JP2021129455A - Electric motor car - Google Patents

Electric motor car Download PDF

Info

Publication number
JP2021129455A
JP2021129455A JP2020023641A JP2020023641A JP2021129455A JP 2021129455 A JP2021129455 A JP 2021129455A JP 2020023641 A JP2020023641 A JP 2020023641A JP 2020023641 A JP2020023641 A JP 2020023641A JP 2021129455 A JP2021129455 A JP 2021129455A
Authority
JP
Japan
Prior art keywords
temperature
charging
charging connector
connector
related data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020023641A
Other languages
Japanese (ja)
Other versions
JP7307007B2 (en
Inventor
崇真 鈴木
Takamasa Suzuki
崇真 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Toyota Motor Corp
Original Assignee
Subaru Corp
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Subaru Corp, Toyota Motor Corp filed Critical Subaru Corp
Priority to JP2020023641A priority Critical patent/JP7307007B2/en
Publication of JP2021129455A publication Critical patent/JP2021129455A/en
Application granted granted Critical
Publication of JP7307007B2 publication Critical patent/JP7307007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

To provide a technology capable of more accurately acquiring a temperature at a contact point between a charging inlet and a charging connector.SOLUTION: An electric motor car disclosed in the present specification includes: a charging inlet to which a charging connector of charging equipment is detachably connected; a first temperature sensor for measuring the temperature of the charging inlet; a communication device for acquiring temperature-related data related to the temperature of the charging connector; and a processing circuit for estimating a temperature at a contact point between the charging connector and the charging inlet on the basis of the temperature measured by the first temperature sensor and the temperature-related data. The temperature-related data includes at least one of: the presence or absence of a cooling system for the charging connector of the charging equipment; and a temperature measured by a second temperature sensor provided on the charging connector of the charging equipment.SELECTED DRAWING: Figure 1

Description

本明細書が開示する技術は、電動車に関し、特に、充電設備によって充電される電動車に関する。 The technology disclosed herein relates to an electric vehicle, and more particularly to an electric vehicle charged by a charging facility.

特許文献1に、充電設備によって充電される電動車が開示されている。この電動車は、充電設備の充電コネクタが着脱可能に接続される充電インレットを備える。 Patent Document 1 discloses an electric vehicle charged by a charging facility. This electric vehicle is equipped with a charging inlet to which the charging connector of the charging equipment is detachably connected.

特開2019−187035号公報Japanese Unexamined Patent Publication No. 2019-187035

一般的に、上記のような電動車では、充電インレットに温度センサが設けられ、温度センサによる測定温度に応じて充電電流が制御されている。これにより、充電インレットと充電コネクタとの接点の過熱を回避しつつ、充電時間の短縮が図られている。しかしながら、充電インレットと充電コネクタとの実際の接点に温度センサを配置することは、充電インレットと充電コネクタとの篏合の妨げとなるため困難である。従って、温度センサによる測定温度は、充電インレットと充電コネクタとの接点における実際の温度に必ずしも一致せず、両者の間には誤差が存在する。特に、充電設備の一部には、充電コネクタの冷却システムを有するものがあり、冷却システムの有無によって、充電インレットと充電コネクタとの間に現れる温度勾配(温度分布)も相違する。従って、温度センサによる測定温度と、接点における実際の温度との間にも、冷却システムの有無によって異なる誤差が生じてしまう。 Generally, in an electric vehicle as described above, a temperature sensor is provided in the charging inlet, and the charging current is controlled according to the temperature measured by the temperature sensor. As a result, the charging time is shortened while avoiding overheating of the contact point between the charging inlet and the charging connector. However, it is difficult to arrange the temperature sensor at the actual contact point between the charging inlet and the charging connector because it hinders the alignment between the charging inlet and the charging connector. Therefore, the temperature measured by the temperature sensor does not always match the actual temperature at the contact point between the charging inlet and the charging connector, and there is an error between the two. In particular, some charging equipment has a cooling system for the charging connector, and the temperature gradient (temperature distribution) that appears between the charging inlet and the charging connector differs depending on the presence or absence of the cooling system. Therefore, a different error occurs between the temperature measured by the temperature sensor and the actual temperature at the contact point depending on the presence or absence of the cooling system.

上記の実情を鑑み、本明細書では、充電インレットと充電コネクタとの接点の温度を、より正確に把握し得る技術を提供する。 In view of the above circumstances, the present specification provides a technique capable of more accurately grasping the temperature of the contact point between the charging inlet and the charging connector.

本明細書が開示する電動車は、充電設備の充電コネクタが着脱可能に接続される充電インレットと、充電インレットの温度を測定する第1温度センサと、充電コネクタの温度に関連する温度関連データを取得する通信装置と、第1温度センサによる測定温度と温度関連データとに基づいて充電コネクタと充電インレットとの間の接点における温度を推定する処理回路とを備える。温度関連データには、充電設備の充電コネクタに対する冷却システムの有無と、充電設備の充電コネクタに設けられた第2温度センサによる測定温度との少なくとも一方が含まれる。 The electric vehicle disclosed in the present specification has a charging inlet to which the charging connector of the charging facility is detachably connected, a first temperature sensor for measuring the temperature of the charging inlet, and temperature-related data related to the temperature of the charging connector. It includes a communication device to be acquired and a processing circuit that estimates the temperature at the contact point between the charging connector and the charging inlet based on the temperature measured by the first temperature sensor and the temperature-related data. The temperature-related data includes at least one of the presence / absence of a cooling system for the charging connector of the charging equipment and the temperature measured by the second temperature sensor provided in the charging connector of the charging equipment.

上記の構成によると、充電インレットと充電コネクタとの間の接点における温度を、充電インレットの第1温度センサによる測定温度に加えて、充電コネクタの温度に関連する温度関連データを利用することで、より正確に推定することができる。特に、温度関連データには、充電設備の充電コネクタに対する冷却システムの有無と、充電設備の充電コネクタに設けられた第2温度センサによる測定温度との少なくとも一方が含まれる。例えば、充電コネクタに対する冷却システムの有無が判明すれば、第1温度センサによる測定温度を用いて接点における温度を推定する関係式を、冷却システムの有無に応じて変更することができる。あるいは、充電コネクタに設けられた第2温度センサによる測定温度が判明すれば、二つの温度センサの間に位置する接点の温度をより正確に推定することができる。その結果、様々な充電設備においても、充電電流をより適切に制御することができ、例えば充電時間の短縮が可能となる。 According to the above configuration, the temperature at the contact point between the charging inlet and the charging connector can be measured by the first temperature sensor of the charging inlet and the temperature related data related to the temperature of the charging connector can be used. It can be estimated more accurately. In particular, the temperature-related data includes at least one of the presence / absence of a cooling system for the charging connector of the charging equipment and the temperature measured by the second temperature sensor provided in the charging connector of the charging equipment. For example, if the presence or absence of a cooling system for the charging connector is known, the relational expression for estimating the temperature at the contact using the temperature measured by the first temperature sensor can be changed according to the presence or absence of the cooling system. Alternatively, if the temperature measured by the second temperature sensor provided on the charging connector is known, the temperature of the contact located between the two temperature sensors can be estimated more accurately. As a result, the charging current can be controlled more appropriately even in various charging facilities, and for example, the charging time can be shortened.

電動車10とそれを充電する充電設備40との構成を模式的に示す。The configuration of the electric vehicle 10 and the charging equipment 40 for charging the electric vehicle 10 is schematically shown. 充電インレット20と、それに接続される充電コネクタ30とを模式的に示す。The charging inlet 20 and the charging connector 30 connected to the charging inlet 20 are schematically shown. 充電インレット20と、それに接続される充電コネクタ30とを模式的に示す図であって、充電コネクタ30に第2温度センサ32が設けられたものの一例を示す。It is a figure which shows typically the charging inlet 20 and the charging connector 30 connected to it, and shows an example of the charging connector 30 provided with the 2nd temperature sensor 32.

図面を参照して、実施例の電動車10について説明する。電動車10は、図1、図2に示すように充電インレット20を備える。充電インレット20は、電動車10の一部に設けられるが、その位置は特に限定されない。ここでいう電動車10は、特に限定されないが、例えば電気自動車やプラグインハイブリッド自動車であり、充電設備40といった外部電源から充電ケーブル42を通じて受電し、車載の蓄電装置28で蓄電する充電機構が搭載されている。 The electric vehicle 10 of the embodiment will be described with reference to the drawings. The electric vehicle 10 includes a charging inlet 20 as shown in FIGS. 1 and 2. The charging inlet 20 is provided in a part of the electric vehicle 10, but its position is not particularly limited. The electric vehicle 10 referred to here is not particularly limited, but is, for example, an electric vehicle or a plug-in hybrid vehicle, and is equipped with a charging mechanism that receives power from an external power source such as a charging facility 40 through a charging cable 42 and stores electricity in an in-vehicle power storage device 28. Has been done.

充電インレット20は、受電側のコネクタであり、充電設備40の充電コネクタ30が着脱可能に接続される。従って、充電インレット20は、外部電源から供給される電力を、充電コネクタ30を介して受電し、電動車10に搭載された蓄電装置28で蓄電する。 The charging inlet 20 is a connector on the power receiving side, and the charging connector 30 of the charging equipment 40 is detachably connected to the charging inlet 20. Therefore, the charging inlet 20 receives the electric power supplied from the external power source via the charging connector 30, and stores the electric power in the electric storage device 28 mounted on the electric vehicle 10.

電動車10は、さらに第1温度センサ22を備える。第1温度センサ22は、充電インレット20の近傍に位置しており、又は、充電インレット20に内蔵されており、充電インレット20の温度を検出する。ここで、第1温度センサ22の具体的な構成については、特に限定されない。第1温度センサ22は、充電インレット20の温度を、直接的又は間接的に測定し得るものであればよい。 The electric vehicle 10 further includes a first temperature sensor 22. The first temperature sensor 22 is located in the vicinity of the charging inlet 20 or is built in the charging inlet 20 to detect the temperature of the charging inlet 20. Here, the specific configuration of the first temperature sensor 22 is not particularly limited. The first temperature sensor 22 may be capable of directly or indirectly measuring the temperature of the charging inlet 20.

電動車10は、さらに通信装置24を備える。通信装置24は、有線又は無線によって、充電設備40や外部と各種のデータを通信する。通信装置24は、例えば、充電コネクタ30の温度に関連する、温度関連データを取得する。温度関連データには、充電設備40の充電コネクタ30に対する冷却システム34の有無が含まれる。通信装置24における温度関連データの具体的な取得方法については、特に限定されない。通信装置24は、温度関連データを直接的又は間接的に取得し得るものであればよい。例えば、温度関連データに関する情報が格納されたメモリが電動車10にさらに備えられており、通信装置24は当該メモリを参照することによって、間接的に温度関連データを取得してもよい。具体的には、電動車10のメモリには、複数の充電設備40について、識別情報と冷却システム34の有無を記述するデータベースが記憶されていてもよい。この場合、電動車10の通信装置24は、温度関連データとして、充電設備40からその識別情報のみを取得すれば足りる。あるいは、電動車10の外部に設けられたサーバーと通信装置24とが通信することによって間接的に温度関連データを取得してもよい。通信装置24による温度関連データの取得が実行されるのは、電動車10と充電設備40とが接続される前であってもよく、接続された後であってもよい。 The electric vehicle 10 further includes a communication device 24. The communication device 24 communicates various data with the charging equipment 40 and the outside by wire or wirelessly. The communication device 24 acquires, for example, temperature-related data related to the temperature of the charging connector 30. The temperature-related data includes the presence / absence of the cooling system 34 for the charging connector 30 of the charging equipment 40. The specific acquisition method of the temperature-related data in the communication device 24 is not particularly limited. The communication device 24 may be any device that can directly or indirectly acquire temperature-related data. For example, the electric vehicle 10 is further provided with a memory in which information related to the temperature-related data is stored, and the communication device 24 may indirectly acquire the temperature-related data by referring to the memory. Specifically, the memory of the electric vehicle 10 may store identification information and a database describing the presence / absence of the cooling system 34 for the plurality of charging facilities 40. In this case, it is sufficient for the communication device 24 of the electric vehicle 10 to acquire only the identification information from the charging equipment 40 as the temperature-related data. Alternatively, the temperature-related data may be indirectly acquired by communicating with the communication device 24 and the server provided outside the electric vehicle 10. The acquisition of the temperature-related data by the communication device 24 may be executed before or after the electric vehicle 10 and the charging facility 40 are connected.

電動車10は、さらに処理回路26を備える。処理回路26は、第1温度センサ22に接続され、第1温度センサ22による測定温度、即ち、充電インレット20の温度を取得する。処理回路26は、さらに、通信装置24に接続され、充電コネクタ30が取得した温度関連データを通信装置24から取得する。即ち、処理回路26には、第1温度センサ22が測定した充電インレット20の測定温度と、通信装置24が取得した充電コネクタ30の温度関連データとが入力される。従って、処理回路26は、第1温度センサ22が測定した充電インレット20の測定温度と、通信装置24が取得した充電コネクタ30の温度関連データと、に基づいて充電コネクタ30と充電インレット20との間の接点における温度を推定する。充電コネクタ30と充電インレット20との間の接点における推定温度が、所定値を超えた場合、処理回路26は過熱を回避するために、例えば充電電力を制限するよう制御することができる。前記所定値は、充電インレット20のケーブルの耐熱温度や、充電時間等を考慮して設計されてよい。 The electric vehicle 10 further includes a processing circuit 26. The processing circuit 26 is connected to the first temperature sensor 22 and acquires the temperature measured by the first temperature sensor 22, that is, the temperature of the charging inlet 20. The processing circuit 26 is further connected to the communication device 24, and acquires the temperature-related data acquired by the charging connector 30 from the communication device 24. That is, the measured temperature of the charging inlet 20 measured by the first temperature sensor 22 and the temperature-related data of the charging connector 30 acquired by the communication device 24 are input to the processing circuit 26. Therefore, the processing circuit 26 sets the charging connector 30 and the charging inlet 20 based on the measured temperature of the charging inlet 20 measured by the first temperature sensor 22 and the temperature-related data of the charging connector 30 acquired by the communication device 24. Estimate the temperature at the contacts between them. When the estimated temperature at the contact between the charging connector 30 and the charging inlet 20 exceeds a predetermined value, the processing circuit 26 can be controlled to limit the charging power, for example, in order to avoid overheating. The predetermined value may be designed in consideration of the heat resistant temperature of the cable of the charging inlet 20, the charging time, and the like.

以下、充電コネクタ30と充電インレット20との接点を、単に接点と略称することがあり、接点における温度を、単に接点温度と略称することがある。 Hereinafter, the contact point between the charging connector 30 and the charging inlet 20 may be simply abbreviated as the contact point, and the temperature at the contact point may be simply abbreviated as the contact temperature.

上記の構成によると、充電設備40が、接点の過熱を抑制するための充電コネクタ30の冷却システム34を有する場合においても、電動車10は、より正確に接点温度を推定することができる。電動車10は、充電インレット20の第1温度センサ22による測定に加えて、充電コネクタ30の温度に関する温度関連データを利用することで、より正確に接点温度を推定することができる。温度関連データには、前述したように、充電設備40の充電コネクタ30に対する冷却システム34の有無が含まれる。 According to the above configuration, even when the charging equipment 40 has a cooling system 34 for the charging connector 30 for suppressing overheating of the contacts, the electric vehicle 10 can estimate the contact temperature more accurately. The electric vehicle 10 can estimate the contact temperature more accurately by using the temperature-related data related to the temperature of the charging connector 30 in addition to the measurement by the first temperature sensor 22 of the charging inlet 20. As described above, the temperature-related data includes the presence / absence of the cooling system 34 for the charging connector 30 of the charging equipment 40.

例えば、充電設備40が充電コネクタ30の冷却システム34を備える場合について以下に説明する。充電インレット20と充電コネクタ30との間に現れる温度勾配(温度分布)は、充電コネクタ30の冷却システム34の有無によって相違する。詳細には、冷却システム34を有する充電コネクタ30は、冷却システム34を有さない充電コネクタ30と比較すると、冷却システム34による冷却によって、低温を維持する。即ち、冷却システム34の有無によって充電コネクタ30の温度が変化する。従って、前述したように、充電コネクタ30の冷却システム34の有無によって、充電インレット20と充電コネクタ30との間に現れる温度勾配(温度分布)も相違する。処理回路26は、通信装置24が取得した温度関連データによって、冷却システム34の有無が判明した場合、接点温度を推定する関係式を、冷却システム34の有無に応じて変更する。その結果、接点温度をより正確に把握することができる。 For example, a case where the charging equipment 40 includes the cooling system 34 of the charging connector 30 will be described below. The temperature gradient (temperature distribution) that appears between the charging inlet 20 and the charging connector 30 differs depending on the presence or absence of the cooling system 34 of the charging connector 30. Specifically, the charging connector 30 with the cooling system 34 maintains a lower temperature due to cooling by the cooling system 34 as compared to the charging connector 30 without the cooling system 34. That is, the temperature of the charging connector 30 changes depending on the presence or absence of the cooling system 34. Therefore, as described above, the temperature gradient (temperature distribution) that appears between the charging inlet 20 and the charging connector 30 differs depending on the presence or absence of the cooling system 34 of the charging connector 30. When the presence / absence of the cooling system 34 is determined from the temperature-related data acquired by the communication device 24, the processing circuit 26 changes the relational expression for estimating the contact temperature according to the presence / absence of the cooling system 34. As a result, the contact temperature can be grasped more accurately.

一方で、図3に示すように、充電設備40は第2温度センサ32を備える場合がある。第2温度センサ32は、例えば、充電コネクタ30の近傍に位置しており、又は、充電コネクタ30に内蔵されており、充電コネクタ30の温度を検出する。ここで、第2温度センサ32の具体的な構成については、特に限定されない。第2温度センサ32は、充電コネクタ30の温度を、直接的又は間接的に測定し得るものであればよい。 On the other hand, as shown in FIG. 3, the charging equipment 40 may include a second temperature sensor 32. The second temperature sensor 32 is located, for example, in the vicinity of the charging connector 30, or is built in the charging connector 30, and detects the temperature of the charging connector 30. Here, the specific configuration of the second temperature sensor 32 is not particularly limited. The second temperature sensor 32 may be any as long as it can directly or indirectly measure the temperature of the charging connector 30.

充電設備40が第2温度センサ32を備える場合について以下に説明する。充電設備40が第2温度センサ32を備える場合、通信装置24は、温度関連データとして、充電コネクタ30に設けられた第2温度センサ32による測定温度を取得するとよい。このとき、温度関連データには、充電コネクタ30の冷却システム34の有無についての情報が含まれてもよいし、含まれなくてもよい。温度関連データによって第2温度センサ32による測定温度が判明したとき、処理回路26は、充電インレット20に設けられた第1温度センサ22による測定温度と、第2温度センサ32による測定温度によって、接点温度をより正確に推定することができる。詳細には、二つの温度センサ22、32による各測定温度の間に現れる温度勾配や、各測定温度を用いた接点温度を推定する関係式を用いて、処理回路26は、接点温度をより正確に推定することができる。 The case where the charging equipment 40 includes the second temperature sensor 32 will be described below. When the charging equipment 40 includes the second temperature sensor 32, the communication device 24 may acquire the temperature measured by the second temperature sensor 32 provided in the charging connector 30 as the temperature-related data. At this time, the temperature-related data may or may not include information about the presence or absence of the cooling system 34 of the charging connector 30. When the temperature measured by the second temperature sensor 32 is found from the temperature-related data, the processing circuit 26 is contacted by the temperature measured by the first temperature sensor 22 provided in the charging inlet 20 and the temperature measured by the second temperature sensor 32. The temperature can be estimated more accurately. Specifically, the processing circuit 26 makes the contact temperature more accurate by using the temperature gradient appearing between the measured temperatures by the two temperature sensors 22 and 32 and the relational expression for estimating the contact temperature using each measured temperature. Can be estimated to.

冷却システム34の有無を考慮した関係式による接点温度の推定と、第2温度センサ32による測定温度を考慮した接点温度の推定は、どちらか一方だけが実行されてよく、並行してどちらも実行されてもよい。従って、通信装置24が取得する温度関連データには、充電コネクタ30の冷却システム34の有無と、充電コネクタ30に設けられた第2温度センサ32による測定温度との少なくとも一方が含まれればよい。以上の構成により、電動車10は様々な充電設備40においても、充電電流をより適切に制御することができる。その結果、例えば充電設備40からの充電の時間短縮が可能となる。 Only one of the contact temperature estimation by the relational expression considering the presence or absence of the cooling system 34 and the contact temperature estimation considering the measurement temperature by the second temperature sensor 32 may be executed, and both are executed in parallel. May be done. Therefore, the temperature-related data acquired by the communication device 24 may include at least one of the presence / absence of the cooling system 34 of the charging connector 30 and the temperature measured by the second temperature sensor 32 provided in the charging connector 30. With the above configuration, the electric vehicle 10 can more appropriately control the charging current even in various charging facilities 40. As a result, for example, the charging time from the charging equipment 40 can be shortened.

以上、いくつかの具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書又は図面に説明した技術要素は、単独であるいは組み合わせによって技術的有用性を発揮するものである。 Although some specific examples have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples illustrated above. The technical elements described herein or in the drawings exhibit their technical usefulness alone or in combination.

10:電動車
20:充電インレット
22:第1温度センサ
24:通信装置
26:処理回路
28:蓄電装置
30:充電コネクタ
32:第2温度センサ
34:冷却システム
40:充電設備
42:充電ケーブル
10: Electric vehicle 20: Charging inlet 22: First temperature sensor 24: Communication device 26: Processing circuit 28: Power storage device 30: Charging connector 32: Second temperature sensor 34: Cooling system 40: Charging equipment 42: Charging cable

Claims (1)

充電設備の充電コネクタが着脱可能に接続される充電インレットと、
前記充電インレットの温度を測定する第1温度センサと、
前記充電コネクタの温度に関連する温度関連データを取得する通信装置と、
前記第1温度センサによる測定温度と、前記温度関連データとに基づいて、前記充電コネクタと前記充電インレットとの間の接点における温度を推定する処理回路と、
を備え、
前記温度関連データには、前記充電設備の前記充電コネクタに対する冷却システムの有無と、前記充電設備の前記充電コネクタに設けられた第2温度センサによる測定温度との少なくとも一方が含まれる、
電動車。
A charging inlet to which the charging connector of the charging equipment is detachably connected,
A first temperature sensor that measures the temperature of the charging inlet,
A communication device that acquires temperature-related data related to the temperature of the charging connector, and
A processing circuit that estimates the temperature at the contact point between the charging connector and the charging inlet based on the temperature measured by the first temperature sensor and the temperature-related data.
With
The temperature-related data includes at least one of the presence / absence of a cooling system for the charging connector of the charging facility and the temperature measured by a second temperature sensor provided for the charging connector of the charging facility.
Electric car.
JP2020023641A 2020-02-14 2020-02-14 electric car Active JP7307007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020023641A JP7307007B2 (en) 2020-02-14 2020-02-14 electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020023641A JP7307007B2 (en) 2020-02-14 2020-02-14 electric car

Publications (2)

Publication Number Publication Date
JP2021129455A true JP2021129455A (en) 2021-09-02
JP7307007B2 JP7307007B2 (en) 2023-07-11

Family

ID=77489188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020023641A Active JP7307007B2 (en) 2020-02-14 2020-02-14 electric car

Country Status (1)

Country Link
JP (1) JP7307007B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478347A (en) * 2017-08-25 2017-12-15 深圳奥特迅电力设备股份有限公司 The thermometry of charging gun and its contact point, device
JP2019187035A (en) * 2018-04-06 2019-10-24 トヨタ自動車株式会社 Vehicle and method of charging vehicle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107478347A (en) * 2017-08-25 2017-12-15 深圳奥特迅电力设备股份有限公司 The thermometry of charging gun and its contact point, device
JP2019187035A (en) * 2018-04-06 2019-10-24 トヨタ自動車株式会社 Vehicle and method of charging vehicle

Also Published As

Publication number Publication date
JP7307007B2 (en) 2023-07-11

Similar Documents

Publication Publication Date Title
JP5895839B2 (en) Secondary battery state management system, charger, secondary battery state management method, and electrical property measurement method
US9696382B2 (en) Method and apparatus for estimating maximum power of battery by using internal resistance of the battery
JP4763050B2 (en) Battery state estimation method and apparatus
US11325479B2 (en) Hybrid and electric vehicle battery maintenance device
US11973202B2 (en) Intelligent module interface for battery maintenance device
CN104049128A (en) Method and system for estimating voltage of a battery element
CN109843636A (en) It is used for transmission the temperature monitoring charging system of charging current
US11226239B2 (en) DC charging cable and method for determining a temperature of the DC charging cable
CN102052973B (en) Methods and systems for thermistor temperature processing
CN105277892B (en) Battery system identification by pulse injection
US10486535B2 (en) Apparatus and method for preventing overheating of charging inlet
EP3534168B1 (en) Battery control device
CN109795368B (en) Power supply control system and power supply control method
CN105301425A (en) Harness anomaly detection systems and methods
US11479140B2 (en) Calibration of a charging device of an electric vehicle
KR20200112914A (en) Current measuring device, current measuring method, and computer-readable non-transitory recording medium
JP2014236625A (en) Vehicle controller and vehicle control method
JP7307007B2 (en) electric car
CN114555404A (en) Method and device for charging an electrically driven vehicle
JP2014509174A (en) Charge management method for rechargeable battery of automobile vehicle
US20200132736A1 (en) Current sensor
JP7114943B2 (en) Current measuring device
US11500028B2 (en) Detection device
TW202024589A (en) Capacitor temperature measurement apparatus
JP2005082094A (en) Short-circuiting position detection device for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220405

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230629

R151 Written notification of patent or utility model registration

Ref document number: 7307007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151