JP2021132496A - アクチュエータ - Google Patents

アクチュエータ Download PDF

Info

Publication number
JP2021132496A
JP2021132496A JP2020027508A JP2020027508A JP2021132496A JP 2021132496 A JP2021132496 A JP 2021132496A JP 2020027508 A JP2020027508 A JP 2020027508A JP 2020027508 A JP2020027508 A JP 2020027508A JP 2021132496 A JP2021132496 A JP 2021132496A
Authority
JP
Japan
Prior art keywords
counter electrode
electrode
base
insulating layer
base electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020027508A
Other languages
English (en)
Inventor
修士 中川
Shuji Nakagawa
修士 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2020027508A priority Critical patent/JP2021132496A/ja
Publication of JP2021132496A publication Critical patent/JP2021132496A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

【課題】アクチュエータの新規構造の提供【解決手段】アクチュエータ10は、ベース電極11と、対向電極12とを備えている。ベース電極11に接続された第1端子31と、対向電極12に接続された第2端子32とを備えている。ベース電極11のうち少なくとも対向電極12に対向する面は、凹凸形状を有している。さらに、ベース電極11のうち少なくとも対向電極12に対向する面は、絶縁層11bで覆われている。絶縁層11bは、セラミックスの不織布からなる。対向電極12は、ベース電極11に対向するように配置されている。対向電極12は、ベース電極11と対向電極12との間に電圧を印加した際に生じるクーロン力によって変形可能な可撓性を有する導電体からなる。【選択図】図1

Description

本発明は、アクチュエータに関する。
特許5714200号には、2つの電極間にポリマが挟まれたジェネレータおよびトランスデューサが開示されている。同公報で開示されるジェネレータおよびトランスデューサでは、2つの電極に電圧が印加されることによって生じる電極間の蓄積電荷のクーロン力によって、電極が引き合い、ポリマが変形し、電極間に変位を発生するとされている。
特許5714200号
特許5714200号に開示された構成では、アクチュエータで得られる変位はポリマの圧縮変形を伴う。かかる変形では、アクチュエータとしてより大きな変位が得られにくい。ところで、アクチュエータとして取り出される仕事量は、発生する力と、変形量の大きさが重要な性能となりうる。本発明者の知見では、誘電弾性体を一対の電極で挟んだアクチュエータでは、発生する力と変形量の大きさとの間には、背反する関係がある。発生する力Fは、F=QE=(CV)×(V/d)で表される。ここで、Q:蓄積電荷、E:電界強度、C:誘電弾性体の静電容量、d:電極間距離、V:印加電圧である。つまり、電極間距離dは、誘電弾性体の厚さで定まる。大きな変形量を取り出すためには、誘電弾性体の厚さ(≒電極間距離d)を大きくする必要がある。しかし、誘電弾性体の厚さ(≒電極間距離d)を大きくすると、発生する力Fは小さくなる。このため、単純に誘電弾性体を一対の電極で挟んだアクチュエータでは、大きな変形量を取り出すことが難しい。また、誘電弾性体として用いられうる誘電エラストマには、高い比誘電率を示す材料が乏しく、十分な性能が得られにくい。本発明者は、かかる観点で、アクチュエータの新規構造を提案する。
ここで開示されるアクチュエータは、ベース電極と、ベース電極に対向する対向電極と、ベース電極に接続された第1端子と、対向電極に接続された第2端子とを備えている。ベース電極は、少なくとも対向電極に対向する面において導通性を有する基材と、基材の対向電極に対向する面を覆う、セラミックスの不織布からなる絶縁層とを備えている。対向電極は、第1端子と第2端子に電圧が印加された際に、ベース電極と対向電極との間に作用するクーロン力によって変形可能な可撓性を有する導電体からなる。
かかるアクチュエータは、ベース電極の絶縁層がセラミックスの不織布からなるので、ベース電極が作製される際に絶縁層に亀裂が生じにくい。
図1は、アクチュエータ10の模式図である。 図2は、アクチュエータ10の模式図である。 図3は、アクチュエータ10の他の形態を示す模式図である。 図4は、アクチュエータ10の他の形態を示す模式図である。 図5は、アクチュエータ10の他の形態を示す模式図である。 図6は、アクチュエータ10の他の形態を示す模式図である。
以下、ここで開示されるアクチュエータの一実施形態を説明する。ここで説明される実施形態は、当然ながら特に本発明を限定することを意図したものではない。本発明は、特に言及されない限りにおいて、ここで説明される実施形態に限定されない。
〈アクチュエータ10〉
図1および図2は、アクチュエータ10の模式図である。アクチュエータ10は、図1に示されているように、ベース電極11と、対向電極12とを備えている。図1および図2に示されているように、ベース電極11に接続された第1端子31と、対向電極12に接続された第2端子32とを備えている。図1および図2に示された形態では、ベース電極11のうち少なくとも対向電極12に対向する面は、凹凸形状を有している。さらに、ベース電極11のうち少なくとも対向電極12に対向する面は、絶縁層11bで覆われている。対向電極12は、ベース電極11に対向するように配置されている。対向電極12は、ベース電極11と対向電極12との間に電圧を印加した際に生じるクーロン力によって変形可能な可撓性を有する導電体からなる。図1および図2に示された形態では、対向電極12は、可撓性を有するプレート状の導電体からなる。
ベース電極11と対向電極12との間の絶縁性は、かかる絶縁層11bによって、確実に確保されるとよく。また、絶縁層11bによって、ベース電極11に溜った電荷が確実に、維持されるとよい。このような観点において、絶縁層11bには、セラミックスからなる強誘電体が用いられうる。セラミックスからなる強誘電体は、例えば、ペロブスカイト構造を有していてもよい。
ペロブスカイト構造を有する強誘電体としては、例えば、チタン酸バリウム(BaTiO),チタン酸鉛(PbTiO),チタン酸ジルコン鉛(Pb(Zr,Ti)O),チタン酸ジルコン酸ランタン鉛((Pb,La)(Zr,Ti)O),チタン酸ストロンチウム(SrTiO),チタン酸バリウムストロンチウム((Ba,Sr)TiO)ニオブ酸カリウムナトリウム((NaK)NbO)などが挙げられる。なお、絶縁層11bに用いられる材料は、ここで例示されるものに限定されない。上述のようなベース電極11と対向電極12との間に大きなクーロン力を得るとの観点において適当な材料が採用されうる。また、適当な添加剤を含む複合材料でもよい。例えば、チタン酸バリウムは、CaZrOやBaSnOなどの物質が固溶されていてもよい。
チタン酸バリウムは、比誘電率が1000〜10000前後と高い強誘電体の代表的な材料である。チタン酸ジルコン酸鉛は比誘電率が500〜5000であり、チタン酸ストロンチウムは比誘電率が200〜500である。絶縁層11bには、このように比誘電率が高い材料を採用することができる。なお、比誘電率を例示しているが、同じ材料でも、厚さや結晶構造や、結晶構造の緻密さや測定条件(例えば、温度)や測定装置などによって比誘電率が変動しうる。絶縁層11bは、アクチュエータ10の予め定められた使用環境に応じて所要の性能を有するものであればよい。なお、ここでは、絶縁層11bに用いられる材料の好適な例として、ペロブスカイト構造を有する強誘電体を例示しているが、絶縁層11bに用いられる材料は、特段の言及がない限りにおいて、ペロブスカイト構造を有する強誘電体に限定されない。この実施形態では、絶縁層11bは、チタン酸バリウムで構成されている。ここでは、絶縁層11bを例に説明されている。他の形態の絶縁層についても、ここで例示される材料が適宜に用いられる。
絶縁層11bは、所要の比誘電率を有しているとよい。かかる絶縁層11bによって、ベース電極11と対向電極12との間に電圧が印加されたときに、ベース電極11と対向電極12との間に所要のクーロン力が発生する。絶縁層11bの比誘電率は、例えば、セラミックス(例えば、ファインセラミックス)が採用されることによって1000以上とすることができる。ここで例示される比誘電率の測定には、例えば、Radiant Technologies社(米国)の強誘電体測定装置であるプレシジョンLCIIが用いられうる。絶縁層11bの比誘電率は、温度や、測定用の電流の周波数や、絶縁層を形成する材料の結晶構造などに依存する傾向がある。絶縁層11bの比誘電率は、例えば、23℃程度の常温、100Hz〜1000Hzで予め定められた周波数によって測定するとよい。絶縁層11bは、アクチュエータ10の予め定められた使用環境に応じて、所要の比誘電率を発揮するものが用いられるとよい。
〈対向電極12〉
対向電極12は、ベース電極11に対向し、かつ、柔軟な(可撓性を有する)導電体からなる。詳しくは、この実施形態では、対向電極12は、図1に示されているように、絶縁層11bが介在した状態でベース電極11に対向している。図2に示されているように、ベース電極11と対向電極12との間に電圧が印加されている状態では、ベース電極11との間に作用するクーロン力によって、対向電極12は、ベース電極11にくっつくように変形する。図1に示されているように、ベース電極11と対向電極12との間に電圧が印加されていない状態では、クーロン力が作用しない。このため、対向電極12は、形状が戻る。対向電極12は、クーロン力が作用しない状態において、形状が戻るように所要の弾性力を備えているとよい。
かかる観点で、対向電極12は、例えば、導電ゴムや導電ゲルなどで形成されうる。この実施形態では、対向電極12には、導電ゴムが採用されている。対向電極12に採用される導電ゴムは、導電材を混ぜ合わせて成形したエラストマであるとよい。ここで導電材には、カーボンブラックやアセチレンブラックやカーボンナノチューブの微粉末や、銀や銅の金属微粉末、シリカやアルミナなど絶縁体にスパッタなどで金属をコートしたコアシェル構造の導電体微粉末が挙げられる。導電ゲルとしては、例えば、3次元ポリマーマトリックスの中に、水や保湿剤などの溶媒、電解質、添加剤などを保持させた機能性ゲル材料が採用されうる。このようなゲル材料には、例えば、積水化成品工業株式会社のテクノゲル(登録商標)が採用されうる。また、対向電極12は、ベース電極11に沿って弾性変形しうる板ばねで構成されていてもよい。例えば、シート状の薄い板ばねでもよい。この場合、対向電極12は、金属で構成されていてもよい。このように、対向電極12は、適度な可撓性を有する部材が採用されてもよい。また、対向電極12は、粘弾性体や弾塑性体でもよい。この場合、対向電極12は、例えば、弾性域とみなせる範囲で使用されればよい。対向電極12について、ここで例示される材料が適宜に用いられる。
第1端子31と、第2端子32とは、配線51を通じて電源50に接続されている。配線51には、スイッチ52が設けられている。スイッチ52には、例えば、スイッチング素子が用いられる。図1では、スイッチ52がOFFの状態が示されている。図2では、スイッチ52がONの状態が示されている。
スイッチ52がOFFの状態の状態では、図1に示されているように、アクチュエータ10の対向電極12は、ベース電極11の対向する面に全体としてくっついていない。図2に示されているように、スイッチ52がONの状態では、ベース電極11と対向電極12との間に作用するクーロン力によって、対向電極12は、ベース電極11に引きつけられ、ベース電極11の対向する面に合せて変形するとともに、ベース電極11にくっつく。スイッチ52がOFFの状態では、クーロン力がなくなり、対向電極12の形状が戻り、対向電極12はベース電極11から離れる。このように、図1および図2に示されたアクチュエータ10では、スイッチ52がONの状態と、スイッチ52がOFFの状態とで、対向電極12が変形し、これに応じて駆動する。スイッチ52のON、OFFは、制御装置60によって切り替えられるとよい。
かかるアクチュエータ10によれば、第1端子31と第2端子32に電圧が印加された際に、ベース電極11と対向電極12との間に作用するクーロン力によって、対向電極12が変形する。アクチュエータ10は、対向電極12の変形に伴い駆動する。アクチュエータ10の駆動には、絶縁層11bの大きな圧縮変形を伴わないため、発生するクーロン力に対して、大きな変位量が得られ得る。
ところで、ベース電極11と対向電極12との間に電圧を印加した際に、大きなクーロン力を得るとの観点で、絶縁層11bは、高誘電率を有する材料が好ましく用いられる。また、絶縁層11bは、薄ければ薄いほどよい。かかる観点で、絶縁層11bには、チタン酸バリウムのようなセラミックスが用いられる。チタン酸バリウムは、無機物であり、常誘電体である。チタン酸バリウムは、通常立方晶として存在している。高誘電体として扱われるためには、例えば、600℃以上に加熱して結晶構造を正方晶に変化させる処理が必要である。かかる処理は、焼成とも称される。
ベース電極11の基材11aの上に、チタン酸バリウムを成膜する処理は、例えば、ベース電極11の基材11aの上にチタン酸バリウムを粒子形態で敷き詰めた後で焼成する、若しくは、ベース電極11の基材11aの上にチタン酸バリウムをスパッタリングで成膜した後で焼成するとよい。しかし、本発明者の知見では、チタン酸バリウムのようなセラミックス素材は、焼成時に隣り合う原料粒子が徐々に接着され、粒子間の隙間が小さくなる。このため、焼成時に基材11aと絶縁層11bとで熱膨張率が異なる。例えば、チタン酸バリウムに代表される高誘電体セラミックスの熱膨張率は、大凡5×10−6/Kである。これに対して、ベース電極11に用いられる金属の熱膨張率は、大凡10×10−6/Kである。このため、焼成時の熱処理に起因して、絶縁層11bの熱膨張が、ベース電極11に用いられる金属の熱膨張に追従できず、絶縁層11bを形成する膜に、亀裂が生じうる。
〈ベース電極11〉
この実施形態では、ベース電極11は、図1および図2に示されているように、基材11aと、絶縁層11bとを備えている。ベース電極11の基材11aは、所要の剛性と導電性を有しているとよい。例えば、全体として銅、アルミニウム、鉄などの金属で構成されていてもよい。また、ベース電極11は、少なくとも対向電極12に対向する側面が導通性を有しているとよい。このため、基材11aは、図示は省略するが、例えば、非金属のベース材と、ベース材の対向電極12に対向する面を覆う金属の薄膜とで構成されていてもよい。この場合、非金属のベース材は、所要の耐熱性を有するとよい。かかる非金属のベース材は、例えば、セラミックスで形成されていてもよい。この場合、ベース電極11の基材が、非金属材料で構成されているので、ベース電極11の基材全体が金属で構成されている場合に比べて、ベース電極11が軽量に作製されうる。この場合、電源50に接続された第1端子31は、ベース電極11の金属の薄膜に接続されているとよい。
ベース電極11の絶縁層11bは、セラミックスの不織布からなる。つまり、ベース電極11の基材11aのうち少なくとも対向電極12に対向する面は、セラミックスの不織布からなる絶縁層11bで覆われている。セラミックスは、上述のように焼成する必要があり、その際、高温で処理される。ベース電極11の基材11aには、導通性のよい金属が選択されている。ベース電極11を作製する際、基材11aが用意される。次に、基材11aに絶縁層11bの素材となるセラミックス素材の不織布が載せられる。そして、絶縁層11bとして用いられるセラミックス素材を焼成するため、ベース電極11は予め定められた温度に加熱される。この際、基材11aは、加熱されて熱膨張する。これに対して絶縁層11bとして用いられたセラミックス素材は、焼成時にセラミックス素材の隣り合う原料粒子徐々に接着され、粒子間の隙間が小さくなる。ここで提案されるアクチュエータ10では、ベース電極11の絶縁層11bが不織布の形態である。この場合、不織布を構成する繊維間に隙間が有り、また不織布を構成する繊維が動くことによって、基材11aの熱膨張に応じて絶縁層11bが変形しうる。このため、焼成時に絶縁層11bに亀裂が生じにくい。また、絶縁層11bが柔軟なシートであるため、基材11aのうち対向電極12に対向する面が、セラミックスの不織布からなる絶縁層11bで覆われた状態で保たれる。
なお、セラミックスの不織布は、絶縁層11bとして、所要の緻密さを有するとよく、また、薄ければ薄いほどよい。かかるセラミックスの不織布を得る方法として、電解紡糸法が挙げられる。電解紡糸法によれば、細いセラミックス素材の繊維によって構成された薄く緻密な不織布のシートが得られる。電解紡糸法で得られるセラミックスの不織布からなる絶縁層11bは、所要のクーロン力が得られるように、薄く緻密であるとよい。かかる観点において、絶縁層11bの厚さは、例えば、1μm以上であるとよい。また、セラミックスの不織布からなる絶縁層11bは、厚すぎるとクーロン力の働きが弱くなる。かかる観点で、絶縁層11bの厚さは、例えば、50μm以下であるとよい。なお、セラミックスの不織布からなる絶縁層11bの厚さは、特段の言及がない限りにおいて、1μm以上50μm以下であることに限定されない。かかるセラミックス素材の繊維からなる不織布のシートを用意する。そして、当該不織布のシートをベース電極11の基材11aのうち対向電極12に対向する面に重ねて、焼成するとよい。また、かかるセラミックスの不織布は、所要の柔軟性を有している。このため、図1および図2に示されているように、ベース電極11の表面に凹凸形状を有する場合でも、これに沿わせて配置することができる。そして、セラミックスの不織布からなる絶縁層11bは、焼結されることによって、ベース電極11の表面の凹凸形状に一体化される。
図3および図4は、アクチュエータ10の他の形態を示す模式図である。図3では、スイッチ52がOFFの状態が示されている。図4では、スイッチ52がONの状態が示されている。アクチュエータ10は、図3および図4に示されているように、複数のベース電極11が、順に向かい合うように並べられており、複数のベース電極のうち隣接するベース電極の間に、対向電極12がそれぞれ配置されていてもよい。この場合、ベース電極11の基材11aのうち対向電極12に対向する面が、セラミックスの不織布からなる絶縁層11bで覆われているとよい。そして、複数のベース電極11を並列に接続する第1配線31aを有していてもよい。また、複数の対向電極12を並列に接続する第2配線32aを有していてもよい。
図4に示されているように、スイッチ52がONの状態でベース電極11と対向電極12との間に電圧が印加されている状態では、ベース電極11との間に作用するクーロン力によって、対向電極12は、ベース電極11にくっつくように変形する。図3に示されているように、スイッチ52がOFFの状態でベース電極11と対向電極12との間に電圧が印加されていない状態では、クーロン力が作用しない。このため、対向電極12は、形状が戻り、ベース電極11の間隔が広がる。
図5および図6は、さらにアクチュエータ10の他の形態を示す模式図である。図5に示されているように、対向電極12は、波板形状でもよい。また、図6に示されているように、アクチュエータ10の対向電極12は、板ばねでもよい。これらの場合、図5および図6に示されているように、ベース電極11は、対向電極12に対向する面が平坦であってもよい。このように、ベース電極11や対向電極12の形状は種々変更されうる。このような場合も、ベース電極11の絶縁層11bは、焼成されたセラミックスの不織布で構成されているとよい。
例えば、対向電極12が、波板形状である場合には、図5に示されているように、この際、スイッチ52がOFFになると、クーロン力がなくなり、対向電極12の形状が復元する。対向電極12の形状が復元することによって、一対のベース電極11の間隔が広げられる。スイッチ52がONになると、図示は省略するが、ベース電極11と対向電極12との間にクーロン力が作用する。このとき、対向電極12が変形し、対向電極12がベース電極11にくっつく。このため、ベース電極11の間隔が狭くなる。
また、図6に示されているように、対向電極12は、板ばねでもよい。この場合、対向電極12は、図6に示されているように、跳ね上がる部位12aを有していてもよい。跳ね上がる部位12aは、スリット12bによって、対向電極12において切り離されており、スリット12bによって形成された穴12cに収まりうる。この場合、スイッチ52がOFFになると、クーロン力がなくなり、対向電極12の形状が復元し、跳ね上がる部位12aによって、対向電極12を挟むベース電極11の間隔が広がる。これに対して、スイッチ52がONになると、図示は省略するが、ベース電極11と対向電極12との間にクーロン力が作用する。このとき、対向電極12が変形し、対向電極12がベース電極11にくっつく。このため、ベース電極11の間隔が狭くなる。このとき、跳ね上がる部位12aは、スリット12bによって形成された穴12cに収まる。かかる対向電極12の変形によって、対向電極12を挟むベース電極11の間隔が狭くなる。また、スイッチ52がOFFになると、クーロン力がなくなり、対向電極12が復元する。対向電極12が復元することによって、図6に示されているように、跳ね上がる部位12aが復元して跳ね上がり、対向電極12を挟むベース電極11の間隔が広くなる。
このように、対向電極12およびベース電極11の形状は、種々変更されうる。何れの場合も、アクチュエータ10は、ベース電極11間の距離の変化を変位量として出力することができる。アクチュエータ10は、絶縁層11bの圧縮変形による制限を受けにくく大きな変位量が得られ得る。また、ベース電極11の絶縁層11bは、焼成されたセラミックスの不織布で構成されているので、焼成にされる際の熱処理に起因して亀裂が生じにくい。このためアクチュエータ10に安定した性能が得られ得る。
以上、ここで開示されるアクチュエータについて、種々説明した。特に言及されない限りにおいて、ここで挙げられたアクチュエータの実施形態などは、本発明を限定しない。
10 アクチュエータ
11 ベース電極
11a 基材
11b 絶縁層
12 対向電極
12a 跳ね上がる部位
12b スリット
12c 穴
31 第1端子
31a 第1配線
32 第2端子
32a 第2配線
50 電源
51 配線
52 スイッチ
60 制御装置

Claims (1)

  1. ベース電極と、
    前記ベース電極に対向する対向電極と、
    前記ベース電極に接続された第1端子と、
    前記対向電極に接続された第2端子と
    を備え、
    前記ベース電極は、
    少なくとも前記対向電極に対向する面において導通性を有する基材と、
    前記基材の前記対向電極に対向する面を覆う、セラミックスの不織布からなる絶縁層と
    を備え、
    前記対向電極は、
    前記第1端子と前記第2端子に電圧が印加された際に、前記ベース電極と前記対向電極との間に作用するクーロン力によって変形可能な可撓性を有する導電体からなる、
    アクチュエータ。
JP2020027508A 2020-02-20 2020-02-20 アクチュエータ Pending JP2021132496A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020027508A JP2021132496A (ja) 2020-02-20 2020-02-20 アクチュエータ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020027508A JP2021132496A (ja) 2020-02-20 2020-02-20 アクチュエータ

Publications (1)

Publication Number Publication Date
JP2021132496A true JP2021132496A (ja) 2021-09-09

Family

ID=77551378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020027508A Pending JP2021132496A (ja) 2020-02-20 2020-02-20 アクチュエータ

Country Status (1)

Country Link
JP (1) JP2021132496A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11730059B2 (en) 2021-04-12 2023-08-15 Toyota Jidosha Kabushiki Kaisha Actuator
US11824467B2 (en) 2021-05-21 2023-11-21 Toyota Jidosha Kabushiki Kaisha Actuator
US11825747B2 (en) 2021-04-12 2023-11-21 Toyota Jidosha Kabushiki Kaisha Actuator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11730059B2 (en) 2021-04-12 2023-08-15 Toyota Jidosha Kabushiki Kaisha Actuator
US11825747B2 (en) 2021-04-12 2023-11-21 Toyota Jidosha Kabushiki Kaisha Actuator
US11824467B2 (en) 2021-05-21 2023-11-21 Toyota Jidosha Kabushiki Kaisha Actuator

Similar Documents

Publication Publication Date Title
JP2021132496A (ja) アクチュエータ
KR101694579B1 (ko) 고분자 복합 압전체 및 그 제조 방법
US3378704A (en) Piezoelectric multilayer device
US5276657A (en) Metal-electroactive ceramic composite actuators
US20080001504A1 (en) Piezoelectric composite based on flexoelectric charge separation
US7358653B2 (en) Piezoelectric element
US20100156250A1 (en) Multi-Layer Piezoelectric Element and Method for Manufacturing the Same
US2640165A (en) Ceramic transducer element
KR20100134563A (ko) 가변용량 소자와 그 제어 방법, 전자 디바이스 및 통신 모바일 기기
US11888413B2 (en) Actuator
CN104637682B (zh) 多层陶瓷电子组件和具有该多层陶瓷电子组件的板
US4894580A (en) Chip-type resonator and method of manufacturing the same
US7065846B2 (en) Insulation for piezoceramic multilayer actuators
US4512941A (en) Polarizing of piezoelectric material
JP2021132523A (ja) アクチュエータおよびアクチュエータの製造方法
JP2021194638A (ja) 駆動方法、駆動回路及び変位駆動装置
US11581823B2 (en) Actuator and actuator manufacturing method
JP5844741B2 (ja) 静電誘導型機械電気変換素子
Wang et al. Large actuation strain over 0.3% in periodically orthogonal poled BaTiO3 ceramics and multilayer actuators via reversible domain switching
US11825747B2 (en) Actuator
US11730059B2 (en) Actuator
JP2021131137A (ja) シール装置
US11601072B2 (en) Actuator
JP2008166484A (ja) 可変容量素子及びそれを用いた可変フィルタ
JP2023006719A (ja) ワークへの塗布方法