JP2021134374A - Fe BASE AMORPHOUS ALLOY AND METHOD FOR PRODUCING THE SAME - Google Patents

Fe BASE AMORPHOUS ALLOY AND METHOD FOR PRODUCING THE SAME Download PDF

Info

Publication number
JP2021134374A
JP2021134374A JP2020029290A JP2020029290A JP2021134374A JP 2021134374 A JP2021134374 A JP 2021134374A JP 2020029290 A JP2020029290 A JP 2020029290A JP 2020029290 A JP2020029290 A JP 2020029290A JP 2021134374 A JP2021134374 A JP 2021134374A
Authority
JP
Japan
Prior art keywords
alloy
amorphous
flux density
magnetic flux
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020029290A
Other languages
Japanese (ja)
Inventor
祐也 冨田
Yuya Tomita
祐也 冨田
誉将 佐藤
Yoshimasa Sato
誉将 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2020029290A priority Critical patent/JP2021134374A/en
Publication of JP2021134374A publication Critical patent/JP2021134374A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide an Fe base amorphous alloy that has, even though it is an amorphous phase alone, a high saturation magnetic flux density and a low coercive magnetic force, and is excellent in producibility, and to provide a method for producing the same.SOLUTION: Provided is an Fe base amorphous alloy, which is an amorphous single-phase alloy that contains as, in atom %, Si: 1 to 5%, B: 5.5 to 13%, C: 1 to 7%, P: 0.1 to 4% to Fe, where Si+B+C<15.0%, together with unavoidable impurities, and in which, characterized, Fe is 82 to 85%, the saturation magnetic flux density Bs is larger than 1.60 [T], and the coercive force Hc is less than 10 [A/m]. Said alloy is produced by controlling quick chilling solidification.SELECTED DRAWING: None

Description

本発明は、高い飽和磁束密度と低い保磁力とを具備するFe基アモルファス合金及びその製造方法に関する。 The present invention relates to an Fe-based amorphous alloy having a high saturation magnetic flux density and a low coercive force, and a method for producing the same.

車載リアクトルの如き電子部品に用いられる軟磁性合金において、近年、使用される周波数帯域の高周波数側への移行傾向から、高い飽和磁束密度と低い保磁力とを具備することが求められている。ここで、強磁性体の結晶粒径を所定以下に小さくして結晶磁気異方性を平均化し、保磁力を低くできることが知られている。そこで、アモルファス(非晶質)化させた軟磁性合金を熱処理して微細な結晶粒子をアモルファス相中に分散させて低い保磁力を得るとともに、高い透磁率や低い鉄損などの軟磁気特性を具備する軟磁性合金を得る方法が提案されている。 In recent years, soft magnetic alloys used for electronic components such as in-vehicle reactors are required to have a high saturation magnetic flux density and a low coercive force due to the tendency of the frequency band used to shift to the high frequency side. Here, it is known that the crystal grain size of a ferromagnet can be reduced to a predetermined value or less to average the magnetocrystalline anisotropy and reduce the coercive force. Therefore, the amorphous soft magnetic alloy is heat-treated to disperse fine crystal particles in the amorphous phase to obtain a low coercive force, and to obtain soft magnetic properties such as high magnetic permeability and low iron loss. A method for obtaining a soft magnetic alloy to be provided has been proposed.

例えば、特許文献1では、アモルファス素地に微細なα−Fe結晶粒子を晶出させたFe−Si系軟磁性合金が開示されている。かかる合金は、Fe100−a−b−c−dSiCu(但し、a,b,c,dは原子%、1%≦a≦3%、9%≦b≦14%、1%≦c≦4%、0.3%≦d≦1.5%および80%≦100−a−b−c−d≦86%)で表され、急冷凝固により得られたアモルファス合金を熱処理し、ナノサイズの粒子径のα−Fe結晶粒子を晶出させるとしている。ここでは、Fe−Si系合金にBやCなどの半金属元素とともにCuを添加するとしているが、Fe濃度が86at%を超えると、単ロール法により均質なアモルファス急冷薄帯を得ることができないと述べている。 For example, Patent Document 1 discloses an Fe—Si-based soft magnetic alloy in which fine α—Fe crystal particles are crystallized on an amorphous substrate. Such alloys are Fe 100-a-bc-d Si a B b C c Cu d (where a, b, c, d are atomic%, 1% ≤ a ≤ 3%, 9% ≤ b ≤ 14 % 1% ≤ c ≤ 4%, 0.3% ≤ d ≤ 1.5% and 80% ≤ 100-ab-c-d ≤ 86%), and an amorphous alloy obtained by quenching solidification. Is heat-treated to crystallize α-Fe crystal particles having a nano-sized particle size. Here, Cu is added to the Fe—Si alloy together with metalloid elements such as B and C, but if the Fe concentration exceeds 86 at%, a homogeneous amorphous quenching thin band cannot be obtained by the single roll method. It has said.

また、特許文献2では、アモルファス素地に微細なα−Fe結晶粒子を熱処理にて晶出させたFe基軟磁性合金が開示されている。かかる合金は、一般的に、常磁性合金を与えるとされるNi,Co及び希土類金属をFeに添加するとともに、各種添加元素を与えた合金組成を有するとしているが、軟磁性合金全体に対するFeの含有量が70原子%以上とすべきことを述べている。また、このような二相合金は、アモルファス単相からなる合金と比較して飽和磁束密度が高くなり、保磁力が低くなる、ともしている。 Further, Patent Document 2 discloses an Fe-based soft magnetic alloy in which fine α-Fe crystal particles are crystallized by heat treatment on an amorphous substrate. It is generally said that such an alloy has an alloy composition in which Ni, Co and a rare earth metal, which are said to give a normal magnetic alloy, are added to Fe and various additive elements are added to Fe. It states that the content should be 70 atomic% or more. It is also said that such a two-phase alloy has a higher saturation magnetic flux density and a lower coercive force than an alloy composed of an amorphous single phase.

特開2016−94651号公報Japanese Unexamined Patent Publication No. 2016-94651 特開2016−148004号公報Japanese Unexamined Patent Publication No. 2016-148004

上記したように、Fe基軟磁性合金において、アモルファス素地に熱処理により微細なα−Fe結晶粒子を分散させることで、高い飽和磁束密度と低い保磁力を得られるとされる。一方で、微細なα−Fe結晶粒子の分散のためには熱処理工程が必要となり、最適な分散状態を得るための熱処理条件の制御が難しく、製造工程に制約が生じてしまう。 As described above, in the Fe-based soft magnetic alloy, it is said that a high saturation magnetic flux density and a low coercive force can be obtained by dispersing fine α-Fe crystal particles in an amorphous base by heat treatment. On the other hand, a heat treatment step is required for the dispersion of fine α-Fe crystal particles, it is difficult to control the heat treatment conditions for obtaining the optimum dispersion state, and the manufacturing process is restricted.

本発明は、以上のような状況に鑑みてなされたものであって、その目的とするところは、アモルファス相単体でありながら高い飽和磁束密度と低い保磁力とを具備し、製造性に優れたFe基アモルファス合金及びその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object of the present invention is that it has a high saturation magnetic flux density and a low coercive force even though it is an amorphous phase alone, and is excellent in manufacturability. An object of the present invention is to provide an Fe-based amorphous alloy and a method for producing the same.

本発明によるFe基アモルファス合金は、Feに、原子%で、Si:1〜5%、B:5.5〜13%、C:1〜7%、P:0.1〜4%、但し、Si+B+C<15.0%、として不可避的不純物とともに含むアモルファス単相の合金のうち、Feが82〜85%であり、飽和磁束密度Bsが1.60[T]よりも大きく、保磁力Hcが10[A/m]よりも小さいことを特徴とする。 The Fe-based amorphous alloy according to the present invention contains Fe in atomic%, Si: 1 to 5%, B: 5.5 to 13%, C: 1 to 7%, P: 0.1 to 4%, however. Among the amorphous single-phase alloys containing Si + B + C <15.0% with unavoidable impurities, Fe is 82 to 85%, the saturation magnetic flux density Bs is larger than 1.60 [T], and the coercive force Hc is 10. It is characterized in that it is smaller than [A / m].

かかる特徴によれば、Fe量を抑制することなく実質的にアモルファス単相でありながら、高い飽和磁束密度と低い保磁力とを具備し、製造性にも優れるのである。 According to such a feature, it has a high saturation magnetic flux density and a low coercive force while being substantially an amorphous single phase without suppressing the amount of Fe, and is excellent in manufacturability.

上記した発明において、Si:1〜2%、B:10〜13%、C:1〜2%、であることを特徴としてもよい。かかる特徴によれば、実質的にアモルファス単相でありながら、より高い飽和磁束密度とより低い保磁力とを具備するFe基アモルファス合金を高い製造性を持って得られるのである。 The invention described above may be characterized in that Si: 1 to 2%, B: 10 to 13%, and C: 1 to 2%. According to such a feature, an Fe-based amorphous alloy having a higher saturation magnetic flux density and a lower coercive force can be obtained with high manufacturability while being substantially an amorphous single phase.

上記した発明において、原子%で、Cuを0.3%以下で含むことを特徴としてもよい。かかる特徴によれば、アモルファス形成能及び飽和磁束密度や保磁力に影響を与えずに、Cuの含有を許容するのである。 The invention described above may be characterized in that it contains Cu in an atomic% content of 0.3% or less. According to such a feature, the inclusion of Cu is allowed without affecting the amorphous forming ability, the saturation magnetic flux density and the coercive force.

上記した発明において、98%以上のアモルファス化率を有することを特徴としてもよい。かかる特徴によれば、結晶相を実質的に含むことなく、高い飽和磁束密度と低い保磁力とを維持し、結晶相の制御を必要とせず、製造性にも優れるのである。 The invention described above may be characterized by having an amorphization rate of 98% or more. According to such a feature, it maintains a high saturation magnetic flux density and a low coercive force without substantially containing a crystal phase, does not require control of the crystal phase, and is excellent in manufacturability.

本発明のFe基アモルファス合金の製造方法は、Feに、原子%で、Si:1〜5%、B:5.5〜13%、C:1〜7%、P:0.1〜4%、但し、Si+B+C<15.0%、として不可避的不純物とともに含む母合金を溶解し、アモルファス単相で、Feが82〜85%であり、飽和磁束密度Bsが1.60[T]よりも大きく、保磁力Hcが10[A/m]よりも小さくなるように、前記母合金を急冷凝固することを特徴とする。 The method for producing an Fe-based amorphous alloy of the present invention is to add Fe to Fe in atomic%, Si: 1 to 5%, B: 5.5 to 13%, C: 1 to 7%, P: 0.1 to 4%. However, the mother alloy contained with unavoidable impurities is dissolved as Si + B + C <15.0%, and it is an amorphous single phase, Fe is 82 to 85%, and the saturation magnetic flux density Bs is larger than 1.60 [T]. The mother alloy is rapidly cooled and solidified so that the coercive force Hc becomes smaller than 10 [A / m].

かかる特徴によれば、Fe量を抑制することなく実質的にアモルファス単相でありながら、高い飽和磁束密度と低い保磁力とを具備しFe基アモルファス合金を高い製造性を持って得られるのである。 According to these characteristics, an Fe-based amorphous alloy can be obtained with high manufacturability by having a high saturation magnetic flux density and a low coercive force while being substantially an amorphous single phase without suppressing the amount of Fe. ..

上記した特徴において、Si:1〜2%、B:10〜13%、C:1〜2%であることを特徴としてもよい。かかる特徴によれば、Fe量を抑制することなく実質的にアモルファス単相とできて、より高い飽和磁束密度とより低い保磁力とを具備するFe基アモルファス合金を高い製造性を持って得られるのである。 The above-mentioned characteristics may be characterized in that Si: 1 to 2%, B: 10 to 13%, and C: 1 to 2%. According to such a feature, an amorphous single phase can be substantially formed without suppressing the amount of Fe, and an Fe-based amorphous alloy having a higher saturation magnetic flux density and a lower coercive force can be obtained with high manufacturability. It is.

上記した発明において、前記母合金は、原子%で、Cuを0.3%以下で含むことを特徴としてもよい。かかる特徴によれば、アモルファス形成能及び飽和磁束密度や保磁力に影響を与えずに、Cuの含有を許容するのである。 In the above invention, the mother alloy may be characterized by containing Cu in 0.3% or less in atomic%. According to such a feature, the inclusion of Cu is allowed without affecting the amorphous forming ability, the saturation magnetic flux density and the coercive force.

上記した発明において、98%以上のアモルファス化率を与えるように急冷凝固することを特徴としてもよい。かかる特徴によれば、結晶相を実質的に含むことなく、高い飽和磁束密度と低い保磁力とを具備するFe基アモルファス合金を高い製造性を持って得られるのである。 The above invention may be characterized by quenching and solidifying so as to give an amorphization rate of 98% or more. According to such a feature, an Fe-based amorphous alloy having a high saturation magnetic flux density and a low coercive force can be obtained with high manufacturability without substantially containing a crystal phase.

本発明によるFe基アモルファス合金の製造方法を示すフロー図である。It is a flow chart which shows the manufacturing method of the Fe-based amorphous alloy by this invention. 製造試験に用いた合金の成分組成及び得られた合金リボンの特性の一覧表である。It is a list of the composition of the alloy used in the manufacturing test and the characteristics of the obtained alloy ribbon. 追加製造試験に用いた合金の成分組成及び得られた合金リボンの特性の一覧表である。It is a list of the composition of the alloy used in the additional manufacturing test and the characteristics of the obtained alloy ribbon.

本発明による1つの実施例としてのFe基アモルファス合金の製造方法について、図1に沿って説明する。 A method for producing an Fe-based amorphous alloy as an example according to the present invention will be described with reference to FIG.

図1に示すように、まず、Fe基アモルファス合金の母合金としてFe−Si系軟磁性合金を溶解(S1)する。ここで、母合金としては、Feに、原子%で、Si:1〜5%、B:5.5〜13%、C:1〜7%、P:0.1〜4%、但し、Si+B+C<15.0%として含む成分組成を有する合金を用いる。 As shown in FIG. 1, first, a Fe—Si-based soft magnetic alloy is melted (S1) as a mother alloy of an Fe-based amorphous alloy. Here, as the mother alloy, Fe has an atomic% of Si: 1 to 5%, B: 5.5 to 13%, C: 1 to 7%, P: 0.1 to 4%, except that Si + B + C. An alloy having a component composition containing <15.0% is used.

このような成分組成の合金においては、比較的多くFeを含有させることによって、得られるFe基アモルファス合金の飽和磁束密度を高め得る。しかし、Feの含有量を大きくし過ぎるとアモルファス形成能を低下させる。そこで、上記に加えて、得られるアモルファス単相の合金においてFeの含有量を82〜85原子%の範囲内とするようにした。その上で、アモルファス形成能を高くし得るようSi−B−C組成について検討し、上記したようにSi+B+C<15.0%としたのである。その結果、アモルファス形成能の低下を抑制しながらFeを比較的多く含有させることを可能とし、高い飽和磁束密度を得ることを可能とした。 In an alloy having such a component composition, the saturation magnetic flux density of the obtained Fe-based amorphous alloy can be increased by containing a relatively large amount of Fe. However, if the Fe content is too large, the amorphous forming ability is lowered. Therefore, in addition to the above, the Fe content in the obtained amorphous single-phase alloy was set to be in the range of 82 to 85 atomic%. Then, the Si-BC composition was examined so as to increase the amorphous forming ability, and Si + B + C <15.0% was set as described above. As a result, it is possible to contain a relatively large amount of Fe while suppressing a decrease in the amorphous forming ability, and it is possible to obtain a high saturation magnetic flux density.

なお、母合金には、Cuを0.3原子%以下で含有させることもできる。非磁性材料であるCuを少量含有させても得られるFe基アモルファス合金の磁性には影響を与えない。 The mother alloy may contain Cu in an amount of 0.3 atomic% or less. Even if a small amount of Cu, which is a non-magnetic material, is contained, the magnetism of the obtained Fe-based amorphous alloy is not affected.

次に、溶解した母合金を急冷凝固させる(S2)。急冷凝固には、例えば単ロール法を用いることができる。単ロール法では、高速回転する銅製の冷却ロールの表面に母合金の溶湯を抽出しつつ冷却ロールの表面で急冷凝固させる。このような急冷凝固によってアモルファス単相の薄体からなる合金リボンを得ることができる。ここで、冷却ロールの周速は20〜30m/sの範囲内として溶湯を急冷することが好ましく、これによって合金リボンをアモルファス単相とし得る。ここで、アモルファス単相とは、アモルファス化率が98%以上のものを言う。 Next, the melted mother alloy is rapidly cooled and solidified (S2). For quenching solidification, for example, a single roll method can be used. In the single roll method, the molten metal of the mother alloy is extracted on the surface of the copper cooling roll that rotates at high speed and rapidly cooled and solidified on the surface of the cooling roll. By such quench solidification, an alloy ribbon made of an amorphous single-phase thin body can be obtained. Here, the peripheral speed of the cooling roll is preferably in the range of 20 to 30 m / s, and the molten metal is preferably rapidly cooled, whereby the alloy ribbon can be made into an amorphous single phase. Here, the amorphous single phase means that the amorphous ratio is 98% or more.

このようにして得た合金リボンは、アモルファス単相であるため結晶磁気異方性を持たず、低い保磁力を有する。実質的に結晶相を含まないアモルファス単相とすることで、結晶相の制御を必要とせず、結果として製造性にも優れる。加えて、Feの含有量を82原子%以上と比較的多くすることで、高い飽和磁束密度を有し得る。具体的には、軟磁気特性として保磁力Hcを10[A/m]よりも小さくでき、飽和磁束密度Bsを1.60[T]よりも大きくすることができた。 Since the alloy ribbon thus obtained has an amorphous single phase, it does not have magnetocrystalline anisotropy and has a low coercive force. By using an amorphous single phase that does not substantially contain a crystal phase, it is not necessary to control the crystal phase, and as a result, the manufacturability is excellent. In addition, a high saturation magnetic flux density can be obtained by relatively increasing the Fe content to 82 atomic% or more. Specifically, as a soft magnetic property, the coercive force Hc could be made smaller than 10 [A / m], and the saturation magnetic flux density Bs could be made larger than 1.60 [T].

なお、上記した母合金の成分組成のうち、Si、B及びCとしては、Si:1〜2%、B:10〜13%、C:1〜2%、とすることも好ましい。このような成分組成であれば、より高い飽和磁束密度とより低い保磁力とを具備するFe基アモルファス合金を得ることができる。 Of the constituent compositions of the mother alloy described above, Si, B and C are preferably Si: 1 to 2%, B: 10 to 13%, and C: 1 to 2%. With such a component composition, an Fe-based amorphous alloy having a higher saturation magnetic flux density and a lower coercive force can be obtained.

[製造試験]
次に、Fe基アモルファス合金を実際に製造し、試験した結果について、図2及び図3を用いて説明する。
[Manufacturing test]
Next, the results of actually producing and testing the Fe-based amorphous alloy will be described with reference to FIGS. 2 and 3.

(1)Fe基アモルファス合金の製造
まず図2に示すような各成分組成の合金を溶解し、単ロール法を用いて急冷凝固させることでFe基アモルファス合金として合金リボンを製造した。
(1) Production of Fe-based Amorphous Alloy First, an alloy ribbon having an Fe-based amorphous alloy was produced by melting an alloy having each component composition as shown in FIG. 2 and quenching and solidifying it using a single roll method.

(2)軟磁気特性の測定
製造した合金リボンについて、軟磁気特性として飽和磁束密度Bs及び保磁力Hcを測定した。なお、飽和磁束密度Bsについては振動試料型磁力計を用い、保磁力HcについてはHcメータ(保磁力計)を用いてそれぞれ測定した。
(2) Measurement of soft magnetic characteristics The saturated magnetic flux density Bs and coercive force Hc were measured as soft magnetic characteristics of the manufactured alloy ribbon. The saturation magnetic flux density Bs was measured using a vibrating sample magnetometer, and the coercive force Hc was measured using an Hc meter (coercive force meter).

(3)結晶化率の測定
製造した合金リボンについて、さらに結晶化率について調査した。結晶化率については、XRDパターンにより算出した。詳細には、回折角20°<2θ<120°の範囲での全積分強度Iに対する結晶性ピーク(半値幅<5°)の面積強度Iの比率で算出した。つまり、結晶化率(%)=I/I×100である。ここで、アモルファス化率は(100−結晶化率)%であり、評価には測定値である結晶化率を用いた。
(3) Measurement of crystallization rate The crystallization rate of the manufactured alloy ribbon was further investigated. The crystallization rate was calculated by the XRD pattern. Specifically, it was calculated by the ratio of the integrated intensity I C of the crystalline peaks to the total integrated intensity I T in the range of diffraction angle 20 ° <2θ <120 ° (half width <5 °). That is, the crystallization ratio (%) = a I C / I T × 100. Here, the amorphization rate was (100-crystallization rate)%, and the crystallization rate, which was a measured value, was used for the evaluation.

(4)評価
製造した合金リボンについて、軟磁気特性及び結晶化率により評価した。軟磁気特性として飽和磁束密度Bsは、1.60[T]より大きいものを良好と評価した。保磁力Hcは、10[A/m]より小さいものを良好と評価した。また、結晶化率は、2%以下のものを、実質的にアモルファス単相とできているものとして、良好と評価した。
(4) Evaluation The manufactured alloy ribbon was evaluated based on its soft magnetic properties and crystallization rate. As the soft magnetic characteristics, those having a saturation magnetic flux density Bs larger than 1.60 [T] were evaluated as good. The coercive force Hc smaller than 10 [A / m] was evaluated as good. Further, the crystallization rate of 2% or less was evaluated as good as it was substantially formed as an amorphous single phase.

(5)試験結果
図2に示すように、実施例1〜9は飽和磁束密度Bs、保磁力Hc及び結晶化率はいずれも良好との評価を得た。
(5) Test Results As shown in FIG. 2, Examples 1 to 9 were evaluated to have good saturation magnetic flux density Bs, coercive force Hc, and crystallization rate.

一方、比較例1については、結晶化率が3.0%に達し、保磁力Hcが15.5[A/m]と大きい値を示した。これはFeの含有量が85.5原子%と比較的多く、合金溶湯の急冷凝固における結晶化を促進されたためと考えられた。 On the other hand, in Comparative Example 1, the crystallization rate reached 3.0% and the coercive force Hc showed a large value of 15.5 [A / m]. It is considered that this is because the Fe content was relatively high at 85.5 atomic%, and the crystallization of the molten alloy was promoted in the rapid solidification.

比較例2ついては、結晶化率が65%と大きく、保磁力Hcが2500[A/m]を超えた。Siはアモルファス形成を担う元素ではあるが、10.8原子%と過剰に含有させたため、却ってアモルファス形成能を低下させてしまったためだと考えられた。 In Comparative Example 2, the crystallization rate was as large as 65%, and the coercive force Hc exceeded 2500 [A / m]. Although Si is an element responsible for forming an amorphous substance, it is considered that Si is contained in an excessive amount of 10.8 atomic%, which rather reduces the ability to form an amorphous substance.

比較例3については、結晶化率が3.1%と大きく、保磁力Hcが15.0[A/m]と大きな値となった。Cはアモルファス形成を担う元素ではあるが、10.8原子%と多く含有させたため、アモルファス相からの結晶化温度を低下させて結晶粒の晶出を誘引し、結果的にアモルファス形成能を低下させてしまったためだと考えられた。 In Comparative Example 3, the crystallization rate was as large as 3.1%, and the coercive force Hc was as large as 15.0 [A / m]. Although C is an element responsible for amorphous formation, since it is contained as much as 10.8 atomic%, the crystallization temperature from the amorphous phase is lowered to induce crystallization of crystal grains, and as a result, the amorphous forming ability is lowered. It was thought that it was because I let him do it.

比較例4については、結晶化率が31.1%と大きく、保磁力Hcが2500[A/m]を超えた。Cの含有量が少なく、アモルファス形成能を低下させてしまったためだと考えられた。 In Comparative Example 4, the crystallization rate was as large as 31.1%, and the coercive force Hc exceeded 2500 [A / m]. It was considered that this was because the content of C was low and the amorphous forming ability was lowered.

比較例5については、飽和磁束密度Bsが1.55[T]と小さい値となった。Si、B及びCの含有量の合計(Si+B+C)が15.0原子%を超えて15.3原子%となったため、結果としてFeの含有量が80.7原子%と少なくなった。その結果、飽和磁束密度を低下させたものと考えられた。 In Comparative Example 5, the saturation magnetic flux density Bs was as small as 1.55 [T]. Since the total content of Si, B and C (Si + B + C) exceeded 15.0 atomic% to 15.3 atomic%, the Fe content was reduced to 80.7 atomic% as a result. As a result, it was considered that the saturation magnetic flux density was lowered.

[追加製造試験]
ところで、上記したように、合金リボンを製造する過程にて単ロール法を用いることがある。単ロール法では銅製の冷却ロールで溶湯を急冷凝固させて薄体を得るため、合金リボンにCuを含有することがある。そこで、追加試験として合金にCuが含有された場合について調査した結果を図3で示す。なお、追加試験においても上記した製造試験と同様に合金リボンを得て同様に評価した。
[Additional manufacturing test]
By the way, as described above, the single roll method may be used in the process of manufacturing the alloy ribbon. In the single roll method, the molten metal is rapidly cooled and solidified with a copper cooling roll to obtain a thin body, so that Cu may be contained in the alloy ribbon. Therefore, as an additional test, the result of investigating the case where Cu is contained in the alloy is shown in FIG. In the additional test, an alloy ribbon was obtained and evaluated in the same manner as in the above-mentioned manufacturing test.

図3に示すように、合金中にCuが含有されていない実施例10は、飽和磁束密度Bs、保磁力Hc及び結晶化率はいずれも良好との評価を得た。実施例11では、Cuを0.3原子%含有させたが、飽和磁束密度Bs、保磁力Hc及び結晶化率は実施例10と同等であり、良好との評価が得られた。これに対し、比較例6では、Cuを0.7原子%含有させたが、飽和磁束密度Bsが1.59[T]と小さい値となった。これはCuを過剰に含有させたため、結果としてFeの含有量を減少させて、飽和磁束密度を低下させたと考えられた。つまり、Cuは過剰に含有させることはできないが、0.3原子%以下の含有量であれば上記した判定に何ら影響を与えないことが判った。 As shown in FIG. 3, in Example 10 in which Cu was not contained in the alloy, the saturation magnetic flux density Bs, the coercive force Hc, and the crystallization rate were all evaluated to be good. In Example 11, Cu was contained in an amount of 0.3 atomic%, but the saturation magnetic flux density Bs, coercive force Hc, and crystallization rate were the same as those in Example 10, and it was evaluated as good. On the other hand, in Comparative Example 6, although 0.7 atomic% of Cu was contained, the saturation magnetic flux density Bs was as small as 1.59 [T]. It is considered that this is because Cu was excessively contained, and as a result, the Fe content was reduced and the saturation magnetic flux density was lowered. That is, it was found that Cu cannot be contained in an excessive amount, but if the content is 0.3 atomic% or less, it does not affect the above determination at all.

ところで、上記した実施例を含むFe基アモルファス合金とほぼ同等の軟磁気特性を与え得るFe基合金の組成範囲は以下のように定められる。 By the way, the composition range of the Fe-based alloy that can give almost the same soft magnetic properties as the Fe-based amorphous alloy including the above-mentioned examples is defined as follows.

Si、B、Cは、アモルファス形成元素であり、相互に協働して合金リボンにアモルファスを形成させる。他方、Siを過剰に含有させると、却ってアモルファス形成能を低下させ、得られるFe基アモルファス合金の飽和磁束密度を低下させる。Bを過剰に含有させると結晶磁気異方性の高いFeBやFeBなどの化合物相を析出させ、またコスト増を招く。Cを過剰に含有させるとアモルファス相からの結晶化温度を低下させて結晶粒の晶出を誘引する。これらと、それぞれの元素の含有量のバランスを考慮して以下のように含有量を定めた。すなわち、Siは、原子%で、1〜5%の範囲内、好ましくは1〜2%の範囲内である。また、Bは、原子%で、5.5〜13%の範囲内、好ましくは10〜13%の範囲内である。また、Cは、原子%で、1〜7%の範囲内、好ましくは1〜2%の範囲内である。但し、Feの含有量を確保するため、Si+B+C<15.0原子%である。 Si, B, and C are amorphous forming elements, and cooperate with each other to form an amorphous material on the alloy ribbon. On the other hand, if Si is excessively contained, the amorphous forming ability is rather lowered, and the saturation magnetic flux density of the obtained Fe-based amorphous alloy is lowered. If B is excessively contained, a compound phase such as Fe 3 B or Fe 2 B having high magnetocrystalline anisotropy is precipitated, and the cost is increased. When C is excessively contained, the crystallization temperature from the amorphous phase is lowered and the crystallization of crystal grains is induced. The content was determined as follows in consideration of the balance between these and the content of each element. That is, Si is in the range of 1 to 5%, preferably in the range of 1 to 2%, in terms of atomic%. Further, B is atomic% in the range of 5.5 to 13%, preferably in the range of 10 to 13%. Further, C is an atomic% in the range of 1 to 7%, preferably in the range of 1 to 2%. However, in order to secure the Fe content, Si + B + C <15.0 atomic%.

Pは、アモルファス形成元素であり、他のアモルファス形成元素との相互作用はあまりないものの、単独の含有量増加でアモルファス形成能を高め得る。他方、Pを過剰に含有させると得られるFe基アモルファス合金の飽和磁束密度を低下させる。これらを考慮して、Pは、原子%で、0.1〜4%の範囲内である。 P is an amorphous element, and although there is not much interaction with other amorphous elements, the amorphous forming ability can be enhanced by increasing the content of P alone. On the other hand, if P is excessively contained, the saturation magnetic flux density of the obtained Fe-based amorphous alloy is lowered. In consideration of these, P is in the range of 0.1 to 4% in atomic%.

Cuは、非磁性材料であり、微量の含有であれば、得られるFe基アモルファス合金の軟磁気特性に影響を与えない。他方、過剰に含有させると、結果としてFeの含有量を低下させ、飽和磁束密度の低下につながる。これらを考慮して、Cuは、原子%で0.3%以下で含有させ得る。 Cu is a non-magnetic material, and if it is contained in a small amount, it does not affect the soft magnetic properties of the obtained Fe-based amorphous alloy. On the other hand, if it is excessively contained, the Fe content is lowered as a result, leading to a decrease in the saturation magnetic flux density. In consideration of these, Cu can be contained in an atomic% of 0.3% or less.

Feは、主成分となる元素であり上記した元素に対して残部として含有され、飽和磁束密度を高めることができる。他方、過剰に含有させるとアモルファス単相とすることが難しくなる。これらを考慮して、Feは、原子%で、82〜85%の範囲内である。 Fe is an element that is a main component and is contained as a balance with respect to the above-mentioned element, and the saturation magnetic flux density can be increased. On the other hand, if it is contained in an excessive amount, it becomes difficult to obtain an amorphous single phase. In consideration of these, Fe is in the range of 82 to 85% in atomic%.

以上、本発明の代表的な実施例を説明したが、本発明は必ずしもこれらに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、種々の代替実施例及び改変例を見出すことができるであろう。例えば、本発明によるFe基アモルファス合金は粉砕された粉末材料であってもよい。 Although typical examples of the present invention have been described above, the present invention is not necessarily limited thereto, and those skilled in the art will not deviate from the gist of the present invention or the scope of the attached claims. , Various alternative and modified examples will be found. For example, the Fe-based amorphous alloy according to the present invention may be a pulverized powder material.

Claims (8)

Fe基アモルファス合金であって、
Feに、原子%で、
Si:1〜5%、
B:5.5〜13%、
C:1〜7%、
P:0.1〜4%
但し、Si+B+C<15.0%、
として不可避的不純物とともに含むアモルファス単相の合金のうち、Feが82〜85%であり、飽和磁束密度Bsが1.60[T]よりも大きく、保磁力Hcが10[A/m]よりも小さいことを特徴とするFe基アモルファス合金。
Fe-based amorphous alloy
In Fe, in atomic%,
Si: 1-5%,
B: 5.5 to 13%,
C: 1-7%,
P: 0.1 to 4%
However, Si + B + C <15.0%,
Of the amorphous single-phase alloys contained with unavoidable impurities, Fe is 82 to 85%, the saturation magnetic flux density Bs is larger than 1.60 [T], and the coercive force Hc is more than 10 [A / m]. Fe-based amorphous alloy characterized by its small size.
Si:1〜2%、
B:10〜13%、
C:1〜2%、
であることを特徴とする請求項1記載のFe基アモルファス合金。
Si: 1-2%,
B: 10 to 13%,
C: 1-2%,
The Fe-based amorphous alloy according to claim 1.
原子%で、Cuを0.3%以下で含むことを特徴とする請求項1又は2に記載のFe基アモルファス合金。 The Fe-based amorphous alloy according to claim 1 or 2, wherein Cu is contained in an amount of 0.3% or less in atomic%. 98%以上のアモルファス化率を有することを特徴とする請求項1乃至3のうちの1つに記載のFe基アモルファス合金。 The Fe-based amorphous alloy according to one of claims 1 to 3, which has an amorphous ratio of 98% or more. Fe基アモルファス合金の製造方法であって、
Feに、原子%で、
Si:1〜5%、
B:5.5〜13%、
C:1〜7%、
P:0.1〜4%
但し、Si+B+C<15.0%、
として不可避的不純物とともに含む母合金を溶解し、
アモルファス単相で、Feが82〜85%であり、飽和磁束密度Bsが1.60[T]よりも大きく、保磁力Hcが10[A/m]よりも小さくなるように、前記母合金を急冷凝固することを特徴とするFe基アモルファス合金の製造方法。
A method for producing an Fe-based amorphous alloy.
In Fe, in atomic%,
Si: 1-5%,
B: 5.5 to 13%,
C: 1-7%,
P: 0.1 to 4%
However, Si + B + C <15.0%,
Dissolve the mother alloy containing with unavoidable impurities as
The mother alloy is an amorphous single phase, Fe is 82 to 85%, the saturation magnetic flux density Bs is larger than 1.60 [T], and the coercive force Hc is smaller than 10 [A / m]. A method for producing an Fe-based amorphous alloy, which comprises quenching and solidifying.
Si:1〜2%、
B:10〜13%、
C:1〜2%、
であることを特徴とする請求項5記載のFe基アモルファス合金の製造方法。
Si: 1-2%,
B: 10 to 13%,
C: 1-2%,
The method for producing an Fe-based amorphous alloy according to claim 5, wherein the method is characterized by the above.
前記母合金は、原子%で、Cuを0.3%以下で含むことを特徴とする請求項5又は6に記載のFe基アモルファス合金の製造方法。 The method for producing an Fe-based amorphous alloy according to claim 5 or 6, wherein the mother alloy contains Cu in an atomic% content of 0.3% or less. 98%以上のアモルファス化率を与えるように急冷凝固することを特徴とする請求項5乃至7のうちの1つに記載のFe基アモルファス合金の製造方法。
The method for producing an Fe-based amorphous alloy according to any one of claims 5 to 7, wherein the method is rapidly cooled and solidified so as to give an amorphous ratio of 98% or more.
JP2020029290A 2020-02-25 2020-02-25 Fe BASE AMORPHOUS ALLOY AND METHOD FOR PRODUCING THE SAME Pending JP2021134374A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020029290A JP2021134374A (en) 2020-02-25 2020-02-25 Fe BASE AMORPHOUS ALLOY AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020029290A JP2021134374A (en) 2020-02-25 2020-02-25 Fe BASE AMORPHOUS ALLOY AND METHOD FOR PRODUCING THE SAME

Publications (1)

Publication Number Publication Date
JP2021134374A true JP2021134374A (en) 2021-09-13

Family

ID=77660393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020029290A Pending JP2021134374A (en) 2020-02-25 2020-02-25 Fe BASE AMORPHOUS ALLOY AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP2021134374A (en)

Similar Documents

Publication Publication Date Title
US11814707B2 (en) Soft magnetic powder, Fe-based nanocrystalline alloy powder, magnetic component and dust core
WO2018025931A1 (en) Method for producing soft magnetic material
JP2008231462A (en) Magnetic alloy, amorphous alloy strip and magnetic component
JP2014005492A (en) Fe-BASED ALLOY COMPOSITION
JP3983207B2 (en) Method for producing Fe-based soft magnetic bulk amorphous / nanocrystalline two-phase alloy
JP2000073148A (en) Iron base soft magnetic alloy
JP2011195936A (en) ALLOY COMPOSITION, Fe-BASED NANOCRYSTALLINE ALLOY AND METHOD FOR PRODUCING THE SAME, AND MAGNETIC PART
JP2006040906A (en) Manufacture of soft magnetic molded body of high permeability and high saturation magnetic flux density
JP6313956B2 (en) Nanocrystalline alloy ribbon and magnetic core using it
Dan et al. Effect of substitution of Cu by Au and Ag on nanocrystallization behavior of Fe83. 3Si4B8P4Cu0. 7 soft magnetic alloy
JP2001279387A (en) INEXPENSIVE Fe-BASE MASTER ALLOY FOR MANUFACTURING RAPIDLY SOLIDIFIED THIN STRIP
KR102241959B1 (en) Iron based soft magnet and manufacturing method for the same
JP7326777B2 (en) Soft magnetic alloys and magnetic parts
JP2021134374A (en) Fe BASE AMORPHOUS ALLOY AND METHOD FOR PRODUCING THE SAME
Lee et al. Compositional effect on the magnetic and microstructural properties of Fe-based nano-crystalline alloys
JP7421742B2 (en) Nanocrystalline soft magnetic material
JP2000144349A (en) Iron base soft magnetic alloy
Gopalan et al. High saturation magnetization and microstructure in melt-spun Fe–P ribbons
JP2718261B2 (en) Magnetic alloy and method for producing the same
JP3723016B2 (en) Fe-based soft magnetic alloy
Kong et al. Effects of Cu and P on crystallization and magnetic properties of FeSiB alloy
WO2022070508A1 (en) Soft magnetic material, soft magnetic material manufacturing method, and electric motor
Makino et al. Direct Synthesis of L10 (Fe0. 55Pt0. 45) 77—78Zr2—5B17—20 Nanocrystalline Alloys with High Coercivity by Melt-Spinning
JP2000160241A (en) PRODUCTION OF Fe BASE SOFT MAGNETIC ALLOY
JP3850623B2 (en) Method for producing soft magnetic alloy having fine crystal structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240305