JP7114943B2 - Current measuring device - Google Patents

Current measuring device Download PDF

Info

Publication number
JP7114943B2
JP7114943B2 JP2018039692A JP2018039692A JP7114943B2 JP 7114943 B2 JP7114943 B2 JP 7114943B2 JP 2018039692 A JP2018039692 A JP 2018039692A JP 2018039692 A JP2018039692 A JP 2018039692A JP 7114943 B2 JP7114943 B2 JP 7114943B2
Authority
JP
Japan
Prior art keywords
current
measured
magnetic sensors
magnetic field
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018039692A
Other languages
Japanese (ja)
Other versions
JP2019152607A (en
Inventor
一馬 竹中
徹也 石川
美菜子 寺尾
晃太朗 小河
紗希 小箱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018039692A priority Critical patent/JP7114943B2/en
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to CN201980015287.6A priority patent/CN111771128B/en
Priority to US16/971,927 priority patent/US11360124B2/en
Priority to EP22195147.8A priority patent/EP4130757B1/en
Priority to PCT/JP2019/004009 priority patent/WO2019167565A1/en
Priority to KR1020207024038A priority patent/KR102412180B1/en
Priority to EP19760523.1A priority patent/EP3761044A4/en
Publication of JP2019152607A publication Critical patent/JP2019152607A/en
Application granted granted Critical
Publication of JP7114943B2 publication Critical patent/JP7114943B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Description

本発明は、電流測定装置に関する。 The present invention relates to a current measuring device.

従来から、被測定導体に流れる電流を非接触で直接的に測定することが可能な様々な電流測定装置が開発されている。このような電流測定装置の代表的なものとしては、例えばCT(Current Transformer:変流器)方式の電流測定装置、ゼロフラックス方式の電流測定装置、ロゴスキー方式の電流測定装置、ホール素子方式の電流測定装置等が挙げられる。 2. Description of the Related Art Conventionally, various current measuring devices have been developed that are capable of directly measuring a current flowing through a conductor to be measured without contact. Representative examples of such current measuring devices include, for example, a CT (Current Transformer) type current measuring device, a zero flux type current measuring device, a Rogowski type current measuring device, and a Hall element type current measuring device. A current measuring device and the like can be mentioned.

例えば、CT方式及びゼロフラックス方式の電流測定装置は、巻線が巻回された磁気コアを被測定導体の周囲に設け、被測定導体(一次側)に流れる電流によって磁気コアに生ずる磁束を打ち消すように巻線(二次側)に流れる電流を検出することで、被測定導体に流れる電流を測定するものである。また、ロゴスキー方式の電流測定装置は、ロゴスキーコイル(空芯コイル)を被測定導体の周囲に設け、被測定導体に流れる交流電流によって生ずる磁界がロゴスキーコイルと鎖交することでロゴスキーコイルに誘起される電圧を検出することで、被測定導体に流れる電流を測定するものである。 For example, in CT and zero-flux current measurement devices, a magnetic core with windings is provided around the conductor to be measured, and the magnetic flux generated in the magnetic core by the current flowing in the conductor (primary side) is canceled. By detecting the current flowing through the winding (secondary side), the current flowing through the conductor under test is measured. In the Rogowski current measuring device, a Rogowski coil (air-core coil) is provided around the conductor to be measured. By detecting the voltage induced in the coil, the current flowing through the conductor under test is measured.

以下の特許文献1には、ゼロフラックス方式の電流測定装置の一例が開示されている。また、以下の特許文献2には、複数の磁気センサを用いた電流測定装置が開示されている。具体的に、以下の特許文献2に開示された電流測定装置は、被測定導体に対してそれぞれ異なる距離をとって2つの磁気センサを配置し、これら磁気センサの出力から磁気センサと被測定導体との距離を求め、求めた距離を用いて被測定導体に流れる電流の大きさを求めている。 Patent Literature 1 below discloses an example of a zero-flux current measuring device. Further, Patent Document 2 below discloses a current measuring device using a plurality of magnetic sensors. Specifically, in the current measuring device disclosed in Patent Document 2 below, two magnetic sensors are arranged at different distances from the conductor to be measured, and the output of the magnetic sensor and the conductor to be measured are obtained from the outputs of these magnetic sensors. , and the magnitude of the current flowing through the conductor under test is obtained using the obtained distance.

特開2005-55300号公報JP-A-2005-55300 特開2011-164019号公報JP 2011-164019 A

ところで、近年、ハイブリッド自動車(HV:Hybrid Vehicle)や電気自動車(EV:Electric Vehicle)の開発工程において、SiC(シリコンカーバイド)等のパワー半導体のピンに流れる電流や、組み立て後のバスバーに流れる電流を直接的に測定したいという要求がある。パワー半導体はピンのピッチが狭いものが多く、バスバーは周辺のスペースが限られている場所に設置されることがあり、このようなパワー半導体やバスバー等に対して、電流測定時の設置を柔軟に行うことが可能な電流測定装置が望まれている。また、ハイブリッド自動車や電気自動車では、例えばバッテリから供給される直流電流やモータに流れる交流電流が取り扱われるため、直流電流及び低周波(例えば、十[Hz]程度)の交流電流を非接触で測定可能な電流測定装置が望まれている。 By the way, in recent years, in the development process of hybrid vehicles (HVs) and electric vehicles (EVs: electric vehicles), the current flowing in the pins of power semiconductors such as SiC (silicon carbide) and the current flowing in bus bars after assembly There is a demand for direct measurement. Many power semiconductors have narrow pin pitches, and busbars are sometimes installed in places where the surrounding space is limited. What is desired is a current measurement device that can perform In addition, in hybrid vehicles and electric vehicles, for example, DC current supplied from a battery and AC current flowing in a motor are handled, so DC current and low-frequency (for example, about ten [Hz]) AC current can be measured without contact. A capable current measuring device is desired.

しかしながら、上述した特許文献1に開示されたゼロフラックス方式の電流測定装置は、ある程度の大きさを有する磁気コアを被測定導体の周囲に設ける必要があることから、狭い場所への設置が困難であるという問題がある。また、上述したロゴスキー方式の電流測定装置は、ロゴスキーコイルに誘起される電圧を検出していることから、原理的に直流電流の測定を行うことはできないという問題がある。また低周波領域では、出力信号が微弱であるとともに位相がずれるため、測定精度が悪いという問題がある。また、上述した特許文献2に開示された電流測定装置は、磁気センサの感磁方向を被測定導体の円周方向に一致させる必要があることから、磁気センサの配置が制限されてしまい柔軟な配置が困難であるという問題がある。 However, the zero-flux current measuring device disclosed in the above-mentioned Patent Document 1 requires a magnetic core having a certain size to be provided around the conductor to be measured, making it difficult to install in a narrow space. There is a problem that there is Further, since the Rogowski-type current measuring device described above detects the voltage induced in the Rogowski coil, there is a problem that it cannot measure a direct current in principle. In addition, in the low-frequency region, the output signal is weak and out of phase, resulting in poor measurement accuracy. Further, in the current measuring device disclosed in Patent Document 2 mentioned above, the magnetism sensing direction of the magnetic sensor must be aligned with the circumferential direction of the conductor to be measured. There is a problem that the arrangement is difficult.

また、電流は、一般的に電源の正極から流出した後に、負荷等を経て電源の負極に流入するため、電源から供給される電流の電流経路には、電流が電源の正極から流出する経路(往路)と、電流が電源の負極に流入する経路(復路)とがある。尚、前者の経路を復路といい、後者の経路を往路という場合もある。このため、電流経路の何れか一方(例えば、往路)を流れる電流を測定する場合には、電流経路の何れか他方(例えば、復路)を流れる電流によって生成される磁界の影響を受け、測定精度が悪化してしまうという問題がある。 In addition, since current generally flows out from the positive pole of the power supply and then flows into the negative pole of the power supply through the load, etc., the current path of the current supplied from the power supply includes the path in which the current flows out from the positive pole of the power supply ( forward path) and a path (return path) in which the current flows into the negative electrode of the power supply. The former route may be referred to as a return route, and the latter route may be referred to as an outward route. Therefore, when measuring the current flowing in one of the current paths (for example, the forward path), the magnetic field generated by the current flowing in the other of the current paths (for example, the return path) affects the measurement accuracy. There is a problem that the

本発明は上記事情に鑑みてなされたものであり、柔軟な配置が可能であり、往復する電流経路の何れか一方を流れる直流電流及び低周波の交流電流を非接触で精度良く測定することができる電流測定装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and enables flexible arrangement, and enables non-contact and accurate measurement of direct current and low-frequency alternating current flowing in either one of the reciprocating current paths. It is an object of the present invention to provide a current measuring device capable of

上記課題を解決するために、本発明の一態様による電流測定装置は、互いに反対方向に電流が流れる一対の被測定導体(MC1、MC2)の何れか一方に流れる電流(I)を測定する電流測定装置(1)であって、各々の感磁方向が互いに平行になるように、予め規定された位置関係をもって配置された3つの三軸磁気センサ(11、12、13)と、前記3つの三軸磁気センサの検出結果と前記3つの三軸磁気センサの位置関係とに基づいて、前記被測定導体の何れか他方に流れる電流によって生成される磁界の影響を排除した上で、前記被測定導体の何れか一方に流れる電流を求める演算部(25)と、を備える。
また、本発明の一態様による電流測定装置は、前記演算部が、前記3つの三軸磁気センサの検出結果と前記3つの三軸磁気センサの位置関係とを用いて、前記被測定導体の何れか他方に流れる電流によって生成される磁界を推定する磁界推定部(25b)と、前記3つの三軸磁気センサの検出結果と前記3つの三軸磁気センサの位置関係とを用いて、前記被測定導体の何れか一方に対する前記3つの三軸磁気センサの少なくとも1つの距離を推定する距離推定部(25c)と、前記距離推定部によって推定された距離と、前記距離推定部によって距離が推定された三軸磁気センサの検出結果から前記磁界推定部によって推定された磁界を差し引いたものとに基づいて、前記被測定導体の何れか一方に流れる電流を求める電流算出部(25d)と、を備える。
また、本発明の一態様による電流測定装置において、前記磁界推定部によって推定される磁界は、前記被測定導体の何れか他方に流れる電流によって生成される磁界が、前記3つの三軸磁気センサに近似的に均一に作用するとみなした場合の磁界である。
また、本発明の一態様による電流測定装置は、前記演算部が、前記3つの三軸磁気センサの検出結果に含まれる雑音成分を除去する雑音除去部(25a)を更に備えており、前記雑音除去部によって雑音成分が除去された前記3つの三軸磁気センサの検出結果を用いて前記被測定導体の何れか一方に流れる電流を求める。
また、本発明の一態様による電流測定装置は、前記雑音除去部が、予め規定された一定の期間毎に得られる、前記3つの三軸磁気センサの検出結果の各々に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記3つの三軸磁気センサの検出結果に含まれる雑音成分をそれぞれ除去する。
また、本発明の一態様による電流測定装置は、前記3つの三軸磁気センサを備えるセンサヘッド(10)と、前記演算部を備える回路部(20)と、を備える。
また、本発明の一態様による電流測定装置は、前記3つの三軸磁気センサの検出結果を示す信号が、ディジタル信号である。
In order to solve the above problems, a current measuring device according to one aspect of the present invention measures a current (I) flowing in one of a pair of conductors under test (MC1, MC2) in which currents flow in opposite directions. A measuring device (1), comprising: three triaxial magnetic sensors (11, 12, 13) arranged with a predetermined positional relationship so that their magnetosensitive directions are parallel to each other; Based on the detection result of the triaxial magnetic sensor and the positional relationship of the three triaxial magnetic sensors, after eliminating the influence of the magnetic field generated by the current flowing in one of the conductors to be measured, and a calculation unit (25) for obtaining a current flowing in one of the conductors.
Further, in the current measuring device according to one aspect of the present invention, the calculation unit uses the detection results of the three triaxial magnetic sensors and the positional relationships of the three triaxial magnetic sensors to determine which of the conductors to be measured Using a magnetic field estimating unit (25b) that estimates a magnetic field generated by a current flowing in one or the other, and the detection results of the three triaxial magnetic sensors and the positional relationships of the three triaxial magnetic sensors, the to-be-measured a distance estimator (25c) for estimating a distance of at least one of the three three-axis magnetic sensors with respect to any one of the conductors; a distance estimated by the distance estimator; and a distance estimated by the distance estimator. and a current calculator (25d) for obtaining a current flowing through one of the conductors to be measured based on the result of subtracting the magnetic field estimated by the magnetic field estimator from the detection result of the triaxial magnetic sensor.
Further, in the current measuring device according to one aspect of the present invention, the magnetic field estimated by the magnetic field estimator is such that the magnetic field generated by the current flowing in one of the conductors to be measured is applied to the three triaxial magnetic sensors. This is the magnetic field assuming that it acts approximately uniformly.
Further, in the current measuring device according to one aspect of the present invention, the calculation unit further includes a noise removal unit (25a) for removing noise components contained in the detection results of the three triaxial magnetic sensors, and the noise Using the detection results of the three triaxial magnetic sensors from which the noise component has been removed by the removal unit, the current flowing through any one of the conductors under test is obtained.
Further, in the current measuring device according to one aspect of the present invention, the noise elimination unit performs averaging or Noise components contained in the detection results of the three triaxial magnetic sensors are removed by individually performing square root sum of squares processing.
Further, a current measuring device according to one aspect of the present invention includes a sensor head (10) including the three triaxial magnetic sensors, and a circuit section (20) including the arithmetic unit.
Also, in the current measuring device according to one aspect of the present invention, the signals indicating the detection results of the three triaxial magnetic sensors are digital signals.

本発明によれば、柔軟な配置が可能であり、往復する電流経路の何れか一方を流れる直流電流及び低周波の交流電流を非接触で精度良く測定することができるという効果が得られる。 ADVANTAGE OF THE INVENTION According to this invention, flexible arrangement|positioning is possible and the effect that the direct current and low frequency alternating current which flow in any one of the reciprocating current paths can be measured non-contactingly with sufficient accuracy is acquired.

本発明の一実施形態による電流測定装置を模式的に示す図である。It is a figure which shows typically the current measuring apparatus by one Embodiment of this invention. 本発明の一実施形態による電流測定装置の要部構成を示すブロック図である。1 is a block diagram showing the main configuration of a current measuring device according to an embodiment of the present invention; FIG. 本発明の一実施形態による電流測定装置による電流の測定原理を説明するための図である。It is a figure for demonstrating the measurement principle of the current by the current measuring apparatus by one Embodiment of this invention. 被測定導体及び三軸磁気センサを、図3中の方向D1から見た図である。FIG. 4 is a view of the conductor to be measured and the triaxial magnetic sensor viewed from direction D1 in FIG. 3; 本発明の一実施形態による電流測定装置の動作の概要を示すフローチャートである。4 is a flow chart showing an overview of the operation of the current measuring device according to one embodiment of the present invention; 図5中のステップS14の処理の詳細を示すフローチャートである。FIG. 6 is a flow chart showing the details of the process of step S14 in FIG. 5. FIG.

以下、図面を参照して本発明の一実施形態による電流測定装置について詳細に説明する。 Hereinafter, a current measuring device according to an embodiment of the present invention will be described in detail with reference to the drawings.

〈電流測定装置の構成〉
図1は、本発明の一実施形態による電流測定装置を模式的に示す図である。図1に示す通り、本実施形態の電流測定装置1は、ケーブルCBによって接続されたセンサヘッド10及び回路部20を備えており、被測定導体MC1,MC2の何れか一方に流れる電流Iを非接触で直接的に測定する。尚、本実施形態では、被測定導体MC1に流れる電流Iを測定する場合を例に挙げて説明する。
<Configuration of current measuring device>
FIG. 1 is a diagram schematically showing a current measuring device according to one embodiment of the present invention. As shown in FIG. 1, the current measuring device 1 of the present embodiment includes a sensor head 10 and a circuit section 20 connected by a cable CB, and detects a current I flowing through either one of the conductors MC1 and MC2 to be measured. Measure directly by contact. In this embodiment, the case of measuring the current I flowing through the conductor MC1 to be measured will be described as an example.

尚、被測定導体MC1,MC2は、例えばパワー半導体のピンやバスバー等の任意の導体である。以下では、説明を簡単にするために、被測定導体MC1,MC2は、円柱形状の導電であるとする。被測定導体MC1,MC2に流れる電流Iは、その流れの方向が互いに逆である。以下、被測定導体MC1を流れる電流の電流経路を「往路」といい、被測定導体MC2を流れる電流の電流経路を「復路」ということがある。 The conductors MC1 and MC2 to be measured are arbitrary conductors such as power semiconductor pins and busbars, for example. For the sake of simplicity, the conductors MC1 and MC2 to be measured are assumed to be columnar conductors. The currents I flowing through the conductors MC1 and MC2 to be measured have directions of flow opposite to each other. Hereinafter, the current path of the current flowing through the conductor MC1 to be measured may be referred to as the "outward path", and the current path of the current flowing through the conductor to be measured MC2 may be referred to as the "return path".

センサヘッド10は、被測定導体MC1に流れる電流Iを非接触で測定するために、被測定導体MC1に対して任意の位置に任意の姿勢で配置される部材である。このセンサヘッド10は、被測定導体MC1,MC2に流れる電流Iによって生成される磁界(例えば、図1中に示す磁界H1,H2,H3)を遮らない材質(例えば、樹脂等)によって形成されている。このセンサヘッド10は、いわば被測定導体MC1に流れる電流Iを非接触で測定するためのプローブとして用いられるものである。 The sensor head 10 is a member arranged at an arbitrary position and in an arbitrary posture with respect to the conductor MC1 to be measured in order to measure the current I flowing through the conductor MC1 to be measured without contact. The sensor head 10 is made of a material (such as resin) that does not block the magnetic field (such as the magnetic fields H1, H2, and H3 shown in FIG. 1) generated by the current I flowing through the conductors MC1 and MC2 to be measured. there is The sensor head 10 is used as a probe for non-contact measurement of the current I flowing through the conductor MC1 to be measured.

センサヘッド10には、3つの三軸磁気センサ11,12,13が設けられている。三軸磁気センサ11,12,13は、互いに直交する三軸に感磁方向を有する磁気センサである。三軸磁気センサ11,12,13は、各々の感磁方向が互いに平行になるように、予め規定された位置関係をもって配置されている。例えば、三軸磁気センサ11,12,13の第1軸が互いに平行になり、三軸磁気センサ11,12,13の第2軸が互いに平行になり、且つ三軸磁気センサ11,12,13の第3軸が互いに平行になるように、所定の方向に所定の距離だけ離間するように配置されている。尚、以下では、三軸磁気センサ11,12が、第1軸方向に所定の距離だけ離間するように配列され、三軸磁気センサ11,13が、第3軸方向に所定の距離だけ離間するように配列されているとする。 The sensor head 10 is provided with three triaxial magnetic sensors 11 , 12 and 13 . The three-axis magnetic sensors 11, 12, and 13 are magnetic sensors having magnetic sensing directions along three axes orthogonal to each other. The three-axis magnetic sensors 11, 12 and 13 are arranged with a predetermined positional relationship such that their magnetic sensing directions are parallel to each other. For example, the first axes of the three-axis magnetic sensors 11, 12, 13 are parallel to each other, the second axes of the three-axis magnetic sensors 11, 12, 13 are parallel to each other, and the three-axis magnetic sensors 11, 12, 13 are spaced apart by a predetermined distance in a predetermined direction such that the third axes of the are parallel to each other. In the following, the three-axis magnetic sensors 11 and 12 are arranged so as to be separated by a predetermined distance in the direction of the first axis, and the three-axis magnetic sensors 11 and 13 are arranged to be separated by a predetermined distance in the direction of the third axis. are arranged as

三軸磁気センサ11,12,13の検出結果を示す信号は、アナログ信号及びディジタル信号の何れでも良いが、三軸磁気センサ11,12,13の検出結果を示す信号がディジタル信号である場合には、センサヘッド10と回路部20とを接続するケーブルCBの本数を少なくすることができる。例えば、三軸磁気センサ11,12,13の検出結果を示す信号がアナログ信号である場合には、三軸磁気センサ11,12,13の各々について三軸の検出結果を出力する3本のケーブルCBがそれぞれ必要になるため、計9本のケーブルCBが必要になるが、三軸磁気センサ11,12,13の検出結果を示す信号がディジタル信号である場合には、1本のケーブルCBのみで良い。ケーブルCBの本数が少ないと、ケーブルCBの屈曲性が向上するため、例えばセンサヘッド10を狭い空間内に配置する際にハンドリングが容易になる。 The signals indicating the detection results of the three-axis magnetic sensors 11, 12, 13 may be either analog signals or digital signals. can reduce the number of cables CB connecting the sensor head 10 and the circuit section 20 . For example, when the signals indicating the detection results of the three-axis magnetic sensors 11, 12, and 13 are analog signals, three cables output the three-axis detection results for each of the three-axis magnetic sensors 11, 12, and 13. Since each CB is required, a total of nine cables CB are required. However, if the signals indicating the detection results of the three-axis magnetic sensors 11, 12, and 13 are digital signals, only one cable CB is required. OK. If the number of cables CB is small, the bendability of the cables CB is improved, so that handling is facilitated when the sensor head 10 is arranged in a narrow space, for example.

回路部20は、センサヘッド10から出力される検出結果(三軸磁気センサ11,12,13の検出結果)に基づいて、被測定導体MC1に流れる電流Iを測定する。ここで、回路部20は、被測定導体MC2に流れる電流Iによって生成される磁界の影響を排除した上で、被測定導体MC1に流れる電流Iを測定する。回路部20は、電流Iの測定結果を表示し、或いは外部に出力する。センサヘッド10と回路部20とを接続するケーブルCBとしては任意のものを用いることができるが、可撓性を有し、取り回しが用意であり、且つ断線が生じ難いものが望ましい。 The circuit unit 20 measures the current I flowing through the conductor MC1 to be measured based on the detection results output from the sensor head 10 (detection results of the three-axis magnetic sensors 11, 12, and 13). Here, the circuit section 20 eliminates the influence of the magnetic field generated by the current I flowing through the conductor MC2 under measurement, and then measures the current I flowing through the conductor under measurement MC1. The circuit unit 20 displays the measurement result of the current I or outputs it to the outside. Any cable can be used as the cable CB that connects the sensor head 10 and the circuit section 20, but it is preferable to use a cable that is flexible, easy to handle, and resistant to disconnection.

図2は、本発明の一実施形態による電流測定装置の要部構成を示すブロック図である。尚、図2では、図1に示した構成に対応するブロックについては、同一の符号を付してある。以下では、主に、図2を参照して回路部20の内部構成の詳細について説明する。図2に示す通り、回路部20は、操作部21、表示部22、メモリ23、及び演算部25を備える。 FIG. 2 is a block diagram showing the main configuration of the current measuring device according to one embodiment of the present invention. In FIG. 2, blocks corresponding to the configuration shown in FIG. 1 are denoted by the same reference numerals. Details of the internal configuration of the circuit section 20 will be mainly described below with reference to FIG. As shown in FIG. 2, the circuit section 20 includes an operation section 21, a display section 22, a memory 23, and a calculation section 25. FIG.

操作部21は、例えば電源ボタン、設定ボタン等の各種ボタンを備えており、各種ボタンに対する操作指示を示す信号を演算部25に出力する。表示部22は、例えば例えば7セグメントLED(Light Emitting Diode:発光ダイオード)表示器、液晶表示装置等の表示装置を備えており、演算部25から出力される各種情報(例えば、被測定導体MC1に流れる電流Iの測定結果を示す情報)を表示する。尚、操作部21及び表示部22は、物理的に分離されたものであっても良く、表示機能と操作機能とを兼ね備えるタッチパネル式の液晶表示装置のように物理的に一体化されたものであっても良い。 The operation unit 21 includes various buttons such as a power button and a setting button, and outputs signals indicating operation instructions for the various buttons to the calculation unit 25 . The display unit 22 includes a display device such as, for example, a 7-segment LED (Light Emitting Diode) display or a liquid crystal display device, and various information output from the calculation unit 25 (for example, information indicating the measurement result of the flowing current I) is displayed. Note that the operation unit 21 and the display unit 22 may be physically separated, and may be physically integrated like a touch panel type liquid crystal display device having both a display function and an operation function. It can be.

メモリ23は、例えば揮発性又は不揮発性の半導体メモリを備えており、センサヘッド10から出力される三軸磁気センサ11,12,13の検出結果、演算部25の演算結果(被測定導体MC1に流れる電流Iの測定結果)等を記憶する。尚、メモリ23は、上記の半導体メモリとともに(或いは、上記の半導体メモリに代えて)、例えばHDD(ハードディスクドライブ)やSSD(ソリッドステートドライブ)等の補助記憶装置を備えていても良い。 The memory 23 includes, for example, a volatile or nonvolatile semiconductor memory, and stores the detection results of the three-axis magnetic sensors 11, 12, and 13 output from the sensor head 10 and the calculation results of the calculation unit 25 (for the conductor MC1 to be measured). measurement result of the flowing current I) and the like are stored. The memory 23 may include an auxiliary storage device such as an HDD (Hard Disk Drive) or an SSD (Solid State Drive) in addition to the semiconductor memory (or instead of the semiconductor memory).

演算部25は、センサヘッド10から出力される三軸磁気センサ11,12,13の検出結果をメモリ23に記憶させる。また、演算部25は、メモリ23に記憶された三軸磁気センサ11,12,13の検出結果を読み出して、被測定導体MC1に流れる電流Iを求める演算を行う。この演算部25は、雑音除去部25a、磁界推定部25b、距離推定部25c、及び電流算出部25dを備える。 The calculation unit 25 causes the memory 23 to store the detection results of the triaxial magnetic sensors 11 , 12 and 13 output from the sensor head 10 . Further, the calculation unit 25 reads out the detection results of the three-axis magnetic sensors 11, 12, and 13 stored in the memory 23, and calculates the current I flowing through the conductor MC1 to be measured. The calculator 25 includes a noise remover 25a, a magnetic field estimator 25b, a distance estimator 25c, and a current calculator 25d.

雑音除去部25aは、三軸磁気センサ11,12,13の検出結果に含まれる雑音成分を除去する。具体的に、雑音除去部25aは、予め規定された一定の期間(例えば、1秒)毎に、三軸磁気センサ11,12,13の各々から得られる複数の検出結果に対し、平均化処理又は二乗和平方根処理を個別に行うことで、三軸磁気センサ11,12,13の検出結果に含まれる雑音成分を除去する。尚、三軸磁気センサ11,12,13からは三軸の検出結果がそれぞれ出力されるが、雑音除去部25aによる雑音成分の除去は、各軸の検出結果に対して個別に行われる。このような雑音除去を行うのは、三軸磁気センサ11,12,13のSN比(信号対雑音比)を向上させて、電流Iの測定精度を高めるためである。 The noise elimination unit 25a eliminates noise components contained in the detection results of the three-axis magnetic sensors 11, 12, and 13. FIG. Specifically, the noise removal unit 25a averages a plurality of detection results obtained from each of the three-axis magnetic sensors 11, 12, and 13 at predetermined intervals (for example, one second). Alternatively, noise components contained in the detection results of the three-axis magnetic sensors 11, 12, and 13 are removed by individually performing square-root-sum-of-squares processing. The three-axis magnetic sensors 11, 12, and 13 output three-axis detection results, respectively, and noise components are removed by the noise removal unit 25a separately for each axis detection result. Such noise elimination is performed in order to improve the SN ratio (signal-to-noise ratio) of the three-axis magnetic sensors 11, 12, and 13, thereby increasing the measurement accuracy of the current I.

磁界推定部25bは、三軸磁気センサ11,12,13の検出結果と三軸磁気センサ11,12,13の位置関係とを用いて、被測定導体MC2に流れる電流によって生成される磁界を推定する。このような推定を行うのは、被測定導体MC2に流れる電流Iによって生成される磁界の影響を排除して、被測定導体MC1に流れる電流Iの測定精度を高めるためである。尚、磁界推定部25bによって推定される磁界は、被測定導体MC2に流れる電流によって生成される磁界が、三軸磁気センサ11,12,13に近似的に均一に作用するとみなした場合の磁界である。このような均一な磁界を考慮するのは、磁界推定部25bの演算負荷の削減及び演算時間の短縮を図りつつ、可能な限り測定精度を高めるためである。尚、磁界推定部25bで行われる処理の詳細については後述する。 The magnetic field estimator 25b uses the detection results of the three-axis magnetic sensors 11, 12, and 13 and the positional relationships of the three-axis magnetic sensors 11, 12, and 13 to estimate the magnetic field generated by the current flowing through the conductor MC2 to be measured. do. Such estimation is performed in order to eliminate the influence of the magnetic field generated by the current I flowing through the conductor MC2 to be measured, thereby increasing the measurement accuracy of the current I flowing through the conductor MC1. The magnetic field estimated by the magnetic field estimator 25b is a magnetic field when the magnetic field generated by the current flowing through the conductor MC2 to be measured is assumed to act approximately uniformly on the three-axis magnetic sensors 11, 12, and 13. be. The reason why such a uniform magnetic field is taken into consideration is to improve the measurement accuracy as much as possible while reducing the calculation load of the magnetic field estimation unit 25b and shortening the calculation time. Details of the processing performed by the magnetic field estimation unit 25b will be described later.

距離推定部25cは、三軸磁気センサ11,12,13の検出結果と三軸磁気センサ11,12,13の位置関係とを用いて、被測定導体MC1に対する三軸磁気センサ11,12,13の少なくとも1つの距離を推定する。このような距離の推定を行うのは、被測定導体MC1に流れる電流Iを測定するためである。尚、距離推定部25cで行われる処理の詳細については後述する。 Using the detection results of the three-axis magnetic sensors 11, 12, and 13 and the positional relationships of the three-axis magnetic sensors 11, 12, and 13, the distance estimation unit 25c uses the three-axis magnetic sensors 11, 12, and 13 with respect to the conductor MC1 to be measured. Estimate at least one distance of The purpose of estimating the distance is to measure the current I flowing through the conductor MC1 under measurement. Details of the processing performed by the distance estimation unit 25c will be described later.

電流算出部25dは、距離推定部25cによって推定された距離と、被測定導体MC2に流れる電流Iによって生成される磁界の影響が排除された三軸磁気センサ11,12,13の検出結果から、被測定導体MC1に流れる電流Iを求める。例えば、被測定導体MC1に対する三軸磁気センサ11の距離が電流算出部25dによって推定されたとすると、電流算出部25dは、推定された三軸磁気センサ11の距離と、三軸磁気センサ11の検出結果から磁界推定部25bによって推定された磁界を差し引いたものとに基づいて、被測定導体MC1に流れる電流Iを求める。尚、電流算出部25dで行われる処理の詳細については後述する。 Based on the distance estimated by the distance estimating unit 25c and the detection results of the three-axis magnetic sensors 11, 12, and 13 from which the influence of the magnetic field generated by the current I flowing through the conductor MC2 to be measured is eliminated, the current calculating unit 25d A current I flowing through the conductor MC1 to be measured is obtained. For example, if the current calculator 25d estimates the distance of the triaxial magnetic sensor 11 to the conductor MC1 to be measured, the current calculator 25d calculates the estimated distance of the triaxial magnetic sensor 11 and the detection of the triaxial magnetic sensor 11. The current I flowing through the conductor MC1 to be measured is obtained based on the result obtained by subtracting the magnetic field estimated by the magnetic field estimator 25b. The details of the processing performed by the current calculator 25d will be described later.

ここで、図1,図2に示す通り、回路部20は、センサヘッド10と分離されており、ケーブルCBを介してセンサヘッド10に接続されている。このような構成にすることで、磁界検出機能(三軸磁気センサ11,12,13)と演算機能(演算部25)とを分離することができ、演算部25がセンサヘッド10内に設けられている場合に生ずる諸問題(例えば、温度特性、絶縁耐性)等を回避することができ、これにより電流測定装置1の用途を拡げることができる。 Here, as shown in FIGS. 1 and 2, the circuit section 20 is separated from the sensor head 10 and connected to the sensor head 10 via the cable CB. With such a configuration, the magnetic field detection function (three-axis magnetic sensors 11, 12, 13) and the calculation function (calculation unit 25) can be separated. It is possible to avoid various problems (e.g., temperature characteristics, insulation resistance) that may arise when the current measuring device 1 is used.

〈電流の測定原理〉
次に、電流測定装置1による電流の測定原理について説明する。図3は、本発明の一実施形態による電流測定装置による電流の測定原理を説明するための図である。まず、図3に示す通り、センサヘッド10のみに係る座標系(xyz直交座標系)と、被測定導体MC1,MC2に係る座標系(XYZ直交座標系)との2つの座標系を設定する。
<Current measurement principle>
Next, the principle of current measurement by the current measuring device 1 will be described. FIG. 3 is a diagram for explaining the principle of current measurement by the current measuring device according to one embodiment of the present invention. First, as shown in FIG. 3, two coordinate systems are set, one for the sensor head 10 only (xyz orthogonal coordinate system) and the other for the conductors MC1 and MC2 to be measured (XYZ orthogonal coordinate system).

xyz直交座標系は、センサヘッド10の位置及び姿勢に応じて規定される座標系である。このxyz直交座標系は、三軸磁気センサ11の位置に原点が設定されており、三軸磁気センサ11,12,13の第1軸方向(三軸磁気センサ11,12の配列方向)にx軸が設定されており、三軸磁気センサ11,12,13の第2軸方向にy軸が設定されており、三軸磁気センサ11,12,13の第3軸方向(三軸磁気センサ11,13の配列方向)にz軸が設定されている。 The xyz orthogonal coordinate system is a coordinate system defined according to the position and orientation of the sensor head 10 . The origin of this xyz orthogonal coordinate system is set at the position of the triaxial magnetic sensor 11, and x The y-axis is set in the second axis direction of the three-axis magnetic sensors 11, 12, and 13, and the third axis direction of the three-axis magnetic sensors 11, 12, and 13 (three-axis magnetic sensor 11 , 13) is set as the z-axis.

ここで、三軸磁気センサ11,12,13の位置をPi(i=1,2,3)として表す。尚、Piはベクトルである。つまり、三軸磁気センサ11の位置をP1で表し、三軸磁気センサ12の位置をP2で表し、三軸磁気センサ13の位置をP3で表すとする。例えば、図3に示す通り、三軸磁気センサ11,12のx方向の間隔、及び三軸磁気センサ11,13のz方向の間隔がd[m]であるとすると、三軸磁気センサ11,12,13の位置は以下の通りに表される。
三軸磁気センサ11の位置:P1=(0,0,0)
三軸磁気センサ12の位置:P2=(d,0,0)
三軸磁気センサ13の位置:P3=(0,0,d)
Here, the positions of the triaxial magnetic sensors 11, 12, 13 are expressed as Pi (i=1, 2, 3). Note that Pi is a vector. That is, the position of the triaxial magnetic sensor 11 is represented by P1, the position of the triaxial magnetic sensor 12 is represented by P2, and the position of the triaxial magnetic sensor 13 is represented by P3. For example, as shown in FIG. 3, if the distance between the triaxial magnetic sensors 11 and 12 in the x direction and the distance between the triaxial magnetic sensors 11 and 13 in the z direction are d [m], then the triaxial magnetic sensors 11, The positions of 12 and 13 are represented as follows.
Position of triaxial magnetic sensor 11: P1=(0, 0, 0)
Position of triaxial magnetic sensor 12: P2=(d, 0, 0)
Position of triaxial magnetic sensor 13: P3=(0, 0, d)

XYZ座標系は、被測定導体MC1,MC2に応じて規定される座標系である。このXYZ直交座標系は、被測定導体MC1,MC2の長手方向(電流Iの方向)にX軸が設定されており、被測定導体MC1,MC2の並び方向にY軸が設定されている。Z軸は、X軸及びY軸に直交する方向に設定される。尚、XYZ直交座標系の原点位置は、任意の位置に設定可能である。 The XYZ coordinate system is a coordinate system defined according to the conductors MC1 and MC2 to be measured. In this XYZ orthogonal coordinate system, the X-axis is set in the longitudinal direction (direction of current I) of the conductors under test MC1 and MC2, and the Y-axis is set in the direction in which the conductors under test MC1 and MC2 are arranged. The Z-axis is set in a direction orthogonal to the X-axis and the Y-axis. The origin position of the XYZ orthogonal coordinate system can be set at any position.

図3に示す通り、被測定導体MC1に対する三軸磁気センサ11の距離をr1とし、被測定導体MC1に対する三軸磁気センサ12の距離をr2とし、被測定導体MC1に対する三軸磁気センサ13の距離をr3とする、尚、距離r1は、三軸磁気センサ11から被測定導体MC1に垂直に下ろした線分の長さであり、距離r2は、三軸磁気センサ12から被測定導体MC1に垂直に下ろした線分の長さであり、距離r3は、三軸磁気センサ13から被測定導体MC1に垂直に下ろした線分の長さである。尚、距離r1,r2,r3は、検出できない点に注意されたい。 As shown in FIG. 3, the distance of the triaxial magnetic sensor 11 to the conductor MC1 to be measured is r1, the distance of the triaxial magnetic sensor 12 to the conductor MC1 to be measured is r2, and the distance of the triaxial magnetic sensor 13 to the conductor MC1 to be measured is The distance r1 is the length of a line drawn vertically from the triaxial magnetic sensor 11 to the conductor MC1 to be measured, and the distance r2 is the distance perpendicular to the conductor MC1 to be measured from the triaxial magnetic sensor 12. The distance r3 is the length of a line segment vertically dropped from the triaxial magnetic sensor 13 to the conductor MC1 to be measured. Note that distances r1, r2, and r3 cannot be detected.

また、被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界をHAi(i=1,2,3)として表す。尚、HAiはベクトルである。つまり、被測定導体MC1に流れる電流Iによって三軸磁気センサ11の位置に形成される磁界をHA1として表し、被測定導体MC1に流れる電流Iによって三軸磁気センサ12の位置に形成される磁界をHA2として表し、被測定導体MC1に流れる電流Iによって三軸磁気センサ13の位置に形成される磁界をHA3として表す。 Also, the magnetic field formed at the positions of the three-axis magnetic sensors 11, 12, and 13 by the current I flowing through the conductor MC1 to be measured is expressed as H Ai (i=1, 2, 3). Note that H Ai is a vector. That is, the magnetic field formed at the position of the triaxial magnetic sensor 11 by the current I flowing through the conductor MC1 to be measured is expressed as H A1 , and the magnetic field formed at the position of the triaxial magnetic sensor 12 by the current I flowing through the conductor MC1 to be measured. is represented as H A2 , and the magnetic field formed at the position of the triaxial magnetic sensor 13 by the current I flowing through the conductor MC1 to be measured is represented as H A3 .

また、被測定導体MC2に対するセンサヘッド10の距離が、被測定導体MC1に対するセンサヘッド10の距離に比べて十分大きいとすると、被測定導体MC2に流れる電流Iによって形成される磁界は、三軸磁気センサ11,12,13に近似的に均一に作用するとみなすことができる。この磁界をHとして表す。尚、Hはベクトルである。すると、被測定導体MC1,MC2に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界Hi(i=1,2,3)は、以下の(1)式によって表される。尚、Hiはベクトルである。

Figure 0007114943000001
Further, if the distance of the sensor head 10 to the conductor MC2 to be measured is sufficiently larger than the distance of the sensor head 10 to the conductor MC1 to be measured, the magnetic field formed by the current I flowing through the conductor MC2 to be measured is triaxial magnetic It can be assumed that the sensors 11, 12, 13 act approximately uniformly. Denote this magnetic field as HB. Note that HB is a vector. Then, the magnetic field Hi (i=1, 2, 3) formed at the positions of the three-axis magnetic sensors 11, 12, 13 by the current I flowing through the conductors MC1, MC2 to be measured is expressed by the following equation (1). be. Note that Hi is a vector.
Figure 0007114943000001

次に、センサヘッド10のみに係るxyz直交座標系と、被測定導体MC1,MC2に係るXYZ直交座標系とを関連付けるために、電流Iの方向(図3中のX軸の方向)を求める。前述の通り、被測定導体MC2に流れる電流Iによって形成される磁界Hを均一と近似しているため、三軸磁気センサ11,12,13の検出結果の差分をとると磁界Hをキャンセルすることができる。また、電流Iの方向は、磁界の方向と直交するため、三軸磁気センサ11,12,13の検出結果の差分の外積の方向は、電流Iの方向と一致する。このため、電流Iの方向(図3中のX軸の方向)の単位ベクトルjは、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3)を用いて、以下の(2)式で表される。 Next, the direction of the current I (the direction of the X axis in FIG. 3) is determined in order to associate the xyz orthogonal coordinate system for the sensor head 10 only with the XYZ orthogonal coordinate system for the conductors MC1 and MC2 to be measured. As described above, the magnetic field HB formed by the current I flowing through the conductor MC2 to be measured is approximated to be uniform. can do. Also, since the direction of the current I is orthogonal to the direction of the magnetic field, the direction of the cross product of the difference between the detection results of the three-axis magnetic sensors 11, 12, and 13 coincides with the direction of the current I. Therefore, the unit vector j in the direction of the current I (the direction of the X-axis in FIG. 3) is obtained using the detection results (magnetic fields H1, H2, H3) of the three-axis magnetic sensors 11, 12, 13 as follows ( 2) It is represented by the formula.

Figure 0007114943000002
Figure 0007114943000002

次いで、xyz直交座標系で表された各種ベクトルをXYZ直交座標系で表すために、図4に示す通り、電流Iに対して垂直な平面Γを考える。つまり、上記(2)式を用いて求められる単位ベクトルjに垂直な平面Γを考える。尚、平面Γは、YZ平面に平行な平面であるということもできる。図4は、被測定導体及び三軸磁気センサを、図3中の方向D1から見た図である。図3中の方向D1は、被測定導体MC1,MC2の長手方向に沿う方向(被測定導体MC1に流れる電流Iの方向とは反対の方向、被測定導体MC2に流れる電流Iの方向に沿う方向)である。尚、図4においては、理解を容易にするためにセンサヘッド10の図示を省略して、被測定導体MC1,MC2及び三軸磁気センサ11,12,13を図示している。 Next, in order to represent various vectors expressed in the xyz orthogonal coordinate system in the XYZ orthogonal coordinate system, a plane Γ perpendicular to the current I is considered as shown in FIG. That is, consider a plane Γ perpendicular to the unit vector j obtained using the above equation (2). Note that the plane Γ can also be said to be a plane parallel to the YZ plane. FIG. 4 is a diagram of the conductor to be measured and the triaxial magnetic sensor viewed from the direction D1 in FIG. The direction D1 in FIG. 3 is the direction along the longitudinal direction of the conductors under test MC1 and MC2 (the direction opposite to the direction of the current I flowing through the conductor under test MC1, the direction along the direction of the current I flowing through the conductor under test MC2). ). In FIG. 4, the illustration of the sensor head 10 is omitted to facilitate understanding, and the conductors MC1 and MC2 to be measured and the three-axis magnetic sensors 11, 12, and 13 are shown.

図4に示す平面Γに対して、被測定導体MC1,MC2、三軸磁気センサ11,12,13、及び三軸磁気センサ11,12,13の位置に形成される磁界を射影することにより、xyz直交座標系で表された各種ベクトルをXYZ直交座標系で表す。図4に示す通り、紙面に対して垂直なX方向(±X方向)に流れる電流Iによって、三軸磁気センサ11,12,13の位置に形成される磁界は、X軸に直交するものになる。従って、電流Iが流れる方向と直交する平面Γに、三軸磁気センサ11,12,13の位置に形成される磁界を、その大きさを変えることなく射影することができる。 By projecting the magnetic fields formed at the positions of the conductors MC1 and MC2 to be measured, the triaxial magnetic sensors 11, 12 and 13, and the triaxial magnetic sensors 11, 12 and 13 onto the plane Γ shown in FIG. Various vectors represented by the xyz orthogonal coordinate system are represented by the XYZ orthogonal coordinate system. As shown in FIG. 4, the magnetic field formed at the positions of the three-axis magnetic sensors 11, 12, and 13 by the current I flowing in the X direction (±X direction) perpendicular to the plane of the paper is perpendicular to the X axis. Become. Therefore, the magnetic fields formed at the positions of the three-axis magnetic sensors 11, 12, and 13 can be projected onto the plane .GAMMA. perpendicular to the direction in which the current I flows without changing their magnitudes.

ここで、平面Γ上における三軸磁気センサ11,12,13の位置をpi(i=1,2,3)として表し、平面Γ上における被測定導体MC1の位置をpとして表す。尚、hi,pは、2次元のベクトルである。また、平面Γ上に射影された磁界hi(i=1,2,3)を、以下の(3)式で表す。以下の(3)式中のhAi,hはそれぞれ、上記(1)式中のHAi,Hを平面Γに射影したものである。尚、hiは2次元のベクトルである。

Figure 0007114943000003
Here, the positions of the three-axis magnetic sensors 11, 12, 13 on the plane Γ are expressed as pi (i=1, 2, 3), and the position of the conductor MC1 to be measured on the plane Γ is expressed as pA . Note that hi, p A is a two-dimensional vector. Also, the magnetic field hi (i=1, 2, 3) projected onto the plane Γ is represented by the following equation (3). h Ai and h B in the following equation (3) are projections of H Ai and HB in the above equation (1) onto the plane Γ. Note that hi is a two-dimensional vector.
Figure 0007114943000003

続いて、被測定導体MC2に流れる電流Iによって形成される磁界Hを推定する。まず、図4に示す通り、平面Γ上において、磁界hA1は、三軸磁気センサ11から被測定導体MC1に垂直に下ろした線分に直交する。また、平面Γ上において、磁界hA2は、三軸磁気センサ12から被測定導体MC1に垂直に下ろした線分に直交する。同様に、平面Γ上において、磁界hA3は、三軸磁気センサ13から被測定導体MC1に垂直に下ろした線分に直交する。従って、これら線分を示すベクトルと磁界hA1,hA2,hA3との内積がゼロになるため、以下の(4)式が成り立つ。

Figure 0007114943000004
Subsequently, the magnetic field HB formed by the current I flowing through the conductor MC2 to be measured is estimated. First, as shown in FIG. 4, on the plane .GAMMA., the magnetic field h.sub.A1 is orthogonal to a line segment drawn vertically from the triaxial magnetic sensor 11 to the measured conductor MC1. In addition, on the plane Γ, the magnetic field h A2 is perpendicular to a line segment drawn vertically from the triaxial magnetic sensor 12 to the conductor MC1 to be measured. Similarly, on the plane Γ, the magnetic field h A3 intersects perpendicularly with a line segment drawn vertically from the triaxial magnetic sensor 13 to the conductor MC1 to be measured. Therefore, since the inner product of the vectors representing these line segments and the magnetic fields h A1 , h A2 , and h A3 becomes zero, the following equation (4) holds.
Figure 0007114943000004

次に、上記線分の長さと、磁界hA1,hA2,hA3の大きさとの関係に着目すると、アンペールの法則から以下の(5)式が成り立つ。

Figure 0007114943000005
Next, focusing on the relationship between the length of the line segment and the magnitude of the magnetic fields h A1 , h A2 and h A3 , the following equation (5) holds from Ampere's law.
Figure 0007114943000005

ここで、前述の通り、三軸磁気センサ11,12,13から被測定導体MC1に垂直に下ろした線分を示すベクトルと磁界hA1,hA2,hA3との内積がゼロになるが、各々の線分を示すベクトルを平面Γ内で90°回転させてから磁界hA1,hA2,hA3との内積をとると、以下の(6)式が成り立つ。

Figure 0007114943000006
Here, as described above, the inner product of the magnetic field h A1 , h A2 , h A3 and the vector representing the line segment drawn vertically from the three-axis magnetic sensors 11, 12, 13 to the conductor MC1 to be measured becomes zero. When the vector indicating each line segment is rotated by 90° in the plane Γ and then the inner product of the magnetic fields h A1 , h A2 , and h A3 is taken, the following equation (6) holds.
Figure 0007114943000006

但し、上記(6)式中のRは、二次元座標平面内における90°回転行列であり、以下の(7)式で示される。

Figure 0007114943000007
However, R in the above formula (6) is a 90° rotation matrix in the two-dimensional coordinate plane, and is expressed by the following formula (7).
Figure 0007114943000007

平面Γに射影した磁界hは、上記(4),(6)式を用いて得られる以下の(8)式から求められる。

Figure 0007114943000008
The magnetic field h B projected onto the plane Γ is obtained from the following equation (8) obtained using the above equations (4) and (6).
Figure 0007114943000008

但し、上記(8)式中のp,h,c,cは、以下の(9)式に示される通りである。

Figure 0007114943000009
However, p, h, c 1 and c 2 in the above formula (8) are as shown in the following formula (9).
Figure 0007114943000009

ここで、被測定導体MC2に流れる電流Iによって形成される磁界Hを平面Γに射影した磁界hは、X成分(電流Iが流れる方向の成分)が失われている。被測定導体MC1に流れる電流Iによって形成される磁界HAiは、X成分が生ずることはないため、被測定導体MC1,MC2に流れる電流Iによって形成される磁界HiのX成分は、磁界HのX成分と等価になる。このため、磁界HiのX成分(jHi)を磁界hに追加することで、磁界Hを求めることができる。このようにして、被測定導体MC2に流れる電流Iによって形成される磁界Hを推定することができる。 Here, the magnetic field hB formed by projecting the magnetic field HB formed by the current I flowing through the conductor MC2 under measurement onto the plane Γ lacks the X component (the component in the direction in which the current I flows). The magnetic field H Ai formed by the current I flowing through the conductor MC1 to be measured does not have an X component. is equivalent to the X component of Therefore, the magnetic field H B can be obtained by adding the X component (j T Hi) of the magnetic field Hi to the magnetic field h B . In this way, the magnetic field HB formed by the current I flowing through the conductor MC2 under test can be estimated.

続いて、平面Γ上における被測定導体MC1の位置pを求める。被測定導体MC1の位置pは、上記(4),(6),(8)式を用いて得られる以下の(10)式から求められる。

Figure 0007114943000010
Subsequently, the position pA of the conductor under test MC1 on the plane Γ is obtained. The position pA of the conductor MC1 to be measured is obtained from the following equation (10) obtained using the above equations (4), (6) and (8).
Figure 0007114943000010

平面Γ上における被測定導体MC1の位置pが分かると、被測定導体MC1に対する三軸磁気センサ11,12,13距離r1,r2,r3を求める(推定する)ことができる。そして、距離r1,r2,r3を求める(推定する)ことができれば、以下に示す組み合わせの何れかを用いて、アンペールの法則から電流Iを測定することができる。
・距離r1と三軸磁気センサ11の検出結果(磁界H1)との組み合わせ
・距離r2と三軸磁気センサ12の検出結果(磁界H2)との組み合わせ
・距離r3と三軸磁気センサ13の検出結果(磁界H3)との組み合わせ
If the position pA of the conductor MC1 to be measured on the plane Γ is known, the distances r1, r2, and r3 of the three - axis magnetic sensors 11, 12, and 13 to the conductor MC1 to be measured can be obtained (estimated). Then, if the distances r1, r2, and r3 can be obtained (estimated), the current I can be measured from Ampere's law using any of the following combinations.
・Combination of distance r1 and detection result (magnetic field H1) of triaxial magnetic sensor 11 ・Combination of distance r2 and detection result (magnetic field H2) of triaxial magnetic sensor 12 ・Distance r3 and detection result of triaxial magnetic sensor 13 Combination with (magnetic field H3)

具体的には、まず、三軸磁気センサ11,12,13の検出結果(磁界Hi)から、上記(8)式等を用いて推定された磁界Hを差し引き、被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界HAiを求める。そして、上記(9)式等を用いて被測定導体MC1に対する三軸磁気センサ11,12,13距離r1,r2,r3が求められている。このため、以下の(11)式を用いて、被測定導体MC1に流れる電流Iが求められる。

Figure 0007114943000011
Specifically, first, the magnetic field HB estimated using the above equation (8) is subtracted from the detection results (magnetic field Hi) of the three - axis magnetic sensors 11, 12, and 13, and the current flowing through the conductor MC1 to be measured is A magnetic field H Ai formed at the positions of the three-axis magnetic sensors 11, 12, and 13 is obtained by I. The distances r1, r2 and r3 of the three-axis magnetic sensors 11, 12 and 13 to the conductor MC1 to be measured are obtained using the above equation (9) and the like. Therefore, the current I flowing through the conductor MC1 to be measured is obtained using the following equation (11).
Figure 0007114943000011

〈電流測定装置の動作〉
次に、電流測定装置1を用いて被測定導体MC1(往路)に流れる電流Iを測定する際の動作について説明する。まず、電流測定装置1のユーザは、被測定導体MC1に流れる電流Iを測定するために、センサヘッド10を被測定導体MC1に近接配置させる。尚、被測定導体MC1に対するセンサヘッド10の位置及び姿勢は任意である。但し、被測定導体MC2に対するセンサヘッド10の距離が、被測定導体MC1に対するセンサヘッド10の距離に比べて十分大きいとみなせる程度に、被測定導体MC1に対してセンサヘッド10を近接配置させる必要がある。尚、被測定導体MC2が移動可能なものである場合には、被測定導体MC2に対するセンサヘッド10の距離が、被測定導体MC1に対するセンサヘッド10の距離に比べて十分大きいとみなせる程度に、被測定導体MC2を被測定導体MC1に対して遠方に配置させる。
<Operation of the current measuring device>
Next, the operation of measuring the current I flowing through the conductor under test MC1 (outward path) using the current measuring device 1 will be described. First, the user of the current measuring device 1 places the sensor head 10 close to the conductor MC1 to be measured in order to measure the current I flowing through the conductor MC1 to be measured. The position and attitude of the sensor head 10 with respect to the conductor MC1 to be measured are arbitrary. However, it is necessary to arrange the sensor head 10 close to the conductor MC1 to be measured so that the distance of the sensor head 10 to the conductor MC2 to be measured is sufficiently larger than the distance of the sensor head 10 to the conductor MC1 to be measured. be. When the conductor MC2 to be measured is movable, the distance of the sensor head 10 to the conductor MC2 to be measured is considered sufficiently larger than the distance of the sensor head 10 to the conductor MC1 to be measured. The conductor to be measured MC2 is placed far from the conductor to be measured MC1.

図5は、本発明の一実施形態による電流測定装置の動作の概要を示すフローチャートである。図5に示すフローチャートは、例えば一定周期(例えば、1秒)で開始される。図5に示すフローチャートの処理が開始されると、まず三軸磁気センサ11,12,13によって、被測定導体MC1,MC2に流れる電流Iによって形成される磁界が検出される(ステップS11)。尚、三軸磁気センサ11,12,13による磁界の検出は、例えば1秒間に1000回程度行われる。次に、三軸磁気センサ11,12,13の検出結果を示す検出データを、メモリ23に蓄積する処理が、回路部20の演算部25によって行われる(ステップS12)。 FIG. 5 is a flowchart outlining the operation of the current measuring device according to one embodiment of the present invention. The flowchart shown in FIG. 5 is started, for example, at regular intervals (eg, 1 second). When the process of the flowchart shown in FIG. 5 is started, first, the magnetic field formed by the current I flowing through the conductors MC1 and MC2 to be measured is detected by the three-axis magnetic sensors 11, 12 and 13 (step S11). The magnetic field detection by the three-axis magnetic sensors 11, 12, and 13 is performed, for example, about 1000 times per second. Next, a process of accumulating detection data indicating detection results of the three-axis magnetic sensors 11, 12, and 13 in the memory 23 is performed by the calculation section 25 of the circuit section 20 (step S12).

次いで、検出データから雑音を除去する処理が、雑音除去部25aによって行われる(ステップS13)。具体的には、メモリ23に蓄積された検出データが雑音除去部25aに読み出され、読み出された検出データに対して平均化処理又は二乗和平方根処理が行われることで、検出データに含まれる雑音成分を除去する処理が行われる。尚、二乗和平方根処理を行うと符号が無くなるため、別途、符号の付加を行う。ここで、三軸磁気センサ11,12,13からは、三軸の検出結果を出力する3種類の検出データがそれぞれ出力される。雑音除去部25aによる雑音成分の除去は、各軸の検出データに対して個別に行われる。 Next, a process of removing noise from the detected data is performed by the noise remover 25a (step S13). Specifically, the detection data accumulated in the memory 23 is read out to the noise removal unit 25a, and the read detection data is subjected to averaging processing or square root sum processing, thereby processing is performed to remove the noise component that is Since the sign disappears when the square-sum-square-root processing is performed, the sign is added separately. Here, the three-axis magnetic sensors 11, 12, and 13 respectively output three types of detection data that output three-axis detection results. The removal of noise components by the noise removal unit 25a is performed individually for the detection data of each axis.

続いて、被測定導体MC2(復路)に流れる電流Iによって形成される磁界Hを推定する処理が、磁界推定部25bによって行われる(ステップS14)。尚、磁界推定部25bによって推定される磁界Hは、被測定導体MC2に流れる電流によって生成される磁界が、3つの三軸磁気センサ11,12,13に近似的に均一に作用するとみなした場合の磁界である点に注意されたい。 Subsequently, the magnetic field estimator 25b performs a process of estimating the magnetic field HB formed by the current I flowing through the conductor MC2 (return path) (step S14). The magnetic field H B estimated by the magnetic field estimating unit 25b is assumed to be generated by the magnetic field generated by the current flowing through the conductor MC2 under measurement, which acts approximately uniformly on the three triaxial magnetic sensors 11, 12, and 13. Note that the magnetic field for

図6は、図5中のステップS14の処理の詳細を示すフローチャートである。ステップS14の処理が開始されと、まず、図6に示す通り、被測定導体MC1,MC2を流れる電流Iの方向を算出する処理が、磁界推定部25bによって行われる(ステップS21)。具体的には、三軸磁気センサ11,12,13の検出結果を用いて、前述した(2)式に示される演算を行って、被測定導体MC1,MC2を流れる電流Iの方向を算出する処理が、磁界推定部25bによって行われる。 FIG. 6 is a flow chart showing details of the process of step S14 in FIG. When the process of step S14 is started, first, as shown in FIG. 6, the magnetic field estimator 25b performs a process of calculating the direction of the current I flowing through the conductors MC1 and MC2 under measurement (step S21). Specifically, using the detection results of the three-axis magnetic sensors 11, 12, and 13, the calculation shown in the above equation (2) is performed to calculate the direction of the current I flowing through the conductors MC1 and MC2 to be measured. Processing is performed by the magnetic field estimation unit 25b.

次に、被測定導体MC1,MC2、三軸磁気センサ11,12,13、及び三軸磁気センサ11,12,13で検出された磁界H1,H2,H3を電流Iに垂直な平面Γに射影する処理が、磁界推定部25bによって行われる(ステップS22)。尚、かかる処理によって、磁界H1,H2,H3を平面Γ上に射影した磁界h1,h2,h3は、前述した(3)式を用いて表される。 Next, the magnetic fields H1, H2, and H3 detected by the conductors MC1 and MC2 to be measured, the three-axis magnetic sensors 11, 12, and 13, and the three-axis magnetic sensors 11, 12, and 13 are projected onto a plane Γ perpendicular to the current I. is performed by the magnetic field estimator 25b (step S22). Magnetic fields h1, h2, and h3 obtained by projecting the magnetic fields H1, H2, and H3 onto the plane .GAMMA. by such processing are expressed using the above-described equation (3).

そして、被測定導体MC2(復路)に流れる電流Iによって形成される磁界Hを算出する処理が、磁界推定部25bによって行われる(ステップS23)。具体的には、前述した(8),(9)式を用いて磁界hを算出し、磁界HiのX成分(jHi)を磁界hに追加して磁界Hを求める処理が、磁界推定部25bによって行われる。このような処理により、被測定導体MC2(復路)に流れる電流Iによって形成される磁界Hが推定される。 Then, the magnetic field estimator 25b calculates the magnetic field HB formed by the current I flowing through the conductor MC2 (return path) (step S23). Specifically, the magnetic field h B is calculated using the above-described equations (8) and (9), and the magnetic field H B is obtained by adding the X component (j T Hi) of the magnetic field Hi to the magnetic field h B. , is performed by the magnetic field estimator 25b. Through such processing, the magnetic field HB formed by the current I flowing in the conductor under test MC2 (return path) is estimated.

続いて、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を推定する処理が、距離推定部25cによって行われる(ステップS15)。具体的には、まず、平面Γ上における三軸磁気センサ11,12,13の位置pi、平面Γ上に射影された磁界hi、前述した(8),(9)式を用いて算出される磁界hを用い、前述した(10)式に示される演算を行って、平面Γ上における被測定導体MC1の位置pを求める処理が、距離推定部25cによって行われる。そして、平面Γ上における被測定導体MC1の位置pと、平面Γ上における三軸磁気センサ11,12,13の位置piとから、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を推定する処理が、距離推定部25cによって行われる。 Subsequently, a process of estimating distances r1, r2, and r3 of the three-axis magnetic sensors 11, 12, and 13 with respect to the conductor MC1 to be measured is performed by the distance estimating section 25c (step S15). Specifically, first, the position pi of the triaxial magnetic sensors 11, 12, 13 on the plane Γ, the magnetic field hi projected on the plane Γ, and the above-described equations (8) and (9) are used to calculate Using the magnetic field hB , the distance estimating section 25c performs the calculation shown in the above equation (10) to obtain the position pA of the conductor under test MC1 on the plane Γ. Then, from the position p A of the conductor MC1 under measurement on the plane Γ and the positions pi of the triaxial magnetic sensors 11, 12, and 13 on the plane Γ, the positions of the triaxial magnetic sensors 11, 12, and 13 with respect to the conductor MC1 Processing for estimating the distances r1, r2, and r3 is performed by the distance estimation unit 25c.

以上の処理が終了すると、被測定導体MC1(往路)に流れる電流Iを算出する処理が、演算部25の電流算出部25dによって行われる(ステップS16)。具体的には、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3)、ステップS14で推定された磁界H、及びステップS15で推定された距離r1,r2,r3を用い、前述した(11)式に示される演算を行って、被測定導体MC1に流れる電流Iを算出する処理が、演算部25の電流算出部25dによって行われる。 When the above process is finished, the process of calculating the current I flowing through the conductor under test MC1 (outward path) is performed by the current calculator 25d of the calculator 25 (step S16). Specifically, the detection results (magnetic fields H1, H2, H3) of the triaxial magnetic sensors 11, 12, 13, the magnetic field H B estimated in step S14, and the distances r1, r2, r3 estimated in step S15 are The current calculation unit 25d of the calculation unit 25 performs the calculation shown in the above equation (11) to calculate the current I flowing through the conductor MC1 under measurement.

より具体的には、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3)からステップS14で推定された磁界Hを差し引いて、(11)式中の磁界HAi(被測定導体MC1に流れる電流Iによって三軸磁気センサ11,12,13の位置に形成される磁界)を求める処理が行われる。そして、ステップS15で推定された距離r1,r2,r3と磁界HAiの大きさとを用いて(11)式に示される演算が行われる。このようにして、被測定導体MC2に流れる電流Iによって形成される磁界の影響が排除された上で、被測定導体MC1に流れる電流Iが非接触で直接的に測定される。 More specifically, magnetic field H Ai ( The magnetic field formed at the positions of the three-axis magnetic sensors 11, 12, and 13 by the current I flowing through the conductor MC1 to be measured is obtained. Then, using the distances r1, r2, and r3 estimated in step S15 and the magnitude of the magnetic field HAi , the calculation shown in equation (11) is performed. In this way, the influence of the magnetic field formed by the current I flowing through the conductor MC2 to be measured is eliminated, and the current I flowing through the conductor MC1 to be measured is directly measured without contact.

以上の通り、本実施形態では、三軸磁気センサ11,12,13の検出結果と、三軸磁気センサ11,12,13の位置関係とを用いて、被測定導体MC2に流れる電流Iによって形成される磁界Hを推定するとともに、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を推定している。そして、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3)から磁界Hの影響を排除したものと、推定した距離r1,r2,r3とを用いて、被測定導体MC1に流れる電流Iを測定するようにしている。ここで、本実施形態では、被測定導体MC1に対するセンサヘッド10の位置及び姿勢は任意で良い。また、三軸磁気センサ11,12,13の検出結果は、電流Iが直流電流であるか交流電流であるかに拘わらず得られる。このため、本実施形態では、柔軟な配置が可能であり、往復する電流経路の何れか一方(被測定導体MC1)に流れる直流電流及び低周波の交流電流を非接触で精度良く測定することができる。 As described above, in this embodiment, the detection results of the three-axis magnetic sensors 11, 12, and 13 and the positional relationships of the three-axis magnetic sensors 11, 12, and 13 are used to form the current I flowing through the conductor MC2 to be measured. In addition to estimating the applied magnetic field HB, the distances r1, r2, r3 of the three - axis magnetic sensors 11, 12, 13 to the conductor MC1 to be measured are estimated. Then, using the results of detection (magnetic fields H1, H2, H3) of the three - axis magnetic sensors 11, 12, 13 from which the influence of the magnetic field HB is eliminated and the estimated distances r1, r2, r3, the conductor to be measured The current I flowing through MC1 is measured. Here, in this embodiment, the position and orientation of the sensor head 10 with respect to the conductor MC1 to be measured may be arbitrary. Moreover, the detection results of the three-axis magnetic sensors 11, 12, and 13 are obtained regardless of whether the current I is a direct current or an alternating current. Therefore, in the present embodiment, flexible arrangement is possible, and it is possible to accurately measure the direct current and low-frequency alternating current flowing in either one of the reciprocating current paths (the conductor MC1 to be measured) without contact. can.

また、本実施形態では、三軸磁気センサ11,12,13が設けられたセンサヘッド10と、演算部25が設けられた回路部20とが分離されてケーブルCBによって接続されている。これにより、センサヘッド10の取り回しが容易になり、例えば狭い場所へのセンサヘッド10の設置も容易に行うことができるため、より柔軟な配置が可能である。 Further, in this embodiment, the sensor head 10 provided with the three-axis magnetic sensors 11, 12, 13 and the circuit section 20 provided with the calculation section 25 are separated and connected by the cable CB. As a result, handling of the sensor head 10 is facilitated and, for example, the sensor head 10 can be easily installed in a narrow space, so that a more flexible arrangement is possible.

尚、被測定導体MC1に流れる電流Iを測定する場合には、三軸磁気センサ11,12,13の検出結果(磁界H1,H2,H3から磁界Hの影響を排除したもの)と、推定された距離r1,r2,r3とを全て用いる必要は必ずしも無い。以下の組み合わせの何れかを用いれば、被測定導体MC1に流れる電流Iを測定することができる。
・距離r1と三軸磁気センサ11の検出結果との組み合わせ
・距離r2と三軸磁気センサ12の検出結果との組み合わせ
・距離r3と三軸磁気センサ13の検出結果との組み合わせ
When measuring the current I flowing through the conductor MC1 to be measured, the detection results of the three - axis magnetic sensors 11, 12, and 13 (the magnetic fields H1, H2, and H3 from which the influence of the magnetic field HB is removed) and the estimated It is not always necessary to use all the distances r1, r2, and r3. By using any of the following combinations, the current I flowing through the conductor MC1 under measurement can be measured.
・Combination of distance r1 and detection result of triaxial magnetic sensor 11 ・Combination of distance r2 and detection result of triaxial magnetic sensor 12 ・Combination of distance r3 and detection result of triaxial magnetic sensor 13

以上、本発明の一実施形態による電流測定装置について説明したが、本発明は上記実施形態に制限されることなく本発明の範囲内で自由に変更が可能である。例えば、上述した実施形態では、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を推定し、推定した距離r1,r2,r3を用いて被測定導体MC1に流れる電流Iを測定する例について説明した。しかしながら、被測定導体MC1に対する三軸磁気センサ11,12,13の距離r1,r2,r3を推定する必要は必ずしも無く、省略することが可能である。 Although the current measuring device according to one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment and can be freely modified within the scope of the present invention. For example, in the above-described embodiment, the distances r1, r2, and r3 of the triaxial magnetic sensors 11, 12, and 13 with respect to the conductor MC1 to be measured are estimated, and the estimated distances r1, r2, and r3 are used to flow the conductor MC1 to be measured. An example of measuring the current I has been described. However, it is not always necessary to estimate the distances r1, r2, r3 of the triaxial magnetic sensors 11, 12, 13 with respect to the conductor MC1 to be measured, and it is possible to omit it.

つまり、前述した(9),(10)式を参照すると、平面Γ上における被測定導体MC1の位置pは、平面Γ上における三軸磁気センサ11,12,13の位置pi、平面Γ上に射影された磁界hi、前述した(8),(9)式を用いて算出される磁界hを用いて求められる。このため、被測定導体MC1に対する三軸磁気センサ11,12,13の距離ri(r1,r2,r3)も、上記の位置p、上記の位置pi、及び上記の磁界hを用いて求めることができる。よって、予め三軸磁気センサ11,12,13の距離riを求める式を求めて前述した(11)式に代入すれば、(11)式は、上記の位置p、上記の位置pi、及び上記の磁界hと、HAiの大きさとを用いて電流Iを求める式に変形することができる。このため、被測定導体MC1に対する三軸磁気センサ11,12,13の距離riを推定する処理は省略することが可能である。 That is, referring to the above-described equations (9) and (10), the position p A of the conductor under test MC1 on the plane Γ is the position pi of the three-axis magnetic sensors 11, 12, and 13 on the plane Γ, and the position pi on the plane Γ , and the magnetic field h B calculated using the above-described equations (8) and (9). Therefore, the distance ri (r1, r2, r3) of the three-axis magnetic sensors 11, 12, 13 with respect to the conductor MC1 to be measured is also obtained using the above position p A , the above position pi, and the above magnetic field h B. be able to. Therefore, if a formula for obtaining the distance ri of the three-axis magnetic sensors 11, 12, 13 is obtained in advance and substituted into the above-described formula (11), the formula (11) can be obtained by obtaining the above position p A , the above position pi, and The above-mentioned magnetic field h B and the magnitude of H Ai can be used to transform the equation to obtain the current I. Therefore, the process of estimating the distance ri between the three-axis magnetic sensors 11, 12, and 13 with respect to the conductor MC1 to be measured can be omitted.

また、上述した実施形態では、三軸磁気センサ11,12が第1軸方向(x軸方向)に間隔d[m]だけ離間し、三軸磁気センサ11,13が第3軸方向(z軸方向)に間隔d[m]だけ離間している例について説明した。しかしながら、三軸磁気センサ11,12,13は、各々の感磁方向が互いに平行になるように設定されていれば、相対的な位置関係は任意である。 Further, in the above-described embodiment, the three-axis magnetic sensors 11 and 12 are separated by the distance d [m] in the first axis direction (x-axis direction), and the three-axis magnetic sensors 11 and 13 are spaced apart in the third axis direction (z-axis direction). In the above, an example in which the distance d[m] is provided in the direction ) has been described. However, the triaxial magnetic sensors 11, 12, and 13 may have any relative positional relationship as long as their magnetic sensing directions are set to be parallel to each other.

1 電流測定装置
10 センサヘッド
11 三軸磁気センサ
12 三軸磁気センサ
13 三軸磁気センサ
20 回路部
25 演算部
25a 雑音除去部
25b 磁界推定部
25c 距離推定部
25d 電流算出部
I 電流
MC1 被測定導体
MC2 被測定導体
Reference Signs List 1 current measuring device 10 sensor head 11 three-axis magnetic sensor 12 three-axis magnetic sensor 13 three-axis magnetic sensor 20 circuit unit 25 calculation unit 25a noise elimination unit 25b magnetic field estimation unit 25c distance estimation unit 25d current calculation unit I current MC1 conductor to be measured MC2 Conductor under test

Claims (4)

往復する電流経路の一部をなし、互いの長手方向が沿うように配置され、互いに反対方向に電流が流れる一対の被測定導体の何れか一方に流れる電流を測定する電流測定装置であって、
互いに直交する三軸に感磁方向を有し、各々の感磁方向が互いに平行になるように、所定の方向に所定の距離だけ離間した位置関係をもって配置され、磁界の検出結果を前記三軸で規定される座標系におけるベクトルとして出力する3つの三軸磁気センサと、
前記3つの三軸磁気センサの検出結果を示す第1ベクトル群と前記3つの三軸磁気センサの前記座標系における位置を示す第2ベクトル群とを用いて、前記被測定導体の何れか一方に流れる電流を求める演算部と、
を備え、
前記3つの三軸磁気センサは、前記被測定導体の何れか他方に対する距離が、前記被測定導体の何れか一方に対する距離に比べて十分大きく、前記被測定導体の何れか他方に流れる電流によって生成される磁界が、前記3つの三軸磁気センサに近似的に均一に作用するとみなせる程度に、前記被測定導体の何れか一方に対して近接配置され、
前記演算部は、前記第1ベクトル群で示される前記3つの三軸磁気センサの検出結果と前記第2ベクトル群で示される前記3つの三軸磁気センサの位置とを、前記被測定導体の何れか一方に流れる電流の方向に直交する平面に射影して、前記被測定導体の何れか他方に流れる電流によって生成され、前記3つの三軸磁気センサに近似的に均一に作用するとみなせる均一作用磁界を推定する演算を行う磁界推定部と、
前記平面に射影された前記3つの三軸磁気センサの位置の少なくとも1つと、前記被測定導体の何れか一方との距離を推定する演算を行う距離推定部と、
前記距離推定部によって推定された距離と、前記距離推定部によって距離が推定された三軸磁気センサの検出結果から前記磁界推定部によって推定された前記均一作用磁界を差し引いて得られる磁界の大きさとを用いて、前記被測定導体の何れか一方に流れる電流をアンペールの法則により求める演算を行う電流算出部と、
を備える、
電流測定装置。
A current measuring device for measuring a current flowing in either one of a pair of conductors under test forming part of a reciprocating current path, arranged so that the longitudinal directions of the conductors are parallel to each other, and currents flow in opposite directions,
They are arranged with a positional relationship separated by a predetermined distance in a predetermined direction so that the magnetism sensing directions are parallel to each other, and the detection result of the magnetic field is detected by the three axes. Three triaxial magnetic sensors that output as vectors in a coordinate system defined by
Using a first vector group indicating the detection results of the three triaxial magnetic sensors and a second vector group indicating the positions of the three triaxial magnetic sensors in the coordinate system, a calculation unit for obtaining the flowing current;
with
The three three-axis magnetic sensors have a distance to either one of the conductors under test that is sufficiently larger than the distance to either one of the conductors under test, and are generated by a current that flows in one of the conductors under test. The applied magnetic field is arranged close to any one of the conductors to be measured to the extent that it can be considered to act approximately uniformly on the three triaxial magnetic sensors,
The calculation unit calculates the detection results of the three triaxial magnetic sensors indicated by the first vector group and the positions of the three triaxial magnetic sensors indicated by the second vector group to any one of the conductors to be measured. A uniform applied magnetic field generated by a current flowing in either one of the conductors to be measured projected onto a plane perpendicular to the direction of the current flowing in either one, and can be regarded as acting approximately uniformly on the three triaxial magnetic sensors. a magnetic field estimating unit that performs calculations for estimating
a distance estimating unit that performs a calculation for estimating a distance between at least one of the positions of the three triaxial magnetic sensors projected onto the plane and any one of the conductors to be measured;
the distance estimated by the distance estimating unit; and the magnitude of the magnetic field obtained by subtracting the uniform acting magnetic field estimated by the magnetic field estimating unit from the detection result of the three-axis magnetic sensor whose distance is estimated by the distance estimating unit. a current calculation unit that performs a calculation to obtain the current flowing in any one of the conductors under test using Ampere's law,
comprising
Current measuring device.
前記演算部は、予め規定された一定の期間毎に得られる、前記3つの三軸磁気センサの検出結果の各々に対し、平均化処理又は二乗和平方根処理を個別に行うことで、前記3つの三軸磁気センサの検出結果に含まれる雑音成分をそれぞれ除去する雑音除去部を更に備えており、
前記雑音除去部によって雑音成分が除去された前記3つの三軸磁気センサの検出結果を用いて前記被測定導体の何れか一方に流れる電流を求める、
請求項1記載の電流測定装置。
The computing unit individually performs an averaging process or a root-sum-square process on each of the detection results of the three triaxial magnetic sensors, which are obtained at predetermined intervals, to obtain the three further comprising a noise elimination unit that eliminates noise components contained in the detection results of the triaxial magnetic sensor,
Using the detection results of the three triaxial magnetic sensors from which noise components have been removed by the noise removal unit, the current flowing through any one of the conductors to be measured is obtained;
The current measuring device according to claim 1 .
前記3つの三軸磁気センサを備えるセンサヘッドと、
前記演算部を備える回路部と、
を備える請求項1又は請求項2記載の電流測定装置。
a sensor head comprising the three triaxial magnetic sensors;
a circuit unit including the arithmetic unit;
The current measuring device according to claim 1 or 2 , comprising:
前記3つの三軸磁気センサの検出結果を示す信号は、ディジタル信号である、請求項1から請求項3の何れか一項に記載の電流測定装置。 The current measuring device according to any one of claims 1 to 3 , wherein the signals indicating the detection results of the three triaxial magnetic sensors are digital signals.
JP2018039692A 2018-03-01 2018-03-06 Current measuring device Active JP7114943B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018039692A JP7114943B2 (en) 2018-03-06 2018-03-06 Current measuring device
US16/971,927 US11360124B2 (en) 2018-03-01 2019-02-05 Current measuring device, current measuring method, and non-transitory computer-readable storage medium
EP22195147.8A EP4130757B1 (en) 2018-03-01 2019-02-05 Current measuring device, current measuring method, and non-transitory computer-readable storage medium
PCT/JP2019/004009 WO2019167565A1 (en) 2018-03-01 2019-02-05 Electric current measuring device, electric current measuring method, and computer-readable non-transitory recording medium
CN201980015287.6A CN111771128B (en) 2018-03-01 2019-02-05 Current measuring device, current measuring method, and computer-readable non-transitory recording medium
KR1020207024038A KR102412180B1 (en) 2018-03-01 2019-02-05 Current measuring device, current measuring method, and computer-readable non-transitory recording medium
EP19760523.1A EP3761044A4 (en) 2018-03-01 2019-02-05 Electric current measuring device, electric current measuring method, and computer-readable non-transitory recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018039692A JP7114943B2 (en) 2018-03-06 2018-03-06 Current measuring device

Publications (2)

Publication Number Publication Date
JP2019152607A JP2019152607A (en) 2019-09-12
JP7114943B2 true JP7114943B2 (en) 2022-08-09

Family

ID=67948889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018039692A Active JP7114943B2 (en) 2018-03-01 2018-03-06 Current measuring device

Country Status (1)

Country Link
JP (1) JP7114943B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040503B2 (en) 2019-08-27 2022-03-23 横河電機株式会社 Current measuring device
CN112986648B (en) * 2019-12-12 2023-03-31 嘉兴博感科技有限公司 Long straight conductor current measuring method and system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179901A (en) 2005-12-28 2007-07-12 Nippon Soken Inc Current measuring system of fuel cell, and current measuring method
JP2007183221A (en) 2006-01-10 2007-07-19 Denso Corp Electric current sensor
JP2010286295A (en) 2009-06-10 2010-12-24 Kyoritsu Denki Kk Current detector
JP2011086476A (en) 2009-10-15 2011-04-28 Univ Of Tsukuba Detecting device and fuel cell system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151649A (en) * 1990-01-23 1992-09-29 Paul Heroux Pair of electrically shielded triaxial magnetic sensors for determination of electric currents in conductors in air with distance and angle compensation
JPH07248366A (en) * 1994-03-11 1995-09-26 Shimadzu Corp Magnetic noise compensating method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007179901A (en) 2005-12-28 2007-07-12 Nippon Soken Inc Current measuring system of fuel cell, and current measuring method
JP2007183221A (en) 2006-01-10 2007-07-19 Denso Corp Electric current sensor
JP2010286295A (en) 2009-06-10 2010-12-24 Kyoritsu Denki Kk Current detector
JP2011086476A (en) 2009-10-15 2011-04-28 Univ Of Tsukuba Detecting device and fuel cell system

Also Published As

Publication number Publication date
JP2019152607A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
CN111771128B (en) Current measuring device, current measuring method, and computer-readable non-transitory recording medium
JP4796144B2 (en) Method and system for monitoring power flow through a transmission line
JP7430989B2 (en) current measuring device
CN109283379B (en) Method, device and equipment for measuring current of lead and readable storage medium
US20100090684A1 (en) Method and apparatus for current measurement using hall sensors without iron cores
JP7155541B2 (en) Current measuring device
JP7114943B2 (en) Current measuring device
CN114545056A (en) Non-contact current measuring system
EP4024055A1 (en) Current measurement device, current measurement method, and computer readable non-transitory storage medium
JP6566188B2 (en) Current sensor
JP2022029714A (en) Current measurement device
JP7001079B2 (en) Current measuring device
US9581621B2 (en) Method of calculating current correction formula for power strip, current measuring method, and power strip
JP2015190781A (en) Circuit board
US10048298B2 (en) Thin-film sensor type electrical power measurement device
KR101242477B1 (en) Apparatus detecting energized insulator polymer for distribution line
KR20190099201A (en) Vehicle battery current sensing system
KR101854457B1 (en) Intelligent battery sensor for measuring accurate current and method thereof
JP2015101158A (en) Device and method for estimating magnetism of hull
SU779935A1 (en) Method of locating damages in overhead power transmission line
JP2012145532A (en) Current sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220711

R150 Certificate of patent or registration of utility model

Ref document number: 7114943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150