガス流量調整弁26を介して吸引する吸引排ガス吸引用ファン27を備える構成として、すべての蓄熱式切替燃焼バーナ20からの吸引排ガスを排出するとともに、次に述べる炉尻排ガス吸引用ファン16を備える構成として、最も下流側の予熱帯3からの炉尻排ガスを炉尻排ガス流量調整弁15を介して吸引する構成としている。 Therefore, in the present embodiment, the cooling device 10 uses the suction exhaust gas from all the heat storage type switching combustion burners 20 described above in addition to the furnace tail exhaust gas discharge device 12 provided with the furnace pressure damper 9 and the chimney 11 described above. As a configuration including a suction exhaust gas suction fan 27 that sucks through the suction exhaust gas flow rate adjusting valve 26, the suction exhaust gas from all the heat storage type switching combustion burners 20 is discharged, and the furnace butt exhaust gas suction fan 16 described below is used. As a configuration to be provided, the furnace butt exhaust gas from the most downstream pre-tropical zone 3 is sucked through the furnace butt exhaust gas flow rate adjusting valve 15.

つまり、本実施形態において、冷却装置10は、炉体2の排ガス流れにおいて最も下流側の予熱帯3よりも下流側(後側)の位置に設けられた排ガス排出路13に接続され、最も下流側の予熱帯3からの炉尻排ガスを炉尻排ガス流量調整弁15を介して吸引する炉尻排ガス吸引用ファン16を備えている。炉尻排ガス流量調整弁15及び炉尻排ガス吸引用ファン16は、排ガス排出路13から後述の保熱ピット17に至るまで延びる排ガス管14に設置されている。 That is, in the present embodiment, the cooling device 10 is connected to the exhaust gas discharge path 13 provided at a position downstream (rear side) of the most downstream side of the pre-tropical zone 3 in the exhaust gas flow of the furnace body 2, and is connected to the most downstream side. The furnace butt exhaust gas suction fan 16 for sucking the furnace butt exhaust gas from the side pre-tropical 3 via the furnace butt exhaust gas flow rate adjusting valve 15 is provided. The furnace butt exhaust gas flow rate adjusting valve 15 and the furnace butt exhaust gas suction fan 16 are installed in an exhaust gas pipe 14 extending from the exhaust gas discharge path 13 to the heat retaining pit 17, which will be described later.

また、冷却装置10は、上位計算機19からの冷却開始指示及び加熱操業指示に基づき、装入扉7a及び抽出扉7bの開閉制御、炉圧ダンパ9の開度制御、吸引排ガス流量調整弁26の弁開度の制御、吸引排ガス吸引用ファン27の駆動制御、炉尻排ガス流量調整弁15の弁開度の制御、及び炉尻排ガス吸引用ファン16の駆動制御を行う冷却制御部18を備えている。
なお、蓄熱式切替燃焼バーナ20による最大燃焼負荷時に発生する排ガス流量をXNm/Hとしたときに、吸引排ガス吸引用ファン27は、流量が1.0XNm/H以上で温度が300℃以下の吸引排ガスを吸引し、煙突11は、流量が1.2XNm/H以上でかつ温度が300℃〜500℃の炉尻排ガスを排出し、炉尻排ガス吸引用ファン16は、0.4XNm/H以上でかつ温度が900℃以下の炉尻排ガスを吸引することが好ましい。
Further, the cooling device 10 controls the opening / closing of the charging door 7a and the extraction door 7b, the opening degree control of the furnace pressure damper 9, and the suction exhaust gas flow rate adjusting valve 26 based on the cooling start instruction and the heating operation instruction from the host computer 19. A cooling control unit 18 that controls the valve opening degree, drives the suction exhaust gas suction fan 27, controls the valve opening degree of the furnace butt exhaust gas flow rate adjusting valve 15, and drives the furnace butt exhaust gas suction fan 16. There is.
When the exhaust gas flow rate generated at the maximum combustion load by the heat storage type switching combustion burner 20 is XNm 3 / H, the suction exhaust gas suction fan 27 has a flow rate of 1.0 XNm 3 / H or more and a temperature of 300 ° C. or less. the suction gas sucked in, chimney 11, the flow rate is discharged 1.2XNm 3 / H or more and the temperature is 300 ° C. to 500 ° C. oven butt exhaust gas, the furnace butt exhaust gas suction fan 16, 0.4XNm 3 It is preferable to suck the exhaust gas from the furnace butt at a temperature of / H or more and a temperature of 900 ° C. or less.

吸引排ガス吸引用ファン27が、流量が1.0XNm/H以上の吸引排ガスを吸引すると規定した理由は、本発明で目的とする炉体2内の耐火物を傷めることなく冷却時間を短縮することを可能とするためであり、温度が300℃以下の吸引排ガスを吸引すると規定した理由は、蓄熱式切替燃焼バーナ20に使用される弁等の耐熱が300℃となっているためである。
また、煙突11が、流量が1.2XNm/H以上の炉尻排ガスを排出すると規定した理由は、燃焼により生成されるガスと装入扉7a及び抽出扉7bから侵入する空気を加味して多少の余裕を持たせたガスを排出できるようにする必要があるためであり、温度が300℃〜500℃の炉尻排ガスを排出すると規定した理由は、蓄熱式切替燃焼バーナ20から排出される300℃以下のガスと、炉尻から排出される500〜800℃のガスの混合であるためである。
The reason why the suction exhaust gas suction fan 27 sucks the suction exhaust gas having a flow rate of 1.0 XNm 3 / H or more is that the cooling time is shortened without damaging the fireproof material in the furnace body 2 which is the object of the present invention. The reason why the suction exhaust gas having a temperature of 300 ° C. or lower is specified to be sucked is that the heat resistance of the valve or the like used in the heat storage type switching combustion burner 20 is 300 ° C.
Further, the reason why the chimney 11 stipulates that the furnace exhaust gas having a flow rate of 1.2 XNm 3 / H or more is discharged is that the gas generated by combustion and the air entering from the charging door 7a and the extraction door 7b are taken into consideration. This is because it is necessary to be able to discharge gas with some margin, and the reason why it is specified to discharge the furnace butt exhaust gas with a temperature of 300 ° C to 500 ° C is that it is discharged from the heat storage type switching combustion burner 20. This is because it is a mixture of a gas having a temperature of 300 ° C. or lower and a gas having a temperature of 500 to 800 ° C. discharged from the furnace butt.

更に、炉尻排ガス吸引用ファン16が、流量が0.4XNm/H以上の炉尻排ガスを吸引すると規定した理由は、吸引排ガス吸引用ファン27と炉尻排ガス吸引用ファン16を同時に稼働させたときに装入扉7a及び抽出扉7bから侵入する空気を増やすことなく、また発生するガスをすべて排出できるようにするためであり、温度が900℃以下の炉尻排ガスを吸引すると規定とした理由は、炉尻にて排ガス温度が400〜900℃であるためである。 Further, the reason why the furnace butt exhaust gas suction fan 16 is specified to suck the furnace butt exhaust gas having a flow rate of 0.4XNm 3 / H or more is that the suction exhaust gas suction fan 27 and the furnace butt exhaust gas suction fan 16 are operated at the same time. This is to enable all the generated gas to be discharged without increasing the amount of air entering from the charging door 7a and the extraction door 7b, and it is stipulated that the exhaust gas from the furnace butt where the temperature is 900 ° C or less is sucked. The reason is that the exhaust gas temperature at the furnace butt is 400 to 900 ° C.

また、冷却装置10は、炉尻排ガス吸引用ファン16で吸引された炉尻排ガスが導入される保熱ピット17を備えている。保熱ピット17は、排ガス管14に接続されている。保熱ピット17内には、連続式鋼材加熱炉1によって加熱予定の鋼材Sが保管されており、通常の加熱操業時に保熱ピット17内に導入される炉尻排ガスにより鋼材Sを予熱することができる。
ここで、冷却装置10が炉尻排ガス吸引用ファン16で吸引された炉尻排ガスが導入される保熱ピット17を備えている意味について詳細に説明する。
Further, the cooling device 10 includes a heat retaining pit 17 into which the furnace butt exhaust gas sucked by the furnace butt exhaust gas suction fan 16 is introduced. The heat retaining pit 17 is connected to the exhaust gas pipe 14. The steel material S scheduled to be heated by the continuous steel material heating furnace 1 is stored in the heat retention pit 17, and the steel material S is preheated by the furnace tail exhaust gas introduced into the heat retention pit 17 during normal heating operation. Can be done.
Here, the meaning of the cooling device 10 including the heat retaining pit 17 into which the furnace butt exhaust gas sucked by the furnace butt exhaust gas suction fan 16 is introduced will be described in detail.

通常の加熱操業時においては、蓄熱式切替燃焼バーナ20から吸引された吸引排ガスは蓄熱体21aあるいは21bにより熱交換が行われ、炉内温度(1000〜1200℃程度)から300℃程度まで冷却され、燃焼空気の熱量に変換されている。一般的に燃焼においては、燃焼空気よりも排ガスの方が量が多く比熱も高いため、一般的に蓄熱式切替燃焼バーナ20においても発生する排ガスの100%を吸引することはできない。製鉄所の副生ガスを用いた蓄熱式切替燃焼バーナ20の場合、発生した排ガスの吸引率はおよそ80%程度が限界となっている。このため、煙突11に直接導かれる排ガスは、発生した排ガスの20%程度存在しているが、この排ガスは800〜1000℃程度の高温であるにもかかわらず、熱交換を行うことができない。 During normal heating operation, the suction exhaust gas sucked from the heat storage type switching combustion burner 20 is heat-exchanged by the heat storage body 21a or 21b, and is cooled from the furnace temperature (about 1000 to 1200 ° C.) to about 300 ° C. , Converted to the heat of combustion air. Generally, in combustion, since the amount of exhaust gas is larger and the specific heat is higher than that of combustion air, it is generally impossible to suck 100% of the exhaust gas generated even in the heat storage type switching combustion burner 20. In the case of the heat storage type switching combustion burner 20 using the by-product gas of the steelworks, the suction rate of the generated exhaust gas is limited to about 80%. Therefore, the exhaust gas directly guided to the chimney 11 is present in about 20% of the generated exhaust gas, but heat exchange cannot be performed even though the exhaust gas has a high temperature of about 800 to 1000 ° C.

これに対して、冷却装置10が炉尻排ガス吸引用ファン16で吸引された炉尻排ガスが導入される保熱ピット17を備えていることで、保熱ピット17内に連続式鋼材加熱炉1によって加熱予定の鋼材Sを保管しておく。これにより、通常の加熱操業時に保熱ピット17内に導入される炉尻排ガス(前述の800〜1000℃程度の高温の排ガス)により鋼材Sを予熱することができ、連続式鋼材加熱炉1の燃料原単位を下げることができる。 On the other hand, since the cooling device 10 includes a heat retaining pit 17 into which the furnace butt exhaust gas sucked by the furnace butt exhaust gas suction fan 16 is introduced, the continuous steel heating furnace 1 is provided in the heat retaining pit 17. The steel material S to be heated is stored. As a result, the steel material S can be preheated by the furnace tail exhaust gas (the above-mentioned high-temperature exhaust gas of about 800 to 1000 ° C.) introduced into the heat retaining pit 17 during normal heating operation, and the continuous steel material heating furnace 1 can be used. The fuel intensity can be lowered.

次に、冷却装置10を用いて連続式鋼材加熱炉1の炉体2内の冷却を行う冷却方法もついて説明する。
冷却制御部18は、上位計算機19から冷却開始指示を受けると、連続式鋼材加熱炉1の冷却制御を開始する。
この冷却制御に際し、先ず、冷却制御部18は、装入扉7a及び抽出扉7bを全開にする。この理由は、炉体2の周囲の空気を吸引し易くするためである。
Next, a cooling method for cooling the inside of the furnace body 2 of the continuous steel heating furnace 1 using the cooling device 10 will also be described.
When the cooling control unit 18 receives a cooling start instruction from the host computer 19, the cooling control unit 18 starts the cooling control of the continuous steel heating furnace 1.
In this cooling control, first, the cooling control unit 18 fully opens the charging door 7a and the extraction door 7b. The reason for this is to facilitate suction of the air around the furnace body 2.

次いで、冷却制御部18は、装入扉7a及び抽出扉7bを全開にした状態で、吸引排ガス流量調整弁26の弁開度を全開にして吸引排ガス吸引用ファン27を駆動するよう制御する。これにより、吸引排ガス吸引用ファン27が流量1.0XNm/H以上の流量の蓄熱式切替燃焼バーナ20からの吸引排ガスを吸引し、吸引された吸引排ガスが煙突11内に排出される。この際に、蓄熱式切替燃焼バーナ20からの吸引排ガスの温度は300℃程度である。蓄熱式切替燃焼バーナ20による最大燃焼負荷時に発生する排ガス流量をXNm/Hとしてある。 Next, the cooling control unit 18 controls to drive the suction exhaust gas suction fan 27 by fully opening the valve opening degree of the suction exhaust gas flow rate adjusting valve 26 in a state where the charging door 7a and the extraction door 7b are fully opened. As a result, the suction exhaust gas suction fan 27 sucks the suction exhaust gas from the heat storage type switching combustion burner 20 having a flow rate of 1.0 XNm 3 / H or more, and the sucked exhaust gas is discharged into the chimney 11. At this time, the temperature of the suction exhaust gas from the heat storage type switching combustion burner 20 is about 300 ° C. The exhaust gas flow rate generated at the maximum combustion load by the heat storage type switching combustion burner 20 is defined as XNm 3 / H.

次いで、冷却制御部18は、炉圧ダンパ9を全開にするよう制御して炉圧ダンパ9を通過した空気(炉尻排ガスを含む)を煙突11から排出する。この際に、流量が1.2XNm/H以上でかつ温度が300℃〜500℃の空気(炉尻排ガスを含む)が最大排出される。なお、炉体2内の燃焼バーナのすべてを蓄熱式切替燃焼バーナ20として煙突11の高さhが40mと低いため、ドラフト効果が不十分で、煙突11からの排気量は十分ではない。
最後に、冷却制御部18は、炉尻排ガス流量調整弁15の弁開度を全開にして炉尻排ガス吸引用ファン16を駆動するよう制御する。これにより、最も下流側の予熱帯3からの空気(炉尻排ガスを含む)を排ガス排出路13、炉尻排ガス流量調整弁15を介して吸引し、保熱ピット17に排出する。
Next, the cooling control unit 18 controls the furnace pressure damper 9 to be fully opened and discharges the air (including the furnace tail exhaust gas) that has passed through the furnace pressure damper 9 from the chimney 11. At this time, air (including the exhaust gas from the furnace butt) having a flow rate of 1.2 XNm 3 / H or more and a temperature of 300 ° C. to 500 ° C. is discharged at the maximum. Since all of the combustion burners in the furnace body 2 are heat storage type switching combustion burners 20 and the height h of the chimney 11 is as low as 40 m, the draft effect is insufficient and the displacement from the chimney 11 is not sufficient.
Finally, the cooling control unit 18 controls to drive the furnace butt exhaust gas suction fan 16 by fully opening the valve opening degree of the furnace butt exhaust gas flow rate adjusting valve 15. As a result, the air (including the furnace butt exhaust gas) from the most downstream pre-tropical 3 is sucked through the exhaust gas discharge path 13 and the furnace butt exhaust gas flow rate adjusting valve 15 and discharged to the heat retaining pit 17.

本実施形態に係る連続式鋼材加熱炉の冷却装置10及び冷却方法によれば、このように、炉体2内の冷却を行う際に、装入扉7a及び抽出扉7bを全開にした状態で、吸引排ガス流量調整弁26の弁開度を全開にして吸引排ガス吸引用ファン27を駆動することによって吸引排ガスを吸引して排出する。また、炉圧ダンパ9を全開にして炉圧ダンパ9を通過した空気を煙突11から排出する。更に、炉尻排ガス流量調整弁15の弁開度を全開にして炉尻排ガス吸引用ファン16を駆動するによって最も下流側の予熱帯3からの空気を吸引して排出する。 According to the cooling device 10 and the cooling method of the continuous steel heating furnace according to the present embodiment, when the inside of the furnace body 2 is cooled in this way, the charging door 7a and the extraction door 7b are fully opened. The suction exhaust gas is sucked and discharged by driving the suction exhaust gas suction fan 27 with the valve opening degree of the suction exhaust gas flow rate adjusting valve 26 fully opened. Further, the furnace pressure damper 9 is fully opened and the air that has passed through the furnace pressure damper 9 is discharged from the chimney 11. Further, the valve opening degree of the furnace butt exhaust gas flow rate adjusting valve 15 is fully opened and the furnace butt exhaust gas suction fan 16 is driven to suck and discharge the air from the most downstream pre-tropical zone 3.

このため、煙突11からのドラフト効果による炉体2内の空気の排出に加えて、蓄熱式切替燃焼バーナ20からの吸引排ガスの吸引排ガス吸引用ファン27を使用することで炉体2内の排気量を増やすことができ、更に、炉体2内の空気を直接排出できる炉尻排ガス吸引用ファン16を使用することで、さらに炉体2内の排気量を増やすことができる。
これにより、炉体2内の燃焼バーナのすべてを蓄熱式切替燃焼バーナ20として煙突11の高さhが40mと低い場合であっても、不足したドラフト効果を蓄熱式切替燃焼バーナ20からの吸引排ガスの吸引排ガス吸引用ファン27を使用することで補って炉体2内の排気量を増やし、更に、炉体2内の空気を直接排出できる炉尻排ガス吸引用ファン16を使用して炉体2内の排気量を増やし、炉体2の冷却時間を短縮することができる。
Therefore, in addition to the exhaust of the air in the furnace body 2 due to the draft effect from the chimney 11, the exhaust gas in the furnace body 2 is exhausted by using the suction exhaust gas suction fan 27 of the suction exhaust gas from the heat storage type switching combustion burner 20. The amount of exhaust gas in the furnace body 2 can be further increased by using the furnace tail exhaust gas suction fan 16 which can directly discharge the air in the furnace body 2.
As a result, even when the height h of the chimney 11 is as low as 40 m, all of the combustion burners in the furnace body 2 are used as the heat storage type switching combustion burner 20, and the insufficient draft effect is sucked from the heat storage type switching combustion burner 20. Exhaust gas suction The exhaust gas amount in the furnace body 2 is increased by using the exhaust gas suction fan 27, and the furnace body is further increased by using the furnace tail exhaust gas suction fan 16 capable of directly discharging the air in the furnace body 2. The amount of exhaust gas in the furnace body 2 can be increased and the cooling time of the furnace body 2 can be shortened.

また、炉体2の冷却には、空気(排ガスを含む)を使用し、ミストを使用していないことから、炉体2内に水たまりができることもなく、炉体2内の耐火物を傷めるおそれはない。
これにより、本実施形態に係る連続式鋼材加熱炉の冷却装置10及び冷却方法によれば、炉体2内の燃焼バーナのすべてを蓄熱式切替燃焼バーナ20とした連続式鋼材加熱炉1において、炉体2内の耐火物を傷めることなく、冷却時間を短縮することができる連続式鋼材加熱炉の冷却装置及び冷却方法を提供できる。
Further, since air (including exhaust gas) is used for cooling the furnace body 2 and no mist is used, no puddle is formed in the furnace body 2 and the refractory in the furnace body 2 is damaged. It's not.
As a result, according to the cooling device 10 and the cooling method of the continuous steel heating furnace according to the present embodiment, in the continuous steel heating furnace 1 in which all the combustion burners in the furnace body 2 are heat storage type switching combustion burners 20. It is possible to provide a cooling device and a cooling method for a continuous steel heating furnace capable of shortening the cooling time without damaging the fireproof material in the furnace body 2.

また、冷却制御部18は、上位計算機19から加熱操業指示を受けると、連続式鋼材加熱炉1の冷却制御を停止し、通常操業状態の装入扉7a及び抽出扉7bの開閉制御、炉圧ダンパ9の開度制御、吸引排ガス流量調整弁26の弁開度の制御、吸引排ガス吸引用ファン27の駆動制御、炉尻排ガス流量調整弁15の弁開度の制御、及び炉尻排ガス吸引用ファン16の駆動制御を行う。
この制御に際し、先ず、冷却制御部18は、装入扉7a及び抽出扉7bを閉じる。
Further, when the cooling control unit 18 receives a heating operation instruction from the host computer 19, the cooling control of the continuous steel heating furnace 1 is stopped, the opening / closing control of the charging door 7a and the extraction door 7b in the normal operating state, and the furnace pressure. Control of the opening degree of the damper 9, control of the valve opening degree of the suction exhaust gas flow rate adjusting valve 26, drive control of the suction exhaust gas suction fan 27, control of the valve opening degree of the furnace butt exhaust gas flow rate adjusting valve 15, and for suction of the furnace butt exhaust gas Drive control of the fan 16 is performed.
In this control, first, the cooling control unit 18 closes the charging door 7a and the extraction door 7b.

次いで、冷却制御部18は、吸引排ガス流量調整弁26の弁開度を通常の操業状態のものとして、蓄熱式切替燃焼バーナ20の燃焼により発生した排ガス量の80%程度の吸引排ガスを蓄熱体21aまたは21bを通して300℃程度まで冷却した上で吸引排ガス吸引用ファン27を駆動するよう制御する。この際に、冷却制御部18は、炉圧ダンパ9を全閉にするよう制御する。これにより、炉圧ダンパ9を通過して煙突11から炉尻排ガスが排出されない状態で、蓄熱式切替燃焼バーナ20からの吸引排ガスが吸引され、吸引された吸引排ガスが煙突11内に排出される。 Next, the cooling control unit 18 assumes that the valve opening degree of the suction exhaust gas flow rate adjusting valve 26 is in a normal operating state, and stores the suction exhaust gas of about 80% of the exhaust gas amount generated by the combustion of the heat storage type switching combustion burner 20 as a heat storage body. After cooling to about 300 ° C. through 21a or 21b, the suction exhaust gas suction fan 27 is controlled to be driven. At this time, the cooling control unit 18 controls the furnace pressure damper 9 to be fully closed. As a result, the suction exhaust gas from the heat storage type switching combustion burner 20 is sucked in a state where the furnace tail exhaust gas is not discharged from the chimney 11 after passing through the furnace pressure damper 9, and the sucked exhaust gas is discharged into the chimney 11. ..

次いで、冷却制御部18は、炉体2内の炉圧を0〜10Pa程度となるように炉尻排ガス流量調整弁15の弁開度を調整した上で炉尻排ガス吸引用ファン16を駆動するよう制御する。これにより、最も下流側の予熱帯3から高温の炉尻排ガスを排ガス排出路13、炉尻排ガス流量調整弁15を介して吸引し、保熱ピット17に導入する。
この保熱ピット17内には、連続式鋼材加熱炉1によって加熱予定の鋼材Sが保管されており、保熱ピット17内に導入された高温の炉尻排ガスにより鋼材Sが予熱される。
Next, the cooling control unit 18 drives the furnace butt exhaust gas suction fan 16 after adjusting the valve opening degree of the furnace butt exhaust gas flow rate adjusting valve 15 so that the furnace pressure in the furnace body 2 is about 0 to 10 Pa. Control. As a result, the hot furnace exhaust gas from the most downstream pre-tropical 3 is sucked through the exhaust gas discharge path 13 and the furnace tail exhaust gas flow rate adjusting valve 15 and introduced into the heat retaining pit 17.
The steel material S to be heated by the continuous steel material heating furnace 1 is stored in the heat retention pit 17, and the steel material S is preheated by the high-temperature furnace butt exhaust gas introduced into the heat retention pit 17.

炉長35m、炉幅13m、炉高4.8mの炉体2を有し、冷却装置10を備えた図1に示す連続式鋼材加熱炉1において、炉体2の冷却を実施した。この連続式鋼材加熱炉1における煙突11の高さhは40mである。冷却条件及び炉内冷却時間の結果を表1に示す。 The furnace body 2 was cooled in the continuous steel heating furnace 1 shown in FIG. 1, which had a furnace body 2 having a furnace length of 35 m, a furnace width of 13 m, and a furnace height of 4.8 m and equipped with a cooling device 10. The height h of the chimney 11 in this continuous steel heating furnace 1 is 40 m. Table 1 shows the results of the cooling conditions and the cooling time in the furnace.

Figure 2021134997
Figure 2021134997

なお、表1における「炉内冷却時間」とは、炉温1000℃以上から冷却を開始し、炉温50℃以下まで低下するまでの時間をいう。
比較例1では、煙突11からドラフト効果のみの排気を行い、吸引排ガス吸引用ファン27による吸引排ガスの排気、炉尻排ガス吸引用ファン16による排気は行わなかった。また、比較例1では、すべての蓄熱式切替燃焼バーナ20から炉体2内に燃焼用空気は送らなかった。
The “in-furnace cooling time” in Table 1 refers to the time from when cooling starts at a furnace temperature of 1000 ° C. or higher to when the furnace temperature drops to 50 ° C. or lower.
In Comparative Example 1, only the draft effect was exhausted from the chimney 11, and the suction exhaust gas was not exhausted by the suction exhaust gas suction fan 27 and the furnace butt exhaust gas suction fan 16 was not exhausted. Further, in Comparative Example 1, combustion air was not sent into the furnace body 2 from all the heat storage type switching combustion burners 20.

また、比較例2では、煙突11からドラフト効果のみの排気を行い、吸引排ガス吸引用ファン27による吸引排ガスの排気、炉尻排ガス吸引用ファン16による排気は行わなかった。また、比較例2では、すべての蓄熱式切替燃焼バーナ20から炉体2内に流量が60000Nm/Hの燃焼用空気を送った。
表1からわかるように、比較例1による炉内全体の排気量は146476Nm/H、比較例2による炉内全体の排気量は146591Nm/Hであり、蓄熱式切替燃焼バーナ20から炉体2内に燃焼用空気を送っても炉内全体の排気量は増大しない。また、炉内冷却時間も比較例1の場合45.3Hr、比較例2の場合45.2Hrと短縮しない。
Further, in Comparative Example 2, only the draft effect was exhausted from the chimney 11, and the suction exhaust gas was not exhausted by the suction exhaust gas suction fan 27 and the furnace butt exhaust gas suction fan 16 was not exhausted. Further, in Comparative Example 2, combustion air having a flow rate of 60,000 Nm 3 / H was sent into the furnace body 2 from all the heat storage type switching combustion burners 20.
As can be seen from Table 1, the displacement of the entire furnace according to Comparative Example 1 is 146476 Nm 3 / H, and the displacement of the entire furnace according to Comparative Example 2 is 146591 Nm 3 / H. Even if combustion air is sent into 2, the displacement of the entire furnace does not increase. Further, the cooling time in the furnace is not shortened to 45.3 Hr in the case of Comparative Example 1 and 45.2 Hr in the case of Comparative Example 2.

また、比較例3では、煙突11からドラフト効果のみの排気及び吸引排ガス吸引用ファン27による吸引排ガスの排気を行い、炉尻排ガス吸引用ファン16による排気は行わなかった。また、比較例3では、すべての蓄熱式切替燃焼バーナ20から炉体2内に燃焼用空気は送らなかった。
表1からわかるように、比較例1による炉内全体の排気量は146476Nm/H、比較例3による炉内全体の排気量は192198Nm/Hであり、炉内冷却時間が35.2Hrに短縮された。吸引排ガス吸引用ファン27による吸引排ガスの排気によって炉内全体の排気量を増大させる効果はあったが、後に述べる実施例1の場合や実施例2の場合に比べて炉内全体の排気量の増大効果は小さい。
Further, in Comparative Example 3, only the draft effect was exhausted from the chimney 11 and the suction exhaust gas was exhausted by the suction exhaust gas suction fan 27, but not by the furnace butt exhaust gas suction fan 16. Further, in Comparative Example 3, combustion air was not sent into the furnace body 2 from all the heat storage type switching combustion burners 20.
As can be seen from Table 1, the displacement of the entire furnace according to Comparative Example 1 is 146476 Nm 3 / H, the displacement of the entire furnace according to Comparative Example 3 is 192198 Nm 3 / H, and the cooling time in the furnace is 35.2 Hr. It was shortened. The exhaust gas of the suction exhaust gas by the suction exhaust gas suction fan 27 had the effect of increasing the displacement of the entire furnace, but the displacement of the entire furnace as compared with the case of Example 1 and the case of Example 2 described later. The increasing effect is small.

一方、実施例1及び2では、煙突11からドラフト効果のみの排気、吸引排ガス吸引用ファン27による吸引排ガスの排気、及び炉尻排ガス吸引用ファン16による排気を行った。実施例1では、炉尻排ガス吸引用ファン16による排気量が50000Nm/H、実施例2では、炉尻排ガス吸引用ファン16による排気量が100000Nm/Hである。また、実施例1及び2では、すべての蓄熱式切替燃焼バーナ20から炉体2内に燃焼用空気は送らなかった。 On the other hand, in Examples 1 and 2, only the draft effect was exhausted from the chimney 11, the suction exhaust gas was exhausted by the suction exhaust gas suction fan 27, and the exhaust gas was exhausted by the furnace butt exhaust gas suction fan 16. In the first embodiment, the displacement by the furnace butt exhaust gas suction fan 16 is 50,000 Nm 3 / H, and in the second embodiment, the displacement by the furnace butt exhaust gas suction fan 16 is 100,000 Nm 3 / H. Further, in Examples 1 and 2, combustion air was not sent into the furnace body 2 from all the heat storage type switching combustion burners 20.

表1からわかるように、実施例1による炉内全体の排気量は242198Nm/H、実施例2による炉内全体の排気量は292198Nm/Hであり、比較例1の場合のみならず、比較例3の場合と比べても炉内全体の排気量が増大された。また、実施例1による炉内冷却時間は27.0Hr、実施例2による炉内冷却時間は23.5Hrであり、比較例1の場合のみならず、比較例3の場合と比べても炉内冷却時間が短縮された。
また、通常操業時に発生する排ガスのうち最も下流側の予熱帯3からの炉尻排ガスを保熱ピット17に導入して鋼材Sの予熱を行って鋼材Sの加熱を行う場合(本発明例2)と、通常操業時に発生する排ガスのうち最も下流側の予熱帯3からの炉尻排ガスを排出し、鋼材Sの予熱を行わずに鋼材Sの加熱を行う場合(本発明例1)との比較を行った。その結果を表2に示す。
As can be seen from Table 1, the displacement of the entire furnace according to Example 1 is 242198 Nm 3 / H, and the displacement of the entire furnace according to Example 2 is 292198 Nm 3 / H, not only in the case of Comparative Example 1. The displacement of the entire furnace was increased as compared with the case of Comparative Example 3. Further, the cooling time in the furnace according to Example 1 was 27.0 Hr, and the cooling time in the furnace according to Example 2 was 23.5 Hr. Cooling time has been shortened.
Further, in the case where the furnace tail exhaust gas from the most downstream pre-tropical 3 among the exhaust gas generated during normal operation is introduced into the heat retaining pit 17 to preheat the steel material S and heat the steel material S (Example 2 of the present invention). ), And the case where the furnace butt exhaust gas from the most downstream pre-tropical 3 among the exhaust gas generated during normal operation is discharged and the steel material S is heated without preheating the steel material S (Example 1 of the present invention). A comparison was made. The results are shown in Table 2.

Figure 2021134997
Figure 2021134997

鋼材Sの予熱を行わない本発明例1の場合の鋼材Sの連続式鋼材加熱炉1への装入平均鋼材温度は50.0℃であり、鋼材Sの予熱を行う本発明例2の場合の鋼材Sの連続式鋼材加熱炉1への装入平均鋼材温度は150.0℃であり、保熱ピット17において鋼材Sの予熱を行うことで、鋼材Sの装入平均鋼材温度が上昇した。これにより、燃料原単位が低減することが確認された。 In the case of Example 1 of the present invention in which the steel material S is not preheated, the average temperature of the steel material S charged into the continuous steel material heating furnace 1 is 50.0 ° C., and in the case of Example 2 of the present invention in which the steel material S is preheated. The average temperature of the steel material S charged into the continuous steel material heating furnace 1 was 150.0 ° C., and the average temperature of the steel material S charged increased by preheating the steel material S in the heat retaining pit 17. .. As a result, it was confirmed that the fuel intensity was reduced.

1 連続式鋼材加熱炉
2 炉体
3 予熱帯(燃焼制御帯)
4 第1加熱帯(燃焼制御帯)
5 第2加熱帯(燃焼制御帯)
6 均熱帯(燃焼制御帯)
7a 装入扉
7b 抽出扉
8 煙道
9 炉圧ダンパ
10 冷却装置
11 煙突
12 炉尻排ガス排出装置
13 排ガス排出路
14 排ガス管
15 炉尻排ガス流量調整弁
16 炉尻排ガス吸引用ファン
17 保熱ピット
18 冷却制御部
19 上位計算機
20 蓄熱式切替燃焼バーナ
20a,20b 蓄熱式バーナ
21a,21b 蓄熱体
22a,22b 排ガス切替弁
23a,23b 排ガスヘッダ管
24a 第1排ガス集合管
24b 第2排ガス集合管
25 排ガス集合管
26 吸引排ガス流量調整弁
27 吸引排ガス吸引用ファン
28a,28b 燃焼用空気切替弁
29a,29b 燃焼用空気ヘッダ管
30a,30b 燃焼用空気集合管
31a,31b 燃焼用空気流量調節弁
32a 第1燃焼用空気集合管
32b 第2燃焼用空気集合管
33 燃焼用空気供給本管
34 燃焼用空気ブロワ
S 鋼材
1 Continuous steel heating furnace 2 Furnace 3 Pre-tropical (combustion control zone)
4 First heating zone (combustion control zone)
5 Second heating zone (combustion control zone)
6 Even tropics (combustion control zone)
7a Charge door 7b Extraction door 8 Smokeway 9 Combustion pressure damper 10 Cooling device 11 Chimney 12 Furnace exhaust gas discharge device 13 Exhaust gas discharge path 14 Exhaust pipe 15 Combustion tail exhaust gas flow control valve 16 Furnace exhaust gas suction fan 17 Heat insulation pit 18 Cooling control unit 19 High-end computer 20 Heat storage type switching combustion burner 20a, 20b Heat storage type burner 21a, 21b Heat storage body 22a, 22b Exhaust gas switching valve 23a, 23b Exhaust gas header pipe 24a 1st exhaust gas collecting pipe 24b 2nd exhaust gas collecting pipe 25 Exhaust gas Collecting pipe 26 Suction exhaust gas flow control valve 27 Suction exhaust gas suction fan 28a, 28b Combustion air switching valve 29a, 29b Combustion air header pipe 30a, 30b Combustion air collecting pipe 31a, 31b Combustion air flow control valve 32a 1st Combustion air collecting pipe 32b Second combustion air collecting pipe 33 Combustion air supply main 34 Combustion air blower S Steel material

Claims (4)

炉長方向に沿って複数の燃焼制御帯を有する炉体と、前記複数の燃焼制御帯の各々に設置された複数の燃焼バーナとを備え、該複数の燃焼バーナのすべてを蓄熱式切替燃焼バーナとした連続式鋼材加熱炉の冷却装置であって、
すべての前記蓄熱式切替燃焼バーナからの吸引排ガスを吸引排ガス流量調整弁を介して吸引する吸引排ガス吸引用ファンと、
前記炉体の排ガス流れにおいて最も下流側の燃焼制御帯よりも下流側の位置に設けられた煙道内に設置され、炉圧を調整する炉圧ダンパ及び炉圧ダンパを通過した炉尻排ガスを排出する煙突を備えた炉尻排ガス排出装置と、
前記炉体の排ガス流れにおいて最も下流側の燃焼制御帯よりも下流側の位置に設けられた排ガス排出路に接続され、前記最も下流側の燃焼制御帯からの炉尻排ガスを炉尻排ガス流量調整弁を介して吸引する炉尻排ガス吸引用ファンとを備えていることを特徴とする連続式鋼材加熱炉の冷却装置。
A furnace body having a plurality of combustion control bands along the furnace length direction and a plurality of combustion burners installed in each of the plurality of combustion control bands are provided, and all of the plurality of combustion burners are heat storage type switching combustion burners. It is a cooling device for a continuous steel heating furnace.
A suction exhaust gas suction fan that sucks the suction exhaust gas from all the heat storage type switching combustion burners through the suction exhaust gas flow control valve,
A furnace pressure damper installed in a chimney provided at a position downstream of the combustion control zone on the most downstream side in the exhaust gas flow of the furnace body and a furnace pressure damper that adjusts the furnace pressure and a furnace tail exhaust gas that has passed through the furnace pressure damper are discharged. A fire pit exhaust gas discharge device equipped with a chimney
It is connected to an exhaust gas discharge path provided at a position downstream of the most downstream combustion control zone in the exhaust gas flow of the furnace body, and the furnace butt exhaust gas from the most downstream combustion control zone is adjusted to the furnace butt exhaust gas flow rate. A cooling device for a continuous steel heating furnace, which is provided with a fan for sucking exhaust gas from the furnace butt that sucks through a valve.
前記蓄熱式切替燃焼バーナによる最大燃焼負荷時に発生する排ガス流量をXNm/Hとしたときに、前記吸引排ガス吸引用ファンは、流量が1.0XNm/H以上で温度が300℃以下の吸引排ガスを吸引し、前記煙突は、流量が1.2XNm/H以上でかつ温度が300℃〜500℃の炉尻排ガスを排出し、前記炉尻排ガス吸引用ファンは、流量が0.4XNm/H以上でかつ温度が900℃以下の炉尻排ガスを吸引することを特徴とする請求項1に記載の連続式鋼材加熱炉の冷却装置。 When the exhaust gas flow rate generated at the maximum combustion load by the heat storage type switching combustion burner is XNm 3 / H, the suction exhaust gas suction fan sucks at a flow rate of 1.0 XNm 3 / H or more and a temperature of 300 ° C. or less. The exhaust gas is sucked, the chimney discharges the furnace butt exhaust gas having a flow rate of 1.2 XNm 3 / H or more and a temperature of 300 ° C. to 500 ° C., and the furnace butt exhaust gas suction fan has a flow rate of 0.4 XNm 3 The cooling device for a continuous steel heating furnace according to claim 1, wherein the exhaust gas from the furnace bottom having a temperature of / H or more and a temperature of 900 ° C. or less is sucked. 前記炉尻排ガス吸引用ファンで吸引された炉尻排ガスが導入される保熱ピットを備えていることを特徴とする請求項1又は2に記載の連続式鋼材加熱炉の冷却装置。 The cooling device for a continuous steel heating furnace according to claim 1 or 2, further comprising a heat retaining pit into which the furnace butt exhaust gas sucked by the furnace butt exhaust gas suction fan is introduced. 請求項1乃至3のうちいずれか一項に記載の連続式鋼材加熱炉の冷却装置を用いて連続式鋼材加熱炉の炉体内の冷却を行う連続式鋼材加熱炉の冷却方法であって、
前記炉体内の冷却を行う際に、装入扉及び抽出扉を全開にした状態で、前記吸引排ガス流量調整弁の弁開度を全開にして前記吸引排ガス吸引用ファンを駆動することによって前記吸引排ガスを吸引して排出し、前記炉圧ダンパを全開にして前記炉圧ダンパを通過した空気を前記煙突から排出し、前記炉尻排ガス流量調整弁の弁開度を全開にして前記炉尻排ガス吸引用ファンを駆動するによって最も下流側の燃焼制御帯からの空気を吸引して排出することを特徴とする連続式鋼材加熱炉の冷却方法。
A cooling method for a continuous steel heating furnace in which the inside of the continuous steel heating furnace is cooled by using the cooling device for the continuous steel heating furnace according to any one of claims 1 to 3.
When cooling the inside of the furnace, the suction is performed by driving the suction exhaust gas suction fan by fully opening the valve opening of the suction exhaust gas flow rate adjusting valve while the charging door and the extraction door are fully opened. The exhaust gas is sucked and discharged, the furnace pressure damper is fully opened, the air that has passed through the furnace pressure damper is discharged from the chimney, the valve opening of the furnace tail exhaust gas flow control valve is fully opened, and the furnace tail exhaust gas is discharged. A cooling method for a continuous steel heating furnace, which comprises sucking and discharging air from the most downstream combustion control zone by driving a suction fan.
JP2020031791A 2020-02-27 2020-02-27 Cooling device and cooling method for continuous steel heating furnace Active JP7136145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020031791A JP7136145B2 (en) 2020-02-27 2020-02-27 Cooling device and cooling method for continuous steel heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020031791A JP7136145B2 (en) 2020-02-27 2020-02-27 Cooling device and cooling method for continuous steel heating furnace

Publications (2)

Publication Number Publication Date
JP2021134997A true JP2021134997A (en) 2021-09-13
JP7136145B2 JP7136145B2 (en) 2022-09-13

Family

ID=77660823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020031791A Active JP7136145B2 (en) 2020-02-27 2020-02-27 Cooling device and cooling method for continuous steel heating furnace

Country Status (1)

Country Link
JP (1) JP7136145B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323432A (en) * 1998-05-14 1999-11-26 Nkk Corp Heating furnace device
JP2007051844A (en) * 2005-08-19 2007-03-01 Sanken Sangyo Co Ltd Device and method for cooling vertical furnace for steel
JP2011196615A (en) * 2010-03-19 2011-10-06 Jfe Steel Corp Waste heat recovery equipment of heating furnace, and method of utilizing waste heat
WO2017163624A1 (en) * 2016-03-24 2017-09-28 日本碍子株式会社 Industrial furnace and method of utilizing heat therefrom
JP2018031528A (en) * 2016-08-25 2018-03-01 中外炉工業株式会社 Cooling device for heating furnace

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323432A (en) * 1998-05-14 1999-11-26 Nkk Corp Heating furnace device
JP2007051844A (en) * 2005-08-19 2007-03-01 Sanken Sangyo Co Ltd Device and method for cooling vertical furnace for steel
JP2011196615A (en) * 2010-03-19 2011-10-06 Jfe Steel Corp Waste heat recovery equipment of heating furnace, and method of utilizing waste heat
WO2017163624A1 (en) * 2016-03-24 2017-09-28 日本碍子株式会社 Industrial furnace and method of utilizing heat therefrom
JP2018031528A (en) * 2016-08-25 2018-03-01 中外炉工業株式会社 Cooling device for heating furnace

Also Published As

Publication number Publication date
JP7136145B2 (en) 2022-09-13

Similar Documents

Publication Publication Date Title
CN105238901B (en) A kind of multiduty hot-blast stove high temperature preheating system
JP2021134997A (en) Cooling device and cooling method for continuous type steel heating furnace
US2849221A (en) Heat treating furnace
CN210481468U (en) Chain grate machine concurrent heating system that is fit for iron ore concentrate production
EP3431909B1 (en) Sintering apparatus and sintering method
JP2005226157A (en) Method and device for controlling furnace temperature of continuous annealing furnace
US2514084A (en) Apparatus for supplying heated air to blast furnaces and the like
JP7115995B2 (en) Furnace pressure control method for continuous heating furnace, furnace pressure control device, and continuous heating furnace
JP4405944B2 (en) Regenerative burner installation furnace
JP2002213879A (en) Atmosphere control method for heating furnace, and the heating furnace
US11920786B2 (en) Regenerative burner, industrial furnace and method for producing a fired article
JP2001343104A (en) Heating equipment and method for operating heating furnace
CN205077087U (en) Hot -blast furnace high temperature preheating system of multipurpose
CN207299907U (en) Uprush refractory material burns till tunnel oven
KR102012099B1 (en) Hot air suppling device for furnace
KR101022455B1 (en) Apparatus for Controlling Surface Layer Temperature of Sintered Ore Using Waste Heat of Exhaust Gas from Boiler and Method for Controlling the Same
JPH0987750A (en) Method and device for heating strip
JP4839921B2 (en) Cooling method for hot stove
CN113883899B (en) Energy-saving rolling waiting method for double-heat accumulating type heating furnace
CN217585287U (en) Tilting-type crucible furnace
CN206858607U (en) A kind of annealing treatment equipment
CN208687769U (en) A kind of burnt gas reverberatory furnace
JPH09209032A (en) Method for controlling optimum furnace pressure in heating furnace
JPH06228620A (en) Method for controlling combustion in hot air stove
JPH10102151A (en) Continuous heat treatment apparatus of metal strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220815

R150 Certificate of patent or registration of utility model

Ref document number: 7136145

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150