JP2021130574A - Method for manufacturing silicon single crystal - Google Patents

Method for manufacturing silicon single crystal Download PDF

Info

Publication number
JP2021130574A
JP2021130574A JP2020026158A JP2020026158A JP2021130574A JP 2021130574 A JP2021130574 A JP 2021130574A JP 2020026158 A JP2020026158 A JP 2020026158A JP 2020026158 A JP2020026158 A JP 2020026158A JP 2021130574 A JP2021130574 A JP 2021130574A
Authority
JP
Japan
Prior art keywords
single crystal
silicon single
concentration
diameter
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020026158A
Other languages
Japanese (ja)
Other versions
JP7276190B2 (en
Inventor
祥 高島
Sho Takashima
祥 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP2020026158A priority Critical patent/JP7276190B2/en
Publication of JP2021130574A publication Critical patent/JP2021130574A/en
Application granted granted Critical
Publication of JP7276190B2 publication Critical patent/JP7276190B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

To provide a method for suppressing Fe contamination sometimes caused by exchanging a HZ component in the peripheral part of a single crystal.SOLUTION: A method for manufacturing a silicon single crystal, capable of pulling the silicon single crystal from a silicon melt stored in a crucible by the CZ method using a manufacturing apparatus including a HZ component and cylindrically grinding the silicon single crystal into a product diameter comprises: previously acquiring correlation among a period of time using the apparatus after exchanging the HZ component positioned above the surface of the silicon melt, a grinding amount cylindrically ground from the as-grown diameter of the pulled silicon single crystal and an Fe concentration in the peripheral part of the silicon single crystal at the ground amount; and controlling the as-grown diameter of the pulled silicon single crystal so as to obtain a cylindrically ground amount at which the Fe concentration in the peripheral part of the silicon single crystal having the product diameter is equal to or less than a target Fe concentration on the basis of the correlation.SELECTED DRAWING: Figure 1

Description

本発明は、チョクラルスキー法(CZ法)によるシリコン単結晶の製造方法に関する。 The present invention relates to a method for producing a silicon single crystal by the Czochralski method (CZ method).

CZ法による単結晶の製造において、引上げ速度は引上げられる単結晶の引上げ方向における温度勾配と密接に関連があり、温度勾配を大きくすることにより引上げ速度を速くすることが出来る。この為、単結晶の周囲を囲繞するように遮熱筒等のホットゾーン(HZ)部品を配置し、ヒーター、ルツボならびに原料融液からの輻射熱を遮蔽し、単結晶の引上げ方向における温度勾配を大きくする方法、ならびに、単結晶の引上げ方向における温度勾配を大きくするためにアズグロウン結晶からの輻射熱を水冷されたチャンバーへ伝熱を促進する吸熱筒等が採用されている。 In the production of a single crystal by the CZ method, the pulling speed is closely related to the temperature gradient in the pulling direction of the single crystal to be pulled, and the pulling speed can be increased by increasing the temperature gradient. Therefore, hot zone (HZ) parts such as a heat shield tube are arranged so as to surround the circumference of the single crystal to shield the radiant heat from the heater, the rutsubo, and the raw material melt, and to set the temperature gradient in the pulling direction of the single crystal. A method of increasing the temperature and a heat absorbing cylinder that promotes heat transfer of radiant heat from the asgrown crystal to a water-cooled chamber in order to increase the temperature gradient in the pulling direction of the single crystal are adopted.

CZ法によるシリコン半導体結晶の製造では炉内の石英ルツボ内にシリコン原料融液を生成し、種結晶を着液させ単結晶を引上げる。シリコン単結晶製造時、石英ルツボの内面からシリコン原料融液に酸素が溶け出し、これがシリコン原料融液と反応し酸化珪素(SiOやSiO)を生じる。また、酸化珪素とヒーター等の黒鉛部材が反応してCOやCOが生じる。酸化珪素は昇華性で、炉内で温度が低下する事で固体となり、シリコン原料融液に落下し単結晶成長時の有転位の原因となる。COやCOは原料融液に取り込まれ、結晶をカーボン汚染させる原因となる。そのため、これらの有害ガスを排出する為に炉内にArガス等の不活性ガスを流通させることが行われている。 In the production of a silicon semiconductor crystal by the CZ method, a silicon raw material melt is generated in a quartz crucible in a furnace, a seed crystal is deposited, and a single crystal is pulled up. During the production of a silicon single crystal, oxygen dissolves from the inner surface of the quartz crucible into the silicon raw material melt, which reacts with the silicon raw material melt to generate silicon oxide (SiO and SiO 2). In addition, silicon oxide reacts with graphite members such as heaters to generate CO and CO 2. Silicon oxide is sublimable, and when the temperature drops in the furnace, it becomes a solid and falls into the silicon raw material melt, causing dislocations during single crystal growth. CO and CO 2 are incorporated into the raw material melt and cause carbon contamination of the crystals. Therefore, in order to discharge these harmful gases, an inert gas such as Ar gas is circulated in the furnace.

シリコン単結晶製造中の炉内のHZ部品は高温となっており、HZ部材中に存在している不純物は熱拡散により部品表面から不活性ガス中に放出される。不活性ガスが成長中のシリコン単結晶と接触すると、不活性ガス中の不純物はシリコン単結晶表面から拡散し単結晶を汚染し、単結晶の外表面部での不純物濃度が高くなり、ウェーハ加工後でも外表面部不純物不良が発生する。 The temperature of the HZ component in the furnace during the production of the silicon single crystal is high, and the impurities present in the HZ member are released from the surface of the component into the inert gas by thermal diffusion. When the inert gas comes into contact with the growing silicon single crystal, the impurities in the inert gas diffuse from the surface of the silicon single crystal and contaminate the single crystal, increasing the impurity concentration on the outer surface of the single crystal and processing the wafer. Even after that, defective impurities on the outer surface occur.

これに対し、製造工程のクリーン化による汚染低減の他、原材料の高純度化、HZ部品の高純度化で単結晶の汚染を改善させてきた。しかし、半導体デバイスのさらなる微細化の進展で、より一層の不純物低減が求められてきている。 On the other hand, in addition to reducing contamination by cleaning the manufacturing process, the contamination of single crystals has been improved by increasing the purity of raw materials and HZ parts. However, with the progress of further miniaturization of semiconductor devices, further reduction of impurities is required.

先に述べたように、単結晶製造に使用するHZ部品は高純度処理を行ったものを使用しているが、HZ部品の基材に不純物汚染が残っている場合があり、HZ部品交換直後からシリコン単結晶の外表面部での重金属汚染量が高くなり、シリコン単結晶の品質不良となることがある。 As mentioned above, the HZ parts used for single crystal production are those that have undergone high-purity treatment, but impurity contamination may remain on the base material of the HZ parts, and immediately after replacing the HZ parts. Therefore, the amount of heavy metal contamination on the outer surface of the silicon single crystal becomes high, which may result in poor quality of the silicon single crystal.

このシリコン単結晶の外表面部での重金属汚染量を低減するため、例えば、特許文献1に示されるように、炉内構造で不活性ガスの流路を制御し、且つガス流量ならびに炉内圧力を制御する事で引上げ結晶周辺雰囲気中の金属不純物量を低減することが提案されている。また、特許文献2には、炉内に設置する整流筒の表面へ高純度な被膜処理を施すことで、Fe汚染を防ぐ方法が提案されている。また、特許文献3には、整流筒の内部へ石英製の筒を設ける事でFe汚染を防ぐ方法が提案されている。 In order to reduce the amount of heavy metal contamination on the outer surface of this silicon single crystal, for example, as shown in Patent Document 1, the flow path of the inert gas is controlled by the structure inside the furnace, and the gas flow rate and the pressure inside the furnace are controlled. It has been proposed to reduce the amount of metal impurities in the atmosphere around the raised crystal by controlling. Further, Patent Document 2 proposes a method of preventing Fe contamination by applying a high-purity coating treatment to the surface of a rectifying cylinder installed in a furnace. Further, Patent Document 3 proposes a method of preventing Fe contamination by providing a quartz cylinder inside the rectifying cylinder.

WO2005−019506号公報WO2005-019506 WO2001−081661号公報WO2001-081661 特開2007−314375号公報Japanese Unexamined Patent Publication No. 2007-314375

しかしながら、上記のような様々な対策を行っていても、なおHZ部品の交換した直後に引上げた結晶から切り出されたウェーハでは、周辺部でライフタイム低下等のFe汚染起因の不良が発生することがあり、HZ部品交換直後に製造した結晶でも確実に結晶周辺のFe汚染を防止することが望まれていた。 However, even if the above-mentioned various measures are taken, in the wafer cut out from the crystal pulled up immediately after the replacement of the HZ component, defects due to Fe contamination such as a decrease in lifetime still occur in the peripheral portion. Therefore, it has been desired to reliably prevent Fe contamination around the crystal even in the crystal produced immediately after replacing the HZ component.

これに対し、単結晶周辺に配置する遮熱筒、遮熱筒断熱材及び吸熱筒等のHZ部品の不純物低減を行ってきており、グラファイト部品(黒鉛部品)の場合はFe濃度を0.05ppm以下、炭素繊維部品(断熱材部品)の場合はFe濃度を0.5ppm以下の物を使用しているが、現行以上にHZ部品を高純度化する場合、大幅なコスト増となり、工業的量産には適さない。 On the other hand, impurities of HZ parts such as heat shield cylinders, heat shield cylinder heat insulating materials and heat absorption cylinders arranged around a single crystal have been reduced, and in the case of graphite parts (graphite parts), the Fe concentration is 0.05 ppm. Hereinafter, in the case of carbon fiber parts (insulation material parts), those having an Fe concentration of 0.5 ppm or less are used, but if the purity of HZ parts is made higher than the current level, the cost will increase significantly and industrial mass production will occur. Not suitable for.

また、引上げ結晶周辺雰囲気中の金属不純物が単結晶の外表面から拡散してもウェーハ加工後に不純物量を悪化させない為には、結晶直径を常に太くする事でも改善できるが、アズグロウン結晶からの円筒研削する量が多くなり原料ロスを多くする事となり原料歩留りを悪化させる。 Further, in order to prevent the amount of impurities from being deteriorated after wafer processing even if the metal impurities in the atmosphere around the pulled crystal diffuse from the outer surface of the single crystal, it can be improved by always increasing the crystal diameter, but the cylinder from the asgrown crystal. The amount of grinding increases, the loss of raw materials increases, and the yield of raw materials deteriorates.

以上述べたように、現行のHZ部品の不純物濃度レベルでの単結晶への重金属汚染低減が望まれていた。 As described above, it has been desired to reduce heavy metal contamination on single crystals at the impurity concentration level of the current HZ components.

本発明は上記の問題に鑑みてなされたもので、HZ部品交換により発生することがある単結晶外周部のFe汚染を抑制するシリコン単結晶の製造方法を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method for producing a silicon single crystal that suppresses Fe contamination of the outer peripheral portion of a single crystal that may occur due to replacement of HZ parts.

本発明は、上記目的を達成するためになされたものであり、HZ部品を具備する製造装置を用いて、CZ法により、るつぼに収容したシリコン融液からシリコン単結晶を引上げた後、シリコン単結晶を製品直径に円筒研削するシリコン単結晶の製造方法であって、シリコン融液表面より上部に位置するHZ部品を交換してからの装置の使用時間と、引上げたシリコン単結晶のアズグロウン直径からの円筒研削した研削量と、該研削量でのシリコン単結晶周辺部のFe濃度との相関関係を予め取得しておき、該相関関係に基づき、前記製品直径の前記シリコン単結晶の周辺部のFe濃度が、目標とするFe濃度以下となる円筒研削量になるように、引上げるシリコン単結晶のアズグロウン直径を制御するシリコン単結晶の製造方法を提供する。 The present invention has been made to achieve the above object, and after pulling a silicon single crystal from a silicon melt contained in a crucible by a CZ method using a manufacturing apparatus equipped with HZ parts, the silicon single crystal is used. This is a method for manufacturing a silicon single crystal in which a crystal is cylindrically ground to the product diameter. The correlation between the amount of grinding of the cylindrically ground and the Fe concentration in the peripheral portion of the silicon single crystal at the grinding amount is obtained in advance, and based on the correlation, the peripheral portion of the silicon single crystal having the product diameter is used. Provided is a method for producing a silicon single crystal in which the as-grown diameter of the silicon single crystal to be pulled up is controlled so that the Fe concentration becomes a cylindrical grinding amount equal to or less than a target Fe concentration.

このような方法であれば、HZ部品交換時に発生することがあるシリコン単結晶外周部のFe汚染を抑制することができる。 With such a method, Fe contamination on the outer peripheral portion of the silicon single crystal, which may occur when the HZ component is replaced, can be suppressed.

このとき、HZ部品のFe濃度を、グラファイト部品の場合は0.05ppm以下、炭素繊維部品の場合は0.5ppm以下とすることが好ましい。 At this time, the Fe concentration of the HZ component is preferably 0.05 ppm or less in the case of the graphite component and 0.5 ppm or less in the case of the carbon fiber component.

このようにすれば、現行のHZ部品と同様の純度の部品を用いることができ、必要以上にHZ部品を高純度化しなくてよく、コストを増加させずにFe汚染を抑制したシリコン単結晶を製造ができる。 By doing so, it is possible to use a component having the same purity as the current HZ component, it is not necessary to purify the HZ component more than necessary, and a silicon single crystal in which Fe contamination is suppressed without increasing the cost can be obtained. Can be manufactured.

このとき、製品直径のシリコン単結晶の周辺部の目標とするFe濃度を5.0×10atoms/cm以下とすることが好ましい。 At this time, it is preferable that the target Fe concentration in the peripheral portion of the silicon single crystal having the product diameter is 5.0 × 10 9 atoms / cm 3 or less.

このようにすれば、Fe汚染に起因するライフタイム低下等を抑制することができる。 In this way, it is possible to suppress a decrease in lifetime due to Fe contamination.

このとき、融液表面より上部に位置するHZ部品を、遮熱筒、遮熱筒内に設置される遮熱筒断熱材、及び遮熱筒上部に配置され引上げ中の単結晶から吸熱を促進する吸熱筒とすることが好ましい。 At this time, the HZ component located above the surface of the melt is placed on the heat shield cylinder, the heat shield cylinder heat insulating material installed in the heat shield cylinder, and the heat shield cylinder upper part to promote heat absorption from the single crystal being pulled up. It is preferable to use an endothermic cylinder.

これらのHZ部品は特に、シリコン単結晶を直上でかつ取り囲むものであるから、Fe濃度への影響が大きい。そこで、これらのHZ部品を採用することで、単結晶の引上げ方向における温度勾配をより大きくすることができ、引上げ速度をより速くできるとともに、シリコン単結晶外周部のFe汚染をより抑制することができる。 Since these HZ components are directly above and surround the silicon single crystal, they have a large influence on the Fe concentration. Therefore, by adopting these HZ components, the temperature gradient in the pulling direction of the single crystal can be made larger, the pulling speed can be made faster, and Fe contamination on the outer periphery of the silicon single crystal can be further suppressed. can.

このとき、HZ部品を新品に交換後、累計使用時間が100時間に達するまでは、直胴部のアズグロウン直径を引上げ目標直径より3mm以上太くなるように制御することが好ましい。 At this time, after replacing the HZ part with a new one, it is preferable to control the diameter of the as-grown of the straight body portion so as to be raised and thickened by 3 mm or more from the target diameter until the cumulative usage time reaches 100 hours.

このようにすれば、HZ部品を新品に交換後の特にFe濃度が高い間に引上げたシリコン単結晶のアズグロウン直径を確実に太くすることができ、効率よくFe汚染を抑制したシリコン単結晶を製造ができる。 By doing so, it is possible to surely increase the asgrown diameter of the silicon single crystal pulled up after replacing the HZ component with a new one, especially while the Fe concentration is high, and efficiently produce a silicon single crystal in which Fe contamination is suppressed. Can be done.

このとき、製品直径を300mm以上とすることが好ましい。 At this time, it is preferable that the product diameter is 300 mm or more.

本発明では、このような大直径で低Fe濃度のシリコン単結晶を生産性高く製造することができる。 In the present invention, such a large-diameter silicon single crystal having a low Fe concentration can be produced with high productivity.

以上のように、本発明のシリコン単結晶の製造方法によれば、HZ部品交換時に発生することがある単結晶外表面のFe汚染を抑制し、Fe汚染起因の不良発生を防止する事ができる。さらに品質不良を削減することで原料ロスの削減も可能になり、歩留まり向上が可能となる。 As described above, according to the method for producing a silicon single crystal of the present invention, Fe contamination on the outer surface of the single crystal that may occur when replacing HZ parts can be suppressed, and defects due to Fe contamination can be prevented. .. Furthermore, by reducing quality defects, it is possible to reduce raw material loss and improve yield.

グラファイト製の吸熱筒を新品交換した場合ならびに500時間以上使用している吸熱筒を使用した場合のアズグロウン結晶の外表面からの深さとFe濃度の測定結果を示す図である。It is a figure which shows the measurement result of the depth from the outer surface and Fe concentration of the asgrown crystal when the heat absorption cylinder made of graphite is replaced with a new one, and when the heat absorption cylinder which has been used for 500 hours or more is used. 本発明で用いることができる単結晶製造装置の一例について、その主要部の構造を示す断面図である。It is sectional drawing which shows the structure of the main part about the example of the single crystal manufacturing apparatus which can be used in this invention. 実施例、比較例1及び比較例2での装置の使用時間、単結晶引上げ直径及びFe濃度の推移の測定例を示す図である。It is a figure which shows the measurement example of the use time of the apparatus in Example, Comparative Example 1 and Comparative Example 2, the transition of a single crystal pulling diameter and Fe concentration. 実施例及び比較例1における原料ロス重量の比較結果を示す図である。なお、比較例1の結果を1.0とした。It is a figure which shows the comparison result of the raw material loss weight in Example and Comparative Example 1. The result of Comparative Example 1 was 1.0.

上述のように、HZ部品交換により発生することがある結晶外周部のFe汚染を抑制するシリコン単結晶の製造方法が求められていた。 As described above, there has been a demand for a method for producing a silicon single crystal that suppresses Fe contamination on the outer peripheral portion of the crystal, which may occur due to replacement of HZ parts.

本発明者は、上記目的を達成するために鋭意検討を重ねた結果、シリコン融液表面より上部に位置するHZ部品を交換してからのシリコン単結晶製造装置の使用時間と、引上げたシリコン単結晶のアズグロウン直径からの円筒研削した研削量と、これらの研削量でのシリコン単結晶周辺部のFe濃度との間に相関関係があることを見出し、この相関関係に基づいてシリコン単結晶を製造することで、HZ部品交換により発生することがある単結晶外周部のFe汚染を抑制できることを見出し、本発明を完成した。 As a result of diligent studies to achieve the above object, the present inventor has determined the usage time of the silicon single crystal manufacturing apparatus after replacing the HZ component located above the surface of the silicon melt, and the raised silicon single crystal. We found that there is a correlation between the amount of cylindrically ground ground from the as-grown diameter of the crystal and the Fe concentration around the silicon single crystal at these amounts of grinding, and manufactured a silicon single crystal based on this correlation. By doing so, it was found that Fe contamination on the outer peripheral portion of the single crystal, which may occur due to replacement of HZ parts, can be suppressed, and the present invention has been completed.

すなわち、本発明は、HZ部品を具備する製造装置を用いて、CZ法により、るつぼに収容したシリコン融液からシリコン単結晶を引上げた後、該シリコン単結晶を製品直径に円筒研削するシリコン単結晶の製造方法であって、前記シリコン融液表面より上部に位置する前記HZ部品を交換してからの前記装置の使用時間と、前記引上げたシリコン単結晶のアズグロウン直径からの円筒研削した研削量と、該研削量での前記シリコン単結晶周辺部のFe濃度との相関関係を予め取得しておき、該相関関係に基づき、前記製品直径の前記シリコン単結晶の周辺部のFe濃度が、目標とするFe濃度以下となる円筒研削量になるように、前記引上げるシリコン単結晶のアズグロウン直径を制御するシリコン単結晶の製造方法である。 That is, in the present invention, a silicon single crystal is pulled up from a silicon melt contained in a pot by a CZ method using a manufacturing apparatus provided with HZ parts, and then the silicon single crystal is cylindrically ground to a product diameter. A crystal manufacturing method, in which the usage time of the device after replacing the HZ component located above the surface of the silicon melt and the amount of cylindrical grinding from the as-grown diameter of the pulled-up silicon single crystal. And, the correlation with the Fe concentration of the silicon single crystal peripheral portion in the grinding amount is acquired in advance, and based on the correlation, the Fe concentration of the peripheral portion of the silicon single crystal of the product diameter is targeted. This is a method for producing a silicon single crystal in which the as-grown diameter of the silicon single crystal to be pulled up is controlled so that the amount of cylindrical grinding is equal to or less than the Fe concentration.

以下、本発明について図面を参照して説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to the drawings, but the present invention is not limited thereto.

図2は本発明で用いることができる単結晶製造装置の一例についてその主要部の構造を示す断面図である。単結晶引上げ装置100は、メインチャンバー1内に石英るつぼ3aとこれを保持する外るつぼ3bが配置され、これらを回転支持体6を介してるつぼ駆動機構7により回転ならびに昇降を行う。原料融液12は石英るつぼ3aの中に入れられ、保温筒4により保温されたヒーター5により加熱される。さらに、引上げた単結晶11を囲繞する吸熱筒13、遮熱筒15ならびに遮熱筒断熱材14が配置される。また、不活性ガスは、プルチャンバー2上部から供給され、単結晶11周辺を経てメインチャンバー下部に設けた圧力調整バルブ機構8及び真空ポンプ9を含む排気配管より排出される。 FIG. 2 is a cross-sectional view showing the structure of a main part of an example of a single crystal manufacturing apparatus that can be used in the present invention. In the single crystal pulling device 100, a quartz crucible 3a and an outer crucible 3b holding the quartz crucible 3a are arranged in the main chamber 1, and these are rotated and moved up and down by the crucible drive mechanism 7 via the rotation support 6. The raw material melt 12 is placed in a quartz crucible 3a and heated by a heater 5 kept warm by a heat insulating cylinder 4. Further, an endothermic cylinder 13, a heat shield cylinder 15, and a heat shield cylinder heat insulating material 14 surrounding the pulled-up single crystal 11 are arranged. Further, the inert gas is supplied from the upper part of the pull chamber 2 and discharged from the exhaust pipe including the pressure adjusting valve mechanism 8 and the vacuum pump 9 provided in the lower part of the main chamber via the periphery of the single crystal 11.

単結晶の製造では、プルチャンバー2より吊り下げたシードワイヤー10に取り付けた種結晶(不図示)を原料融液12に着液させ、ヒーター5の電力を制御して単結晶11を引上げて育成する。 In the production of a single crystal, a seed crystal (not shown) attached to a seed wire 10 suspended from a pull chamber 2 is landed on a raw material melt 12, and the electric power of a heater 5 is controlled to pull up and grow the single crystal 11. do.

この一例では、HZ部品である単結晶11を囲繞する吸熱筒13、遮熱筒15ならびに遮熱筒断熱材14は、単結晶11からの輻射熱を受け高温になる。単結晶11、吸熱筒13、遮熱筒15ならびに遮熱筒断熱材14の間を不活性ガスが流れるが、吸熱筒13、遮熱筒15、遮熱筒断熱材14のいずれかまたは複数を新品交換した場合、新品交換した部品に含まれる不純物は高温となることで不活性ガス中に放出され、単結晶の外表面に付着、拡散し、単結晶を汚染する。 In this example, the endothermic cylinder 13, the heat shield cylinder 15, and the heat shield cylinder heat insulating material 14 surrounding the single crystal 11 which is an HZ component receives radiant heat from the single crystal 11 and becomes high in temperature. An inert gas flows between the single crystal 11, the heat absorbing cylinder 13, the heat insulating cylinder 15, and the heat insulating cylinder heat insulating material 14, but one or more of the heat absorbing cylinder 13, the heat insulating cylinder 15, and the heat insulating cylinder heat insulating material 14 may be used. When a new part is replaced, impurities contained in the newly replaced part are released into an inert gas due to high temperature, adhere to and diffuse on the outer surface of the single crystal, and contaminate the single crystal.

単結晶内での不純物は外表面からの拡散によって内部へ進行するため、汚染量の多さは結晶の外表面からの距離に依存し、内部に比べ外表面での汚染量が多い。 Since impurities in the single crystal proceed to the inside by diffusion from the outer surface, the amount of contamination depends on the distance from the outer surface of the crystal, and the amount of contamination on the outer surface is larger than that on the inside.

次に、本発明で予め取得する相関関係について説明する。 Next, the correlation acquired in advance in the present invention will be described.

上述のように、HZ部品を交換してからのシリコン単結晶製造装置の使用時間が長くなる程、HZ部品のFe濃度は低くなり、Fe汚染量は少なくなる。また、引上げたシリコン単結晶のアズグロウン直径からの円筒研削した研削量が多くなるほど、研削後のシリコン単結晶周辺部のFe濃度は低くなる。従って、シリコン融液表面より上部に位置するHZ部品を交換してからのシリコン単結晶製造装置の使用時間と、引上げたシリコン単結晶のアズグロウン直径からの円筒研削した研削量と、該研削量でのシリコン単結晶周辺部のFe濃度には、相関関係がある。本発明では、この相関関係を定量的に把握し、これを利用することで、より効率よくシリコン単結晶を製造できる。 As described above, the longer the usage time of the silicon single crystal manufacturing apparatus after replacing the HZ component, the lower the Fe concentration of the HZ component and the smaller the amount of Fe contamination. Further, as the amount of cylindrical grinding from the as-grown diameter of the pulled-up silicon single crystal increases, the Fe concentration in the peripheral portion of the silicon single crystal after grinding decreases. Therefore, the usage time of the silicon single crystal manufacturing apparatus after replacing the HZ component located above the surface of the silicon melt, the amount of cylindrical grinding from the as-grown diameter of the raised silicon single crystal, and the amount of grinding are used. There is a correlation between the Fe concentration in the periphery of the silicon single crystal. In the present invention, by quantitatively grasping this correlation and utilizing it, a silicon single crystal can be produced more efficiently.

相関関係を得るために、本発明では以下に説明する検討実験を行ったが、これに限定されるものではない。 In order to obtain the correlation, the present invention has conducted the study experiments described below, but the present invention is not limited thereto.

<検討実験>
検討実験では、対象とする部品の選定、HZ部品を新品に交換後の累計使用時間、アズグロウン単結晶の直径、アズグロウン単結晶から製品直径までの深さ(研削量)、及びFe濃度を以下のようにして得た。
<Examination experiment>
In the study experiment, the selection of the target parts, the cumulative usage time after replacing the HZ parts with new ones, the diameter of the asgrown single crystal, the depth from the asgrown single crystal to the product diameter (grinding amount), and the Fe concentration were as follows. I got it like this.

まず、黒鉛ルツボより上部に配置されるHZ部品の内1つ選定して、予め基材のFe濃度を測定しておいた新品部品へ交換する。その他の部品は、過去の操業結果より不具合が発生していない新品交換後の500時間以上経過したもののみとした。 First, one of the HZ parts arranged above the graphite crucible is selected and replaced with a new part whose Fe concentration of the base material has been measured in advance. Other parts were limited to those 500 hours or more after replacement with new ones that did not cause any problems based on the past operation results.

このHZ構成で単結晶を引上げ、引上げた単結晶について円筒研削を行わない状態で最初に直胴10cm毎に単結晶の直径ならびにFe濃度を調べた。この結果から単結晶外表面でのFe濃度が5.0×10atoms/cmを超える部分について、この後円筒研削を行い、直径を1mm細い状態とし、直径ならびにFe濃度を測定した。以下、同様に直径を少しずつ研削しながらこれを直径が297mmになるまで繰り返し、単結晶外表面からの深さ方向でのFe濃度変化を調べた。 A single crystal was pulled up with this HZ configuration, and the diameter and Fe concentration of the single crystal were first examined every 10 cm of the straight cylinder without performing cylindrical grinding on the pulled up single crystal. From this result, the portion where the Fe concentration on the outer surface of the single crystal exceeded 5.0 × 10 9 atoms / cm 3 was subsequently subjected to cylindrical grinding to make the diameter 1 mm thinner, and the diameter and Fe concentration were measured. Hereinafter, this was repeated while grinding the diameter little by little until the diameter became 297 mm, and the change in Fe concentration in the depth direction from the outer surface of the single crystal was investigated.

図1にその一例として、部品基材のFe濃度が0.026ppmであるグラファイト製の吸熱筒を新品交換した場合ならびに500時間以上使用している吸熱筒を使用した場合のアズグロウン単結晶外表面からの深さとFe濃度の測定結果を示す。 As an example in FIG. 1, from the outer surface of an asgrown single crystal when a graphite heat absorbing cylinder having an Fe concentration of 0.026 ppm as a component base material is replaced with a new one and when a heat absorbing cylinder that has been used for 500 hours or more is used. The measurement results of the depth and Fe concentration are shown.

この結果より、HZ部品を新品交換した場合、アズグロウン単結晶外表面のFe濃度が交換しない場合に比べ高くなるが、通常の円筒研削深さ2mmに対し、3.5mmまで研削する事で円筒研削後のブロック円筒部でのFe濃度を新品交換しない場合と同じレベルに出来ることが分かった。 From this result, when the HZ part is replaced with a new one, the Fe concentration on the outer surface of the asgrown single crystal is higher than when it is not replaced. It was found that the Fe concentration in the later block cylinder could be set to the same level as when the new block was not replaced.

さらに、異なるHZ部品交換を繰り返し、単結晶外表面のFe濃度へ影響を及ぼすHZ部品を絞り込んだ。この結果、HZ部品に含まれているFe濃度が、グラファイト部品の場合は0.05ppm以下、炭素繊維部品の場合は0.5ppm以下の物で、単結晶外表面のFe濃度へ影響を及ぼすHZ部品は、特に、遮熱筒と遮熱筒断熱材ならびに吸熱筒である事が分かった。 Further, different HZ component replacements were repeated to narrow down the HZ components that affect the Fe concentration on the outer surface of the single crystal. As a result, the Fe concentration contained in the HZ component is 0.05 ppm or less in the case of the graphite component and 0.5 ppm or less in the case of the carbon fiber component, which affects the Fe concentration on the outer surface of the single crystal. It was found that the parts were, in particular, a heat shield cylinder, a heat shield cylinder heat insulating material, and a heat absorption cylinder.

また、上記条件のHZ部品交換後に結晶外表面のFe濃度へ影響を及ぼす時間は、単結晶が遮熱筒と遮熱筒断熱材ならびに吸熱筒内に在る時間の累計が各々100時間を超えるまでの期間である事が分かった。 In addition, the cumulative time that the single crystal stays in the heat shield cylinder, the heat shield cylinder heat insulating material, and the heat absorption cylinder exceeds 100 hours for the time that affects the Fe concentration on the outer surface of the crystal after replacing the HZ parts under the above conditions. It turned out that it was a period until.

以上の結果より、シリコン融液表面より上部に位置するHZ部品を交換してからの装置の使用時間と、引上げたシリコン単結晶のアズグロウン直径からの円筒研削した研削量と、該研削量でのシリコン単結晶周辺部のFe濃度との間に相関関係があることを明らかにした。 Based on the above results, the usage time of the device after replacing the HZ component located above the surface of the silicon melt, the amount of cylindrical grinding from the as-grown diameter of the raised silicon single crystal, and the amount of grinding at that amount. It was clarified that there is a correlation with the Fe concentration in the periphery of the silicon single crystal.

そこで、本発明に係るシリコン単結晶の製造方法では、シリコン融液表面より上部に位置するHZ部品を交換してからの単結晶引上げ装置の使用時間と、引上げたシリコン単結晶のアズグロウン直径からの円筒研削した研削量と、該研削量でのシリコン単結晶周辺部のFe濃度との相関関係を予め取得しておく。相関関係は、例えば、上述の検討実験のようにして取得することができる。 Therefore, in the method for producing a silicon single crystal according to the present invention, the usage time of the single crystal pulling device after replacing the HZ component located above the surface of the silicon melt and the asgrown diameter of the pulled silicon single crystal are used. The correlation between the grinding amount obtained by cylindrical grinding and the Fe concentration in the periphery of the silicon single crystal at the grinding amount is acquired in advance. The correlation can be obtained, for example, as in the study experiment described above.

ブロック円筒部のFe濃度の測定は、特に限定はされないが、例えば、ブロック円筒部でのライフタイム測定をSinton Instruments社製BCT−400装置で行うとともに、またポリッシュドウェーハ(PW)に加工後のFe濃度を、表面光電力効果(SPV)法により測定する。そして、ブロック円筒部でのライフタイムの測定結果とPW加工後のFe濃度の測定結果の相関関係から、ブロック円筒部でのFe濃度を求めることができる。 The measurement of the Fe concentration in the block cylindrical portion is not particularly limited, but for example, the lifetime measurement in the block cylindrical portion is performed by a BCT-400 device manufactured by Sington Instruments, and after processing into a polished wafer (PW). Fe concentration is measured by the surface photopower effect (SPV) method. Then, the Fe concentration in the block cylindrical portion can be obtained from the correlation between the measurement result of the lifetime in the block cylindrical portion and the measurement result of the Fe concentration after PW processing.

このようにして予め取得した相関関係に基づき、製品直径に含まれるFe濃度が、目標とするFe濃度以下となる円筒研削量になるように、引上げるシリコン単結晶のアズグロウン直径を制御し、シリコン単結晶の製造を行う。 Based on the correlation obtained in advance in this way, the asgrown diameter of the silicon single crystal to be pulled up is controlled so that the Fe concentration contained in the product diameter becomes a cylindrical grinding amount that is equal to or less than the target Fe concentration, and silicon. Manufactures single crystals.

チャンバー内のHZ部品を交換した際、シリコン単結晶の引上げ直径を所定の直径より太く引上げる。シリコン単結晶をアズグロウン結晶からブロックへ加工する際に、円筒研削で太く引き上げた部分を削り取ることで、単結晶外表面部から拡散した重金属等の不純物濃度が高い部分を除去し、ブロック外表面部での重金属等の汚染物質の拡散量が少ない単結晶を得る事ができる。さらに、チャンバー内HZ部品を交換した後、所定の時間経過した後は、引上げ直径を所定の直径より太く引上げる事を止める事で、原料ロスを低減する事が可能とできる。 When the HZ component in the chamber is replaced, the pulling diameter of the silicon single crystal is pulled thicker than the predetermined diameter. When processing a silicon single crystal from an asgrown crystal to a block, the part that is thickly pulled up by cylindrical grinding is scraped off to remove the part with a high impurity concentration such as heavy metal diffused from the outer surface of the single crystal, and the outer surface of the block. It is possible to obtain a single crystal in which the amount of diffusion of contaminants such as heavy metals is small. Further, after a predetermined time has elapsed after replacing the HZ component in the chamber, it is possible to reduce the raw material loss by stopping the pulling diameter to be thicker than the predetermined diameter.

HZ部品を交換した後の結晶直径を太くする期間ならびに太くする直径の量は、試験により求めた値や、結晶外表面から汚染物質が拡散する深さについて熱履歴と炉内部品の配置を考慮し、単結晶を太くする度合を結晶の長さ方向で拡散深さが深い部分では多く、拡散深さが浅い部分では少なく設定することが好ましい。結晶外表面から汚染物質が拡散する深さが結晶全長にわたって同等の場合は、結晶全長にわたって一律に太く製造を行っても良い。また、累計使用時間が100時間に達した後は、アズグロウン直径を、目標直径に戻しても良い。このようにすれば、原料歩留まりを向上させることができる。 The period for thickening the crystal diameter after replacing the HZ parts and the amount of the thickening diameter are the values obtained by the test, and the thermal history and the arrangement of the parts inside the furnace are taken into consideration for the depth at which the contaminants diffuse from the outer surface of the crystal. However, it is preferable to set the degree of thickening of the single crystal to be large in the portion where the diffusion depth is deep in the crystal length direction and to be small in the portion where the diffusion depth is shallow. When the depth at which the contaminants diffuse from the outer surface of the crystal is the same over the entire length of the crystal, the production may be uniformly made thicker over the entire length of the crystal. Further, after the cumulative usage time reaches 100 hours, the asgrown diameter may be returned to the target diameter. In this way, the raw material yield can be improved.

このとき、HZ部品のFe濃度を、グラファイト部品の場合は0.05ppm以下、炭素繊維部品の場合は0.5ppm以下とすることが好ましい。 At this time, the Fe concentration of the HZ component is preferably 0.05 ppm or less in the case of the graphite component and 0.5 ppm or less in the case of the carbon fiber component.

HZ部品のFe濃度が上記の濃度以下であれば、現行のHZ部品と同様の純度の部品を用いることができ、HZ部品を高純度化しなくてよく、本発明によりコストを増加させずにFe汚染を抑制したシリコン単結晶を製造ができる。 If the Fe concentration of the HZ component is equal to or lower than the above concentration, a component having the same purity as the current HZ component can be used, the HZ component does not have to be highly purified, and Fe is not increased by the present invention. It is possible to produce a silicon single crystal with suppressed contamination.

このとき、目標とするFe濃度を5.0×10atoms/cm以下とすることが好ましい。 At this time, it is preferable that the target Fe concentration is 5.0 × 10 9 atoms / cm 3 or less.

上記のようなFe濃度以下であれば、Fe汚染に起因するライフタイム低下等を抑制することができる。 When the concentration is less than or equal to the Fe concentration as described above, it is possible to suppress a decrease in lifetime due to Fe contamination.

また、このとき、融液表面より上部に位置するHZ部品を、遮熱筒、遮熱筒内に設置される遮熱筒断熱材、及び遮熱筒上部に配置され引上げ中の単結晶から吸熱を促進する吸熱筒とすることが好ましい。 Further, at this time, the HZ component located above the surface of the melt is heat-absorbed from the heat shield cylinder, the heat shield cylinder heat insulating material installed in the heat shield cylinder, and the single crystal arranged above the heat shield cylinder and being pulled up. It is preferable to use a heat absorbing cylinder that promotes the above.

これらの部品により、単結晶の引上げ方向における温度勾配をより大きくすることができ、引上げ速度をより速くしつつ、本発明によりシリコン単結晶外周部のFe汚染をより抑制することができる。なお、対象とするHZ部品は、上記のものに限定されるものではなく、シリコン融液表面より上部に位置するものであれば適用でき、不活性ガスの流れ方向において融液表面より上流となる経路に配置しているものである。 With these components, the temperature gradient in the pulling direction of the single crystal can be made larger, the pulling speed can be made faster, and Fe contamination on the outer peripheral portion of the silicon single crystal can be further suppressed by the present invention. The target HZ component is not limited to the above, but can be applied as long as it is located above the surface of the silicon melt, and is upstream from the surface of the melt in the flow direction of the inert gas. It is placed on the route.

このとき、HZ部品を新品に交換後、累計使用時間が100時間に達するまでは、直胴部のアズグロウン直径を引上げ目標直径より3mm以上太くなるように制御することが好ましい。 At this time, after replacing the HZ part with a new one, it is preferable to control the diameter of the as-grown of the straight body portion so as to be raised and thickened by 3 mm or more from the target diameter until the cumulative usage time reaches 100 hours.

このようにすれば、HZ部品を新品に交換後のFe濃度が高い間に引上げたシリコン単結晶のアズグロウン直径だけ太くすることができ、確実にFe濃度を抑制して効率よくシリコン単結晶を製造することができる。 By doing so, it is possible to increase the asgrown diameter of the silicon single crystal pulled up while the Fe concentration is high after replacing the HZ component with a new one, and the Fe concentration is surely suppressed to efficiently produce the silicon single crystal. can do.

このとき、製品直径を300mm以上とすることが好ましい。 At this time, it is preferable that the product diameter is 300 mm or more.

本発明では特に、このような大直径で低Fe濃度のシリコン単結晶を生産性高く製造することができる。 In particular, in the present invention, it is possible to produce such a large-diameter silicon single crystal having a low Fe concentration with high productivity.

以下、本発明を実施例に基づいて具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to the following examples.

本実施例では汚染物質として重金属のFe元素について検討した。Fe濃度の測定は、ブロック円筒部でのライフタイム測定をSinton Instruments社製BCT−400装置で行った結果と、PW加工後のウェーハをSPV法により測定して得たFe濃度の測定結果の相関を得ておき、本評価ではブロック円筒部でのライフタイム測定結果を、先の相関を用いてFe濃度に換算した。 In this example, Fe element of heavy metal was examined as a pollutant. The Fe concentration is measured by the correlation between the result of the lifetime measurement in the block cylindrical part performed by the BCT-400 device manufactured by Sington Instruments and the measurement result of the Fe concentration obtained by measuring the wafer after PW processing by the SPV method. In this evaluation, the lifetime measurement result in the block cylindrical portion was converted into Fe concentration using the above correlation.

(実施例)
上述の検討実験で予め求めた相関関係に基づき、図2に示す引上げ装置を用いて、HZ部品は遮熱筒15と遮熱筒断熱材14のみ新品を装着し、その他部品はいずれも累計使用時間が100時間以上のものを使用した。シリコン単結晶製造条件はチャージ量430kgとし、引上げ速度0.5mm/分、不活性ガス流量100L/分をプルチャンバー2の上部より供給し、メインチャンバー下部より排出する状態で結晶を製造し、遮熱筒15と遮熱筒断熱材14を新品交換後継続使用しながらこれを繰り返した。取り付けた新品部品のFe濃度は、遮熱筒15にあっては0.04ppmで、遮熱筒断熱材14にあっては0.28ppmである。アズグロウン結晶の直径は引上げ目標直径(基準直径)305mmに対し一律3mm太い直径308mmの単結晶を引上げた。上記の条件で製造した単結晶を研削代3.5mmとして直径301mmまで円筒研削した。さらに、遮熱筒15と遮熱筒断熱材14の累計使用時間が100時間経過後に単結晶の引上げ直径を基準直径305mmに戻した。
(Example)
Based on the correlation obtained in advance in the above-mentioned examination experiment, using the pulling device shown in FIG. 2, only the heat shield cylinder 15 and the heat shield cylinder heat insulating material 14 are newly installed as HZ parts, and all other parts are used cumulatively. Those with an time of 100 hours or more were used. The conditions for producing a silicon single crystal are a charge amount of 430 kg, a pulling speed of 0.5 mm / min, an inert gas flow rate of 100 L / min being supplied from the upper part of the pull chamber 2, and a crystal being produced and shielded from the lower part of the main chamber. This was repeated while continuing to use the heat cylinder 15 and the heat shield heat insulating material 14 after replacing them with new ones. The Fe concentration of the attached new part is 0.04 ppm in the heat shield cylinder 15 and 0.28 ppm in the heat shield cylinder heat insulating material 14. As for the diameter of the asgrown crystal, a single crystal having a diameter of 308 mm, which is 3 mm thicker than the target diameter (reference diameter) of 305 mm, was pulled up. The single crystal produced under the above conditions was cylindrically ground to a diameter of 301 mm with a grinding allowance of 3.5 mm. Further, after the cumulative usage time of the heat shield cylinder 15 and the heat shield cylinder heat insulating material 14 has elapsed for 100 hours, the pull-up diameter of the single crystal is returned to the reference diameter of 305 mm.

(比較例1)
図2に示す引上げ装置を用いて、HZ部品は遮熱筒15と遮熱筒断熱材14のみ新品を装着し、その他のHZ部品はいずれも累計使用時間が100時間以上のものを使用した。
シリコン単結晶製造条件はチャージ量430kgとし、引上げ速度0.5mm/分、不活性ガス流量100L/分をプルチャンバー2の上部より供給し、メインチャンバー下部より排出する状態で結晶を製造し、遮熱筒15と遮熱筒断熱材14を新品交換後継続使用しながらこれを繰り返した。取り付けた新品部品のFe濃度は、遮熱筒15にあっては0.04ppmで、遮熱筒断熱材14にあっては0.22ppmである。結晶の直径は基準直径305mmのまま単結晶引上げを継続した。上記の条件で製造した単結晶を研削代2.0mmとして直径301mmまで円筒研削した。
(Comparative Example 1)
Using the pulling device shown in FIG. 2, only the heat shield cylinder 15 and the heat shield cylinder heat insulating material 14 were newly installed as the HZ parts, and the other HZ parts used had a cumulative usage time of 100 hours or more.
The conditions for producing a silicon single crystal are a charge amount of 430 kg, a pulling speed of 0.5 mm / min, an inert gas flow rate of 100 L / min being supplied from the upper part of the pull chamber 2, and a crystal being produced and shielded from the lower part of the main chamber. This was repeated while continuing to use the heat cylinder 15 and the heat shield heat insulating material 14 after replacing them with new ones. The Fe concentration of the attached new part is 0.04 ppm in the heat shield cylinder 15 and 0.22 ppm in the heat shield cylinder heat insulating material 14. The single crystal pulling was continued while keeping the crystal diameter as the reference diameter of 305 mm. The single crystal produced under the above conditions was cylindrically ground to a diameter of 301 mm with a grinding allowance of 2.0 mm.

(比較例2)
図2に示す引上げ装置を用いて、遮熱筒15と遮熱筒断熱材14を含む全てのHZ部品を累計使用結果が100時間以上のものを使用した。シリコン単結晶製造条件はチャージ量430kgとし、引上げ速度0.5mm/分、不活性ガス流量100L/分をプルチャンバー2の上部より供給し、メインチャンバー下部より排出する状態で結晶製造を繰り返した。結晶の直径は基準直径305mmのまま単結晶引上げを継続した。上記の条件で製造した単結晶を研削代2.0mmとして直径301mmまで円筒研削した。
(Comparative Example 2)
Using the pulling device shown in FIG. 2, all HZ parts including the heat shield cylinder 15 and the heat shield cylinder heat insulating material 14 were used with a cumulative usage result of 100 hours or more. The silicon single crystal production conditions were a charge amount of 430 kg, a pulling speed of 0.5 mm / min, an inert gas flow rate of 100 L / min was supplied from the upper part of the pull chamber 2, and crystal production was repeated in a state of being discharged from the lower part of the main chamber. The single crystal pulling was continued while keeping the crystal diameter as the reference diameter of 305 mm. The single crystal produced under the above conditions was cylindrically ground to a diameter of 301 mm with a grinding allowance of 2.0 mm.

図3は、上記3例の条件で製造した円筒研削後の単結晶について、円筒部の結晶中のFe濃度測定した推移グラフである。条件毎に使用時間の推移として示した。 FIG. 3 is a transition graph in which the Fe concentration in the crystal of the cylindrical portion was measured for a single crystal after cylindrical grinding manufactured under the conditions of the above three examples. It is shown as the transition of usage time for each condition.

図3から明らかなように、比較例1では遮熱筒15と遮熱筒断熱材14を新品交換後にFe濃度が上昇したが、本発明である実施例ではFe濃度の上昇が無かった。比較例2と本発明を比べても、遮熱筒15と遮熱筒断熱材14を新品交換したことによる、Fe元素の上昇は見られない。一方、比較例1では遮熱筒15と遮熱筒断熱材14を新品交換した後、Fe元素の急激な上昇が見られ累計使用時間が100時間到達まで継続している。 As is clear from FIG. 3, in Comparative Example 1, the Fe concentration increased after the heat shield cylinder 15 and the heat shield cylinder heat insulating material 14 were replaced with new ones, but in the example of the present invention, the Fe concentration did not increase. Even when Comparative Example 2 is compared with the present invention, no increase in Fe element is observed due to the replacement of the heat shield cylinder 15 and the heat shield cylinder heat insulating material 14 with new ones. On the other hand, in Comparative Example 1, after the heat shield cylinder 15 and the heat shield cylinder heat insulating material 14 were replaced with new ones, a rapid increase in the Fe element was observed, and the cumulative usage time continued until reaching 100 hours.

図4は、原料ロスの比較を示したグラフで、比較例1の結果を1.0とした。比較例1の方法では、製品のSPV品質不良が発生していた。一方、実施例では製品のSPV品質不良は発生せず、比較例1に対し、原料ロスが約5分の1へ低減することができた。 FIG. 4 is a graph showing a comparison of raw material losses, and the result of Comparative Example 1 was 1.0. In the method of Comparative Example 1, poor SPV quality of the product occurred. On the other hand, in the examples, the SPV quality of the product did not deteriorate, and the raw material loss could be reduced to about one-fifth as compared with the comparative example 1.

以上説明したように、本発明のシリコン単結晶の製造方法よれば、HZ部品交換時に発生することがある結晶外周部のFe汚染を抑制する事ができた。さらに品質不良を削減できたことで原料ロスの削減も得られた。 As described above, according to the method for producing a silicon single crystal of the present invention, Fe contamination on the outer periphery of the crystal, which may occur when replacing HZ parts, can be suppressed. Furthermore, by reducing quality defects, we were able to reduce raw material loss.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and any object having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect and effect is the present invention. Is included in the technical scope of.

1…メインチャンバー、 2…プルチャンバー、 3a…石英るつぼ、
3b…外るつぼ、 4…保温筒、 5…ヒーター、 6…回転支持体、
7…るつぼ駆動機構、 8…圧力調整バルブ機構、 9…真空ポンプ、
10…シードワイヤー、 11…単結晶、 12…原料融液、 13…吸熱筒、
14…遮熱筒断熱材、 15…遮熱筒、 100…単結晶引上げ装置。
1 ... Main chamber, 2 ... Pull chamber, 3a ... Quartz crucible,
3b ... Outer crucible, 4 ... Heat insulation tube, 5 ... Heater, 6 ... Rotating support,
7 ... Crucible drive mechanism, 8 ... Pressure adjustment valve mechanism, 9 ... Vacuum pump,
10 ... Seed wire, 11 ... Single crystal, 12 ... Raw material melt, 13 ... Endothermic cylinder,
14 ... Heat shield tube heat insulating material, 15 ... Heat shield tube, 100 ... Single crystal pulling device.

Claims (6)

HZ部品を具備する製造装置を用いて、CZ法により、るつぼに収容したシリコン融液からシリコン単結晶を引上げた後、該シリコン単結晶を製品直径に円筒研削するシリコン単結晶の製造方法であって、
前記シリコン融液表面より上部に位置する前記HZ部品を交換してからの前記装置の使用時間と、前記引上げたシリコン単結晶のアズグロウン直径からの円筒研削した研削量と、該研削量での前記シリコン単結晶周辺部のFe濃度との相関関係を予め取得しておき、
該相関関係に基づき、前記製品直径の前記シリコン単結晶の周辺部のFe濃度が、目標とするFe濃度以下となる円筒研削量になるように、前記引上げるシリコン単結晶のアズグロウン直径を制御することを特徴とするシリコン単結晶の製造方法。
This is a method for manufacturing a silicon single crystal in which a silicon single crystal is pulled up from a silicon melt contained in a crucible by a CZ method using a manufacturing apparatus equipped with HZ parts, and then the silicon single crystal is cylindrically ground to the product diameter. hand,
The usage time of the device after replacing the HZ component located above the surface of the silicon melt, the amount of cylindrically ground from the as-grown diameter of the pulled-up silicon single crystal, and the said amount at the amount of grinding. Obtain the correlation with the Fe concentration around the silicon single crystal in advance,
Based on the correlation, the asgrown diameter of the silicon single crystal to be pulled up is controlled so that the Fe concentration in the peripheral portion of the silicon single crystal of the product diameter becomes a cylindrical grinding amount that is equal to or less than the target Fe concentration. A method for producing a silicon single crystal.
前記HZ部品のFe濃度を、グラファイト部品の場合は0.05ppm以下、炭素繊維部品の場合は0.5ppm以下とすることを特徴とする請求項1に記載のシリコン単結晶の製造方法。 The method for producing a silicon single crystal according to claim 1, wherein the Fe concentration of the HZ component is 0.05 ppm or less in the case of a graphite component and 0.5 ppm or less in the case of a carbon fiber component. 前記製品直径の前記シリコン単結晶の周辺部の前記目標とするFe濃度を5.0×10atoms/cm以下とすることを特徴する請求項1または請求項2に記載のシリコン単結晶の製造方法。 The silicon single crystal according to claim 1 or 2, wherein the target Fe concentration in the peripheral portion of the silicon single crystal having the product diameter is 5.0 × 10 9 atoms / cm 3 or less. Production method. 前記融液表面より上部に位置するHZ部品を、遮熱筒、該遮熱筒内に設置される遮熱筒断熱材、及び前記遮熱筒上部に配置され引上げ中の前記単結晶から吸熱を促進する吸熱筒とすることを特徴とする請求項1ないし請求項3のいずれか一項に記載のシリコン単結晶の製造方法。 The HZ component located above the surface of the melt is placed on the heat shield cylinder, the heat shield cylinder heat insulating material installed in the heat shield cylinder, and the heat absorption from the single crystal which is arranged on the upper part of the heat shield cylinder and is being pulled up. The method for producing a silicon single crystal according to any one of claims 1 to 3, wherein the endothermic cylinder is used to promote the heat absorption. 前記HZ部品を新品に交換後、累計使用時間が100時間に達するまでは、前記直胴部のアズグロウン直径を引上げ目標直径より3mm以上太くなるように制御することを特徴とする請求項1ないし請求項4のいずれか一項に記載のシリコン単結晶の製造方法。 1. Item 8. The method for producing a silicon single crystal according to any one of Items 4. 前記製品直径を300mm以上とすることを特徴とする請求項1ないし請求項5のいずれか一項に記載のシリコン単結晶の製造方法。 The method for producing a silicon single crystal according to any one of claims 1 to 5, wherein the product diameter is 300 mm or more.
JP2020026158A 2020-02-19 2020-02-19 Manufacturing method of silicon single crystal Active JP7276190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020026158A JP7276190B2 (en) 2020-02-19 2020-02-19 Manufacturing method of silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020026158A JP7276190B2 (en) 2020-02-19 2020-02-19 Manufacturing method of silicon single crystal

Publications (2)

Publication Number Publication Date
JP2021130574A true JP2021130574A (en) 2021-09-09
JP7276190B2 JP7276190B2 (en) 2023-05-18

Family

ID=77552058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026158A Active JP7276190B2 (en) 2020-02-19 2020-02-19 Manufacturing method of silicon single crystal

Country Status (1)

Country Link
JP (1) JP7276190B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002780A (en) * 2001-04-20 2003-01-08 Shin Etsu Handotai Co Ltd Apparatus for producing silicon single crystal and method for producing silicon single crystal using the same
JP2003221296A (en) * 2002-01-29 2003-08-05 Komatsu Electronic Metals Co Ltd Apparatus and method for producing single crystal
JP2004284860A (en) * 2003-03-20 2004-10-14 Toshiba Ceramics Co Ltd Method of manufacturing silicon single crystal
JP2006027928A (en) * 2004-07-13 2006-02-02 Shin Etsu Handotai Co Ltd Apparatus and method for manufacturing single crystal, silicon single crystal, and silicon single crystal wafer
JP2009274903A (en) * 2008-05-14 2009-11-26 Sumco Corp Methods for producing silicon single crystal and silicon wafer and silicon wafer produced by the method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003002780A (en) * 2001-04-20 2003-01-08 Shin Etsu Handotai Co Ltd Apparatus for producing silicon single crystal and method for producing silicon single crystal using the same
JP2003221296A (en) * 2002-01-29 2003-08-05 Komatsu Electronic Metals Co Ltd Apparatus and method for producing single crystal
JP2004284860A (en) * 2003-03-20 2004-10-14 Toshiba Ceramics Co Ltd Method of manufacturing silicon single crystal
JP2006027928A (en) * 2004-07-13 2006-02-02 Shin Etsu Handotai Co Ltd Apparatus and method for manufacturing single crystal, silicon single crystal, and silicon single crystal wafer
JP2009274903A (en) * 2008-05-14 2009-11-26 Sumco Corp Methods for producing silicon single crystal and silicon wafer and silicon wafer produced by the method

Also Published As

Publication number Publication date
JP7276190B2 (en) 2023-05-18

Similar Documents

Publication Publication Date Title
KR100710702B1 (en) Production method for silicon single crystal and production device for single crystal ingot, and heat treating method for silicon single crystal wafer
US20080035050A1 (en) An Apparatus for Producing a Single Crystal
WO2005001171A1 (en) Process for producing single crystal and single crystal
WO2005001169A1 (en) Method for producing single crystal and single crystal
EP1717355B1 (en) Production apparatus and process for producing silicon single crystal and silicon wafer
JP4457584B2 (en) Method for producing single crystal and single crystal
JP7276190B2 (en) Manufacturing method of silicon single crystal
JP4293188B2 (en) Single crystal manufacturing method and silicon single crystal wafer
JP2009274888A (en) Production method of silicon single crystal, and silicon single crystal wafer
JP4080657B2 (en) Method for producing silicon single crystal ingot
JP4345597B2 (en) Single crystal manufacturing apparatus and single crystal manufacturing method
JP4345585B2 (en) Silicon single crystal manufacturing method, viewing window glass used therefor, crystal observation window glass, silicon single crystal manufacturing apparatus
JP2005015290A (en) Method for manufacturing single crystal, and single crystal
JP3900816B2 (en) Silicon wafer manufacturing method
KR20020062971A (en) Silicon semiconductor single crystal manufacturing apparatus and manufacturing method
JPH09278581A (en) Apparatus for producing single crystal and production of single crystal
TWI832759B (en) Method for growing silicon single crystal, method for manufacturing silicon wafer and single crystal pulling device
KR100324481B1 (en) Graphite crucible for growth of single crystalline silicon by czochralski method
JP4155273B2 (en) Manufacturing method of high quality silicon single crystal
TWI671440B (en) 矽Single crystal manufacturing method, 矽 single crystal and 矽 wafer
JP2022103859A (en) Method of evaluating carbon concentration of silicon sample, method of evaluating silicon wafer manufacturing process, method of manufacturing silicon wafer, and method of manufacturing silicon single crystal ingot
JPH06144987A (en) Device for growing single crystal
CN117836475A (en) Method for producing an epitaxially coated monocrystalline silicon semiconductor wafer
WO2005035838A1 (en) Process for producing single crystal, single crystal and single crystal production apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230417

R150 Certificate of patent or registration of utility model

Ref document number: 7276190

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150