JP2021128063A - Material determination device for waste plastic - Google Patents

Material determination device for waste plastic Download PDF

Info

Publication number
JP2021128063A
JP2021128063A JP2020022812A JP2020022812A JP2021128063A JP 2021128063 A JP2021128063 A JP 2021128063A JP 2020022812 A JP2020022812 A JP 2020022812A JP 2020022812 A JP2020022812 A JP 2020022812A JP 2021128063 A JP2021128063 A JP 2021128063A
Authority
JP
Japan
Prior art keywords
waste plastic
spectrum
unit
correction
determination device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020022812A
Other languages
Japanese (ja)
Other versions
JP7376380B2 (en
Inventor
昇治 大石
Shoji Oishi
昇治 大石
孝伸 村上
Takanobu Murakami
孝伸 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daio Paper Corp
Original Assignee
Daio Paper Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daio Paper Corp filed Critical Daio Paper Corp
Priority to JP2020022812A priority Critical patent/JP7376380B2/en
Priority to KR1020227024431A priority patent/KR20220133875A/en
Priority to CN202180010817.5A priority patent/CN114981640A/en
Priority to PCT/JP2021/002506 priority patent/WO2021161770A1/en
Priority to TW110102930A priority patent/TW202132765A/en
Publication of JP2021128063A publication Critical patent/JP2021128063A/en
Application granted granted Critical
Publication of JP7376380B2 publication Critical patent/JP7376380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • B07C5/342Sorting according to other particular properties according to optical properties, e.g. colour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/06Recovery or working-up of waste materials of polymers without chemical reactions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3563Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing solids; Preparation of samples therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Abstract

To provide a material determination device for waste plastic with which a calibration plate for spectrum correction can be easily installed and removed and a spectrum for correction can be easily acquired.SOLUTION: A material determination device for waste plastic 1 comprises: a preprocessing unit 51 that corrects a spectrum of reflected light of light with which a conveyance path 3 of a conveyor 2 is irradiated by a light unit 10, the spectrum detected by a mid-infrared camera 4, by using a first spectrum for correction measured in a condition where the reflected light is bright and a second spectrum for correction measured in a condition where the reflected light is dark; a determination unit 52 that determines the material of a waste plastic piece by using the spectrum corrected by the preprocessing unit 51; and an arm unit 14 that moves a calibration plate 11 for acquiring the first and second spectra for correction between a predetermined reference position and a position on the conveyance path 3 irradiated by the lighting unit 10.SELECTED DRAWING: Figure 6

Description

本開示は、廃プラスチックの材質判定装置に関する。 The present disclosure relates to a material determination device for waste plastic.

廃プラスチックの再処理においてマテリアルリサイクルのためには、選別後の製品への非対象物混入が少なく純度が高いことが求められる。また、素材に高価なものが含まれる場合には、高価な素材を取りこぼしなく選別できることが求められる。また、従来は分別できないためサーマルリサイクルをせざるを得なかった黒色プラスチックを、マテリアルリサイクルするために材質判別、選別を効率良く行うことが求められている。 In the reprocessing of waste plastics, in order to recycle materials, it is required that the products after sorting are less mixed with non-objects and have high purity. Further, when the material contains an expensive material, it is required that the expensive material can be sorted without omission. In addition, it is required to efficiently discriminate and sort black plastics, which have had to be thermally recycled because they cannot be separated in the past, in order to recycle the materials.

特許文献1には、選別対象物に赤外光を照射して選別対象物からの反射光を受光し、反射光に基づくスペクトルを用いてパターンマッチングの手法によって選別対象物の樹脂種を判定することが記載されている。 In Patent Document 1, the object to be sorted is irradiated with infrared light to receive the reflected light from the object to be sorted, and the resin type of the object to be sorted is determined by a pattern matching method using a spectrum based on the reflected light. It is stated that.

特開2018−100903号公報JP-A-2018-100903

ところで、特許文献1等に記載のスペクトルに基づく材質判別手法では、温度、経年劣化、測定位置などによってスペクトルの特性に変動が生じるため、例えば白と黒の校正板を計測位置に設置して補正用のスペクトルを算出して、これらの補正用スペクトルを用いてスペクトルの補正を行われる。 By the way, in the material discrimination method based on the spectrum described in Patent Document 1 and the like, the characteristics of the spectrum fluctuate depending on the temperature, aging deterioration, measurement position, etc. Therefore, for example, a white and black calibration plate is installed at the measurement position for correction. The spectrum for is calculated, and the spectrum is corrected using these correction spectra.

しかし、このような補正用スペクトルの取得作業では、校正板をコンベヤ上の照射位置に逐次設置して、データ取得後は取り外す必要がある。 However, in such a correction spectrum acquisition work, it is necessary to sequentially install the calibration plate at the irradiation position on the conveyor and remove it after the data acquisition.

本開示は、スペクトルの補正を校正板の設置、取り外しを容易にでき、補正用スペクトルの取得を容易にできる廃プラスチックの材質判定装置を提供することを目的とする。 An object of the present disclosure is to provide a waste plastic material determination device capable of easily installing and removing a calibration plate for spectrum correction and easily acquiring a correction spectrum.

本発明の実施形態の一観点に係る廃プラスチックの材質判定装置は、搬送路上で搬送される廃プラスチック片に光を照射する照射部と、前記照射部により照射された光の反射光を受光して前記反射光のスペクトルを検出する反射スペクトル検出部と、前記反射スペクトル検出部により検出された前記スペクトルを、前記反射光が最も明るい条件で計測した第1スペクトルと、最も暗い条件で計測した第2スペクトルとを用いて補正する前処理部と、前記前処理部により補正されたスペクトルを用いて前記廃プラスチック片の材質を判別する判定部と、前記第1スペクトル及び前記第2スペクトルを取得するための校正板を、所定の基準位置と、前記照射部による前記搬送路上の照射位置との間で移動する移動部と、を備える。 The waste plastic material determination device according to one aspect of the embodiment of the present invention receives an irradiation unit that irradiates a waste plastic piece conveyed on a transport path with light and a reflected light of the light emitted by the irradiation unit. The reflection spectrum detection unit that detects the spectrum of the reflected light, and the spectrum detected by the reflection spectrum detection unit are measured under the conditions where the reflected light is the brightest, the first spectrum, and the darkest conditions. A pretreatment unit that corrects using two spectra, a determination unit that determines the material of the waste plastic piece using the spectrum corrected by the pretreatment unit, and the first spectrum and the second spectrum are acquired. A calibration plate for this purpose is provided with a moving portion that moves between a predetermined reference position and an irradiation position on the transport path by the irradiation portion.

本開示によれば、スペクトルの補正用の校正板の設置、取り外しを容易にでき、補正用スペクトルの取得を容易にできる廃プラスチックの材質判定装置を提供することができる。 According to the present disclosure, it is possible to provide a waste plastic material determination device capable of easily installing and removing a calibration plate for correcting a spectrum and easily acquiring a correction spectrum.

実施形態に係る廃プラスチックの材質判定装置の概略構成を示す斜視図A perspective view showing a schematic configuration of a waste plastic material determination device according to an embodiment. 図1に示す廃プラスチックの材質判定装置の側面図Side view of the waste plastic material determination device shown in FIG. 図1に示す廃プラスチックの材質判定装置の平面図Top view of the waste plastic material determination device shown in FIG. 判別装置の機能ブロック図Functional block diagram of the discriminator 実施形態に係る廃ブラスチックの材質判別処理のフローチャートFlowchart of material discrimination process of waste plastic according to the embodiment 補正用のスペクトルの抽出手法を示す図The figure which shows the extraction method of the spectrum for correction 材質判定装置の操作画面の一例を示す図The figure which shows an example of the operation screen of the material judgment apparatus

以下、添付図面を参照しながら実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, embodiments will be described with reference to the accompanying drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.

なお、以下の説明において、x方向、y方向、z方向は互いに垂直な方向である。x方向及びy方向は水平方向であり、z方向は鉛直方向である。x方向はコンベア2の搬送路3の搬送方向である。y方向は、コンベア2の搬送路3の幅方向である。また、以下では説明の便宜上、z正方向側を上側、z負方向側を下側とも表現する場合がある。 In the following description, the x-direction, the y-direction, and the z-direction are perpendicular to each other. The x-direction and the y-direction are horizontal directions, and the z-direction is a vertical direction. The x direction is the transport direction of the transport path 3 of the conveyor 2. The y direction is the width direction of the transport path 3 of the conveyor 2. Further, in the following, for convenience of explanation, the z positive direction side may be expressed as the upper side and the z negative direction side may be expressed as the lower side.

図1〜図3を参照して、実施形態に係る廃プラスチックの材質判定装置1の概略構成を説明する。図1は、実施形態に係る廃プラスチックの材質判定装置1の概略構成を示す斜視図である。図2は、図1に示す廃プラスチックの材質判定装置1の側面図である。図3は、図1に示す廃プラスチックの材質判定装置1の平面図である。ここでは、材質判定対象の廃プラスチックが黒色廃プラスチックの場合であり、かつ、二種類の材質S1、S2(図1〜図3では四角形と三角形のマークで示す)を混合する構成を例示して説明する。以下では、二種類の材質S1、S2の黒色廃プラスチック片を纏めて符号Sで表す場合がある。 A schematic configuration of the waste plastic material determination device 1 according to the embodiment will be described with reference to FIGS. 1 to 3. FIG. 1 is a perspective view showing a schematic configuration of a waste plastic material determination device 1 according to an embodiment. FIG. 2 is a side view of the waste plastic material determination device 1 shown in FIG. FIG. 3 is a plan view of the waste plastic material determination device 1 shown in FIG. Here, a configuration is illustrated in which the waste plastic to be determined as a material is a black waste plastic, and two types of materials S1 and S2 (indicated by quadrangular and triangular marks in FIGS. 1 to 3) are mixed. explain. In the following, the black waste plastic pieces of the two types of materials S1 and S2 may be collectively represented by the reference numeral S.

この黒色廃プラスチックの材質判定装置1は、黒色廃プラスチック片S1、S2を順次供給する供給部の一例としての振動フィーダー8と、振動フィーダー8により供給された黒色廃プラスチック片S1、S2を搬送する搬送部の一例としてのコンベア2とを主要部として備えている。振動フィーダー8には、例えば投入用ホッパなどを介して、破砕された黒色廃プラスチック片S1、S2が供給される。振動フィーダー8は、黒色廃プラスチック片S1、S2が載置される載置面が振動することによって、黒色廃プラスチック片S1、S2同士の重畳を防止しながらコンベア2に供給する。コンベア2は、その上面に搬送路3を有し、振動フィーダー8から遠ざかる向きに搬送路3上の黒色廃プラスチック片S1、S2を搬送する。 The black waste plastic material determination device 1 conveys a vibration feeder 8 as an example of a supply unit that sequentially supplies black waste plastic pieces S1 and S2, and black waste plastic pieces S1 and S2 supplied by the vibration feeder 8. A conveyor 2 as an example of a transport unit is provided as a main unit. The crushed black waste plastic pieces S1 and S2 are supplied to the vibration feeder 8 via, for example, a charging hopper. The vibration feeder 8 supplies the black waste plastic pieces S1 and S2 to the conveyor 2 while preventing the black waste plastic pieces S1 and S2 from being overlapped with each other by vibrating the mounting surface on which the black waste plastic pieces S1 and S2 are placed. The conveyor 2 has a transport path 3 on its upper surface, and transports the black waste plastic pieces S1 and S2 on the transport path 3 in a direction away from the vibration feeder 8.

また、材質判定装置1は、黒色廃プラスチック片S1、S2に赤外線を照射する照射部の一例としての照明10と、黒色廃プラスチック片S1、S2からの反射スペクトルを検出する反射スペクトル検出部の一例としての中赤外線カメラ4と、中赤外線カメラ4で検出した反射スペクトルに基づき黒色廃プラスチック片S1、S2の材質を同定する判別装置5と、を主要部として備えている。照明10は、例えばハロゲンタングステンランプ等の赤外線光源であるランプ10A(図6参照)を有し、ランプ10Aから黒色廃プラスチック片S1、S2に向かって赤外線を照射する。また、照明10は、中赤外線カメラ4に黒色廃プラスチック片S1、S2からの反射光が入光するように設置され、中赤外線カメラ4に対してコンベア2の流れ方向の上部両側(又は上部片側)に設置されている。 Further, the material determination device 1 is an example of an illumination 10 as an example of an irradiation unit that irradiates the black waste plastic pieces S1 and S2 with infrared rays, and an example of a reflection spectrum detection unit that detects the reflection spectrum from the black waste plastic pieces S1 and S2. The main part is a mid-infrared camera 4 as a main part, and a discriminating device 5 for identifying the materials of the black waste plastic pieces S1 and S2 based on the reflection spectrum detected by the mid-infrared camera 4. The illumination 10 has a lamp 10A (see FIG. 6) which is an infrared light source such as a halogen tungsten lamp, and irradiates infrared rays from the lamp 10A toward the black waste plastic pieces S1 and S2. Further, the illumination 10 is installed on the mid-infrared camera 4 so that the reflected light from the black waste plastic pieces S1 and S2 enters the mid-infrared camera 4, and the upper both sides (or the upper one side) of the conveyor 2 in the flow direction with respect to the mid-infrared camera 4. ) Is installed.

中赤外線カメラ4は、例えば図1に示すように1台でコンベア2の幅方向の全域に亘って計測可能であり、幅方向に沿って複数個(例えば318個)の領域に区分して黒色廃プラスチック片S1、S2からの近赤外線の反射光を受光し、各領域ごとに反射光のスペクトルを計測できる。中赤外線カメラ4は、例えば、中赤外線の波長領域3μm以上の分光器付カメラで構成されている。中赤外線カメラ4は、例えば230Hzのスキャン周波数で計測を行い、1回のスキャンごとに318個のスペクトルデータを判別装置5に送信する。判別装置5は、中赤外線カメラ4から受信した318個のスペクトルデータに基づき、318個の各領域の材質判定結果を後述の噴射制御部6に出力する。 As shown in FIG. 1, for example, one mid-infrared camera 4 can measure the entire width direction of the conveyor 2, and is divided into a plurality of (for example, 318) regions along the width direction and is black. The reflected light of near infrared rays from the waste plastic pieces S1 and S2 can be received, and the spectrum of the reflected light can be measured for each region. The mid-infrared camera 4 is composed of, for example, a camera with a spectroscope having a wavelength region of mid-infrared of 3 μm or more. The mid-infrared camera 4 measures at a scan frequency of, for example, 230 Hz, and transmits 318 spectral data to the discriminating device 5 for each scan. The discrimination device 5 outputs the material determination results of the 318 regions to the injection control unit 6, which will be described later, based on the 318 spectral data received from the mid-infrared camera 4.

さらに、材質判定装置1は、コンベア2の搬送方向の下流側にて、搬送方向と交差する方向に横又は斜めからエアーを噴射する噴射ノズル7が設けられている。噴射ノズル7は、コンベア2の幅方向に複数個(例えば318個)が並設されており、噴射制御部6によって個々のノズルの動作が制御される。噴射制御部6は、判別装置5から受信した材質判定結果に応じて、噴射ノズル7からエアーを噴射させ、または噴射させないことにより、例えば仕切り板9により区分される複数の領域(例えば回収用ホッパなど)に黒色廃プラスチック片S1、S2を仕分けて落下させて、所望の材質の廃プラスチックを収集する。つまり、本実施形態では、噴射制御部6と、噴射ノズル7と、仕切り板9とが、判別装置5による材質判定結果に基づき、コンベア2の搬送路3を流れる廃プラスチック片から所望の材質のものを収集する収集装置12として機能する。 Further, the material determination device 1 is provided with an injection nozzle 7 that injects air laterally or diagonally in a direction intersecting the transport direction on the downstream side of the conveyor 2 in the transport direction. A plurality of injection nozzles 7 (for example, 318) are arranged side by side in the width direction of the conveyor 2, and the operation of each nozzle is controlled by the injection control unit 6. The injection control unit 6 injects or does not inject air from the injection nozzle 7 according to the material determination result received from the determination device 5, so that, for example, a plurality of regions (for example, a recovery hopper) classified by the partition plate 9 are formed. Black waste plastic pieces S1 and S2 are sorted and dropped to collect waste plastic of a desired material. That is, in the present embodiment, the injection control unit 6, the injection nozzle 7, and the partition plate 9 are made of a desired material from the waste plastic piece flowing through the transport path 3 of the conveyor 2 based on the material determination result by the discrimination device 5. It functions as a collecting device 12 for collecting things.

材質判定装置1の動作について説明する。例えば投入用ホッパなどを介して、破砕された黒色廃プラスチック片S1、S2が振動フィーダー8に供給されると、振動フィーダー8は、供給された黒色廃プラスチック片S1、S2に振動を与えながら重ならないようにして下流に搬送して、コンベア2に供給する。 The operation of the material determination device 1 will be described. For example, when the crushed black waste plastic pieces S1 and S2 are supplied to the vibration feeder 8 via a charging hopper or the like, the vibration feeder 8 gives weight to the supplied black waste plastic pieces S1 and S2 while applying vibration. It is conveyed downstream so as not to become a container, and is supplied to the conveyor 2.

コンベア2の上面の搬送路3に供給された黒色廃プラスチック片S1、S2は、x正方向側の搬送方向に搬送されながら、中赤外線カメラ4の撮像可能な位置にて、照明10から赤外光が照射される。中赤外線カメラ4は、照明10から発せられた赤外線の黒色廃プラスチック片S1、S2による反射光を受光し、受光結果(受光スペクトルのデータ)を判別装置5に出力する。 The black waste plastic pieces S1 and S2 supplied to the transport path 3 on the upper surface of the conveyor 2 are transported in the transport direction on the x positive direction side, and are infrared from the illumination 10 at a position where the mid-infrared camera 4 can image. Light is emitted. The mid-infrared camera 4 receives the light reflected by the black waste plastic pieces S1 and S2 of the infrared rays emitted from the illumination 10, and outputs the light receiving result (data of the light receiving spectrum) to the discriminating device 5.

判別装置5は、中赤外線カメラ4から入力された受光結果に基づき、黒色廃プラスチック片S1、S2の材質を同定する。なお、判別装置5による材質判定手法の詳細は図4〜図9を参照して後述する。判別装置5は、材質同定結果を噴射制御部6に出力する。 The discriminating device 5 identifies the materials of the black waste plastic pieces S1 and S2 based on the light receiving result input from the mid-infrared camera 4. The details of the material determination method by the determination device 5 will be described later with reference to FIGS. 4 to 9. The discrimination device 5 outputs the material identification result to the injection control unit 6.

噴射制御部6は、複数配置されている噴射ノズル7のうち、材質に応じた噴射ノズル7を選択して、タイミングを計って制御信号を送信する。制御信号を受信した噴射ノズル7は、ノズル口を開口して、エアーを噴射する。判別装置5の判別結果により適切なタイミングで噴射ノズル7からエアーを噴射することにより、選別対象の材質とそうでないものとを分離して回収することができる。 The injection control unit 6 selects an injection nozzle 7 according to the material from among the plurality of injection nozzles 7 arranged, measures the timing, and transmits the control signal. The injection nozzle 7 that has received the control signal opens the nozzle opening and injects air. By injecting air from the injection nozzle 7 at an appropriate timing according to the discrimination result of the discrimination device 5, the material to be sorted and the material not to be sorted can be separated and collected.

図2、図3の例では、コンベア2上の黒色廃プラスチック片S1は、制御信号を受信したエアー噴射ノズル7からエアーを受けて、材質毎に設けられた収集装置12に吹き飛ばされ落下して回収される。また、コンベア2上の黒色廃プラスチック片S2は、噴射ノズル7からエアーを受けないので、黒色廃プラスチック片S1とは異なる収集装置12に回収される。このように噴射ノズル7の噴射及び停止によって、複数の材質の黒色廃プラスチック片を材質ごとに仕分けて回収することができる。 In the examples of FIGS. 2 and 3, the black waste plastic piece S1 on the conveyor 2 receives air from the air injection nozzle 7 that has received the control signal, is blown off by the collecting device 12 provided for each material, and falls. Will be recovered. Further, since the black waste plastic piece S2 on the conveyor 2 does not receive air from the injection nozzle 7, it is collected by a collecting device 12 different from the black waste plastic piece S1. By injecting and stopping the injection nozzle 7 in this way, black waste plastic pieces made of a plurality of materials can be sorted and collected for each material.

図7は、材質判定装置1の操作画面の一例を示す図である。図7に示す操作画面は、例えば材質判定装置1の本体に設置される表示装置に表示される。図7に示すように、操作画面には、選別するプラスチックの材質名が列挙され、上記の第1の系統(図7では「1次」と、第2の系統(図7では「2次」)ごとに噴射して選別する材質を個別に選択可能となっている。操作画面が表示される表示装置は例えばタッチパネルであり、「噴射選択」欄の「OFF」表示を押下するなどの操作によって「ON」表示に切り替えることによって、当該材質(図7ではABS)の場合に噴射ノズル7がエアーを噴射して収集装置で分別するように設定できる。また、操作画面では、「投入原料面積比」欄を設け、材料判定処理の判定結果に応じて、素材に混合される各材質の割合を表示することもできる。 FIG. 7 is a diagram showing an example of an operation screen of the material determination device 1. The operation screen shown in FIG. 7 is displayed on, for example, a display device installed in the main body of the material determination device 1. As shown in FIG. 7, the material names of the plastics to be sorted are listed on the operation screen, and the first system (“primary” in FIG. 7 and the second system (“secondary” in FIG. 7”) are listed. ), The material to be jetted and sorted can be individually selected. The display device on which the operation screen is displayed is, for example, a touch panel, and by an operation such as pressing the "OFF" display in the "spray selection" column. By switching to the "ON" display, it is possible to set the injection nozzle 7 to inject air and separate it by the collecting device in the case of the material (ABS in FIG. 7). In addition, on the operation screen, "input raw material area ratio". It is also possible to provide a column and display the ratio of each material mixed with the material according to the judgment result of the material judgment process.

図4は、判別装置5の機能ブロック図である。図4に示すように、判別装置5は、前処理部51と、判定部52とを有する。 FIG. 4 is a functional block diagram of the discrimination device 5. As shown in FIG. 4, the discrimination device 5 includes a pretreatment unit 51 and a determination unit 52.

前処理部51は、中赤外線カメラ4により検出された黒色廃プラスチック片S1、S2の反射スペクトルの補正や加工などの前処理を行う。前処理部51は、例えば、反射光が明るい条件で計測したスペクトルと、暗い条件で計測したスペクトルとを用いて、検出された反射スペクトルを補正する。「暗い条件」とは、上記の「明るい条件」よりも相対的に暗い条件を意味する。 The pretreatment unit 51 performs pretreatment such as correction and processing of the reflection spectra of the black waste plastic pieces S1 and S2 detected by the mid-infrared camera 4. The preprocessing unit 51 corrects the detected reflection spectrum by using, for example, a spectrum measured under a bright condition and a spectrum measured under a dark condition. The "dark condition" means a condition that is relatively darker than the above-mentioned "bright condition".

判定部52は、前処理部51により補正されたスペクトルを用いて廃プラスチック片Sの材質S1、S2を判別する。判定部52は、例えば既知のパターンマッチングや、機械学習アルゴリズムなどの任意の手法を用いて、スペクトルと材質との対応関係を推定することができる。 The determination unit 52 determines the materials S1 and S2 of the waste plastic piece S using the spectrum corrected by the pretreatment unit 51. The determination unit 52 can estimate the correspondence between the spectrum and the material by using an arbitrary method such as known pattern matching or a machine learning algorithm.

判別装置5は、物理的には、CPU(Central Processing Unit)、主記憶装置であるRAM(Random Access Memory)およびROM(Read Only Memory)、通信モジュール、補助記憶装置、などを含むコンピュータシステムとして構成することができる。図4に示した判別装置5の各機能は、CPUやRAMなどに所定のコンピュータソフトウェアを読み込ませることにより、CPUの制御のもとで各種ハードウェアを動作させると共に、RAMにおけるデータの読み出し及び書き込みを行うことで実現される。すなわち、本実施形態に係る材質判定プログラムをコンピュータ上で実行させることで、判別装置5は、図4の前処理部51、判定部52として機能する。 The discriminating device 5 is physically configured as a computer system including a CPU (Central Processing Unit), a main storage device such as a RAM (Random Access Memory) and a ROM (Read Only Memory), a communication module, and an auxiliary storage device. can do. Each function of the discriminating device 5 shown in FIG. 4 operates various hardware under the control of the CPU by causing a CPU, RAM, or the like to read predetermined computer software, and reads and writes data in the RAM. It is realized by doing. That is, by executing the material determination program according to the present embodiment on the computer, the determination device 5 functions as the preprocessing unit 51 and the determination unit 52 in FIG.

判別装置5は、アナログ回路、デジタル回路又はアナログ・デジタル混合回路で構成された回路であってもよい。また、判別装置5の各機能の制御を行う制御回路を備えていてもよい。各回路の実装は、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)等によるものであってもよい。 The discriminating device 5 may be a circuit composed of an analog circuit, a digital circuit, or an analog / digital mixed circuit. Further, a control circuit for controlling each function of the discriminating device 5 may be provided. The implementation of each circuit may be by ASIC (Application Specific Integrated Circuit), FPGA (Field Programmable Gate Array) or the like.

同様に、噴射制御部6も、物理的には、CPU、RAMおよびROM、通信モジュール、補助記憶装置、などを含むコンピュータシステムとして構成することができ、CPUやRAMなどに所定のコンピュータソフトウェアを読み込ませることによりその機能が実現される。 Similarly, the injection control unit 6 can also be physically configured as a computer system including a CPU, RAM and ROM, a communication module, an auxiliary storage device, and the like, and loads predetermined computer software into the CPU, RAM, and the like. The function is realized by making it.

図5は、実施形態に係る廃ブラスチックの材質判別処理のフローチャートである。図5に示すフローチャートの各処理は判別装置5により実行される。 FIG. 5 is a flowchart of the material discrimination process of the waste plastic according to the embodiment. Each process of the flowchart shown in FIG. 5 is executed by the discriminating device 5.

ステップS01では、前処理部51により、中赤外線カメラ4によるスペクトルSorg(n,w)が取得される。ここで、nはセンサ数(中赤外線カメラ4によりコンベア2の幅方向で区分されるスペクトル検出領域の数)であり、センサ数が318個の場合には各検出領域に対応する0〜317の整数が用いられる。wはスペクトルの波長であり、本実施形態では、2700(nm)〜5300(nm)の間で20(nm)刻みで合計131個の波長が設定され、各波長に対応する0〜130の整数が用いられる。つまり、Sorg(n,w)は、コンベア2の幅方向に沿ったn番目のスペクトル検出領域における、波長wのスペクトルの強度の数値を表す。 In step S01, the preprocessing unit 51 acquires the spectrum S org (n, w) taken by the mid-infrared camera 4. Here, n is the number of sensors (the number of spectrum detection regions divided in the width direction of the conveyor 2 by the mid-infrared camera 4), and when the number of sensors is 318, 0 to 317 corresponding to each detection region. An integer is used. w is the wavelength of the spectrum, and in the present embodiment, a total of 131 wavelengths are set between 2700 (nm) and 5300 (nm) in increments of 20 (nm), and an integer of 0 to 130 corresponding to each wavelength is set. Is used. That is, S org (n, w) represents the numerical value of the intensity of the spectrum of the wavelength w in the nth spectrum detection region along the width direction of the conveyor 2.

ステップS02では、前処理部51により、ステップS01で取得されたスペクトルSorg(n,w)が補正されて、補正済みのスペクトルScor(n,w)が算出される。この補正により、測定空間の水蒸気及び二酸化炭素の濃度変化、計測対象の黒色廃プラスチック片S1、S2の温度、照明10および中赤外線カメラ4の経年劣化、コンベア2上の位置、などの影響によるスペクトル強度の特性の差異を吸収できる。補正済みのスペクトルScor(n,w)は、例えば下記の(1)式により算出できる。 In step S02, the preprocessing unit 51 corrects the spectrum S org (n, w) acquired in step S01, and calculates the corrected spectrum S cor (n, w). Due to this correction, the spectrum due to the influence of changes in the concentration of water vapor and carbon dioxide in the measurement space, the temperature of the black waste plastic pieces S1 and S2 to be measured, the aging deterioration of the illumination 10 and the mid-infrared camera 4, the position on the conveyor 2, and the like. It can absorb the difference in strength characteristics. The corrected spectrum S cor (n, w) can be calculated by, for example, the following equation (1).

Figure 2021128063
ここで、Wref(n,w)は、反射光が明るい条件で計測した第1の補正用スペクトルである。Dref(n,w)は、反射光が上記の明るい条件よりも暗い条件で計測した第2の補正用スペクトルである。これらの補正用スペクトルWref(n,w)、Dref(n,w)は、例えば、材質判別処理を実行する前に中赤外線カメラ4の校正を行うときに抽出できる。
Figure 2021128063
Here, W ref (n, w) is the first correction spectrum measured under the condition that the reflected light is bright. D ref (n, w) is a second correction spectrum measured under a condition in which the reflected light is darker than the above-mentioned bright condition. These correction spectra W ref (n, w) and D ref (n, w) can be extracted, for example, when the mid-infrared camera 4 is calibrated before the material discrimination process is executed.

図6は、補正用のスペクトルWref(n,w)、Dref(n,w)の抽出手法を示す図である。図6に示すように、コンベア2の搬送路3上の、中赤外線カメラ4の撮像領域に、補正用スペクトルを取得するための校正板11を設置して、中赤外線カメラ4による反射光のスペクトルの検出を行うことで、補正用のスペクトルWref(n,w)、Dref(n,w)を取得できる。 FIG. 6 is a diagram showing an extraction method of spectra W ref (n, w) and D ref (n, w) for correction. As shown in FIG. 6, a calibration plate 11 for acquiring a correction spectrum is installed in the imaging region of the mid-infrared camera 4 on the transport path 3 of the conveyor 2, and the spectrum of the reflected light by the mid-infrared camera 4 is provided. By detecting, the spectra W ref (n, w) and D ref (n, w) for correction can be obtained.

反射光が明るい条件で計測した第1の補正用スペクトルWref(n,w)(第1スペクトル)の場合、中赤外線領域の波長をすべて反射する校正板11(アルミ、ステンレス等)を置き、照明10を点灯した状態で、すべてのセンサ(n=0、1,2、・・・、317)について、全波長(w=0(2700)、2(2720)、・・・、130(5300))のデータを取得する。 In the case of the first correction spectrum W ref (n, w) (first spectrum) measured under conditions where the reflected light is bright, a calibration plate 11 (aluminum, stainless steel, etc.) that reflects all wavelengths in the mid-infrared region is placed. With the illumination 10 turned on, all wavelengths (w = 0 (2700), 2 (2720), ..., 130 (5300)) for all sensors (n = 0, 1, 2, ..., 317). )) Get the data.

反射光が暗い条件で計測した第2の補正用スペクトルDref(n,w)(第2スペクトル)の場合、中赤外線領域の波長をすべて反射する校正板11(アルミ、ステンレス等)を置き、照明10を消灯した状態(もしくはカメラのシャッターを閉じた状態)で、すべてのセンサ(n=0、1,2、・・・、317)について、全波長(w=0(2700)、2(2720)、・・・、130(5300))のデータを取得する。 In the case of the second correction spectrum D ref (n, w) (second spectrum) measured under conditions where the reflected light is dark, a calibration plate 11 (aluminum, stainless steel, etc.) that reflects all wavelengths in the mid-infrared region is placed. With the light 10 turned off (or with the camera shutter closed), all wavelengths (w = 0 (2700), 2 () for all sensors (n = 0, 1, 2, ..., 317) 2720), ..., 130 (5300)) data are acquired.

校正板11は、例えば図6に点線の矢印で示すように、補正用のスペクトルWref(n,w)、Dref(n,w)を取得する際に配置される、コンベア2の搬送路3上の、中赤外線カメラ4の撮像領域の位置と、中赤外線カメラ4の撮像領域や照明10の照射範囲から外れる待機位置との間で移動可能に設置されるのが好ましい。言い換えると、校正板11は、中赤外線カメラ4の視野内の所定位置と、視野外の所定位置とに固定可能であり、両方の所定位置の間を移動可能であるのが好ましい。校正板11は、照明10からの光によって中赤外線カメラ4にハレーションが発生しないように、表面の粗さをJIS B 0601−2001規格の3.2a〜6.3a相当程度にし、表面仕上げをバイブレーション(無方向性ヘアーライン)のような特定の方向に偏りの無いランダムなものにするのが好ましい。 The calibration plate 11 is arranged when acquiring the correction spectra W ref (n, w) and D ref (n, w), as shown by the dotted line arrows in FIG. 6, for example, the transport path of the conveyor 2. It is preferable that the image is movably installed between the position of the imaging region of the mid-infrared camera 4 and the standby position outside the imaging region of the mid-infrared camera 4 and the irradiation range of the illumination 10. In other words, the calibration plate 11 can be fixed at a predetermined position in the field of view of the mid-infrared camera 4 and a predetermined position outside the field of view, and is preferably movable between both predetermined positions. The surface roughness of the calibration plate 11 is set to about 3.2a to 6.3a of JIS B 0601-2001 standard so that halation does not occur in the mid-infrared camera 4 due to the light from the illumination 10, and the surface finish is vibrated. It is preferable to make it random with no bias in a specific direction such as (non-directional hairline).

また、校正板11の厚さは可能な限り薄くする方がよく、コンベア2に出来るだけ近い低い位置に挿入する。これにより、校正板11の表面の高さが実際に選別するプラスチックに近づくため、より精度の高い校正を行うことができる。また、校正板11の搬送方向の幅は、ランプ10Aがベルト(搬送路3)を照らす幅の4倍程度であると挿入しやすく、また、熱によるベルトの損傷を防ぐことができて都合がよい。また、校正板11の搬送方向の下流側(すなわち図6では校正板11を中赤外線カメラ4の視野外から視野内に移動させるときの先頭部分)の端部は、コンベア2に対向する部位が削られているのが好ましい。これにより、校正板11を中赤外線カメラ4の視野内の所定位置に配置したときに、校正板11がコンベア2に接触するのを防止できるので都合がよい。 Further, the thickness of the calibration plate 11 should be as thin as possible, and the calibration plate 11 is inserted at a low position as close as possible to the conveyor 2. As a result, the height of the surface of the calibration plate 11 approaches the plastic that is actually sorted, so that more accurate calibration can be performed. Further, if the width of the calibration plate 11 in the transport direction is about four times the width of the lamp 10A illuminating the belt (convey path 3), it is easy to insert the calibration plate 11, and it is convenient because damage to the belt due to heat can be prevented. good. Further, the end portion of the calibration plate 11 on the downstream side in the transport direction (that is, the leading portion when the calibration plate 11 is moved from the outside of the field of view to the inside of the field of view of the mid-infrared camera 4 in FIG. 6) has a portion facing the conveyor 2. It is preferable that it has been scraped. This is convenient because it is possible to prevent the calibration plate 11 from coming into contact with the conveyor 2 when the calibration plate 11 is arranged at a predetermined position in the field of view of the mid-infrared camera 4.

図6に示すように、本実施形態では、材質判定装置1は、補正用のスペクトルWref(n,w)、Dref(n,w)を取得するための校正板11を、中赤外線カメラ4の視野外の所定の基準位置と、照明10による搬送路3上の照射位置との間で移動させるためのアーム部14(移動部)を備える。 As shown in FIG. 6, in the present embodiment, the material determination device 1 uses a mid-infrared camera as a calibration plate 11 for acquiring the correction spectra W ref (n, w) and D ref (n, w). An arm portion 14 (moving portion) for moving between a predetermined reference position outside the field of view of 4 and an irradiation position on the transport path 3 by the illumination 10 is provided.

アーム部14は、その先端部14Aに校正板11が接続される。アーム部14は、基端部14Bを中心としてアーム部14の延在方向を径方向とするときの周方向に沿って回動可能に構成される。校正板11は、照明10からの光を受ける主面がアーム部14の回転中心を向くよう設置される。 A calibration plate 11 is connected to the tip portion 14A of the arm portion 14. The arm portion 14 is configured to be rotatable about the base end portion 14B and along the circumferential direction when the extending direction of the arm portion 14 is the radial direction. The calibration plate 11 is installed so that the main surface that receives the light from the illumination 10 faces the rotation center of the arm portion 14.

このように中赤外線カメラ4の校正用の校正板11をアーム部14により可動式とすることで、校正を行わないときには、材質判定装置1の廃プラスチック片の選別の妨げにならない場所に校正板11を移動させることができる。また、校正を行うときには、アーム部14を回動させるだけで校正板11を所定位置に設置することができ、校正板11の位置決めや固定などの作業が不要となる。これにより、スペクトルの補正用の校正板11の設置、取り外しを容易にでき、補正用スペクトルの取得を容易にできる。 By making the calibration plate 11 for calibration of the mid-infrared camera 4 movable by the arm portion 14 in this way, the calibration plate is placed in a place that does not interfere with the selection of waste plastic pieces of the material determination device 1 when calibration is not performed. 11 can be moved. Further, when performing calibration, the calibration plate 11 can be installed at a predetermined position simply by rotating the arm portion 14, and work such as positioning and fixing of the calibration plate 11 becomes unnecessary. As a result, the calibration plate 11 for correcting the spectrum can be easily installed and removed, and the acquisition of the correction spectrum can be easily performed.

なお、校正板11は、中赤外線カメラ4の視野外の所定の基準位置と、照明10による搬送路3上の照射位置との間で移動可能であればよく、アーム部14のように回動する構成には限られず、他の移動手法でもよい。 The calibration plate 11 may be movable between a predetermined reference position outside the field of view of the mid-infrared camera 4 and an irradiation position on the transport path 3 by the illumination 10, and rotates like the arm portion 14. The configuration is not limited to this, and other movement methods may be used.

また、補正用スペクトルの取得時には、コンベア2は停止していてもよい。この場合、アーム部14などの動作の何らかの不具合により、校正板11が中赤外線カメラ4の撮像領域の位置に正しく配置されないと、照明10の赤外線によりコンベア2の搬送路3上の赤外線が照射される部分の温度が上昇し、焼損や発火の虞がある。このため、校正板11が中赤外線カメラ4の視野内に固定されていない場合には、照明10から赤外線を照射しないようにインターロックを設けるのが好ましい。 Further, the conveyor 2 may be stopped when the correction spectrum is acquired. In this case, if the calibration plate 11 is not correctly arranged at the position of the imaging region of the mid-infrared camera 4 due to some malfunction of the arm portion 14 or the like, the infrared rays of the illumination 10 irradiate the infrared rays on the transport path 3 of the conveyor 2. The temperature of the part will rise, and there is a risk of burning or ignition. Therefore, when the calibration plate 11 is not fixed in the field of view of the mid-infrared camera 4, it is preferable to provide an interlock so that the illumination 10 does not irradiate infrared rays.

図5に戻り、ステップS03では、判定部52により、補正後のスペクトルScor(n,w)を用いて、廃プラスチック片Sの材質S1、S2の判別が行われる。判定部52は、例えば既知のパターンマッチングや、機械学習アルゴリズムなどの任意の手法を用いて、スペクトルと材質との対応関係を推定することができる。 Returning to FIG. 5, in step S03, the determination unit 52 determines the materials S1 and S2 of the waste plastic piece S using the corrected spectrum S cor (n, w). The determination unit 52 can estimate the correspondence between the spectrum and the material by using an arbitrary method such as known pattern matching or a machine learning algorithm.

図6に示すように、照明10は、赤外線の光源であるランプ10A(シースヒーター、カーボンランプ、カンタルランプなど)と、ランプ10Aの熱を集める反射板10B(反射部)とを有する。ランプ10Aは、コンベア2の幅方向(y方向)に沿って延在するよう形成され、y軸に沿った軸心まわりの全方向に赤外線を放射するよう配置される。反射板10Bは、ランプ10Aを基準としてコンベア2の搬送路3とは反対側に配置され、ランプ10Aの軸心まわりの周方向に沿って湾曲して形成され、これによりランプ10Aからコンベア2とは反対側に放射された赤外線を集めてコンベア2側に反射して送ることができる。これにより、ランプ10Aが放射した赤外線を搬送路3上の廃ブラスチック片に効率良く照射でき、反射スペクトルもより精度良く検出できる。また、反射板10Bは湾曲しているため、反射板10Bで反射された光をさまざまな角度で搬送路3上の廃ブラスチック片に当てることができ、光の当たりムラを小さくできる。反射板10Bは、例えば、アルミニウム、ステンレス、またはアルミニウムメッキなどされた部材からなる。 As shown in FIG. 6, the illumination 10 has a lamp 10A (sheath heater, carbon lamp, cantal lamp, etc.) that is an infrared light source, and a reflector 10B (reflecting portion) that collects the heat of the lamp 10A. The lamp 10A is formed so as to extend along the width direction (y direction) of the conveyor 2, and is arranged to radiate infrared rays in all directions around the axis along the y-axis. The reflector 10B is arranged on the opposite side of the conveyor 2 from the conveyor 2 with respect to the lamp 10A, and is formed to be curved along the circumferential direction around the axis of the lamp 10A, whereby the lamp 10A to the conveyor 2 Can collect infrared rays radiated on the opposite side, reflect them on the conveyor 2 side, and send them. As a result, the infrared rays emitted by the lamp 10A can be efficiently irradiated to the waste plastic pieces on the transport path 3, and the reflection spectrum can be detected more accurately. Further, since the reflector 10B is curved, the light reflected by the reflector 10B can be applied to the waste plastic piece on the transport path 3 at various angles, and the unevenness of light hitting can be reduced. The reflector 10B is made of, for example, a member plated with aluminum, stainless steel, or aluminum.

また、図6に示すように、ランプ10Aの周方向の周囲は、熱放射を防ぐためのカバー10Cが覆われている。カバー10Cは、近赤光や中赤光で、測定に支障をもたらす吸収を持たない材料、例えば、石英ガラス製であり、一重または二重にランプ10Aの周囲を覆うように形成されている。これにより、ランプ10Aの無駄な熱放射を防止して、ランプ10Aが放射した赤外線を搬送路3上の廃ブラスチック片に効率良く照射できる。 Further, as shown in FIG. 6, a cover 10C for preventing heat radiation is covered around the lamp 10A in the circumferential direction. The cover 10C is made of a material that does not have absorption that interferes with measurement with near-red light or medium-red light, for example, quartz glass, and is formed so as to singly or doublely cover the periphery of the lamp 10A. As a result, wasteful heat radiation of the lamp 10A can be prevented, and the infrared rays emitted by the lamp 10A can be efficiently irradiated to the waste plastic pieces on the transport path 3.

またランプ10Aの発熱を防ぐために冷却構造を設けてもよい。例えば、カバー10Cを石英ガラス製のパイプでランプ10Aを覆うように形成し、パイプ内に空気を循環するようにして発熱を防止してもよい。 Further, a cooling structure may be provided to prevent heat generation of the lamp 10A. For example, the cover 10C may be formed so as to cover the lamp 10A with a pipe made of quartz glass, and air may be circulated in the pipe to prevent heat generation.

以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those skilled in the art with appropriate design changes to these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, its arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

上記実施形態では、材質判定対象の廃プラスチックが黒色廃プラスチックSの場合を例示して説明したが、例えば赤色や青色等の他の色の廃プラスチックでもよい。また、色が異なる廃プラスチックを混在して用いてもよい。 In the above embodiment, the case where the waste plastic whose material is to be determined is the black waste plastic S has been described as an example, but waste plastics of other colors such as red and blue may be used. Further, waste plastics having different colors may be mixed and used.

コンベア2のベルトの温度上昇を防止するために、白系の材料で構成したり、コンベア2のランプ10Aによる照射位置の裏面に冷風を吹きかける、冷却したローラーを接触させるといった冷却構造を設けてもよい。 In order to prevent the temperature of the belt of the conveyor 2 from rising, it may be made of a white material, or a cooling structure may be provided such as blowing cold air on the back surface of the irradiation position of the lamp 10A of the conveyor 2 or bringing the cooled rollers into contact with each other. ..

また、温度上昇のよる損傷を避けるため、コンベア2のベルトの材質として、熱に強いポリウレタンやシリコンなどの熱に強いものを使用してもよい。 Further, in order to avoid damage due to temperature rise, a heat-resistant material such as polyurethane or silicon, which is heat-resistant, may be used as the material of the belt of the conveyor 2.

1 廃プラスチックの材質判定装置
2 コンベア
3 搬送路
4 中赤外線カメラ(反射スペクトル検出部)
5 判別装置
51 前処理部
52 判定部
10 照明(照射部)
10A ランプ(光源)
10B 反射板(反射部)
10C カバー
11 校正板
14 アーム部(移動部)
S1、S2 黒色廃プラスチック片
1 Waste plastic material judgment device 2 Conveyor 3 Conveyor 4 Mid-infrared camera (reflection spectrum detector)
5 Discrimination device 51 Pretreatment unit 52 Judgment unit 10 Lighting (irradiation unit)
10A lamp (light source)
10B reflector (reflecting part)
10C cover 11 Calibration plate 14 Arm part (moving part)
S1, S2 Black waste plastic pieces

Claims (4)

廃プラスチックの材質判定装置であって、
搬送路上で搬送される廃プラスチック片に光を照射する照射部と、
前記照射部により照射された光の反射光を受光して前記反射光のスペクトルを検出する反射スペクトル検出部と、
前記反射スペクトル検出部により検出された前記スペクトルを、前記反射光が明るい条件で計測した第1の補正用スペクトルと、前記明るい条件よりも暗い条件で計測した第2の補正用スペクトルとを用いて補正する前処理部と、
前記前処理部により補正されたスペクトルを用いて前記廃プラスチック片の材質を判別する判定部と、
前記第1及び第2の補正用スペクトルを取得するための校正板を、所定の基準位置と、前記照射部による前記搬送路上の照射位置との間で移動する移動部と、
を備える廃プラスチックの材質判定装置。
It is a material judgment device for waste plastic.
An irradiation part that irradiates a piece of waste plastic transported on the transport path with light,
A reflection spectrum detection unit that receives the reflected light of the light emitted by the irradiation unit and detects the spectrum of the reflected light, and a reflection spectrum detection unit.
The spectrum detected by the reflection spectrum detection unit is used as a first correction spectrum measured under a condition in which the reflected light is bright and a second correction spectrum measured under a condition darker than the bright condition. Pre-processing unit to correct and
A determination unit that determines the material of the waste plastic piece using the spectrum corrected by the pretreatment unit, and a determination unit.
A moving unit that moves the calibration plate for acquiring the first and second correction spectra between a predetermined reference position and an irradiation position on the transport path by the irradiation unit.
A waste plastic material determination device equipped with.
前記移動部は、先端に前記校正板を接続するアーム部を有し、前記アーム部は、基端を中心として前記アーム部の延在方向を径方向とするときの周方向に沿って回動可能に構成される、
請求項1に記載の廃プラスチックの材質判定装置。
The moving portion has an arm portion connected to the calibration plate at its tip, and the arm portion rotates along a circumferential direction when the extending direction of the arm portion is the radial direction around the base end. Possible to be configured,
The waste plastic material determination device according to claim 1.
前記照射部は、
前記搬送路の幅方向に延在し、延在方向の軸心まわりの全方向に赤外線を放射する光源と、
前記光源を基準として前記搬送路とは反対側に配置され、前記光源の軸心まわりの周方向に沿って湾曲して形成される反射部と、を有する、
請求項1または2に記載の廃プラスチックの材質判定装置。
The irradiation part is
A light source that extends in the width direction of the transport path and radiates infrared rays in all directions around the axis in the extending direction.
It has a reflecting portion that is arranged on the side opposite to the transport path with respect to the light source and is formed by being curved along the circumferential direction around the axis of the light source.
The waste plastic material determination device according to claim 1 or 2.
前記照射部は、
前記光源の周囲を覆い、熱放射を防ぐためのカバーを有する、
請求項3に記載の廃プラスチックの材質判定装置。
The irradiation part is
A cover that covers the periphery of the light source and prevents heat radiation.
The waste plastic material determination device according to claim 3.
JP2020022812A 2020-02-13 2020-02-13 Waste plastic sorting equipment Active JP7376380B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020022812A JP7376380B2 (en) 2020-02-13 2020-02-13 Waste plastic sorting equipment
KR1020227024431A KR20220133875A (en) 2020-02-13 2021-01-25 Waste plastic material judgment device
CN202180010817.5A CN114981640A (en) 2020-02-13 2021-01-25 Waste plastic material quality determination device
PCT/JP2021/002506 WO2021161770A1 (en) 2020-02-13 2021-01-25 Material determination device for waste plastics
TW110102930A TW202132765A (en) 2020-02-13 2021-01-27 Material determination device for waste plastics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020022812A JP7376380B2 (en) 2020-02-13 2020-02-13 Waste plastic sorting equipment

Publications (2)

Publication Number Publication Date
JP2021128063A true JP2021128063A (en) 2021-09-02
JP7376380B2 JP7376380B2 (en) 2023-11-08

Family

ID=77292427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020022812A Active JP7376380B2 (en) 2020-02-13 2020-02-13 Waste plastic sorting equipment

Country Status (5)

Country Link
JP (1) JP7376380B2 (en)
KR (1) KR20220133875A (en)
CN (1) CN114981640A (en)
TW (1) TW202132765A (en)
WO (1) WO2021161770A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042389A1 (en) * 2021-09-17 2023-03-23 株式会社Pfu Object processing device

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091484A (en) * 1999-09-20 2001-04-06 Kobe Steel Ltd Plastic mixture combustion calorie measuring method and device
JP2001225029A (en) * 2000-02-18 2001-08-21 Hiroshi Maeda Transfer device for online inspecting internal quality
JP2003527594A (en) * 2000-03-13 2003-09-16 オートライン インコーポレイテッド Apparatus and method for measuring and correlating fruit properties with visible / near infrared spectra
JP3120310U (en) * 2006-01-10 2006-03-30 世鴻科技有限公司 Selection condition adjusting device for color selection system
US20070252990A1 (en) * 2006-04-28 2007-11-01 Heinrich Grueger Line camera for spectral imaging
JP2007535671A (en) * 2004-04-30 2007-12-06 ティテス ヴィションソルト アクチスカベット Apparatus and method for inspecting material flow by light scattering inside the material
JP2013064726A (en) * 2011-08-26 2013-04-11 Mitsubishi Electric Corp Resin identification device and method
JP2014115193A (en) * 2012-12-10 2014-06-26 Daio Engineering Co Ltd Material sorting device of black waste plastic
JP2016200602A (en) * 2016-07-14 2016-12-01 株式会社クボタ Optical evaluation device for grain
JP2016540996A (en) * 2013-11-04 2016-12-28 トムラ・ソーティング・エヌ・ヴィ Inspection device
JP2018100903A (en) * 2016-12-20 2018-06-28 パナソニックIpマネジメント株式会社 Resin determination method and apparatus
JP2018165010A (en) * 2017-03-28 2018-10-25 宇部興産株式会社 Method for selecting carbon fiber-reinforced composite material from waste plastic mixture
JP2020003419A (en) * 2018-06-29 2020-01-09 株式会社リコー Spectral characteristic acquisition device, image forming apparatus, and management system for image forming apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218138B2 (en) * 2009-02-19 2013-06-26 コニカミノルタオプティクス株式会社 Reflection characteristic measuring device, reflection characteristic measuring device calibration reference device, and reflection characteristic measuring device calibration reference plate deterioration measuring device

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001091484A (en) * 1999-09-20 2001-04-06 Kobe Steel Ltd Plastic mixture combustion calorie measuring method and device
JP2001225029A (en) * 2000-02-18 2001-08-21 Hiroshi Maeda Transfer device for online inspecting internal quality
JP2003527594A (en) * 2000-03-13 2003-09-16 オートライン インコーポレイテッド Apparatus and method for measuring and correlating fruit properties with visible / near infrared spectra
JP2007535671A (en) * 2004-04-30 2007-12-06 ティテス ヴィションソルト アクチスカベット Apparatus and method for inspecting material flow by light scattering inside the material
JP3120310U (en) * 2006-01-10 2006-03-30 世鴻科技有限公司 Selection condition adjusting device for color selection system
US20070252990A1 (en) * 2006-04-28 2007-11-01 Heinrich Grueger Line camera for spectral imaging
JP2013064726A (en) * 2011-08-26 2013-04-11 Mitsubishi Electric Corp Resin identification device and method
JP2014115193A (en) * 2012-12-10 2014-06-26 Daio Engineering Co Ltd Material sorting device of black waste plastic
JP2016540996A (en) * 2013-11-04 2016-12-28 トムラ・ソーティング・エヌ・ヴィ Inspection device
JP2016200602A (en) * 2016-07-14 2016-12-01 株式会社クボタ Optical evaluation device for grain
JP2018100903A (en) * 2016-12-20 2018-06-28 パナソニックIpマネジメント株式会社 Resin determination method and apparatus
JP2018165010A (en) * 2017-03-28 2018-10-25 宇部興産株式会社 Method for selecting carbon fiber-reinforced composite material from waste plastic mixture
JP2020003419A (en) * 2018-06-29 2020-01-09 株式会社リコー Spectral characteristic acquisition device, image forming apparatus, and management system for image forming apparatus

Also Published As

Publication number Publication date
WO2021161770A1 (en) 2021-08-19
JP7376380B2 (en) 2023-11-08
TW202132765A (en) 2021-09-01
CN114981640A (en) 2022-08-30
KR20220133875A (en) 2022-10-05

Similar Documents

Publication Publication Date Title
EP0700515B1 (en) An automatic inspection apparatus
US4972093A (en) Inspection lighting system
US8902428B2 (en) Process and apparatus for measuring the crystal fraction of crystalline silicon casted mono wafers
KR101019650B1 (en) Different-kind-of-object detector employing plane spectrometer
US7432453B2 (en) Apparatus and method for providing spatially-selective on-line mass or volume measurements of manufactured articles
JPH11108643A (en) Method and device for inspecting sealing surface area of container
US9316596B2 (en) Apparatus and method for inspecting matter and use thereof for sorting recyclable matter
WO2021161770A1 (en) Material determination device for waste plastics
JP6893242B2 (en) Container inspection device and container inspection method
CN108720967A (en) Intraocular lens detector
CN110088593A (en) For measuring the particle size of the raw material transmitted and the device of aridity/humidity device and the particle size for measuring mixed raw material
WO2021161779A1 (en) Waste plastic material determination device, material determination method, and material determination program
WO2023007824A1 (en) Sorting device for waste plastic, and method for sorting waste plastic
WO2023017639A1 (en) Sorting system for waste plastic and sorting method for waste plastic
JP7071191B2 (en) Granule sorting device
KR20220097693A (en) Monitoring apparatus and monitoring method for electrode
CA1327637C (en) Pulsed-array video inspection lighting system
KR0183691B1 (en) Transparent material detecting apparatus
JPH06347226A (en) Visual inspection apparatus for inner surface of deep bottom product
CN111323369A (en) Optical detection device and correction method
KR20180041448A (en) Bolts sorlting device using line-scanning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231026

R150 Certificate of patent or registration of utility model

Ref document number: 7376380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150