JP2021128143A - ガンマ線放射イメージング装置、エネルギー校正方法及びプログラム - Google Patents

ガンマ線放射イメージング装置、エネルギー校正方法及びプログラム Download PDF

Info

Publication number
JP2021128143A
JP2021128143A JP2020159887A JP2020159887A JP2021128143A JP 2021128143 A JP2021128143 A JP 2021128143A JP 2020159887 A JP2020159887 A JP 2020159887A JP 2020159887 A JP2020159887 A JP 2020159887A JP 2021128143 A JP2021128143 A JP 2021128143A
Authority
JP
Japan
Prior art keywords
energy
calibration
detector
spectrum
gamma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020159887A
Other languages
English (en)
Inventor
リ シャオリ
Xiaoli Li
リ シャオリ
チャン イ
Yi Qiang
チャン イ
ケント・シー・バー
Kent C Burr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to CN202110177222.0A priority Critical patent/CN113253330B/zh
Publication of JP2021128143A publication Critical patent/JP2021128143A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/005Details of radiation-measuring instruments calibration techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4258Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector for detecting non x-ray radiation, e.g. gamma radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/585Calibration of detector units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/248Silicon photomultipliers [SiPM], e.g. an avalanche photodiode [APD] array on a common Si substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/24Measuring radiation intensity with semiconductor detectors
    • G01T1/249Measuring radiation intensity with semiconductor detectors specially adapted for use in SPECT or PET
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • G01T1/40Stabilisation of spectrometers

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

【課題】精度よくエネルギーの校正を行うこと。
【解決手段】実施形態のガンマ線放射イメージング装置は、取得部と、校正部とを備える。取得部は、検出器に入射する放射線の校正データであって、シンチレータ結晶内の放射性同位体からの放射線が前記検出器に照射されるときに収集される第1のエネルギースペクトルを含む校正データを取得する。校正部は、前記検出器で測定されたエネルギー信号を非線形エネルギー補正に適用し、吸収された放射エネルギーを表す基準スペクトルの基準値と、前記校正データの前記第1のエネルギースペクトルが前記非線形エネルギー補正に適用されたときに生成される校正されたエネルギーとの間の一致を最適化するよう前記非線形エネルギー補正のパラメータを調整することにより、エネルギー校正を行なう。
【選択図】図5

Description

本明細書等に開示の実施形態は、ガンマ線放射イメージング装置、エネルギー校正方法及びプログラムに関する。
PET(Positron Emission Tomography)イメージングやSPECT(Single Photon Emission Computed Tomography)イメージングといったガンマ線放射イメージングにおいて、入射するガンマ線のエネルギーの関数としての検出器の応答は、線形応答からずれ、非線形応答を有する場合がある。
非線形応答が生じる例として、例えばシリコン光電子増倍管(SiPM)を検出器として用いた場合が挙げられる。また、非線形応答が生じる別の例として、閾値超過時間(ToT)を用いて入射ガンマ線のエネルギーを推定する場合が挙げられる。
従って、かかる場合、精度よくエネルギーの校正が行われるのが望ましい。
米国特許第6150655号明細書
本明細書等に開示の実施形態が解決しようとする課題の一つは、精度よくエネルギーの校正を行うことである。ただし、本明細書等に開示の実施形態により解決される課題は上記課題に限られない。後述する実施形態に示す各構成による各効果に対応する課題を、本明細書等に開示の実施形態が解決する他の課題として位置付けることもできる。
実施形態のガンマ線放射イメージング装置は、取得部と、校正部とを備える。取得部は、検出器に入射する放射線の校正データであって、シンチレータ結晶内の放射性同位体からの放射線が前記検出器に照射されるときに収集される第1のエネルギースペクトルを含む校正データを取得する。校正部は、前記検出器で測定されたエネルギー信号を非線形エネルギー補正に適用し、吸収された放射エネルギーを表す基準スペクトルの基準値と、前記校正データの前記第1のエネルギースペクトルが前記非線形エネルギー補正に適用されたときに生成される校正されたエネルギーとの間の一致を最適化するよう前記非線形エネルギー補正のパラメータを調整することにより、エネルギー校正を行なう。
図1Aは、一実施形態による、それぞれのマイクロセルに入射する2つの光学光子を備えたシリコン光電子増倍管(SiPM)検出器を示す図である。 図1Bは、一実施形態による、それぞれのマイクロセルに入射する6つの光学光子を備えたSiPM検出器を示す図である。 図1Cは、一実施形態による、SiPM検出器の非線形エネルギー応答を示す図である。 図2Aは、一実施形態による、閾値を超えている時間(Time-Over-Threshold:TOT)測定のプロットを示す図である。 図2Bは、一実施形態による、閾値に対するピーク高さの比の関数としてのTOTのプロットを示す図である。 図3は、一実施形態による、1チャネル検出イベントの生測定エネルギーが、2チャネル検出イベントの生測定エネルギーの合計とどのように異なるかを示す図である。 図4は、一実施形態による、測定されたエネルギー信号の関数としてプロットされたルテチウム同位体176(Lutetium Isotope 176:Lu−176)のスペクトルを示す図である。 図5は、一実施形態による、エネルギー校正を実行し、ポジトロン放射断層撮影(PET)画像を再構成する方法100のフローチャートである。 図6は、一実施形態による、エネルギー校正データに曲線適合しているエネルギー校正モデルのプロットを示す図である。 図7は、一実施形態による、Lu−176スペクトルの物理学に基づいたモデルのLu−176のエネルギーレベル図である。 図8は、一実施形態に従って、Lu−176スペクトルに寄与するそれぞれの減衰経路/放射プロセスについてのスペクトルのプロットを示す図である。 図9Aは、一実施形態による、PETスキャナの斜視図である。 図9Bは、一実施形態による、PETスキャナの概略図である。 図10は、一実施形態による、単一エネルギーの放射線を放射する放射線源の存在下での撮像スキャナにおける散乱プロセスの概略図である。 図11Aは、検出器が正確なエネルギー分解能を有するときの、図10に提示した様々な散乱プロセスが寄与する吸収放射線のプロットを示す図である。 図11Bは、検出器が限られたエネルギー分解能を有するときの、図10に示した様々な散乱プロセスが寄与する吸収放射線のプロットを示す図である。
以下、図面を参照しながら、ガンマ線放射イメージング装置、エネルギー校正方法及びプログラムの実施形態について詳細に説明する。
まずはじめに、図9A及び図9Bを用いて、実施形態に係るガンマ線放射イメージング装置の構成について簡単に説明する。
図9Aおよび図9Bは、環状に配置された検出器モジュール(即ち、ガンマ線検出器(Gamma-Ray Detectors:GRD))で構成されるPETスキャナ200の非限定的な例を示す。各検出器モジュールには、検出器素子の複数のアレイを含めることができる。GRDには、ガンマ線をシンチレーション光子(光、赤外線、紫外線などの波長)に変換し、光検出器で検出するシンチレータ結晶アレイが含まれている。図9Aおよび図9Bに示される非限定的な例において、光検出器は、それぞれのシンチレータ結晶素子よりもはるかに大きい光電子増倍管(PMT)である。好ましい1実施形態において、当該光検出器は、個々のシンチレータ結晶素子の断面積に近似した検出断面を有し得るシリコン光電子増倍管(SiPM)であり、結晶と光検出器の間で1対1の対応を形成する。単一の光検出器が複数の結晶からの光信号の検出に使用されるよう、光検出器が結晶よりも大きければ、アンガー演算を使用して前記位置を決定できる。しかしながら、結晶と光検出器の間に1対1の対応がある場合は、アンガー演算は必ずしも必要ではない。
図9Aおよび9Bは、方法100および160を実施できるPETスキャナ200の非限定的な例を示す。PETスキャナ200は、各々が長方形の検出器モジュールとして構成された多数のガンマ線検出器(GRD)(例えば、GRDNによるGRD1、GRD2)を含む。一実施形態によれば、検出器リングは40個のGRDを含む。別の実施形態では48個のGRDが存在し、PETスキャナ200の内径寸法を大きくするためにより多くのGRDが使用される。
各GRDには、ガンマ線を吸収し、シンチレーション光子を放射する個々の検出器結晶の2次元配列を含めることができる。シンチレーション光子は、GRDにも配置されている光電子増倍管(PMT)の2次元配列によって検出できる。検出器結晶のアレイとPMTの間に光ガイドを配置することができる。
或いは、シンチレーション光子はシリコン光電子増倍管(SiPM)のアレイによって検出でき、個々の検出器結晶はそれぞれSiPMを有することができる。
各光検出器(例えばPMTまたはSiPM)は、シンチレーションイベントが発生した時間と、検出イベントを発生させたガンマ線のエネルギーとを示すアナログ信号を生成できる。更に、1つの検出器結晶から放射された光子は複数の光検出器で検出でき、また各光検出器で生成されたアナログ信号に基づいて、検出イベントに対応する検出器結晶を、例えばアンガーロジックおよび結晶復号化を使用して決定できる。
図9Bは、被検体OBJから放射されたガンマ線を検出するように構成された、ガンマ線(ガンマ線)光子計数検出器(GRD)を有するPETスキャナシステムの概略図を示す。GRDは、各ガンマ線検出に対応するタイミング、位置、エネルギーを測定できる。一実施形態では、図9Aおよび9Bに示すように、ガンマ線検出器はリング状に配置される。検出器結晶はシンチレータ結晶であることができ、それは二次元アレイに配置された個々のシンチレータ素子を有し、当該シンチレータ素子は任意の既知シンチレーション材料であり得る。上記PMTは、各シンチレータ素子からの光が複数のPMTにより検出されて、シンチレーションイベントのアンガー演算および結晶復号化を可能にするように配置することができる。
図9Bは、PETスキャナ200の配置の一例を示しており、撮像される被検体OBJはベッド216上に載置され、GRDモジュールGRD1〜GRDNは、被検体OBJおよびベッド216の周囲に円周方向に配置される。GRDは、ガントリ240に固定結合された円形コンポーネント220に固定結合される。ガントリ240は、PETイメージング装置の多くの部分を収容する。PETイメージング装置のガントリ240はまた、被検体OBJおよびベッド216が通過できる開口を含み、消滅イベントにより被検体OBJから反対方向に放射されるガンマ線は、GRDによって検出でき、またタイミングおよびエネルギー情報を使用してガンマ線対の同時発生を判断できる。
図9Bにはまた、ガンマ線検出データを収集、保存、処理、および配布するための回路およびハードウェアも示されている。当該回路およびハードウェアには、処理回路270、ネットワークコントローラ274、メモリ278、およびデータ収集システム(DAS)276が含まれる。上記PETイメージング装置はまた、GRDからDAS276、処理回路270、メモリ278、およびネットワークコントローラ274へと検出測定結果をルーティングするデータチャネルをも含む。DAS276は、検出器からの検出データの取得、デジタル化、およびルーティングを制御することができる。一実施形態において、DAS276は、ベッド216の動きを制御する。処理回路270は、本明細書で説明するように、上記検出データからの画像の再構成、上記検出データの再構成前処理、および上記画像データの再構成後処理を含む機能を実行する。
処理回路270は、プログラムを実行して各プログラムに対応する機能を実現するプロセッサである。例えば、後述の取得機能、校正機能、検出機能、生成機能等の各処理機能(図示しない)が、コンピュータによって実行可能なプログラムの形態でメモリ278へ記憶される。この場合、処理回路270は、プログラムをメモリ278から読み出して実行することで、各プログラムに対応する機能を実現する。或いは、メモリ278にプログラムを保存する代わりに、各機能がプロセッサの回路内に論理回路として直接組み込まれることとしても構わない。換言すると、処理回路270は、取得機能、校正機能、検出機能、生成機能等の各処理機能を有する。なお、取得機能、校正機能、検出機能、生成機能は、それぞれ取得部、校正部、検出部、生成部の一例である。
処理回路270は、本明細書で説明される方法100および160の様々なステップ、およびその変形を実行するように構成することができる。処理回路270は、個別の論理ゲート、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、フィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA)、または他の複合プログラマブルロジックデバイス(Complex Programmable Logic Device:CPLD)として実装可能なCPUを含むことができる。FPGAまたはCPLDの実装は、VHDL、Verilog、またはその他のハードウェア記述言語でコード化でき、当該コードはFPGAまたはCPLD内の電子メモリに直接、または個別の電子メモリとして保存できる。更に、当該メモリは、ROM、EPROM、EEPROM、またはフラッシュメモリのような不揮発性であってよい。当該メモリはまた、スタティックもしくはダイナミックRAMのような揮発性であってよく、またマイクロコントローラまたはマイクロプロセッサのようなプロセッサが、電子メモリを管理するため、ならびにFPGAまたはCPLDとメモリとの間の相互作用を管理するために設けられよい。
或いは、処理回路270内のCPUは、方法100および160の様々なステップを実行する一組のコンピュータ可読命令を含むコンピュータプログラムを実行することができ、当該プログラムは、上記の非一時的電子メモリおよび/またはハードディスクドライブ、CD、DVD、フラッシュドライブ、またはその他の既知の保存媒体に保存される。更に、上記コンピュータ可読命令は、インテルオブアメリカのXeonプロセッサまたはAMDオブアメリカのOpteronプロセッサのようなプロセッサ、ならびにマイクロソフトVISTA、UNIX(登録商標)、Solaris、LINUX(登録商標)、Apple、MAC−OSなどのオペレーティングシステム、および当業者に既知の他のオペレーティングシステムと組み合わせて実行するユーティリティアプリケーション、バックグラウンドデーモン、またはオペレーティングシステムのコンポーネント、またはそれらの組み合わせとして提供されてよい。更に、CPUは、命令を実行するために並列に協調して動作する複数のプロセッサとして実装できる。
メモリ278は、ハードディスクドライブ、CD−ROMドライブ、DVDドライブ、フラッシュドライブ、RAM、ROM、または当該技術分野で知られている他の任意の電子記憶装置であることができる。
インテルコーポレーション オブ アメリカのインテルイーサネット(登録商標)PROネットワークインターフェイスカードのようなネットワークコントローラ274は、PETイメージング装置の様々な部分をインターフェースできる。加えて、ネットワークコントローラ274はまた、外部ネットワークとインターフェースすることもできる。理解できるように、外部ネットワークは、インターネットのようなパブリックネットワーク、またはLANまたはWANネットワークのようなプライベートネットワーク、またはそれらの任意の組み合わせとすることができ、PSTNまたはISDNサブネットワークも含むことができる。当該外部ネットワークは、イーサネットネットワークのような有線でもよく、EDGE、3G、および4G無線セルラーシステムを含むセルラーネットワークのような無線であってもよい。無線ネットワークはまた、WiFi、ブルートゥース(登録商標)、または他の既知の無線形式の通信であってもよい。
以下で説明する実施形態は、ガンマ線検出器におけるエネルギー検出に関し、より詳細には、全くの単一エネルギーピークよりも多くのスペクトル特徴を有する単一の(または多くても数個の)エネルギー源を使用して、ガンマ線検出器のエネルギー補正を校正することに関する。
実施形態に係る背景について簡単に説明する。PETイメージングではトレーサ剤が患者に導入され、この薬剤は、その物理的および生体分子的特性により、患者の体内の特定の場所に集積される。当該トレーサはポジトロンを放射し、このポジトロンが電子と衝突するときに消滅イベントをもたらして、略180度に別れて進む2つのガンマ線(511keVにおいて)が生成される。
PETイメージングシステムは、患者の周囲に配置された検出器を用いて、ガンマ線の同時発生対を検出する。検出器のリングは、各角度から来るガンマ線を検出するために使用できる。従って、PETスキャナは、等方性放射線の捕捉を最大化するために実質的に円筒形であり得る。PETスキャナは、2次元シンチレーターアレイに配置された数千個の結晶(例えば、オルソケイ酸ルテチウム(Lutetium Orthosilicate:LYSO)または他のシンチレーション結晶)で構成されることができ、これら結晶は、それぞれのシンチレーションイベントからの光パルスを測定するための、光検出器を備えたモジュールにパッケージ化される。例えば、シンチレータ結晶アレイの各素子からの光は、複数の光電子増倍管(Photomultiplier Tube:PMT)の間で共有することができ、またはシンチレータ結晶アレイの素子と1対1で対応したシリコン光電子増倍管(Silicon Photomultiplier:SiPM)で検出することができる。
断層再構成原理を介してトレーサの時空間分布を再構成するために、検出された各イベントは、そのエネルギー(すなわち、生成された光の量)、その位置、およびそのタイミングについて特徴付けされる。上記2つのガンマ線を検出し、それらの位置の間の線、すなわち応答線(Line−Of−Response:LOR)を引くことにより、元の崩壊の可能性のある位置を決定できる。上記タイミング情報は、当該2つのガンマ線の飛行時間(Time−Of−Flight:TOF)情報に基づいて、前記LORに沿った消滅の統計分布を決定するためにも使用できる。多数のLORを蓄積することにより、断層再構成を実行して、患者内での放射能の空間分布(トレーサー密度など)の体積画像を決定することができる。
SPECTは、コリメータを使用して各検出器素子(例えば、シンチレータ結晶アレイのそれぞれの素子)に入射するガンマ線の立体角を制限し、LORを決定するために同時発生を必要とすることなく、単一ガンマ線検出イベントを使用して再構成を可能にするという点を除き、PETに類似している。
位置情報(例えばLOR)およびタイミング情報(例えばTOF)に加えて、PETおよびSPECTシステムの検出器は、画像再構成プロセスにおいてエネルギー情報を取得および使用することもできる。エネルギー校正は、全てのPET検出器にとって重要である。例えば、適切なエネルギー校正は、最終画像への散乱の寄与を大幅に減らすために、エネルギーカットを行うことを可能にする。
多くのPET検出器では、検出器のエネルギー応答はほぼ線形である。これらの場合、エネルギー校正は単一のエネルギーを使用して実行できる。線形応答の場合、エネルギー校正は、511keVのガンマ線に対応する測定信号レベルを所望の目標値に変換するスケール係数を決定することからなっている。
しかしながら、エネルギー測定は、測定プロセスの非線形性や、例えば多チャネルガンマ線検出の際のチャネル間での光/電荷共有に関連した実用的な考慮要件(例えば、コンプトン散乱に起因して発生し得るように、ガンマ線エネルギーが複数の検出器/チャネルにおいて吸収される)により、理想的な線形応答から逸脱する可能性がある。従って、画素化されたガンマ線検出器のエネルギー測定値を校正するために、改善された技術が望まれる。
ポジトロン放射断層撮影(PET)および単一光子放射型コンピュータ断層撮影(SPECT)イメージングのある実施形態は、検出されたガンマ線の位置、時間およびエネルギーを決定する能力に係る。例えば、時間およびエネルギーのウィンドウを使用して、散乱されたランダムなガンマ線を、同じポジトロン消滅イベントから発生する同時発生のガンマ線から区別することができる。このように、同時発生識別の信頼性は、タイミングおよびエネルギーの校正精度に依存する。
従って、ガンマ線検出器の改善されたエネルギー校正が望まれている。しかし、これら改善された方法では、エネルギー校正の時間および費用の増加を可能な限り回避する必要がある。例えば、上記の改善された方法では、可能であれば、エネルギー校正線源の数および校正手順のステップ数を減らす必要がある。即ち、当該改善された校正方法は、より正確なエネルギー校正を提供すると同時に、時間およびコストの点でより効率的であることを目指すべきである。
入力エネルギーの関数としての検出器の応答は、様々な実際的な考慮事項により、理想的な線形応答からは逸脱する可能性がある。この非線形エネルギー応答を補正するために、本明細書で説明される方法および装置は、改善されたエネルギー校正方法を使用して、実質的に線形である補正されたエネルギー値を生成する。
ガンマ線検出プロセスには多くの非線形性の原因がある。例えば、シンチレータベースのガンマ線検出器における光センサとしてシリコン光電子増倍管(SiPM)を使用すること、振幅推定のための閾値を超えている時間(ToT)方法を使用することは、顕著なエネルギー値の非線形性をもたらす可能性がある。この非線形性を補正することは、正確なエネルギー情報を得るために、特に、エネルギーガンマ線が複数の結晶に分散され且つ検出される多チャネル検出イベントにおいて重要である(例えば、コンプトン散乱により、エネルギーが複数の結晶間で共有される可能性がある)。多チャネルイベントの検出に対するエネルギーの非線形性の影響に関する追加の詳細については、後で図3を参照して提供される。
エネルギー信号は、結晶に蓄積されたエネルギーが電気信号に変換されることによって取得でき、次いで、当該電気信号はデジタル化できる。このデジタル化プロセスは様々な方法で実行できる。ガンマ線のエネルギー測定値をデジタル化する方法の中で、閾値を超えている時間(TOT)法は費用効果が高く、且つ高いチャネル密度を必要とするアプリケーションに簡単に適用できるという利点を有する。TOT値は、特定のチャネルの吸収エネルギーの単調増加関数であるが、TOTと実際のエネルギーとの関係は完全に線形ではないことがあり得る。この非線形検出器の応答、ならびに他の非線形検出器の応答は、ここで説明する方法を使用して修正できる。
検出器の感度素子が結晶アレイの場合、結晶間散乱(コンプトン散乱など)、光共有、電荷共有によって、複数の結晶/読み出しチャネル間における入射ガンマ線エネルギーの共有が生じる可能性がある。即ち、単一の511keVガンマ線からのエネルギーが複数のチャネルに亘って共有/分配されるため、これらの各チャネルは、当該ガンマ線の総エネルギーの一部のみを検出する。しかしながら、元のガンマ線の合計エネルギーは、非線形性が補正される場合にのみ、それぞれのチャネルからのエネルギーを合計することによって復旧することができる。
多チャネル検出イベントでは、所定のチャネルで検出されるエネルギーは511keVからガンマ線検出器の検出下限(例えば80keV)の範囲であるため、ガンマ線検出器のエネルギー校正はこの範囲に及ぶことが好ましい。
広範囲のエネルギーに亘って校正する1つの方法は、異なるエネルギーを放射する複数の線源(例えば異なる同位体など)を使用することである。例えば、外部ガンマ線源または上記結晶からの放射線バックグラウンドを使用して、異なるエネルギーのガンマ線を提供できる。
多線源校正方法とは対照的に、ここで説明する方法は、それ自体が多くの異なるガンマ線エネルギー(例えば、多くの離散エネルギーおよび/またはエネルギーの連続体)に亘って高度に構造化されたエネルギー特性を備えたガンマ線源を使用する。従って、単一のガンマ線源(例えばルテチウム同位体176、Lu−176)、またはいくつかの実施形態では2つのガンマ線源(例えば第2の放射線源はゲルマニウム同位体、Ge−68、またはフッ素同位体18、F−18のいずれかであり得る)を使用して、広範囲のガンマ線エネルギーのエネルギー校正を実施できる。
例えば、シリコン光電子増倍管および動的時間閾値振幅推定を使用したガンマ線検出器は、エネルギーの顕著な非線形性を示す。一定の実施形態において、本明細書で説明する方法は、Lu−176バックグラウンドスペクトルの2つ以上のスペクトル特徴を使用して、非線形性補正係数を抽出する。ルテチウム(Lu)ベースのシンチレータは、ポジトロン放射断層撮影(PET)検出器の飛行時間(TOF)測定にしばしば使用される。Lu−176は放射能が弱いため、PETスキャナを使用していない時間に亘って何時でもバックグラウンドスペクトルを蓄積できる。このバックグラウンドスペクトルは、検出に使用されるシンチレータの一部としてPETスキャナに組み込まれているため、外部放射源を必要としない。従って、エネルギー校正スペクトルを取得するための追加の労力を最小限に抑えることができる。
ここで図面を参照すると、いくつかの図を通して同様の参照番号は同一または対応する要素を示し、図1A〜図1Cはシリコン光電子増倍管(SiPM)で生じる第1の非線形性の原因を示し、図2Aおよび2Bは、ガンマ線エネルギーの尺度として閾値を超えている時間(TOT)が使用される場合に発生する非線形性の2番目の原因を示している。
図1Aは、低フラックスの場合のSiPM検出器を示しており、この場合、2つの光子が35マイクロセル(即ち、5マイクロセル×7マイクロセル)の2次元(2D)アレイ内にある2つのマイクロセルに入射する。多くの場合、SiPM検出器には数千個のマイクロセルがあるが、ここでは説明のための簡略化された例として、減少された数のマイクロセルが用いられている。図1Bは、35個のマイクロセルのうちの6個に対して6個の光子が入射する、中程度のフラックスの場合のSiPM検出器を示している。SiPMは、マイクロセルと称する微細なガイガーモードアバランシェフォトダイオード(Geiger-Mode Avalanche Photodiode:G−APD)素子の2次元配列として形成された光検出器である。このアーキテクチャは、SiPMの出力パルスの振幅がデバイスの表面に入射する光子の数に比例する(ある範囲の強度に亘って)ため、単一G−APDの欠点を克服する。しかしながら、光子フラックスが十分に大きくなり、2つの光子が同じマイクロセルに入射する確率が無視できなくなると、入射光子の数の関数としての信号がロールオーバーを開始し、非線形になる。この非線形性が図1Cに示されており、ここでは、水平軸に沿って表されるガンマ線エネルギーが、SiPMに入射する光学光子の数に比例している。PET検出器では、光学的光子フラックスが大きくなる場合があり(例えば、511keVのガンマ線毎に数千の光子が生成される)、SiPMには大きなダイナミックレンジが必要になる。
前述のように、SiPMの出力信号は、受光するマイクロセルの信号の合計であるため、出力信号は入射光子の数と相関している。ダイナミックレンジは装置内のセルの数によって決まり、SiPMセル毎に相互作用する光学光子が1つ以下である限り、SiPM信号と光強度との線形性が維持される。この条件に反するような高い光強度では、信号が飽和して、入射光レベルでの非線形性が生じる。PETの場合は、これにより検出器信号とシンチレータに蓄積されたエネルギーとの間に非線形性が生じて、エネルギー損失に基づいてコンプトン散乱消滅光子を拒絶する能力、または同じシンチレータ素子内で同時に相互作用する2つの消滅光子パルスによるパイルアップを拒絶する能力が低下する。
図2Aは、ガンマ線の検出に由来するパルスのプロットを示し、電圧は垂直軸に沿ってプロットされ、時間は水平軸に沿ってプロットされる。更に、図2Aは、約1.2ミリボルトの予め定義された閾値を示しており、パルスがこの閾値を超える時間がTOT値である。図2Bに示すように、TOT値は検出されたガンマ線のエネルギーに単調に関係しており、これはパルスの曲線下の面積によって、またはパルスの振幅によって表すことができる。上記閾値を下回る信号については、信号/検出は示されない。
上記で例示した検出器の飽和非線形性およびTOT非線形性に加え、PET検出器には、非線形性を生じる別の因子がある場合がある。非線形性の供給源またはタイプには関係なく、ここで説明する校正方法は一般的であり、非線形性の供給源に関係なく、全ての検出器非線形性に適用できる。即ち、本明細書では、例示の目的で検出器飽和およびTOTの非線形性を使用しているが、これらPET検出における非線形性の例は限定的ではない。
非線形性によって引き起こされるエラーは、多チャネル検出イベントによって悪化する可能性があり、これは単一のガンマ線からのエネルギーが複数の検出器素子間で共有され、検出されるときに発生する(例えば、コンプトン散乱、光学的クロストーク等)。しかし、何れの検出イベントが多チャネルイベントであるかを判断し、次いで同じガンマ線から発生する多チャネルイベント群(例えば、検出時間、空間的近接、および/またはそれぞれのエネルギーに基づくもの)を識別することによって、総エネルギーを回復できる。次に、同じガンマ線から発生する全てのイベントから測定されたエネルギーを合計して、上記共有されたエネルギーを集計し、元のガンマ線の総エネルギーを再構築できる。即ち、それぞれのエネルギーが共有される検出器からのエネルギーが合算されて、当該ガンマ線の総エネルギーが決定される。この非線形性を補正することなく生のエネルギー信号を合計し、図3に示すようなシングルチャネル検出イベントとしてエネルギーが測定された場合、異なる合計エネルギー値(例えばより大きい値)が示されるであろう。
特に、図3はTOT測定から生じる非線形性の事例を示しており、単一チャネルイベントと多チャネル検出イベントとを対比している。イベント1は、511keVのガンマ線エネルギー全体が単一の結晶に蓄積される単一チャネル検出イベントである。右側には、ポジトロン−電子消滅由来ガンマ線の511keVエネルギーを中心とするエネルギーウインドウが示されている。イベント2および3は、2つの結晶がそれぞれ合計511keVのガンマ線のエネルギーの一部を検出する2チャネル検出イベントに対応している。
イベント2では、171keVが第1の結晶で検出され、340keVが第2の結晶で検出される(即ち、合計エネルギーは171keV+340keV=511keV)。イベント3では、第1および第2の結晶が、それぞれ255keVおよび256keVのエネルギーを吸収/検出する。図3の右側に示すように、非線形性補正なしの場合、イベント2のエネルギーとイベント3のエネルギーの合計は、指定されたエネルギーウインドウの範囲外になる。両方のイベントともに合計511keVを蓄積するが、測定信号に対する非線形補正がないため、合計信号は511keVの単一チャネル検出について登録されるよりもはるかに大きくなり、従ってこれらイベントは破棄されるため、結果として感度低下が生じる。
例えば、シンチレータおよびSiPMベースのガンマ線検出器の検出イベントの65%が単結晶/単一チャネルの検出イベントになることは珍しくなく、コンプトン散乱により、検出されたガンマ線の30%が2チャネル検出イベントとなり、また5%が3チャネル検出イベントとなる。この場合、多チャネル検出イベントを除外すると、単一カウント率は65%の効率に低下し、同時計数率は42%の効率にまで低下する。PETイメージングは、応答線(LOR)を決定するために同時検出に依存するので、多チャネル検出イベントを除外すると、全体的な感度は50%以上低下する。
本明細書で使用される「エネルギー」の用語は、実際のエネルギーまたは真のエネルギーに直線的に関連する校正されたエネルギーを意味することには限定されない。一般に、本明細書で使用される「エネルギー」の用語は、実際のエネルギーまたは真のエネルギーを表し且つ単調にこれに関連するエネルギー座標を指定する。従って、「エネルギー」の用語は、文脈が特に明確に別のことを示さない限り、必ずしも実際のエネルギーまたは真のエネルギーを指称するものではない。
例えば、ここでエネルギーの合算について説明する場合、この合算は、実際のエネルギーに線形に関連した校正値に対してではなく、「エネルギー座標」に対して実行できる。測定された/生のエネルギーEraw(即ち「エネルギー座標」)の関係は、非線形関数Etrue=f(Eraw)によって真のエネルギーEtrueに関連付けることができ、またEraw=f−1(Etrue)に従い、逆関数を適用して真のエネルギーから測定された生のエネルギー値へとマップすることができる。測定された生のエネルギーと真のエネルギーとの間の関係は非線形であるため、2チャネル検出からの2つの測定されたエネルギーf−1(E)およびf−1(E)の合計は、同等の単一チャネル検出の測定されたエネルギー/生のエネルギーと等しくなく、即ち、f−1(E)+f−1(E)≠f−1(E+E)であり、ここでE+E=ETotalであり、またETotalは入射の真のエネルギー、例えば511keVである。従って、多チャネル検出のエネルギーを信号チャネル検出と正確に比較するために、エネルギー校正および補正が、多チャネル検出のエネルギーを合計する前に各エネルギーに対して個別に適用される。
上記で議論したように、本明細書で説明する方法は、エネルギー校正のために多くの個別の線源および同位体を使用する関連の校正方法と比較することによって、よりよく理解することができる。例えば、非線形性を校正するためのこれらの関連方法では、使用目的の範囲をカバーする複数のエネルギーのスペクトル位置を導き出すために、複数の同位体を使用して測定を行う。生産環境または臨床環境において複数の同位体を頻繁に交換することは高価であり、測定に時間がかかり、面倒であるため、この方法の使用は望ましくない。
しかしながら、多線源エネルギー校正は、PETスキャナの初期(一次)校正(例えば、PETスキャナが最初にインストールされるとき)においては、やはり有用であり得る。その後、Lu−176スペクトルのみ、または別の放射性同位体からのスペクトルと組み合わせてLu−176スペクトルを用いた、エネルギー補正を更新するために実行される短縮校正プロセスを使用して、後続の(二次)校正を行うことができる。初期/一次校正は1回限りのイベント(または少なくとも稀なイベント)であるため、より複雑な校正手順の余分な負担も正当化できるのに対して、当該エネルギー校正を再校正/更新することはより頻繁に発生するため、再校正に必要とされる時間および労力を最小限に抑制することが非常に重要である。
多くの線源の校正方法に必要とされる追加の時間および労力を克服するために、本明細書で説明する方法は、PETスキャナが、ルテチウムベースのシンチレータを使用して製造できるという事実を活用する。シンチレータに存在するLu−176は、校正および/または毎日の品質管理に使用できるバックグラウンド放射線を提供する。エネルギーの非線形校正にLu−176のバックグラウンドスペクトルを使用して、複数の同位体を使用するルーチンのエネルギー非線形キャリブレーションを置き換えることができる。図4は、補正された全エネルギーの関数としての、Lu−176のバックグラウンドスペクトルのプロットを示している。見て分かるように、Lu−176バックグラウンドスペクトルはかなり多くの構造を有している。従って、非線形キャリブレーションの1つのアプローチは、フィッティング手法を使用して、測定されたスペクトルとパラメータ化モデルとの最適な一致を与えるパラメータ値(そのうち一部は非線形性を表す)を決定することである。
図5は、エネルギー校正115を生成する第1のプロセスと、エネルギー校正115を使用して生データ105を補正する第2のプロセスとを備えた方法100の流れ図を示す。次に、この補正されたデータ155を使用して画像を再構築する。図5に示す実施形態は、ここで説明する校正方法の非限定的な例である。補正されたデータ155を使用して画像を再構築する医療用イメージングモダリティの例には、PETおよびSPECT画像が含まれる。加えて、他の実施形態において、方法100は投影イメージングに使用でき、その場合、方法100はステップ170を省略でき、出力は、ステップ160でのフィルタリング後の補正データ155に基づいた投影画像になる。当該他の実施形態を使用する医療用イメージングモダリティの1例は、投影画像のためにガンマ線を使用する単一光子放射である。更に、ガンマカメラとして構成されたガンマ線検出器のアレイと共に、任意のガンマ線源を使用して、投影イメージングを実行することができる。
ステップ110では、校正データ103を使用してエネルギー校正115を生成する。エネルギー校正115が劣決定でないことを保証するために、校正データ103により提供されるスペクトル特徴の数は、エネルギー校正115における固有パラメータの数以上でなければならない。例えば、エネルギー校正115は、以下の式(1)で表すことができる。
Figure 2021128143
式(1)において、Eは校正されたエネルギー、xは生のエネルギー信号(ここで、これらは生のエネルギー信号の非限定的な例であるTOT値として示されている)、p={α、β、γ}はエネルギー校正115を定義するパラメータである。パラメータpは、目的関数(最小二乗目的関数または対数尤度目的関数など)を定義し、最適化した当該パラメータp値について上記目的関数を解いて、エネルギー校正115を用いて得られる校正されたエネルギーとスペクトル特徴の既知のエネルギー値との間の一致を達成することによって解くことができる。
一実施形態において、ステップ110は、最適化問題を解決するパラメータpを見つけることにより実行される。パラメータpは、例えば以下の式(2)で表すことができる。
Figure 2021128143
式(2)において、E (c)は、校正データ103の校正スペクトル内で識別されるスペクトル特徴の既知のエネルギー値である。なお、E (c)は、基準スペクトルの基準値の一例である。またx (c)は当該スペクトル特徴についての生のエネルギー信号である。例えば、当該スペクトル特徴が図4に見られる202keVおよび307keVのピークであるとき、これら2つのピークにそれぞれ対応する極大値について、Lu−176の校正スペクトルにおける生のエネルギー値を見出すことによって、当該生のエネルギー信号を得ることができる。当該スペクトル特徴が、597keVのエッジのようなエッジである場合には、当該エッジに対応する生のエネルギー信号を導出する問題は、極大値を決定するよりも少し複雑になる。
597keVのエッジに関して、597keVエッジについての生のエネルギー信号を決定する1つのアプローチでは、物理ベースのモデル(その詳細については以下で述べる)を使用して、予め定められたエネルギーの範囲(例えば、550keV〜1MeVの範囲のエネルギー)に亘る値の範囲について、Lu−176校正スペクトルの形状に適合させる。以下で説明するように、597keVはベータレプリカ8に対応する。更に、ベータレプリカ5〜7は、550keV〜1MeVの範囲において顕著に寄与できるのに対して、このエネルギー範囲では、他のベータレプリカの寄与は有意ではない可能性がある。202keVおよび307keVのピーク形状に基づいて決定できるスペクトル分解能の値が与えられたならば、これらのベータレプリカのスペクトル形状は事前に計算できる。次に、ベータレプリカの事前に計算されたスペクトル形状の加重和を調整し、生のエネルギー信号軸に沿って合計されたスペクトルを変換して、シミュレートされたスペクトルとLu−176校正スペクトルとの間の最適な適合を達成することにより、シミュレートされたスペクトルを計算できる。597keVエッジの生のエネルギー信号は、生のエネルギー信号軸に沿ったシミュレートされたスペクトルの最適な位置によって提供される。
他のアプローチもまた、第3のスペクトル特徴に対応する生のエネルギー信号を取得するために使用することができる。例えば、ピーク間の値を当該第3のスペクトル特徴として使用できるであろう。或いは、597keVエッジ付近の極大を当該第3のスペクトル特徴として使用でき、または、当該第3のスペクトル特徴は、Lu−176スペクトルが597keVエッジ付近の極大ピーク値の半分にまで減少する800keV付近の値にすることができる。
特定の実施形態においては、Lu−176校正スペクトル内の少数の離散スペクトル機能のみを使用して校正を実行するのではなく、Lu−176校正スペクトル全体を校正に使用できる。例えば、検出器の非線形性が校正されたら、エネルギーの関数としてのカウントのヒストグラムをメモリに保存できる。その後、検出器の再校正を行う場合(例えば、検出器性能の経年劣化およびドリフトによる)、保存されているヒストグラムをメモリから呼び出して、Lu−176校正スペクトルの新しいヒストグラムと比較できる。新しい校正されたヒストグラムが古い校正されたヒストグラムと一致するまで、エネルギー校正115のパラメータを調整することにより、非線形検出器応答の経時変化を考慮してエネルギー校正115を定期的に微調整することができる。
上記の例から明らかなように、ステップ110においていくつかのバリエーションを使用して、校正データ103からエネルギー校正115を生成できる。上記のアプローチに加えて、校正データ103を拡張し、Lu−176に加えて別の放射性同位体からのスペクトルを含めることによって、4パラメータのエネルギー校正115を生成することができる。例えば、校正データ103は、ゲルマニウム同位体(Ge−68)またはフッ素同位体18(F−18)からのスペクトルを含むことができる。
図6は、閾値を超えている時間(TOT)技術における非線形性の補正に向けられたエネルギー校正モデルの例を示しており、ここでは曲線適合のために6つのスペクトル特徴が使用されている。この場合、データに適合するように選択された関数形式は、例えば以下の式(3)で表すことができる。
Figure 2021128143
方法100は、上記で与えられた特定の関数形式を有するエネルギー校正モデルに限定されない。他の実施形態において、ターゲットデータは、上述した実施形態の要旨を逸脱することなく、他の形式をとることができる。
上述したように、ステップ110は多線源校正方法を使用して実行することもでき、またステップ140では、エネルギー校正115が上記のアプローチを使用して実行され、ここではLu−176校正スペクトルのみが使用されるか、或いは、せいぜいLu−176校正スペクトルが他の1つの放射性同位体のスペクトルと組み合わされて使用される。
ステップ110で多線源校正を使用する場合、次の放射線源からのスペクトルを使用して校正を実行できる。即ち、(i)Am−241(ピークは59.5keV)、(ii)Ba−133(ピークは81および356keV)、(iii)Co−57(ピークは122keV)、(iv)Lu−176(ピークは202および307keV)、(v)Ge−68(ピークは511keV)、および(vi)Cs−137(ピークは662keV)である。これらの同位体は、511keVガンマ線の関心範囲とそのコンプトン散乱相互作用をカバーするように選択される。エネルギー校正への多線源アプローチにおいて、エネルギー校正モデルfのパラメータpは、上記の同位体について、8つのエネルギーピークに対応するTOT値を既知のエネルギー(59.5、81、122、202、307、356、511、および662keV)に合わせて曲線適合させることによって生成される。
ステップ120では、Lu−176スペクトルを含む新しい校正データ113を使用して、与えられた検出器の非線形応答が、再校正が望ましいほど十分に変化したかどうかを監視する。例えば、新しい校正データ113は、検出器がイメージングに使用されていない(即ち、アイドリング状態にある)ときは、いつでも蓄積することができる。次いで、エネルギー校正115は新しい校正データ113に適用することができ、Lu−176スペクトルにおけるスペクトル特徴のうちの1つの校正されたエネルギー値を、エネルギー補正されたLu−176スペクトルから導出することができる。監視対象のスペクトル特徴が307keVピークであれば、307keVピークに対応する極大値の補正されたエネルギー値を決定できる。この補正されたエネルギー値が、予め定められた閾値を超えて既知の値(即ち、307keV)とは異なっていれば、ステップ130において、方法100はエネルギー補正がドリフトしたこと、すなわち「Yes」を通知し、方法100はエネルギー校正115を更新するためにステップ140へと進む。そうでなければ、方法100は、画像取得の間に取得された新しい校正データ113の監視を継続する。
ノイズを含む1つの測定が校正を不必要に更新させる可能性を回避するために、ステップ130で使用される基準は移動平均に基づくことができ、またはステップ120において最近生成されたm個の補正エネルギー値のうちn個は、予め定義された閾値よりも大きい量だけ既知の値とは異なる。例えば、ステップ120の5回のうち3回が予め定められた閾値外の結果を生じるならば、ステップ140へと進み、上記の校正を更新する。
特定の実施形態において、ステップ120は、複数のスペクトル特徴の補正されたエネルギー値を監視することができる。線形エネルギー補正については単一のスペクトル特徴を監視するだけで十分であるが、非線形エネルギー補正については、あるスペクトル特徴の補正されたエネルギーが正確であったとしても、別のスペクトル特徴の補正されたエネルギーは不正確になる場合があり得る。従って、ステップ120では、2つ以上のスペクトル特徴の補正されたエネルギー値を監視することができる。それに加えて/その代替として、ステップ120は、2つのスペクトル特徴についての補正されたエネルギー値の間の差を監視することができる。
ステップ140では、Lu−176スペクトルと、多くとも1つの他の放射性同位体のスペクトルに基づいて、エネルギー校正115が上述のアプローチを使用して再校正される。
ステップ150では、エネルギー校正115が生データ105に適用され、補正データ155が生成される。例えば、パラメータpは、エネルギー校正モデルfへの入力として、エネルギー信号x(エネルギー座標とも呼ばれる)と共に適用され、校正されたエネルギー値Eを生成する。校正されたエネルギー値Eは、例えば下記の式(4)で表すことができる。
Figure 2021128143
一般に、非線形応答の形状は、多少の違いはあるものの、検出器素子/チャネル間において類似している。これらの変動に対応するために、上記パラメータは、各読み出しチャネル/モジュールについて校正することができる。
上記で説明したように、エネルギー校正モデルfは、下記の式(5)の関数形式に限定されない。
Figure 2021128143
例えば、関数形式のパラメータ化の代替として、パラメータ化はルックアップテーブル(LUT)のパラメータを使用して表現できる。1実施形態では、例えば、LUTはマッピングE=f(x)の離散点を関連付けることができ、補間を使用して離散点間の点についてのマッピングを決定することができる。
従って、特定の実施形態では、関数形式を使用するのではなく、非線形性の補正をLUTで指定できる。この場合、LUTは特定の信号レベルに対応する補正係数を指定する。LUTに表示されない信号レベルについての補正係数は、LUTに表示される値からの補間または外挿によって決定できる。精度および計算の複雑さの制約に応じて、異なる補間方法(例えばスプライン、線形、またはキュービック)を使用できる。同様に、LUTの信号レベルの数は、精度および計算の複雑さの制約に依存する。一般に、値の個数が多いほど、エネルギー分解能(つまり、補正の精度)は向上する。LUTアプローチの場合、LUTの全ての補正係数は、エネルギー校正により決定されるそれぞれのパラメータであり得る。
上述のように、上記エネルギー校正はTOT非線形性補正を含むことができるが、TOT非線形性補正には限定されない。加えて、上記エネルギー校正は、電荷共有、閾値処理、およびその他の非線形効果による非線形性を考慮に入れることができる。さらに、上記エネルギー校正は、非線形補正を表現する方程式のパラメータを取得するために、それぞれの検出器素子の位置/個性(ID)によってインデックス付けされたルックアップテーブルであることができる。従って、エネルギー校正のパラメータ化は、検出器素子に対して検出器素子ベースで実行できる。
ステップ160では、補正されたデータにエネルギーウインドウが適用されてランダムな同時発生を除去し、それにより画像品質を改善する。例えば、PETイメージングにおいて、エネルギーウインドウは、ポジトロン消滅に対応する511keVのエネルギーに及ぶ。上記のように、特定の実施形態では、何れの検出イベントが多チャネルイベントに対応するかを判別し、それぞれの多チャネル検出のエネルギーを合計して、各多チャネル検出イベントの合計エネルギーを決定することにより、多チャネル検出を修復できる。このプロセスの1つの実施形態の詳細を以下に示す。
ステップ170では、既知の再構成方法を使用して、PET画像155が正しいPETデータから再構成される。例えば、PETデータ145を使用して、放射能レベル(例えば、トレーサー密度)の画像をボクセル位置の関数として再構成することができる。この画像再構成は、当業者が理解するように、逆投影法、フィルター逆投影法、フーリエ変換ベースの画像再構成法、反復画像再構成法、マトリックス反転画像再構成法、統計的画像再構成法、リストモード方法、もしくは他の再構成方法、またはそれらの組み合わせを使用して実行できる。例えば、lPET画像175は、FBP再構成PET画像で初期化されるサブセット化による期待値最大化法(Ordered Subset Expectation Maximization;OS−EM)アルゴリズムを使用して再構成することができる。
ステップ160に戻る。生データ105は、ガンマ線検出イベントに対応するエネルギー、時間、および位置を含むことができる。例えば、上記検出イベントは、被検体OBJで発生するポジトロン−電子消滅イベントの際に放射されるガンマ線の対に対応できる。上記検出イベントは、複数の検出器素子のいずれか1つで検出することができる。多チャネル検出が発生すると、1つのガンマ線からのエネルギーが、2つ以上の検出器素子に分散して検出される。これらの2つ以上の検出器素子は、単一の検出器モジュール内にあることができ(例えば、隣接する検出器素子)、または2つ以上の検出器モジュールに分配されることができる。例えば、コンプトン散乱では、散乱したガンマ線は、コンプトン散乱が発生した最初の検出器素子から遠く離れた2番目の検出器素子に吸収される前に、いくつかの検出器素子を通過する。
ステップ160では、エネルギー補正データ155から多チャネル検出イベントが識別され、次いで識別された多チャネル検出イベントがイベントごとにグループ化される。即ち、各グループは単一の一次ガンマ線に対応する。一次散乱の場合、各グループには2つのヒットが含まれる。1つはコンプトン散乱が発生した最初の結晶で検出されたエネルギーであり、もう1つは散乱ガンマ線が光電吸収を介して吸収される第2の結晶で検出されたエネルギーである。同様に、2次散乱イベントの各群には、3つのヒット(即ち、一次ガンマ線に1つ、2つの散乱ガンマ線の各々について2つ)等が含まれる(例えば、3次散乱に対応する群における4つのヒット)。
多チャネルイベントは、例えば、検出信号の時間的近接性、検出信号の空間的近接性、信号のエネルギーの合計、またはそれらの任意の組み合わせに基づいて選択することができる。例えば、ガンマ線源が既知のエネルギー(例えば、ポジトロン消滅からのガンマ線について511keV)を有する場合、信号が既知のエネルギーに近づくほど、同じ多チャネルイベントに対応する可能性が高くなる。さらに、時間的に近接して発生する信号は、同じ多チャネルイベントに対応する可能性が高く、空間的に近接して発生する信号は、同じ多チャネルイベントに対応する可能性が高い。さらに、上記の3つの条件(エネルギー、時間、空間)が全て満たされると、上記信号は同じ多チャネルイベントに対応する可能性がさらに高くなる。従って、多変量統計分析を使用して、上記信号を多チャネルイベントにグループ化する処理を実行できる。
上述のように、特定の実施形態では、スペクトルの物理ベースのモデルを使用して、様々なスペクトル特徴のエネルギー信号値を決定できる。このアプローチにおいて、入力スペクトルは、物理ベースの複雑なスペクトルモデルに適合する。当該モデルには、非線形性を記述する調整可能なパラメータが含まれている。データへの最適な適合は、他のパラメータの中でも特に、非線形係数を提供する。
図7は、Lu−176のエネルギーレベルと放射経路のレベル図を示している。図7に示すように、Lu−176はベータ放射と、それに続くガンマ線のカスケードによって減衰する。ベータ放射およびガンマカスケードは、本質的に同時に発生する(即ち、検出器システムの解像度よりもはるかに近接した時間で発生する)。図8は、物理モデルに基づいて、Lu−176スペクトルが複数の放射減衰プロセスからのスペクトルの重ね合わせとしてモデル化できることを示している。
図7および8を考慮すると、上記物理ベースのモデルは、いくつかの単純化された仮定を考慮することによって、よりよく理解できる。第1に、ベータ放射においては、全ての減衰が99.1%の経路で発生すると仮定できる。
第2に、ベータエネルギーは、本質的に常に、シンチレータで完全に捕捉される。従って、ベータ粒子の100%が、それらのエネルギーの全部を、それらが発生する結晶の中に蓄積すると仮定できる。
第3に、ガンマ線(88、202および307keV)は捕捉されるか、またはエスケープする可能性がある。確率は、エネルギーおよびシンチレータのサイズに依存する。その結果、ベータスペクトルは数回複製され、全体のスペクトルはこれら複製されたスペクトルの合計になる。例えば、88keVおよび307keVのガンマ線が捕捉される崩壊は、(88+307=395keV)だけシフトしたベータスペクトルを生成する。従って、3つのガンマ線のそれぞれのエスケープの確率は、3つの確率(P88、P202、P307)で表すことができ、ここでP88は88keVのガンマ線がエスケープする確率であり、P202は202keVのガンマ線がエスケープする確率であり、P307は307keVのガンマ線がエスケープする確率であり、P88<P202<P307である。現実には、エスケープの確率は、シンチレータ内において放射減衰が発生する場所に依存する一方、上記結晶の位置および幾何学の関数ではなく定数であると仮定されるので、これは単純化である。
Figure 2021128143
第4に、3つのガンマ線(それぞれがエスケープまたは捕捉できる)について、2=8の可能なベータスペクトルレプリカが存在する。3つのガンマ線がエスケープし、またはエスケープしない8つの可能な並べ替えのそれぞれについて、表1に確率を示す。左側のベータレプリカ番号は、図8に示すベータレプリカ番号に対応している。例えば、88keVおよび202keVの両方のガンマ線が捕捉されると、スペクトルがシフトし(即ち、88+202=290keV)、図8に示すようにベータレプリカ5のスペクトルが提供される。このシナリオに与えられる確率(重み)は、(1−P88)*(1−P202)*P307で与えられる。
第5に、他のシンチレータ素子(同じ検出器ブロック内の他のシンチレータ画素またはPET検出器リング内の他の検出器など)が存在する場合、1つの検出器(主に202および307keV)からのエスケープが他の検出器で検出され、追加のピークをもたらす。上記物理モデルを簡素化するために、他の検出器素子からの202および307keVのエスケープのみが、スペクトル全体に大きな貢献をもたらすと仮定することができる。
第6に、上記スペクトル特徴は、検出システム全体(シンチレータ、光センサ、および電子機器の組み合わせ)のエネルギー分解能によって変更される。上記物理モデルを簡素化するために、エネルギー分解能は単一のパラメータで記述できると仮定できる。例えば、511keVでの分解能を1つのパラメータとして使用できる。以下、511keVでの分解能は、下記の式(6)の通り表記する。
Figure 2021128143
また、特定のエネルギーEでのエネルギー分解能は次の式で与えられると仮定でき、また与えられたエネルギーEにおけるエネルギー分解能は、下記の式(7)により与えられると仮定できる。
Figure 2021128143
上記では、エネルギー分解能は、エネルギーの平方根に比例すると仮定されている。
各ベータレプリカは、パラメータ化された形状関数Bで表すことができる。例えば、形状関数Bは、下記の式(8)で表すことができる。
Figure 2021128143
式(8)において、E00は、同時に吸収されたガンマ線によるレプリカのエネルギーシフトである。振幅は、振幅スケール係数A、および表1の右端の列に与えられる相対振幅係数によって決定される。1例として、表1の行6を表すレプリカ(即ち、ガンマ線エネルギー88および307keVが捕捉される)については、エネルギーシフトはE00=88+307=395keVであり、ベータレプリカ6β6についての全体のレプリカは、下記の式(9)で表すことができる。
Figure 2021128143
全体のエネルギースペクトルは、図8に示すように8つのベータレプリカと、他の検出器素子からのエスケープの吸収に起因する2つのガンマピーク(202および307keV)の合計である。追加の方程式を適用して、検出経路(例えば、シンチレータ、光センサ、読み出し電子回路)に沿ったリンクの効果をモデル化できる。例えば、光センサの量子効率はエネルギーの関数として変化し得るであろう。
次に、検出器の非線形性はパラメータ化された方程式で表される。例えば、閾値を超えている時間(TOT)法を使用した検出器の読み出しでは、4つのパラメータ(C、a、E0、およびToT511)を使用して非線形性を説明できる。エネルギーEは、例えば下記の式(10)〜(12)の方程式で表される。
Figure 2021128143
Figure 2021128143
Figure 2021128143
ここで、ToTは測定された信号である。
上記の仮定を全て纏めると、全体的なLu−176スペクトルは、11個の自由なパラメータを持つ物理モデルによって記述される。
1 A:ベータレプリカの全体的なスケーリング係数
2 Eres_511:511keVでのエネルギー分解能
3 P88:88keVのエスケープ確率
4 P202:202keVのエスケープ確率
5 P307:307keVのエスケープ確率
6 A202:202keVピークの振幅(他の検出器からのエスケープ)
7 A307:307keVピークの振幅(他の検出器からのエスケープ)
8 C:非線形性パラメータ#1
9 a:非線形性パラメータ#2
10 E0:非線形性パラメータ#3
11 ToT511:非線形性パラメータ#4
597keVのエッジに対応するエネルギー信号値のみが問題である場合、この自由パラメータの数は減らすことができる。例えば、A202およびA307の値は無視でき、値Eres_511は202keVおよび307keVのピークから取得できる。さらに、4つのパラメータの適合ではなく2つのパラメータの適合を使用して、ToT値(ToT)をエネルギー値Eに対してスケーリングおよび変換し、自由パラメータの数を6つに減らすことができる。これら6つのパラメータは、当業者に知られている適合方法により決定できる。例えば、シンプレックス検索を使用して決定でき、または最小二乗ペナルティ関数を使用して決定できる。
方法100の上記の実装は、主にLu−176のスペクトルを使用して示されている。Lu−176スペクトルは、多数の離散的および連続的なスペクトル特徴を示すため、非線形エネルギー校正に有利である。しかしながら、Ge−68のような単一ピークスペクトル由来のスペクトルはまた、コンプトン散乱および検出器結晶内の他の物理的プロセスにより、離散的および連続的なスペクトル特徴を生成することができる。即ち、実際問題として、検出器で吸収された放射線のスペクトルは、放射性同位体の発光スペクトル特徴を超える追加の特徴(例えば、後方散乱ピークおよびコンプトンエッジ)を有することができる。これら追加の特徴には、図10、11A、および11Bに示すように、コンプトン後方散乱ピーク、コンプトンエッジ、および様々なエスケープピークを含めることができる。こうして、単一の放射エネルギーのみを有する放射性同位体を使用して、複数のスペクトル特徴を校正することができ、従って非線形エネルギー校正を実行できる。
図10は、単一エネルギーの放射線源から生じる様々な物理プロセスの概略図を示している。ここで、Ge−68は511keVでガンマ線を放射する。しかしながら、リング上部にある結晶からの後方散乱が、リングの左下の領域において検出器に吸収されることが示されている。更に、図10は、マルチコンプトン散乱によって吸収されるガンマ線エネルギーと、X線エスケープの存在下で吸収されるエネルギーを示している。
図11Aは、Ge−68から放射された511keVのガンマ線の検出から生じる吸収スペクトルを示しており、これには、上記の散乱プロセスに対応するさまざまなスペクトル特徴が含まれている。図11Aでは、対数目盛が垂直方向に使用され、吸収スペクトルは、様々な機能をより良好に解像するために、完全な検出器分解能の仮定の下で示されている。図11Bでは、リニアスケールが垂直軸に使用され、限定された検出器分解能が想定されている。Ge−68は単一のエネルギーのみを有するガンマ線を放射するが、吸収されたエネルギーは多くの異なるスペクトル特徴を示す(例えば、後方散乱ピークおよびコンプトンエッジによる)。従って、放射線源が単一エネルギーの放射線のみを放射する場合でも、上記検出プロセスは多くのスペクトル特徴をもたらす可能性がある。
この観点から、ここに説明した方法は、Lu−176のような複数のエネルギーで放射線を放射する放射線源を用いて使用されるのに加えて、Ge−68のような単一のエネルギーで放射線を放射する放射線源からのスペクトルを用いて使用することができる。
図20、図11Aおよび図11Bに示されている様々な散乱プロセスの物理ベースのモデルは、当該散乱プロセスについての既知の分析および数値表現を使用して適用できる。従って、DLネットワーク実装または物理ベースのモデル実装のいずれかを、1つまたは2つのエネルギーのみで放射する放射源から取得した吸収スペクトルに対して適用できる。
特定の実装について説明してきたが、これらの実装は単なる例として提示されたものであり、本開示の教示を限定することを意図したものではない。実際に、本明細書で説明された新規な方法、装置、およびシステムは、様々な他の形態で具現化することができる。更に、本明細書に記載した方法、装置、およびシステムの形態においては、本開示の精神から逸脱することなく、様々な省略、置換、および変更を行うことができる。
以上説明した少なくとも1つの実施形態によれば、精度よくエネルギーの校正を行うことができる。
いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、実施形態同士の組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
200 PETスキャナ
270 処理回路

Claims (15)

  1. 検出器に入射する放射線の校正データであって、シンチレータ結晶内の放射性同位体からの放射線が前記検出器に照射されるときに収集される第1のエネルギースペクトルを含む校正データを取得する取得部と、
    前記検出器で測定されたエネルギー信号を非線形エネルギー補正に適用し、吸収された放射エネルギーを表す基準スペクトルの基準値と、前記校正データの前記第1のエネルギースペクトルが前記非線形エネルギー補正に適用されたときに生成される校正されたエネルギーとの間の一致を最適化するよう前記非線形エネルギー補正のパラメータを調整することにより、エネルギー校正を行なう校正部と
    を備える、ガンマ線放射イメージング装置。
  2. 前記取得部は、前記ガンマ線放射イメージング装置がイメージングに使用されていない複数のイメージング走査の間の時間に、前記シンチレータ結晶から放射されたバックグラウンド放射からカウントを取得し、
    前記取得部が取得した前記カウントは、前記エネルギー校正を行なうために使用される前記校正データである、請求項1に記載のガンマ線放射イメージング装置。
  3. 前記校正部は、前記基準値として、既知のエネルギーに対応した前記基準スペクトルのn個のスペクトル特徴を使用して、前記基準値と前記校正されたエネルギーとの間の一致を最適化し、
    前記非線形エネルギー補正のパラメータの数は、前記スペクトル特徴の数のn個以下である、請求項1又は2に記載のガンマ線放射イメージング装置。
  4. 前記放射性同位体は、ルテチウム同位体176(Lu−176)であり、
    前記校正部は、202keVのピークおよび307keVのピークを含む前記スペクトル特徴を使用して、前記エネルギー校正を行なう、請求項3に記載のガンマ線放射イメージング装置。
  5. 前記校正部は、更に、Lu−176の測定されたエネルギースペクトルにおける597keVのエッジを含むスペクトル特徴を使用して、エネルギー校正を行なう、請求項4に記載のガンマ線放射イメージング装置。
  6. 前記校正部は、前記放射性同位体によって放射される放射線エネルギーの放射ピークと、1つ以上の後方散乱ピークおよびコンプトンエッジとを含むスペクトル特徴を使用して、前記エネルギー校正を行なう、請求項3〜5のいずれか一項に記載のガンマ線放射イメージング装置。
  7. 前記校正部は、前記基準スペクトルの基準ヒストグラムと、前記第1のエネルギースペクトルに前記非線形エネルギー補正を適用することにより生成されたスペクトルとの間の一致を表す目的関数を使用して、前記基準値と、前記校正データに基づいて前記校正されたエネルギーとの間の一致を最適化する、請求項1に記載のガンマ線放射イメージング装置。
  8. 前記取得部は、ゲルマニウム同位体68(Ge−68)またはフッ素同位体18(F−18)のいずれかに対応する第2のエネルギースペクトルを更に取得することにより、前記校正データを取得し、
    前記校正部は、前記非線形エネルギー補正のパラメータを調整して、前記第1のエネルギースペクトルに関する少なくとも2つのスペクトル特徴の一致を最適化し、前記基準値と前記第2のエネルギースペクトルに関する少なくとも1つのスペクトル特徴の校正データとの間の一致を最適化することによって、前記エネルギー校正を行なう、請求項1〜7のいずれか一項に記載のガンマ線放射イメージング装置。
  9. 前記エネルギー校正をいつ更新するかを検出する検出部を更に備え、
    前記検出部は、前記エネルギー校正が行なわれた後に、前記放射性同位体を使用して追加の校正データを取得し、前記追加の校正データに前記エネルギー校正を適用して、前記追加の校正データにおける2つ以上のスペクトル特徴の補正されたエネルギーを決定し、
    前記2つ以上のスペクトル特徴の既知の値と、前記追加の校正データから決定されたスペクトル特徴から決定された前記スペクトル特徴の補正されたエネルギーとの間の差が1つ以上の再校正基準を満たすときに、前記エネルギー校正を更新するための信号を送る、請求項1〜8のいずれか一項に記載のガンマ線放射イメージング装置。
  10. 前記検出部は、前記追加の校正データにおける2つ以上のスペクトル特徴の既知の値と補正されたエネルギーとの間の差を定期的にチェックすることにより、前記エネルギー校正をいつ更新するかを検出し、
    前記スペクトル特徴は、前記基準スペクトルにおけるピークまたは谷である、請求項9に記載のガンマ線放射イメージング装置。
  11. ガンマ線イメージング装置を使用した医療用イメージングスキャンから、放射データを取得し、
    511keVに及ぶエネルギーウインドウの外にある、補正されたエネルギー値のカウントを省略するために、前記放射データをフィルターし、
    前記フィルターされた放射データを使用して断層撮影画像を再構成する生成部を更に備える、請求項1〜10のいずれか一項に記載のガンマ線放射イメージング装置。
  12. 前記ガンマ線イメージング装置は、ポジトロン放射断層撮影(PET)スキャナおよび単一光子放射コンピュータ断層撮影(SPECT)スキャナのうちの1つである、
    請求項11に記載のガンマ線放射イメージング装置。
  13. 前記校正部は、コンプトン散乱又は光学的クロストークによる多チャネル検出イベントが生じている場合に、前記エネルギー校正を行なった後に総エネルギーを回復する、請求項1〜12のいずれか一項に記載のガンマ線放射イメージング装置。
  14. ガンマ線イメージング装置の検出器に入射する放射線の校正データであって、シンチレータ結晶内の放射性同位体からの放射線が前記検出器に照射されるときに収集される第1のエネルギースペクトルを含む校正データを取得し、
    非線形エネルギー補正を適用し、吸収された放射エネルギーを表す基準スペクトルの基準値と、前記校正データの前記第1のエネルギースペクトルが前記非線形エネルギー補正に適用されたときに生成される校正されたエネルギーとの間の一致を最適化するよう前記非線形エネルギー補正のパラメータを調整することにより、前記検出器で測定されたエネルギー信号を補正するエネルギー校正を行なう
    ことを含むエネルギー校正方法。
  15. ガンマ線イメージング装置の検出器に入射する放射線の校正データであって、シンチレータ結晶内の放射性同位体からの放射線が前記検出器に照射されるときに収集される第1のエネルギースペクトルを含む校正データを取得し、
    非線形エネルギー補正を適用し、吸収された放射エネルギーを表す基準スペクトルの基準値と、前記校正データの前記第1のエネルギースペクトルが前記非線形エネルギー補正に適用されたときに生成される校正されたエネルギーとの間の一致を最適化するよう前記非線形エネルギー補正のパラメータを調整することにより、前記検出器で測定されたエネルギー信号を補正するエネルギー校正を行なう
    各処理をコンピュータに実行させる、プログラム。
JP2020159887A 2020-02-12 2020-09-24 ガンマ線放射イメージング装置、エネルギー校正方法及びプログラム Pending JP2021128143A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110177222.0A CN113253330B (zh) 2020-02-12 2021-02-07 伽玛射线放射成像装置及能量校准方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/788,741 2020-02-12
US16/788,741 US11543545B2 (en) 2020-02-12 2020-02-12 Method and apparatus to use a broad-spectrum energy source to correct a nonlinear energy response of a gamma-ray detector

Publications (1)

Publication Number Publication Date
JP2021128143A true JP2021128143A (ja) 2021-09-02

Family

ID=77178400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020159887A Pending JP2021128143A (ja) 2020-02-12 2020-09-24 ガンマ線放射イメージング装置、エネルギー校正方法及びプログラム

Country Status (2)

Country Link
US (1) US11543545B2 (ja)
JP (1) JP2021128143A (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11543545B2 (en) * 2020-02-12 2023-01-03 Canon Medical Systems Corporation Method and apparatus to use a broad-spectrum energy source to correct a nonlinear energy response of a gamma-ray detector
CN113917519B (zh) * 2021-09-08 2024-02-02 中国船舶重工集团公司第七一九研究所 一种用于源检系统的在线校准方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6835935B2 (en) * 2002-08-21 2004-12-28 Siemens Medical Solutions Usa, Inc. System and method for calibrating and tuning a gamma camera
US7129495B2 (en) * 2004-11-15 2006-10-31 General Electric Company Method and apparatus for timing calibration in a PET scanner
CN101292174A (zh) * 2005-10-17 2008-10-22 皇家飞利浦电子股份有限公司 使用镥本底辐射的pmt增益和能量校准
US20080083870A1 (en) * 2006-09-28 2008-04-10 Siemens Medical Solutions Usa, Inc. Self-Adaptive Tuning of Gamma Camera
US9360570B2 (en) * 2014-04-18 2016-06-07 Siemens Medical Solutions Usa, Inc. Method and apparatus for automatic calibration check of PET scanner using intrinsic background radiation of scintillator crystals
US10527741B2 (en) * 2015-04-07 2020-01-07 Siemens Medical Solutions Usa, Inc. Setup of SIPM based PET detector using LSO background radiation
CN105182402B (zh) * 2015-09-29 2018-08-03 沈阳东软医疗系统有限公司 一种闪烁晶体探测器增益的校正方法和装置
US10732300B2 (en) * 2015-10-30 2020-08-04 Koninklijke Philips N.V. Energy calibration with Lu spectrum subtraction
US10436915B2 (en) * 2017-09-20 2019-10-08 Canon Medical Systems Corporation Medical image diagnosis apparatus
US11255985B2 (en) * 2019-05-31 2022-02-22 Canon Medical Systems Corporation Method and apparatus to use a broad-spectrum energy source to correct a nonlinear energy response of a gamma-ray detector
CN112014870B (zh) * 2019-05-31 2024-09-24 佳能医疗系统株式会社 放射线检测装置、能量校正方法以及程序
US11543545B2 (en) * 2020-02-12 2023-01-03 Canon Medical Systems Corporation Method and apparatus to use a broad-spectrum energy source to correct a nonlinear energy response of a gamma-ray detector

Also Published As

Publication number Publication date
US20210247530A1 (en) 2021-08-12
US11543545B2 (en) 2023-01-03

Similar Documents

Publication Publication Date Title
US11255985B2 (en) Method and apparatus to use a broad-spectrum energy source to correct a nonlinear energy response of a gamma-ray detector
EP3218876B1 (en) X-ray imaging based on image data from a photon-counting multi bin x-ray detector
EP2867701B1 (en) Digital positron emission tomography (dpet) energy calibration method
JP6386743B2 (ja) コンピュータ断層撮影装置、光子数決定プログラム、光子数決定装置及び校正プログラム
US5818050A (en) Collimator-free photon tomography
JP7317586B2 (ja) 医用画像処理装置、方法及びプログラム
CN102809756B (zh) 校正量子计数探测器中计数率漂移的方法和x射线系统
JP7286383B2 (ja) 陽電子放出撮像装置及び方法
US20160217594A1 (en) Cost-function based method and apparatus for projection-domain basis decomposition in spectral computed tomography
EP3745161A1 (en) A radiation detection apparatus, a method, and a non-transitory computer-readable storage medium including executable instructions
JP7362406B2 (ja) 放射線イメージング装置、エネルギー校正方法及び記録媒体
JP2021128143A (ja) ガンマ線放射イメージング装置、エネルギー校正方法及びプログラム
RU2705758C2 (ru) Недорогостоящая конструкция цифрового пэт (позитронного эмиссионного томографа)
JP6912304B2 (ja) 波高頻度分布取得装置、波高頻度分布取得方法、波高頻度分布取得プログラム及び放射線撮像装置
Zeraatkar et al. Development and calibration of a new gamma camera detector using large square photomultiplier tubes
US11169286B2 (en) Methods of calibrating semiconductor radiation detectors using K-edge filters
CN113253330B (zh) 伽玛射线放射成像装置及能量校准方法
US11835668B2 (en) Summing circuit for positron emission tomography diagnostic apparatus
US20240125951A1 (en) Method for correction of correlated count losses
EP4350396A1 (en) Pet apparatus, data processing method and program
Gu et al. Optimization of the energy window for PETbox4, a preclinical PET tomograph with a small inner diameter
Ljungberg Instrumentation, Calibration, Quantitative Imaging, and Quality Control
JP2024025712A (ja) 散乱フラクションの決定方法、放射線診断装置及び放射線診断システム
Polack et al. Spectrum Isolation in Multi-Source Image Reconstruction Using a Dual-Particle Imager.
Guerin et al. Realistic Monte Carlo PET simulation with pixellated block detectors, light sharing and randoms modeling

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230728

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240801