JP2021123357A - Hollow polygonal columnar structure - Google Patents

Hollow polygonal columnar structure Download PDF

Info

Publication number
JP2021123357A
JP2021123357A JP2020015742A JP2020015742A JP2021123357A JP 2021123357 A JP2021123357 A JP 2021123357A JP 2020015742 A JP2020015742 A JP 2020015742A JP 2020015742 A JP2020015742 A JP 2020015742A JP 2021123357 A JP2021123357 A JP 2021123357A
Authority
JP
Japan
Prior art keywords
line
columnar structure
wall
configuration
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020015742A
Other languages
Japanese (ja)
Inventor
葉子 定延
Yoko Sadanobu
葉子 定延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Teijin Aramid BV
Original Assignee
Teijin Ltd
Teijin Aramid BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd, Teijin Aramid BV filed Critical Teijin Ltd
Priority to JP2020015742A priority Critical patent/JP2021123357A/en
Publication of JP2021123357A publication Critical patent/JP2021123357A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rigid Containers With Two Or More Constituent Elements (AREA)

Abstract

To provide a hollow polygonal columnar structure which is foldable without deforming surfaces by rotating surfaces around each ridge line and polygonal line.SOLUTION: A hollow square columnar structure has a congruent square Vn,1,1 Vn,1,2 Vn,2,2 Vn,2,1 (n=1,2) as bottom and sides V1,i,1 V1,i,2 V2,i,2 V2,i,1 (i=1,2) that fold together with the bottom as "wall sides", and sides V1,1,j V1,2,j V2,2,j V2,1,j (j=1,2) that move with deformation of the bottom without folding themselves as "lid sides". The hollow square columnar structure has a folding configuration at boundary areas between the bottom and the wall sides, a configuration that eliminates surface interference due to folding along the folding lines at the center of the bottom and the wall sides, and a configuration that eliminates surface interference due to folding in the boundary areas between the lid sides and the wall sides.SELECTED DRAWING: Figure 1

Description

本発明は、折り畳むことのできる中空状の多角柱状構造体に関する。 The present invention relates to a foldable hollow polygonal columnar structure.

一般に直方体様の袋や収納容器を全体または部分的に折り畳むことは広く行われており、収納時など容器として使用していないときには、折り畳むことにより収納性を上げること、またその状態で移送することで、容器に内容物がない状態での輸送の効率化を図ることなどに有用に用いられている。折り畳みの方法は、閉じた箱を折り畳む場合は、図22に示すような展開図を持つ構造を稜線V1,i,j2,i,j(i=1,2;j=1,2)、V2,1,j2,2,j(j=1,2)で接合し稜線とすることで箱構造(直方体)を構成し、図中の実線を山折り線、点線を谷折り線として各稜線および折線を軸として面(壁)を回転させることで、完全に折り畳むことが行われている。 In general, it is widely used to fold a rectangular parallelepiped bag or storage container in whole or in part, and when it is not used as a container such as when storing it, fold it to improve the storability and transport it in that state. Therefore, it is usefully used for improving the efficiency of transportation when there is no content in the container. In the folding method, when folding a closed box, a structure having a developed view as shown in FIG. 22 is formed with ridge lines V 1, i, j V 2, i, j (i = 1, 2; j = 1, 2). ), V 2,1, j V 2,2, j (j = 1, 2) joins to form a ridgeline to form a box structure (rectangular parallelepiped). By rotating the surface (wall) around each ridge line and the fold line as a fold line, the fold line is completely folded.

但し、これは紙やファブリックなど面の変形が可能な材料で構成された場合に限られ、各面が剛体とみなされる場合や実質的に曲げることが容易でない場合には、面の回転に伴い、稜線Vn,i,1n,i,2(n=1,2;i=1,2)に過大な応力が発生し、稜線を破壊することなく折り畳むことができない。 However, this is limited to cases where the surface is made of a material that can be deformed, such as paper or fabric, and if each surface is considered to be a rigid body or if it is not practically easy to bend, it accompanies the rotation of the surface. , Ridge V n, i, 1 V n, i, 2 (n = 1, 2; i = 1, 2) is overstressed and cannot be folded without breaking the ridge.

この現象は、「鞴の理論(Bellows Theorem)」として知られている。鞴の理論は、例えば非特許文献1に記載されているように、「一般に多面体は面の剛性を保ったまま体積を変えることができない」というものである。これは、直方体をはじめとする四角柱構造からなる六面体は圧縮方向に平行な4本の稜線を完全に切断しない限り全く折り畳むことができないことを意味する。 This phenomenon is known as the "Bellows Theorem". The theory of bellows is that, for example, as described in Non-Patent Document 1, "generally, a polyhedron cannot change its volume while maintaining the rigidity of the surface". This means that a hexahedron consisting of a rectangular parallelepiped or other quadrangular prism structure cannot be folded at all unless the four ridges parallel to the compression direction are completely cut.

また仮に六面体の圧縮方向に平行な4本の稜線を完全に切断する以外の方法で鞴の理論を回避したとしても、有限の厚さをもつ剛性の高い面材料を用いるとき、折り畳みにともなう軸周りでの面の回転が面の厚さのために相互に干渉し、全く折り畳みができないか、折り畳みが不完全にしか行うことができない。 Even if the theory of bellows is avoided by a method other than completely cutting the four ridges parallel to the compression direction of the hexahedron, when a highly rigid surface material having a finite thickness is used, the axis associated with folding is used. The rotation of the surfaces around them interferes with each other due to the thickness of the surfaces and cannot be folded at all or can only be folded incompletely.

R. Connelly, I. Sabitov, and A. Walz. The bellows conjecture. Contributions to Algebra and Geometry, 38(1):1-10, 1997.R. Connelly, I. Sabitov, and A. Walz. The bellows conjecture. Contributions to Algebra and Geometry, 38 (1): 1-10, 1997.

剛性の高い材料で中空の立方体、直方体ないし多角柱状構造を構成し、それを折り畳むことは多くの工業的用途を有する。例えば輸送用のコンテナの場合、コンテナ内に荷物を収納して運搬する場合は構造的剛性を保持し、空のコンテナを折り畳んで体積を減らして移送することで搬送を効率化できる。また、臨時の簡易建築物として用いる構造体を、折り畳んで輸送し、また非使用時にも折り畳んで収納効率を上げることができる。しかしながら、剛性の高い材料を面に用いた直方体ないし多角柱構造を折り畳む方法は一般には知られていないため、それを可能とする技術が求められている。 Constructing a hollow cube, rectangular parallelepiped or polygonal columnar structure with a highly rigid material and folding it has many industrial uses. For example, in the case of a container for transportation, when the luggage is stored and transported in the container, the structural rigidity is maintained, and the empty container can be folded to reduce the volume and transferred to improve the efficiency of transportation. In addition, the structure used as a temporary simple building can be folded and transported, and can be folded even when not in use to improve storage efficiency. However, since a method of folding a rectangular parallelepiped or a polygonal prism structure using a highly rigid material for a surface is not generally known, a technique capable of that is required.

本発明は、各稜線及び各折れ線周りの面の回転によって面を変形することなく折り畳むことのできる中空多角柱状構造体を提供することを目的としている。 An object of the present invention is to provide a hollow polygonal columnar structure that can be folded without deforming the surface by rotating the surface around each ridge line and each polygonal line.

上述の目的を達成するために、本発明によれば、合同な四角形Vn,1,1n,1,2n,2,2n,2,1(n=1,2)を底面として構成され、ヒンジで接合された折れ線の周りの面の回転で、面の変形なしに折り畳むことのできる中空の四角柱状構造体であって、底面とともに折り畳まれる側面V1,i,11,i,22,i,22,i,1(i=1,2)を「壁側面」、それ自体が折り畳まれることなく底面の変形に付随して移動する側面V1,1,j1,2,j2,2,j2,1,j(j=1,2)を「蓋側面」とするとき、
構成1:底面と壁側面の境界領域における折り畳み構成。
構成2:底面及び壁側面の中央部の折り畳み線に沿った折り畳みによる面の干渉を解消する構成。
構成3:蓋側面と壁側面の境界領域における折り畳みによる面の干渉を解消する構成の3つの構成を具備する中空四角柱状構造体が提供される。
但し、本明細書では、下付き文字は、(1,1,1)を基準点として、そこから3次元方向の何れの方向に離れているかで決定する。
In order to achieve the above object, according to the present invention, a congruent quadrangle V n, 1,1 V n, 1,2 V n, 2,2 V n, 2,1 (n = 1, 2) A hollow quadrangular columnar structure that is configured as the bottom surface and can be folded without deformation of the surface by rotating the surface around the hinged line, and the side surfaces V 1, i, 1 V that can be folded together with the bottom surface. 1, i, 2 V 2, i, 2 V 2, i, 1 (i = 1, 2) is the "wall side surface", and the side surface V 1, which moves with the deformation of the bottom surface without folding itself When 1, j V 1,2, j V 2,2, j V 2,1, j (j = 1, 2) is the "side of the lid"
Configuration 1: Folding configuration in the boundary area between the bottom surface and the side surface of the wall.
Configuration 2: A configuration that eliminates surface interference due to folding along the folding line at the center of the bottom surface and the side surface of the wall.
Configuration 3: A hollow square columnar structure having three configurations for eliminating surface interference due to folding in the boundary region between the lid side surface and the wall side surface is provided.
However, in the present specification, the subscript is determined by using (1,1,1) as a reference point and distant from the reference point in any of the three-dimensional directions.

構成1は、底面を構成する頂点Vn,i,jに対し該底面内の内角の等角二等分線を頂点Vn,i,jから引き底面内にその終点Qn,i,j,0を設け、終点Qn,i,j,0から、最近接する壁側面と底面の境界の稜線Vn,i,1n,i,2上におろした垂線の足を点Qn,i,j,1とし、線分Qn,i,j,0n,i,j,1上に点Qn,i,j,0に近いほうから2点Qn,i,j,2、Qn,i,j,3を取り、線分Vn,i,jn,i,j,0、Q1,i,j,12,i,j,1を谷折り線、線分Qn,i,j,0n,i,j,2、Vn,i,jn,i,j,1を山折り線、線分Vn,i,jn,i,j,2と線分Vn,i,jn,i,j,3に関しては何れか一方を山折り線とし他方を谷折りとし、かつ線分Qn,i,j,2n,i,j,1にスリット(線状の切断)を設ける(n=1,2;i=1,2;j=1,2)ことができる。
但し、壁側面V1,i,11,i,22,i,22,i,1を欠く場合は、頂点V1,i,1、V1,i,2、V2,i,2、V2,i,1に関して、本構成は設ける必要がない(i=1,2)。
In the configuration 1, the equiangular bisector of the inner angle in the bottom surface is drawn from the apex V n, i, j with respect to the apex V n, i, j constituting the bottom surface, and the end point Q n, i, j is drawn in the bottom surface. , 0 is set, and from the end point Q n, i, j, 0 , the foot of the perpendicular line segment drawn on the ridge line V n, i, 1 V n, i, 2 of the boundary between the side surface and the bottom surface that are in close contact with each other is point Q n, i, j, 1 and then, the line segment Q n, i, j, 0 Q n, i, j, 1 on the point Q n, i, j, 2 points from closer to 0 Q n, i, j, 2 , Q n, i, j, 3 and line segments V n, i, j Q n, i, j, 0 , Q 1, i, j, 1 Q 2, i, j, 1 are valley fold lines, Line segment Q n, i, j, 0 Q n, i, j, 2 , V n, i, j Q n, i, j, 1 is a mountain fold line, line segment V n, i, j Q n, i For, j, 2 and the line segment V n, i, j Q n, i, j, 3 , one of them is a mountain fold line and the other is a valley fold, and the line segment Q n, i, j, 2 Q n , I, j, 1 can be provided with slits (linear cutting) (n = 1,2; i = 1,2; j = 1,2).
However, if the wall side surface V 1, i, 1 V 1, i, 2 V 2, i, 2 V 2, i, 1 is missing, the vertices V 1, i, 1 , V 1, i, 2 , V 2 It is not necessary to provide this configuration for , i, 2 , V 2, i, 1 (i = 1, 2).

構成2は、底面Vn,1,1n,1,2n,2,2n,2,1と隣接する壁側面V1,i,11,i,22,i,22,i,1の稜線と折り畳み軸線AXnとの交点をPn,iとし(n=1,2;i=1,2)、該底面内において線分Pn,1n,2の両側に等しい距離t0で二本の平行線分を設け、頂点Vn,i,jにもっとも近接する該平行線分の終点をZn,i,jとし、終点Zn,i,jは点Qn,i,j,0に一致させ(n=1,2;i=1,2,j=1,2)、線分Qn,i,1,0n,i,2,0と線分Pn,1n,2の交点をSn,i,0とし、交点Sn,i,0から最近接する壁側面と底面の境界の稜線Vn,i,1n,i,2上におろした垂線の足を点Sn,i,1とし(n=1,2;i=1,2)、底面内において線分Sn,i,0n,i,1、Zn,1,jn,2,jを谷折り線とし、線分Qn,i,1,kn,i,2,kにスリットを設け(n=1,2;i=1,2;k=0,1)、かつ線分S1,i,12,i,1を山折り線とする(i=1,2;j=1,2)ことができる。 Configuration 2 is a wall side surface V 1, i, 1 V 1, i, 2 V 2, i adjacent to the bottom surface V n, 1,1 V n, 1,2 V n, 2,2 V n, 2, 1. Let P n, i be the intersection of the ridgeline of 2, 2 V 2, i, 1 and the folding axis AX n (n = 1, 2, i = 1, 2), and the line segment P n, 1 P n in the bottom surface. Two parallel line segments are provided on both sides of , 2 at an equal distance t 0 , and the end point of the parallel line segment closest to the vertices V n, i, j is Z n, i, j , and the end point Z n, i , J coincides with the points Q n, i, j, 0 (n = 1, 2, i = 1, 2, j = 1, 2), and the line segments Q n, i, 1,0 Q n, i, Let S n, i, 0 be the intersection of 2,0 and the line segment P n, 1 P n, 2 , and the ridgeline V n, i, 1 V of the boundary between the side surface and the bottom surface of the wall that is closest to the intersection S n, i, 0. n, i, 2 Let the foot of the perpendicular line drawn on n, i, 2 be the point S n, i, 1 (n = 1, 2, i = 1, 2), and the line segment S n, i, 0 S n, i in the bottom surface. , 1 , Z n, 1, j Z n, 2, j are set as valley fold lines, and slits are provided in the line segments Q n, i, 1, k Q n, i, 2, k (n = 1, 2,; i = 1,2; k = 0,1), and the line segment S1 , i, 1 S2 , i, 1 can be a mountain fold line (i = 1,2; j = 1,2). ..

但し、壁側面壁側面V1,i,11,i,22,i,22,i,1の何れか一方または双方が欠けていて構成Iが設けられなかった場合はZn,i,jは該平行線と稜線Vn,i,1n,i,2の交点とすることができる。 However, if one or both of the wall side wall side V 1, i, 1 V 1, i, 2 V 2, i, 2 V 2, i, 1 is missing and the configuration I is not provided, Z n, i, j can be the intersection of the parallel line and the ridge line V n, i, 1 V n, i, 2.

構成3は、壁側面と蓋側面の境界の稜線V1,i,j2,i,jに対し該壁側面内に距離t1だけ離間させて平行線を設け、その線上に2点を取り、頂点V1,i,j、V2,i,jに近接する点をそれぞれR1,i.j、R2,i,jとする。ここで線分R1,i.j2,i.jを谷折り線、線分V1,i,j1,i.j、V2,i,j2,i.jにスリットを設ける(i=1,2;j=1,2)ようにすることができる。 In the configuration 3, parallel lines are provided in the wall side surface at a distance t 1 with respect to the ridge lines V 1, i, j V 2, i, j at the boundary between the wall side surface and the lid side surface, and two points are provided on the line. Let the points close to the vertices V 1, i, j , V 2, i, j be R 1, ij , R 2, i, j , respectively. Here, the line segment R 1, ij R 2, ij is a valley fold line, and slits are provided in the line segments V 1, i, j R 1, ij , V 2, i, j R 2, ij (i = 1, 2). ; J = 1, 2) can be done.

但し、底面Vn,1,1n,1,2n,2,2n,2,1の何れか一方、または、双方が欠けていて構成Iが設けられなかった場合は、点Rn,i,jは該平行線と稜線Vn,i,jn,i,j,1の交点とし、線分Vn,i,jn,i,jにはスリットを設けない(n=1,2;i=1,2;j=1,2)とすることができる。 However, if either one or both of the bottom surface V n, 1,1 V n, 1,2 V n, 2,2 V n, 2, 1 is missing and the configuration I is not provided, a point R n, i, j is the intersection of the parallel line and the ridge line V n, i, j Q n, i, j, 1 , and no slit is provided in the line segment V n, i, j R n, i, j. It can be (n = 1,2; i = 1,2; j = 1,2).

本発明の中空多角柱状構造体は、各稜線及び各折れ線周りの面の回転によって面を変形することなく折り畳むことが可能である。 The hollow polygonal columnar structure of the present invention can be folded without deforming the surface by rotating the surface around each ridge line and each polygonal line.

本発明による中空多角柱状構造体の一例を示す展開図である。It is a developed view which shows an example of the hollow polygonal columnar structure by this invention. 構成Iを説明するための略図である。It is a schematic diagram for demonstrating composition I. 構成IIを説明するための略図である。It is a schematic diagram for demonstrating configuration II. 構成IIを説明するための略図である。It is a schematic diagram for demonstrating configuration II. 構成IIIを説明するための略図である。It is a schematic diagram for demonstrating composition III. 五角形の底面を2つの四角形に分ける例を説明するための略図である。It is a schematic diagram for demonstrating the example which divides the bottom surface of a pentagon into two quadrangles. 八角形の底面を2つの四角形に分ける例を説明するための略図である。It is a schematic diagram for demonstrating the example which divides the bottom surface of an octagon into two quadrangles. 本発明の中空四角柱状構造体の一例を示す展開図である。It is a developed view which shows an example of the hollow square columnar structure of this invention. 図8の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 図8の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 図8の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 図8の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 図8の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 図8の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 本発明の中空五角柱構造体の一例を示す展開図である。It is a developed view which shows an example of the hollow pentagonal prism structure of this invention. 図15の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 図15の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 図15の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 図15の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 図15の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 図15の中空四角柱状構造体の圧縮過程を示す斜視図である。It is a perspective view which shows the compression process of the hollow square columnar structure of FIG. 本発明を適用する中空角柱構造体の一例を示す展開図である。It is a developed view which shows an example of the hollow prism structure to which this invention is applied.

本発明の中空多角状柱構造体は、各稜線及び各折れ線周りの面の回転によって面を変形することなく折り畳むことが可能である。 The hollow polygonal column structure of the present invention can be folded without deforming the surface by the rotation of the surface around each ridge line and each polygonal line.

本発明を適用する中空四角柱状構造体10は、一例として図1において展開図で示すように、四角柱状の中空構造体であり、その一方の底面の形状が一般的な四角形であり、かつ、対向する底面の形状は合同となっている。より詳細には、合同な四角形V1,1,11,2,11,2,21,1,2と四角形V2,1,12,2,12,2,22,1,2とを平行に対面する底面として有する四角柱の前記2つの底面に沿って延在する第1と第2の端壁12、14と、前記該2つの底面の間で底面に対して垂直に延びる4つの側面に沿って延在する第1〜第4の側壁16〜22を具備した中空の構造体である。第1と第2の端壁12、14および第1〜第4の側壁16〜22は、平板より成る部材であるが、表面に凹凸やテクスチャを有していてもよい。 The hollow quadrangular columnar structure 10 to which the present invention is applied is, as an example, a quadrangular columnar hollow structure as shown in the developed view in FIG. 1, and the shape of the bottom surface of one of them is a general quadrangle and The shapes of the opposite bottom surfaces are congruent. More specifically, congruent square V 1,1,1 V 1,2,1 V 1,2,2 V 1,1,2 and square V 2,1,1 V 2,2,1 V 2,2 Between the first and second end walls 12, 14 extending along the two bottom surfaces of a quadrangular prism having , 2 V 2,1,2 as the bottom surfaces facing in parallel, and the two bottom surfaces. It is a hollow structure including first to fourth side walls 16 to 22 extending along four side surfaces extending perpendicular to the bottom surface. The first and second end walls 12, 14 and the first to fourth side walls 16 to 22 are members made of flat plates, but may have irregularities or textures on their surfaces.

また、第1と第2の端壁12、14を形成する底面内の各頂点Vn,i,j周りの内角2αi,j(i=1,2;j=1,2)は、α1,1+α1,2+α2,1+α2,2=180°、かつ、0°<αi,j<90°(i=1,2;j=1,2)の拘束条件の範囲で自由に設定でき、非等角四角形であってもよい。更に、本発明の四角柱状構造体は必要に応じて一部の面を欠いた開口をもつものであってもよい。 Further, the internal angles 2α i, j (i = 1,2; j = 1,2) around the vertices V n, i, j in the bottom surface forming the first and second end walls 12, 14 are α. 1,1 + α 1,2 + α 2,1 + α 2,2 = 180 ° and 0 ° <α i, j <90 ° (i = 1,2; j = 1,2) It can be set freely and may be a non-isometric quadrangle. Further, the square columnar structure of the present invention may have an opening lacking a part of a surface, if necessary.

本発明の中空四角柱状構造体10の第1と第2の端壁12、14を構成する辺のうち対向する一対の辺Vn,1,1n,2,1、Vn,1,2n,2,2(n=1,2)の各々を延長したときの交点をOnとする。本発明では、辺Vn,1,1n,2,1、Vn,1,2n,2,2(n=1,2)の延長線がO点でなす角を二等分する直線を「折り畳み軸線AXn」と称する。本発明は、折り畳み軸線AXnに沿って第1と第2の端壁12、14を折り畳み、それに伴って第1と第2の端壁12、14に接続する2つの側壁18、22を折り畳む方法である。 A pair of opposite sides V n, 1,1 V n, 2 , 1, V n, 1, among the sides constituting the first and second end walls 12 and 14 of the hollow square columnar structure 10 of the present invention. 2 V n, the intersection when the extended each 2,2 (n = 1,2) and O n. In the present invention, the angle formed by the extension lines of the sides V n, 1,1 V n, 2,1 , V n, 1,2 V n, 2,2 (n = 1, 2) at the O point is bisected. The straight line to be formed is referred to as "folding axis AX n". The present invention folds the first and second end walls 12, 14 along the folding axis AX n, and accordingly folds the two side walls 18, 22 connected to the first and second end walls 12, 14. The method.

一対の辺Vn,1,1n,2,1、Vn,1,2n,2,2(n=1,2)が平行な場合、二辺から等距離の二辺と平行な直線が折り畳み軸線となる。本明細書では、第1と第2の端壁12、14とともに折り畳まれる側壁18、22「壁側面」、それ自体が折り畳まれることなく端壁の変形に付随して移動する側壁16、20「蓋側面」と称する。なお、以下の説明では、第1と第2の端壁12、14を形成する面を底面と称する。 When a pair of sides V n, 1,1 V n, 2,1 , V n, 1,2 V n, 2,2 (n = 1, 2) are parallel, they are parallel to two sides equidistant from the two sides. Straight line becomes the folding axis. In the present specification, the side walls 18 and 22 "wall side surfaces" that are folded together with the first and second end walls 12 and 14, and the side walls 16 and 20 that move with the deformation of the end walls without themselves being folded. It is called "the side of the lid". In the following description, the surfaces forming the first and second end walls 12 and 14 are referred to as bottom surfaces.

本発明では上記の折り畳みを実現するために次の3つの構成を導入する。構成I:底面と壁側面の境界領域における折り畳み構成。構成II:蓋側面と壁側面の境界領域における折り畳みによる面の干渉を解消する構成。構成III:底面及び壁側面の中央部の折り畳み線に沿った折り畳みによる面の干渉を解消する構成。 In the present invention, the following three configurations are introduced in order to realize the above folding. Configuration I: Folding configuration at the boundary region between the bottom surface and the side surface of the wall. Configuration II: A configuration that eliminates surface interference due to folding in the boundary area between the side surface of the lid and the side surface of the wall. Configuration III: A configuration that eliminates surface interference due to folding along the folding line at the center of the bottom surface and the side surface of the wall.

構成Iは付加的に特定の折れ線を導入することで「鞴の理論」から要請される底面と壁面の稜線付近におけるスリットの長さを減縮させる構成である。構成II、IIIは有限の厚さを持つ剛体面からなる四角柱を折り畳むとき、板の厚さのために板間での位置的干渉による折り畳み変形の阻害を、付加的に特定の折線と特定の限定的な長さのスリットを導入し、かつ、ヒンジシフト法を用いて解消を行うものである。ヒンジシフト法は折線ですべての面を一旦切断し、ヒンジをそれぞれの折線に対応する谷折り部に設置して接合するもので、ヒンジの位置は谷折り部と山折り部で板の厚さだけオフセットされる。 The configuration I is a configuration in which the length of the slit near the ridgeline of the bottom surface and the wall surface required by the "bellows theory" is reduced by additionally introducing a specific polygonal line. In configurations II and III, when folding a quadrangular prism consisting of rigid bodies with a finite thickness, the thickness of the plates additionally identifies the inhibition of folding deformation due to positional interference between the plates as a specific folding line. A slit with a limited length is introduced, and the problem is solved by using the hinge shift method. In the hinge shift method, all surfaces are cut once with fold lines, and the hinges are installed and joined at the valley folds corresponding to each fold line. Is only offset.

また、更なる方法として、折れ線の両側の面間を有限の距離を持ってヒンジで接合する方法であって、ヒンジシフト法と全く同様の付加的な折れ線とスリットを導入することによって厚さの影響を回避することができる。これを以下、等方ヒンジ法と呼ぶ。 Further, as a further method, a method of joining the surfaces on both sides of the polygonal line with a hinge at a finite distance is performed, and the thickness is increased by introducing an additional polygonal line and a slit which are exactly the same as the hinge shift method. The effect can be avoided. This is hereinafter referred to as the isotropic hinge method.

四角柱状構造体が完全に閉構造、すなわち全ての面に壁が設けられているとき、全ての底面と壁側面の境界領域に構成Iは設ける必要がある。壁側面を欠いた開口面のある中空四角柱状構造体ではその開口面と底面の境界に構成Iを設ける必要はない。何れかの底面が欠けていない場合を除き、両底面における構成Iの形状は合同かつ方向が一致する必要がある。構成IIは構成Iが設けられる場合とそうで無い場合において構成が変わる。蓋側面が欠けている場合は、該蓋側面の各辺が折れ線とはならないことを除き構成I〜IIIに変更はない。 When the square columnar structure is a completely closed structure, that is, the walls are provided on all surfaces, the configuration I needs to be provided on the boundary region between all the bottom surfaces and the side surfaces of the walls. In a hollow square columnar structure having an opening surface lacking a wall side surface, it is not necessary to provide the configuration I at the boundary between the opening surface and the bottom surface. Unless one of the bottom surfaces is not chipped, the shapes of the configurations I on both bottom surfaces need to be congruent and have the same direction. The configuration of the configuration II changes depending on whether the configuration I is provided or not. If the side surface of the lid is missing, there is no change in the configurations I to III except that each side of the side surface of the lid does not form a polygonal line.

以下それぞれの構成について更に説明する。
以下、図1に示す合同な四角形の底面Vn,1,1n,1,2n,2,2n,2,1(n=1,2)を二つの壁側面V1,i,11,i,22,i,22,i,1(i=1,2)及び二つの蓋側面V1,1,j1,2,j2,2,j2,1,j(j=1,2)で連結した四角柱状構造体を考える。稜線Vn,1,jn,2,j(n=1,2;j=1,2)、V1,i,j2,i,j(i=1,2;j=1,2)に相当する折れ線をここでは山折り線と定義する。すなわち、四面体状構造体の外側に凸な折れ線を山折り線とする。該中空四角柱状構造体はそれを構成する六面のうち一面あるいは二面を欠いていてもよい。各底面内で2頂点Vn,i,1、Vn,i,2の周りの内角二等分線の交点をCn,iとするとき、交点Cn,1、Cn,2を結ぶ直線が折り畳み軸線AXnに一致する(n=1,2;i=1,2)。
Each configuration will be further described below.
Below, the bottom surface V n, 1,1 V n, 1,2 V n, 2,2 V n, 2,1 (n = 1, 2) of the congruent quadrangle shown in FIG. 1 is the two wall side surfaces V 1, i, 1 V 1, i, 2 V 2, i, 2 V 2, i, 1 (i = 1, 2) and two lid sides V 1,1, j V 1,2, j V 2,2, Consider a quadrangular columnar structure connected by j V 2,1, j (j = 1, 2). Ridge line V n, 1, j V n, 2, j (n = 1, 2, j = 1, 2,), V 1, i, j V 2, i, j (i = 1, 2, j = 1, The polygonal line corresponding to 2) is defined here as a mountain fold line. That is, the fold line convex to the outside of the tetrahedral structure is referred to as a mountain fold line. The hollow square columnar structure may lack one or two of the six surfaces constituting the hollow square columnar structure. When the intersection of the internal angle bisectors around the two vertices V n, i, 1 , V n, i, 2 in each bottom surface is C n, i , connect the intersections C n, 1 , C n, 2. The straight line coincides with the folding axis AX n (n = 1,2; i = 1,2).

構成I
図2を参照すると、底面を構成する頂点Vn,i,jに対し該底面内の内角2αi,jの等角二等分線を頂点Vn,i,jから引き、底面内にその終点Qn,i,j,0を設ける。終点Qn,i,j,0から、最近接する壁側面と底面の境界の稜線Vn,i,1n,i,2上におろした垂線の足を点Qn,i,j,1とし、線分Qn,i,j,0n,i,j,1上に点Qn,i,j,0に近いほうから2点Qn,i,j,2、Qn,i,j,3を取る。線分Vn,i,jn,i,j,0、Q1,i,j,12,i,j,1を谷折り線、線分Qn,i,j,0n,i,j,2、Vn,i,jn,i,j,1を山折り線、線分Vn,i,jn,i,j,2と線分Vn,i,jn,i,j,3に関しては、何れか一方を山折り線とし他方を谷折り線とし、かつ線分Qn,i,j,2n,i,j,1にスリット(線状の切断)を設ける(n=1,2;i=1,2;j=1,2)。
Configuration I
Referring to FIG. 2, for the vertices V n, i, j constituting the bottom surface, an isometric bisector of the internal angle 2α i, j in the bottom surface is drawn from the vertices V n, i, j, and the bisector is drawn in the bottom surface. Set the end points Q n, i, j, 0 . From the end point Q n, i, j, 0 , point the foot of the perpendicular line drawn on the ridgeline V n, i, 1 V n, i, 2 of the boundary between the side and bottom of the wall that is in close contact with the point Q n, i, j, 1 Then, on the line segment Q n, i, j, 0 Q n, i, j, 1 , two points from the closest to the point Q n, i, j, 0 Q n, i, j, 2 , Q n, i Take, j, 3 . Line segment V n, i, j Q n, i, j, 0 , Q 1, i, j, 1 Q 2, i, j, 1 is a valley fold line, line segment Q n, i, j, 0 Q n , i, j, 2 , V n, i, j Q n, i, j, 1 is a mountain fold line, line segment V n, i, j Q n, i, j, 2 and line segment V n, i, For j Q n, i, j, 3 , one of them is a mountain fold line and the other is a valley fold line, and the line segments Q n, i, j, 2 Q n, i, j, 1 are slit (line). (Shaped cutting) is provided (n = 1,2; i = 1,2; j = 1,2).

壁側面V1,i,11,i,22,i,22,i,1を欠く場合は、頂点V1,i,1、V1,i,2、V2,i,2、V2,i,1に関して、上記の構成Iは設ける必要がない。(i=1,2) If the wall side V 1, i, 1 V 1, i, 2 V 2, i, 2 V 2, i, 1 is missing, the vertices V 1, i, 1 , V 1, i, 2 , V 2, i , 2 , V 2, i, 1 need not have the above configuration I. (I = 1, 2)

構成II
図3において、底面Vn,1,1n,1,2n,2,2n,2,1と、隣接する壁側面V1,i,11,i,22,i,22,i,1の稜線と折り畳み軸線AXnとの交点をPn,iとする(n=1,2;i=1,2)。該底面内において線分Pn,1n,2の両側に等しい距離t0で二本の平行線分を設け、頂点Vn,i,jに近接する該平行線分の終点をZn,i,j(図4)とし、終点Zn,i,jは点Qn,i,j,0に一致させる(n=1,2;i=1,2,j=1,2)。
Configuration II
In FIG. 3, the bottom surface V n, 1,1 V n, 1,2 V n, 2,2 V n, 2, 1, and the adjacent wall side surfaces V 1, i, 1 V 1, i, 2 V 2, Let P n, i be the intersection of the ridgeline of i, 2 V 2, i, 1 and the folding axis AX n (n = 1, 2, i = 1, 2). Two parallel line segments are provided on both sides of the line segment P n, 1 P n, 2 at an equal distance t 0 in the bottom surface, and the end point of the parallel line segment close to the vertices V n, i, j is Z n. , I, j (Fig. 4), and the end points Z n, i, j coincide with the points Q n, i, j, 0 (n = 1, 2, i = 1, 2, j = 1, 2).

さらに線分Qn,i,1,0n,i,2,0と線分Pn,1n,2の交点をSn,i,0とし、交点Sn,i,0から最近接する壁側面と底面の境界の稜線Vn,i,1n,i,2上におろした垂線の足を点Sn,i,1とする(n=1,2;i=1,2)。このとき底面内において線分Sn,i,0n,i,1、Zn,1,jn,2,jを谷折り線とし、線分Qn,i,1,kn,i,2,kにスリットを設け(n=1,2;i=1,2;k=0,1)、かつ線分S1,i,12,i,1を山折り線とする(i=1,2;j=1,2)。壁側面壁側面V1,i,11,i,22,i,22,i,1の何れか一方または双方が欠けていて構成Iが設けられなかった場合は終点Zn,i,jは該平行線と稜線Vn,i,1n,i,2の交点とする。 Furthermore, the intersection of the line segment Q n, i, 1,0 Q n, i, 2,0 and the line segment P n, 1 P n, 2 is set to S n, i, 0 , and the intersection S n, i, 0 is the latest. Let the foot of the perpendicular line drawn on the ridge line V n, i, 1 V n, i, 2 of the boundary between the side surface and the bottom surface of the wall in contact be the point S n, i, 1 (n = 1, 2; i = 1, 2). ). At this time, the line segments S n, i, 0 S n, i, 1 , Z n, 1, j Z n, 2, j are set as valley fold lines in the bottom surface, and the line segments Q n, i, 1, k Q n , I, 2, k are provided with slits (n = 1, 2, i = 1, 2, k = 0, 1), and the line segments S 1, i, 1 S 2, i, 1 are defined as mountain fold lines. (I = 1,2; j = 1,2). Wall side wall side V 1, i, 1 V 1 , i, 2 V 2, i, 2 V 2, i, 1 in the case where any one or constructed lacked both I was not provided endpoint Z n , i, j are the intersections of the parallel lines and the ridges V n, i, 1 V n, i, 2.

構成III
図5において、壁側面と蓋側面の境界の稜線V1,i,j2,i,jに対し該壁壁面内にt1の距離で平行線を設け、その線上に2点を取り、頂点V1,i,j、V2,i,jに近接する点をそれぞれR1,i.j、R2,i,jとする。ここで線分R1,i.j2,i.jを谷折り線、線分V1,i,j1,i.j、V2,i,j2,i.jにスリットを設ける。(i=1,2;j=1,2)。底面Vn,1,1n,1,2n,2,2n,2,1の何れか一方または双方が欠けていて構成Iが設けられなかった場合は点Rn,i,jは該平行線と稜線Vn,i,jn,i,j,1の交点とし、線分Vn,i,jn,i,jにはスリットを設けない(n=1,2;i=1,2;j=1,2)。
Configuration III
In FIG. 5, parallel lines are provided in the wall wall surface at a distance of t 1 with respect to the ridge lines V 1, i, j V 2, i, j at the boundary between the wall side surface and the lid side surface, and two points are scored on the lines. Let the points close to the vertices V 1, i, j , V 2, i, j be R 1, ij , R 2, i, j , respectively. Here, the line segment R 1, ij R 2, ij is provided with a valley fold line, and the line segments V 1, i, j R 1, ij , V 2, i, j R 2, ij are provided with slits. (I = 1,2; j = 1,2). If one or both of the bottom surface V n, 1,1 V n, 1,2 V n, 2,2 V n, 2, 1 is missing and the configuration I is not provided, the point R n, i, j is the intersection of the parallel line and the ridge line V n, i, j Q n, i, j, 1 , and no slit is provided in the line segment V n, i, j R n, i, j (n = 1,). 2; i = 1,2; j = 1,2).

本発明の四面体状構造体の底面Vn,1,1n,1,2n,2,2n,2,1の厚さをTn,b(n=1,2)、壁側面V1,i,11,i,22,i,22,i,1の厚さをTi,w(i=1,2)であるとき、本発明の距離t0、t1は以下の条件を同時に満たすことが必要である。

Figure 2021123357
Figure 2021123357
The thickness of the bottom surface V n, 1,1 V n, 1,2 V n, 2,2 V n, 2,1 of the tetrahedral structure of the present invention is T n, b (n = 1, 2), When the thickness of the wall side surface V 1, i, 1 V 1, i, 2 V 2, i, 2 V 2, i, 1 is Ti, w (i = 1, 2), the distance t of the present invention It is necessary for 0 and t 1 to satisfy the following conditions at the same time.
Figure 2021123357
Figure 2021123357

ここで任意の点A、Bの間の距離をL(A,B)で表し、U1=L(P1,1,0,P1,1,1)、U2=L(P1,2,0,P1,2,1)と定義する。上記式において、下限値以下の距離t0、t1では面の厚さの干渉により折り畳みが不完全にしか実現できないか、あるいは全く折り畳むことができない。また上限値を超えると四角柱構造体として幾何学的な成立限界で構造の安定性がなくなる。 Here, the distance between arbitrary points A and B is represented by L (A, B), U 1 = L (P 1,1,0 , P 1,1,1 ), U 2 = L (P 1, It is defined as 2,0, P1,2,1). In the above equation, at distances t 0 and t 1 below the lower limit, folding can only be achieved incompletely or cannot be folded at all due to interference of surface thickness. In addition, if the upper limit is exceeded, the stability of the structure will be lost due to the geometrical formation limit of the prismatic structure.

四角柱状構造体の厚さが限りなく薄く、厚さの影響が実質的にない場合にはt0=0かつt1=0となり、上記の構成IIIは設けることなく、構成IIでは底面内において線分Pn,1n,2の両側に二本の平行線分を設けることなく構成Iが設けられた場合にはQn,i,1,kとQn,i,2とSn,i,kは一致し(n=1,2;i=1,2;k=0,1)、かつ点Qn,i,1,k、Qn,i,2,kは一致する(n=1,2;i=1,2:k=2,3)。また構成Iが設けられない場合は、終点Zn,i,1、Zn,i,2は交点Pn,iに一致する(n=1,2;i=1,2)。 When the thickness of the square columnar structure is extremely thin and there is virtually no influence of the thickness, t 0 = 0 and t 1 = 0. Q n, i, 1, k and Q n, i, 2 and S n when the configuration I is provided without providing two parallel line segments on both sides of the line segments P n, 1 P n, 2. , I, k match (n = 1,2; i = 1,2; k = 0,1), and points Q n, i, 1, k , Q n, i, 2, k match (n = 1, 2, k) n = 1,2; i = 1,2: k = 2,3). If the configuration I is not provided, the end points Z n, i, 1 and Z n, i, 2 coincide with the intersection P n, i (n = 1, 2; i = 1, 2).

また本発明の点Rn,i,j(n=1,2;i=1,2;j=1,2)を決定するに際し、以下の条件を満たすことが好ましい。
n,i,j,1n,i,j3-n,i,j>∠Qn,i,j,1n,i,jn,i,j≧αi,j(n=1,2;i=1,2;j=1,2)
Further, when determining the points R n, i, j (n = 1, 2, i = 1, 2, j = 1, 2) of the present invention, it is preferable to satisfy the following conditions.
Q n, i, j, 1 V n, i, j R 3-n, i, j > ∠ Q n, i, j, 1 V n, i, j R n, i, j ≧ α i, j ( n = 1,2; i = 1,2; j = 1,2)

上記式において、下限はそれ以下の角度では面の厚さの干渉により折り畳みが不完全にしか実現できないか、あるいは全く折り畳むことができない。また上限値を超えると四角柱構造体として幾何学的な成立限界で構造の安定性がなくなる。 In the above equation, the lower limit can only be incompletely folded or cannot be folded at all at angles below it due to surface thickness interference. In addition, if the upper limit is exceeded, the stability of the structure will be lost due to the geometrical formation limit of the prismatic structure.

本発明の折れ線Qn,i,j,0n,i,j,k(n=1,2;i=1,2;j=1,2;k=2,3)の長さの比であるg(以下、線分比)に関し、次の両条件を満たすことが好ましい。
0<gn,i,j,3<0.83
n,i,j,3<gn,i,j,3<0.95
ここでgn,i,j,i=L(Qn,i,j,0,Qn,i,j,k)/L(Qn,i,j,0,Qn,i,j,1)(n=1,2;j=1,2;k=2,3)である。
Ratio of lengths of polygonal lines Q n, i, j, 0 Q n, i, j, k (n = 1,2; i = 1,2; j = 1,2; k = 2,3) of the present invention It is preferable that both of the following conditions are satisfied with respect to g (hereinafter, line segment ratio).
0 <g n, i, j, 3 <0.83
g n, i, j, 3 <g n, i, j, 3 <0.95
Here, g n, i, j, i = L (Q n, i, j, 0 , Q n, i, j, k ) / L (Q n, i, j, 0 , Q n, i, j, 1 ) (n = 1,2; j = 1,2; k = 2,3).

上記式において上限値は、それを超えると「鞴の原理」からくる幾何学的拘束条件を回避できず、折り畳が不完全にしか実現しないか、あるいは全く折り畳むことができない。。より好ましい線分比gn,i,j,3、gn,i,j,3(n=1,2;i=1,2;j=1,2)の範囲は、以下の式で示される。
0.5<gn,i,j,3<0.83、かつ、gn,i,j,3<gn,i,j,3<0.93
In the above equation, if the upper limit is exceeded, the geometrical constraint condition that comes from the "bellows principle" cannot be avoided, and folding is only incompletely realized or cannot be folded at all. .. The range of more preferable line segment ratios g n, i, j, 3 , g n, i, j, 3 (n = 1, 2, i = 1, 2, j = 1, 2) is shown by the following equation. Is done.
0.5 <g n, i, j, 3 <0.83 and g n, i, j, 3 <gn , i, j, 3 <0.93

線分比gn,k,2(n=1,2;k=1,2,3,4)は0.5以上であることが、切断量(スリットの長さ)を減らすことができるため更に好ましい。 Since the line segment ratio g n, k, 2 (n = 1,2; k = 1,2,3,4) is 0.5 or more, the cutting amount (slit length) can be reduced. More preferred.

本発明では四角柱を完全に折り畳んだとき、各面の厚さが同じ場合には、実質的に完全に折り畳んだ状態で、面の厚さの8倍の厚さにまで圧縮することが可能で、構造のコンパクト化に資する効果は極めて高い。また稜線のスリット極小化することが可能で、折り畳まない状態での四角柱としての構造の完全性を大きく損なうことがない。 In the present invention, when a quadrangular prism is completely folded, if the thickness of each surface is the same, it can be compressed to a thickness eight times the thickness of the surface in a substantially completely folded state. Therefore, the effect of contributing to the compactness of the structure is extremely high. In addition, the slits on the ridgeline can be minimized, and the completeness of the structure as a square pillar in the unfolded state is not significantly impaired.

本発明は底面(対向する2つの端壁)の形状が四角形の物に限らず、底面が任意の多角形である多角柱に対して、これを複数の四角柱に分割し、分割された個々の四角柱状構造体に対して同様の操作をすることによって全体を実質的に完全に折り畳むことができる。図6、7にそのような底面の分割の例を示す。 In the present invention, the shape of the bottom surface (two opposing end walls) is not limited to a quadrangular one, and for a polygonal pillar having an arbitrary polygonal bottom surface, this is divided into a plurality of quadrangular prisms, and the divided individual pillars are divided. By performing the same operation on the quadrangular prismatic structure of, the whole can be folded substantially completely. Figures 6 and 7 show examples of such bottom surface division.

図6は、底面(対向する2つの端壁)が五角形の場合を示している。図6において、五角形の底面50を形成する壁は、破線BLで示す分割線によって2つの四角形52、54に分けられ、それぞれ矢印D1、D2の方向に圧縮される。 FIG. 6 shows a case where the bottom surface (two opposing end walls) is pentagonal. In FIG. 6, the wall forming the pentagonal bottom surface 50 is divided into two quadrangles 52 and 54 by the dividing line indicated by the broken line BL, and is compressed in the directions of arrows D 1 and D 2, respectively.

図7は、底面(対向する2つの端壁)が八角形の場合を示している。図7において、八角形の底面60を形成する壁は、破線BL1、BL2によって3つの四角形62、64、66に分けられ、それぞれ矢印D1、D2、D3の方向に圧縮される。 FIG. 7 shows a case where the bottom surface (two opposing end walls) is octagonal. In FIG. 7, the wall forming the octagonal bottom surface 60 is divided into three quadrangles 62, 64, 66 by the broken lines BL 1 and BL 2 , and is compressed in the directions of arrows D 1 , D 2 , and D 3, respectively. ..

分割線BL;BL1、BL2は互いに交差することも、複数の分割線が頂点を共有することもないように設けられる。分割線BL;BL1、BL2の起点は必ずしも頂点である必要はなく、稜線上の任意の点に設定することができる。対向する底面(端壁)は全く同等の分割線BL;BL1、BL2のパターンを有すことが必要で、対応する両底面の分割線を含む平面で多角柱を切断することで、切断面に相当する蓋側面が欠けた、中空四角柱状構造体に分割することができる。該中空四角柱状構造体に対して、上述した構成I〜IIIを適用し、分割線BL;BL1、BL2を山折り線として接合することで、折り畳むことができる多角柱状構造体となる。 Dividing lines BL; BL 1 and BL 2 are provided so that they do not intersect each other and multiple dividing lines do not share vertices. Dividing line BL; The starting points of BL 1 and BL 2 do not necessarily have to be vertices, and can be set to any point on the ridgeline. The opposite bottom surfaces (end walls) must have exactly the same dividing line BL; BL 1 and BL 2 patterns, and can be cut by cutting a polygonal prism on a plane that includes the corresponding dividing lines on both bottom surfaces. It can be divided into hollow square columnar structures lacking the side surface of the lid corresponding to the surface. By applying the above-mentioned configurations I to III to the hollow square columnar structure and joining the dividing lines BL; BL 1 and BL 2 as mountain fold lines, a polygonal columnar structure that can be folded is obtained.

本発明では、ヒンジシフト法により、上記の全ての稜線、折線及びスリットに沿って面を切り離し、該各折線部の谷川の表面でヒンジにより面を接合することによって四角柱状構造体を構成する。この場合全く折り畳まない状態では、各面は隙間なく完全に接触することができる。 In the present invention, a square columnar structure is constructed by cutting a surface along all the above-mentioned ridge lines, fold lines and slits by a hinge shift method and joining the surfaces with a hinge on the surface of Tanigawa at each fold line portion. In this case, in the state of not folding at all, each surface can be in complete contact without a gap.

本発明には等方ヒンジ法も用いることができる。等方ヒンジ法では折れ線を有限の幅を持つ可撓性材料で接合する方法である。このとき等方性ヒンジの幅t′は、そのヒンジで接合される2つの壁(面)の厚さをそれぞれT′1、T′2とするとき以下の条件を満たすことが必要である。
T′1+T′2<t′
An isotropic hinge method can also be used in the present invention. The isotropic hinge method is a method of joining polygonal lines with a flexible material having a finite width. Width t of this time isotropic hinge ', the thickness of the two walls to be joined at the hinge (face) each T' it is necessary that the following conditions are satisfied when a 1, T '2.
T '1 + T' 2 < t '

ヒンジの幅t′が、この下限値以下になるとき、等方性ヒンジでそれが接合する2つの面を完全に折り曲げることができなくなる。
より好ましいヒンジの幅t′の範囲は以下の式で示すことができる。
(T′1+T′2)×1.5<t′<(T′1+T′2)×100
When the width t'of the hinge falls below this lower limit, it becomes impossible to completely bend the two surfaces to which it joins with an isotropic hinge.
A more preferable range of the hinge width t'can be expressed by the following equation.
(T ′ 1 + T ′ 2 ) × 1.5 <t ′ <(T ′ 1 + T ′ 2 ) × 100

等方性ヒンジと面の接合位置は、それで接合される2つの壁(面)の間であっても、谷折り側あるいは山折り側の面の表面であってもよい。
ヒンジシフト法と等方性ヒンジ法は同一の構造体で混合して使用してもよい。
The joining position of the isotropic hinge and the face may be between the two walls (faces) joined by the isotropic hinge and the surface of the face on the valley fold side or the mountain fold side.
The hinge shift method and the isotropic hinge method may be mixed and used in the same structure.

本発明に用いる多角柱状構造物を構成する壁(面)の材料としては、特に限定するものではないが、鉄、アルミニウムのような金属材料、プラスチック、セラミックス、紙、無機多孔材料、有機多孔材料、繊維強化複合材料、繊維強化複合材料と多孔材料からなるサンドイッチ材などを用いることができる。特に可搬性や可動性を利用する場合、繊維強化複合材料、繊維強化複合材料と多孔材料からなるサンドイッチ材を用いることが、構造剛性・強度と軽量性を併せ持つことから好ましい。 The material of the wall (face) constituting the polygonal columnar structure used in the present invention is not particularly limited, but is not particularly limited, but is limited to metal materials such as iron and aluminum, plastics, ceramics, paper, inorganic porous materials, and organic porous materials. , A fiber-reinforced composite material, a sandwich material composed of a fiber-reinforced composite material and a porous material, and the like can be used. In particular, when portability and mobility are utilized, it is preferable to use a fiber-reinforced composite material, a sandwich material composed of a fiber-reinforced composite material and a porous material, because it has both structural rigidity / strength and light weight.

本発明に用いるヒンジとしては一般の金属蝶番や樹脂ヒンジを機械的あるいは接着で締結したもの、可撓性壁(面)材を取り付けたものを用いることができる。可撓性の壁(面)の材料としては大変形が可能な紙材料、織物や編み物のような繊維材料、ゴム、弾性樹脂、紙材料や繊維材料と弾性樹脂を複合したものなどを用いることができる。特に壁(面)の材料として繊維強化樹脂複合材料を用いる場合は、FRPヒンジを用いた等方ヒンジ法を適用することが好ましい。 As the hinge used in the present invention, a general metal hinge or a resin hinge that is mechanically or adhesively fastened, or a hinge to which a flexible wall (face) material is attached can be used. As the material of the flexible wall (face), a paper material capable of large deformation, a fiber material such as a woven fabric or knitting, a rubber, an elastic resin, a paper material or a composite of a fiber material and an elastic resin, etc. should be used. Can be done. In particular, when a fiber-reinforced resin composite material is used as the material for the wall (surface), it is preferable to apply the isotropic hinge method using an FRP hinge.

FRPヒンジは、繊維強化樹脂複合材料からなる板材に、直線状に連続してマトリックス樹脂が実質的に存在しない領域を形成し、そのままもしくはマトリックス樹脂のかわりに柔軟な樹脂を含浸してヒンジとするものである。連続繊維で強化された複合材料を板材としてFRPヒンジを形成した場合、板材とヒンジ部で繊維が連続するため、高い強度と耐久性が期待でき、またヒンジ部は折れ線の全体に対して連続する。 The FRP hinge is a hinge made of a plate material made of a fiber-reinforced resin composite material by forming a region in which a matrix resin is substantially absent in a straight line and impregnating a flexible resin as it is or instead of the matrix resin. It is a thing. When an FRP hinge is formed using a composite material reinforced with continuous fibers as a plate material, high strength and durability can be expected because the fibers are continuous between the plate material and the hinge portion, and the hinge portion is continuous with respect to the entire broken line. ..

FRPヒンジに用いる樹脂としては耐久性や封止性からシリコンゴム、オレフイン系エラストマー、フッ素樹脂系エラストマーなどの弾性樹脂を複合したものがより好ましい。弾性樹脂として変形性の高いものを用いた場合上記の構成で要求されるスリットをヒンジで置き換えられる場合があり、水密性・気密性の高い構造体とすることができる。 As the resin used for the FRP hinge, a composite of elastic resins such as silicone rubber, olephine-based elastomer, and fluororesin-based elastomer is more preferable from the viewpoint of durability and sealing property. When a highly deformable elastic resin is used, the slit required in the above configuration may be replaced with a hinge, and a structure having high watertightness and airtightness can be obtained.

本発明で得られる、多角柱状構造体の各面は必ずしも完全に閉じた構造である必要はなく、任意に面内の一部に開口を設けることができる。
また本発明の多角柱状構造体は単独で使用するのみならず、複数のものを篏合などの方法で連結して用いることもできる。
Each surface of the polygonal columnar structure obtained in the present invention does not necessarily have to be a completely closed structure, and an opening can be arbitrarily provided in a part of the surface.
Further, the polygonal columnar structure of the present invention can be used not only alone but also by connecting a plurality of the polygonal columnar structures by a method such as merging.

本発明の折り畳み構造体では任意の厚さの板材が適用できることから、力学的特性の優れたものが提供できる。また実質的に完全に折り畳める事で、コンパクトとなり、輸送や保管に対し効率が高いものとなる。これらの特性から、本発明は、移動式の簡易住宅、イベント用の仮設店舗、ポータブルなトイレといった臨時の建築物、航空コンテナ、一般輸送用コンテナ、などに有効に応用することができる。 Since a plate material having an arbitrary thickness can be applied to the folding structure of the present invention, it is possible to provide a folding structure having excellent mechanical properties. In addition, by being substantially completely foldable, it becomes compact and highly efficient for transportation and storage. From these characteristics, the present invention can be effectively applied to mobile simple houses, temporary stores for events, temporary buildings such as portable toilets, air containers, general transportation containers, and the like.

図8は、本発明の中空四角柱状構造体の一例を示す展開図であり、図9〜図14は、斜視図で示す該中空四角柱状構造体70の圧縮過程である。図8〜図14において、中空四角柱状構造体70は、対向する合同な四角形の底面の一方を形成する端壁72と、壁側面を形成する側壁74、76と、蓋側面を形成する側壁78、80を有し、端壁72が折り畳み軸AXを谷折り線として折り畳まれる。本例では、端壁72に対向する端壁は備えておらず、他方の底面は開口している。 FIG. 8 is a developed view showing an example of the hollow square columnar structure of the present invention, and FIGS. 9 to 14 are compression processes of the hollow square columnar structure 70 shown in a perspective view. In FIGS. 8 to 14, the hollow square columnar structure 70 has an end wall 72 forming one of the bottom surfaces of congruent quadrangles facing each other, side walls 74 and 76 forming the wall side surface, and side wall 78 forming the lid side surface. , 80, and the end wall 72 is folded with the folding axis AX as a valley fold line. In this example, the end wall facing the end wall 72 is not provided, and the other bottom surface is open.

図15は、本発明の中空五角柱構造体の一例を示す展開図であり、図16〜図21は、斜視図で示す該中空五角柱構造体の圧縮過程である。図15〜図21において、中空四角柱状構造体100は、対向する合同な四角形の底面の一方を形成する端壁102と、壁側面を形成する側壁104、106と、蓋側面を形成する側壁108、110とを有している。本例では、端壁102に対向する端壁は備えておらず、他方の底面は開口している。 FIG. 15 is a developed view showing an example of the hollow pentagonal prism structure of the present invention, and FIGS. 16 to 21 are compression processes of the hollow pentagonal prism structure shown in a perspective view. In FIGS. 15 to 21, the hollow square columnar structure 100 has an end wall 102 forming one of the bottom surfaces of congruent quadrangles facing each other, side walls 104 and 106 forming the side surface of the wall, and side wall 108 forming the side surface of the lid. , 110 and. In this example, the end wall facing the end wall 102 is not provided, and the other bottom surface is open.

端壁102は、分割線BLによって端壁部分112、114に分けられる。側壁104は、端壁部分112に接続された側壁部分116と、端壁部分114に接続された側壁部分118とを有している。側壁106は、端壁部分112に接続された側壁部分120と、端壁部分114に接続された側壁部分122とを有している。端壁102は、折り畳み軸AX1、AX2を谷折り線として折り畳まれる。 The end wall 102 is divided into end wall portions 112 and 114 by a dividing line BL. The side wall 104 has a side wall portion 116 connected to the end wall portion 112 and a side wall portion 118 connected to the end wall portion 114. The side wall 106 has a side wall portion 120 connected to the end wall portion 112 and a side wall portion 122 connected to the end wall portion 114. The end wall 102 is folded with the folding axes AX 1 and AX 2 as valley fold lines.

以下の手順で折り畳むことのできる直方体の展開図を作成した。
長さが300mmの稜線Vn,i,1n,i,2(n=1,2;i=1,2)、長さが1000mmの稜線Vn,1,jn,2,j(n=1,2;j=1,2)及び長さ300mmの稜線V1,i,j2,i,j(i=1,2;j=1,2)からなる直方体の展開図を作成した。
I made a development view of a rectangular parallelepiped that can be folded by the following procedure.
Ridge line V n, i, 1 V n, i, 2 (n = 1, 2; i = 1, 2) with a length of 300 mm, ridge line V n, 1, j V n, 2, j with a length of 1000 mm Development view of a rectangular parallelepiped consisting of (n = 1,2; j = 1,2) and a ridgeline V 1, i, j V 2, i, j (i = 1, 2, j = 1, 2,) having a length of 300 mm. It was created.

該直方体の展開図に対して、底面Vn,1,1n,1,2n,2,2n,2,1に対し2頂点Vn,i,1、Vn,i,2から引いた内角の二等分線の交点をCn,i、交点Cn,iから稜線Vn,i,1、Vn,i,2に下した垂線の足をSn,i,1(n=1,2;i=1,2)とした。さらに線分Cn,1n,2の両側に9mmの距離で平行線を設け、該平行線と線分Vn,i,jn,iとの交点をQn,i,j,0、交点Qn,i,j,0から稜線Vn,i,1n,i,2に下した垂線の足をQn,i,j,1とし、線分Qn,i,j,0n,i,j,1上に、線分比gn,i,j,3が0.60となるように、また線分比gn,i,j,3が0.83となるように2点Qn,i,j,2、Qn,i,j,3(n=1,2;i=1,2;j=1,2)をとった。また線分Qn,i,1,0n,i,2,0と、交点Cn,iと垂線の足Sn,i,1とを結ぶ直線との交点をSn,i,0(n=1,2;i=1,2)とした。 With respect to the developed view of the rectangular parallelepiped, the two vertices V n, i, 1 , V n, i, with respect to the bottom surface V n, 1,1 V n, 1,2 V n, 2,2 V n, 2,1 The intersection of the bisectors of the internal angle drawn from 2 is C n, i , and the foot of the perpendicular line drawn from the intersection C n, i to the ridges V n, i, 1 , V n, i, 2 is S n, i, It was set to 1 (n = 1,2; i = 1,2). Further, parallel lines are provided on both sides of the line segments C n, 1 C n, 2 at a distance of 9 mm, and the intersections of the parallel lines and the line segments V n, i, j C n, i are set to Q n, i, j, 0 , the foot of the parallel line drawn from the intersection Q n, i, j, 0 to the ridgeline V n, i, 1 V n, i, 2 is Q n, i, j, 1 , and the line segment Q n, i, j On, 0 Q n, i, j, 1 the line segment ratio g n, i, j, 3 is 0.60, and the line segment ratio g n, i, j, 3 is 0.83. Two points Q n, i, j, 2 and Q n, i, j, 3 (n = 1,2; i = 1,2; j = 1,2) were taken so as to be. The intersection of the line segment Q n, i, 1,0 Q n, i, 2,0 and the straight line connecting the intersection C n, i and the perpendicular foot S n, i, 1 is S n, i, 0. (N = 1,2; i = 1,2).

稜線V1,i,j2,i,jに対してそれを含む壁側面内に8mmの距離で設けた平行線上に異なる2点をとり、頂点V1,i,jに近接する点をR1,i,j、頂点V2,i,jに近接する点をR2,i,j(i=1,2;j=1,2)とした。このとき角度∠Qn,i,j,1n,i,jn,i,j(n=1,2;i=1,2;j=1,2)は45°とした。 Ridgeline V 1, i, j V 2 , i, take two different points in the parallel lines provided at a distance of 8mm in the wall side containing contrast j, vertex V 1, i, a point close to the j The points close to R 1, i, j and the vertices V 2, i, j were designated as R 2, i, j (i = 1, 2; j = 1, 2). At this time, the angle ∠Q n, i, j, 1 V n, i, j R n, i, j (n = 1,2; i = 1,2; j = 1,2) was set to 45 °.

線分Vn,i,jn,i,j,k、Qn,i,j,0n,i,j,2、R1,i,j2,i,j、Sn,i,0n,i,1(n=1,2;i=1,2;j=1,2;k=1,3)を山折り線とし、線分Vn,i,jn,i,j,k、Q1,i,j,12,i,j,1、S1,i,12,i,1、Qn,1,j,0n,2,j,0(n=1,2;i=1,2;j=1,2;k=0,2)を谷折り線とし、線分Qn,i,j,2n,i,j,1、Vn,i,jn,i,j(n=1,2;i=1,2:j=1,2)をスリットとした。 Lines V n, i, j Q n, i, j, k , Q n, i, j, 0 Q n, i, j, 2 , R 1, i, j R 2, i, j , S n, Let i, 0 S n, i, 1 (n = 1,2; i = 1,2; j = 1,2; k = 1,3) be a mountain fold line, and the line segment V n, i, j Q n , i, j, k , Q 1, i, j, 1 Q 2, i, j, 1 , S 1, i, 1 S 2, i, 1 , Q n, 1, j, 0 Q n, 2, Let j, 0 (n = 1,2; i = 1,2; j = 1,2; k = 0,2) be a valley fold line, and the line segments Q n, i, j, 2 Q n, i, j , 1 , V n, i, j R n, i, j (n = 1,2; i = 1,2: j = 1,2) were used as slits.

以上の展開図に従い、厚さ3mmの発泡スチロールボードを、全ての稜線および折れ線で面を切断して壁(面)要素とし、切断された各壁(面)要素を各折線の谷折り側のボード表面を可撓性プラスチックテープでつなぎ合わせることで直方体状の中空構造体を作った。また稜線Vn,1,jn,2,j(n=1,2;j=1,2)、V1,i,j2,i,j(i=1,2;j=1,2)は山折りとして同様に接合した。このときスリットに相当する箇所は接合を行わなかった。 According to the above developed view, a styrofoam board having a thickness of 3 mm is cut into wall (face) elements by cutting faces at all ridges and fold lines, and each cut wall (face) element is used as a board on the valley fold side of each fold line. A rectangular parallelepiped hollow structure was created by joining the surfaces with flexible plastic tape. Ridge lines V n, 1, j V n, 2, j (n = 1, 2, j = 1, 2,), V 1, i, j V 2, i, j (i = 1, 2, j = 1) , 2) were joined in the same way as a mountain fold. At this time, the portion corresponding to the slit was not joined.

得られた直方体状の中空構造体は完全に折り畳むことができ、高さ25mmまで圧縮することができた。またこの完全に圧縮した状態から直方体形状間の繰り返し形状変化が可能であった。 The obtained rectangular parallelepiped hollow structure could be completely folded and compressed to a height of 25 mm. In addition, it was possible to repeatedly change the shape between rectangular parallelepiped shapes from this completely compressed state.

稜線Vn,1,1n,1,2、Vn,1,2n,2,2,、Vn,2,1n,2,2、Vn,1,1n,2,1(n=1,2)の長さが、300mm、700mm、424mm、1000mmであり、稜線V1,i,j2,i,jの長さを300mmとし、内角2α1,1,、2α1,2、2α2,1、2α2,2を90°、90°、45°、135°とし、角度∠Qn,2,1,1n,2,1n,2,1(n=1,2)を22.5°、角度∠Qn,2,2,1n,2,2n,2,2(n=1,2)を70°とすることを除き実施例1とまったく同様の方法で、底面が台形上の四角柱状中空構造体を作成した。得られた直方体状の中空構造体は完全に折り畳むことができ、高さ25mmまで圧縮することができた。またこの完全に圧縮した状態から、直方体形状の間で繰り返し形状変化が可能であった。 Ridge line V n, 1,1 V n, 1,2 , V n, 1,2 V n, 2,2 , V n, 2,1 V n, 2,2 , V n, 1,1 V n, The lengths of 2,1 (n = 1,2) are 300 mm, 700 mm, 424 mm, and 1000 mm, the lengths of the ridges V 1, i, j V 2, i, j are 300 mm, and the internal angle 2α 1,1 ,, 2α 1,2, 2α 2,1, 2α 2,2 to 90 °, 90 °, 45 ° , and 135 °, the angle ∠Q n, 2,1,1 V n, 2,1 R n, 2 , 1 (n = 1, 2) is 22.5 °, and the angle ∠Q n, 2,2,1 V n, 2,2 R n, 2,2 (n = 1, 2) is 70 °. A square columnar hollow structure having a trapezoidal bottom surface was prepared in exactly the same manner as in Example 1 except for the above. The obtained rectangular parallelepiped hollow structure could be completely folded and compressed to a height of 25 mm. Moreover, from this completely compressed state, it was possible to repeatedly change the shape between the rectangular parallelepiped shapes.

蓋側面V1,1,21,2,22,2,22,1,2を欠いていることを除き、実施例1と全く同様の方法で、一面が開口した中空四角柱状構造体を作成し、また蓋側面V1,1,11,2,12,2,12,1,1を欠いていることを除き、実施例2と全く同様の方法で、一面が開口した中空四角柱状構造体を作成し、中空四角柱状構造体の稜線V1,21,3、V1,32,3、V2,32,2、V2,21,2を、それぞれ中空四角柱状構造体の稜線V1,11,4、V1,42,4、V2,42,1、V2,11,1のそれぞれと、中空構造体の外側が山折りとなるように、内側で可撓性プラスチックテープにより接合することで、五角柱状中空構造体を作成した。 A hollow square with one side open in exactly the same way as in Example 1 except that the lid side surface V 1,1,2 V 1,2,2 V 2,2,2 V 2,1,2 is missing. create a columnar structure, also except that lacks a lid side V 1,1,1 V 1,2,1 V 2,2,1 V 2,1,1 , exactly the same manner as in example 2 Then, a hollow square columnar structure with one side open was created, and the ridgelines of the hollow square columnar structure V 1,2 V 1,3 , V 1,3 V 2,3 , V 2,3 V 2,2 , V 2,2 V 1,2 are the ridges of the hollow square columnar structure V 1,1 V 1,4 , V 1,4 V 2,4 , V 2,4 V 2,1 , V 2,1 V 1 A pentagonal columnar hollow structure was created by joining each of 1 and 1 with a flexible plastic tape on the inside so that the outside of the hollow structure would form a mountain fold.

得られた直方体状の中空構造体は完全に折り畳むことができ、高さ50mmまで圧縮することができた。またこの完全に圧縮した状態から、直方体形状に繰り返し形状変化が可能であった。 The obtained rectangular parallelepiped hollow structure could be completely folded and compressed to a height of 50 mm. In addition, it was possible to repeatedly change the shape from this completely compressed state to a rectangular parallelepiped shape.

また、本発明は、以下の特徴を以て実施してもよい。
[特徴1]
合同な四角形V1,11,21,31,4と四角形V2,12,22,32,4を対向する底面として構成される四角柱において、
底面Vn,1n,2n,3n,4の面内において2つの頂点Vn,2j-1、Vn,2jから引いた内角の二等分線の交点をPn,j,0と定義し(n=1,2;j=1,2)、
交点Pn,j,0から線分Vn,2j-1n,2jに下した垂線の足をPn,j,1と定義し(n=1,2;j=1,2)、
2つの点Pn,1,0、Pn,2,0を通る直線と線分Vn,2j-1n,2jの交点をZn,j,0と定義し(n=1,2;j=1,2)、
線分Pn,j,0n,j,1上に異なる2つの点をとり、そのうち点Pn,j,1に近いものをPn,j,2と定義し、遠いものをPn,j,3と定義したとき(n=1,2;j=1,2)、以下の全ての条件を満たすことを特徴とする、面を変形させることなく各稜線及び各折線周りの回転によって折りたたむことのできる四角柱状構造体。
(1)線分Vn,jn,5-j(n=1,2;j=1,2)を山折りの折線とする。
(2)線分Vn,2j-1n,2j、Pn,j,0n,j,1を山折りの折線とし、線分Vn,kn,j,0を谷折りの折線とし、線分Vn,kn,j,2と線分Vn,kn,j,3のいずれか一方を山折りの折線、他方を谷折りの折線とし、点Pn,j,1から線分Pn,j,0n,j,1の全部あるいは一部に(スリット)を設ける(n=1,2;j=1,2;k=2j−1,2j)。
(3)Pn,1,0n,2,0(n=1,2)を谷折りの折線とする。
(4)V1,k2,k(k=j,5−j;j=1,2)を山折りの折線とする。
(5)P1,j,12,j,1(j=1,2)を谷折りの折線とする。
[特徴2]
対面する2つの側面V1,11,42,42,1、V1,21,32,32,2の一方または双方を欠いた四角柱状構造体であり、特徴1に記載の条件(1)及び(4)のjの範囲がそれぞれj=2あるいはj=1に限られ、または両面を欠く場合は条件(1)及び(4)を欠くことを除き、特徴1と全く同様にして得られる、折り畳むことのできる開口のある四角柱状構造体。
[特徴3]
対面する底面V1,11,21,31,4、V2,12,22,32,4の一方を欠いた四角柱状構造体であり、特徴1の条件(1)〜(3)のnの範囲がそれぞれn=2またはn=1に限られることを除き、特徴1と全く同様にして得られる、折り畳むことのできる開口のある四角柱状構造体。
[特徴4]
側面V1,11,22,22,1と側面V1,31,42,42,3の一方を欠いた四角柱状構造体であり、特徴1の条件(3)の折線Pn,1,0n,2,0の代わりに折線Pn,5-k,0n,k,0(n=1,2;j=1,2;k=2j−1,2j)を設け、これと特徴1の条件(1)〜(5)のjの範囲がそれぞれj=2またはj=1に限られことを除き特徴1と全く同様にして得られる、折り畳むことのできる開口のある四角柱状構造体。
[特徴5]
線分Pn,j,0n,j,iの長さをL(Pn,j,0n,j,i)とするとき、以下の式が同時に満たされることを特徴とする特徴1〜4の何れか1項に記載の四面体状構造体。
0<fn,j,2<0.83,fn,j,2<fn,j,3<0.92(n=1,2;j=1,2)
ここでfn,j,i=L(Pn,j,0n,j,i)/L(Pn,j,0n,j,1)である。(n=1,2;i=2,3;j=1,2)
[特徴6]
線分Pn,j,0n,j,1,(n=1,2;j=1,2)に対して切断(スリット)を設けるに際して線分Pn,j,2n,j,1(n=1,2;j=1,2)の部分のみ切断を設けることを特徴とする特徴1〜5の何れか1項に記載の四角柱状構造体。
[特徴7]
合同な四角形V1,11,21,31,4と四角形V2,12,22,32,4を底面として構成される有限の厚さの面から構成される四角柱において、
底面Vn,1n,2n,3n,4内で2つの頂点Vn,2j-1、Vn,2jから引いた内角の二等分線の交点をPn,j,0と定義し(n=1,2;j=1,2)、
点Pn,j,0から線分Vn,2j-1n,2jに下した垂線の足をPn,j,1と定義し(n=1,2;j=1,2)、
2つの点Pn,1,0、Pn,2,0を通る直線と線分Vn,2j-1n,2jの交点をZn,j,0と定義し(n=1,2;j=1,2)、
線分Zn,1,0n,2,0の両側にt0の距離で平行線を設け、該平行線と線分Vn,kn,1,0との交点をQn,k,0、該平行線と線分Vn,kn,j,0との交点をZn,j,kと定義し(n=1,2;j=1,2;k=1,2,3,4)、
点Qn,k,0から線分Vn,kn,j,1に下した垂線の足をQn,k,1と定義し(n=1,2;j=1,2;k=2j−1,2j)、
線分Qn,k,0n,k,1上に2つの点をとり、Qn,k,0に近接する点をQn,k,2、Qn,k,1に近接する点をQn,k,3と定義し(n=1,2;j=1,2;k=2j−1,2j)、
線分Qn,2j-1,0n,2j,0と線分Pn,j,0n,j,1との交点をSn,jと定義し(n=1,2;j=0,1)、
線分V1,k2,kに対して、それを含む側面内にt1の距離で設けた平行線と線分V1,k1,k,1及び線分V2,k2,k,1の交点をそれぞれY1,k及びY2,kと定義し(k=1,2,3,4)、
線分Y1,k2,k上に異なる2つの点をとり、Y1,kに近接する点をR1,k、Y2,kに近接する点をF,kと定義し(k=1,2,3,4)、
底面の頂点V1,k及びV2,kの周りの内角が2αk(k=1,2,3,4)、底面Vn,1n,2n,3n,4の厚みがTb,n(n=1,2)、側面V1,2j-11,2j2,2j2,2j-1の厚みがTl,j(j=1,2)であるとき、該四角柱構造体に関して以下のすべての条件を満たすことを特徴とする、面の変形なしに稜線および折線の周りの回転によって折り畳むことのできる四角柱状構造体。
(1)線分Vn,jn,5-jを山折りの折線とする。(n=1,2;j=1,2)
(2)線分Vn,kn,k,1、Qn,k,0n,k,1、Sn,jn,j,1を山折りの折線、線分Vn,kn,k,0を谷折りの折線、線分Vn,kn,k,2と線分Vn,kn,k,3のいずれかを谷折りの折線、他方を山折りの折線とし、線分Qn,2j-1,in,2j,iに切断、点Qn,k,1から線分Qn,k,0n,k,1の一部または全部にスリットを設ける(n=1,2;i=0,1;j=1,2;k=2j−1,2j)。
(3)線分Qn,j,0n,5-j,0(n=1,2;j=1,2)を谷折りの折線とする。
(4)線分R1,k2,kを山折りの折線とし、Vn,kn,kにスリットを設ける(n=1,2;j=1,2;k=2j−1,2j)。
(5)線分V1,k2,kを山折りの折線とする(j=1,2;k=j,5−j)。
(6)P1,j,12,j,1を山折りの折線とし、線分Q1,k,12,k,1を谷折りの折線とする(j=1,2;k=j,5−j)。
(7)t0及びt1が以下の条件を同時に満たす。
2×max{Tln;(n=1,2)}+max{Tbn;(n=1,2)}<t0<min{Un,kcosαj/sinα3-j;(n=1,2;k=1,2;j=1,2)}
max{Tbn,;(n=1,2)}<t1<min{L(Vn,kn,k,1);(n=1,2;k=1,2,3,4)}
ここでUn,k=L(Pn,k,0n,k,1)(n=1,2;k=1,2)とする。
[特徴8]
側面V1,11,42,42,1と側面V1,21,32,32,2、の一方または双方を欠いた四角柱状構造体であり、特徴7の条件(1)及び(4)のjの範囲がそれぞれj=2あるいはj=1に限られ、または両面を欠く場合は条件(1)及び(4)を欠くことを除き特徴7と全く同様にして得られる、折り畳むことのできる開口のある四角柱状構造体。
[特徴9]
底面V1,11,21,31,4と底面V2,12,22,32,4の一方欠いた四角柱状構造体であり、特徴7の条件(1)〜(4)および(7)のnの範囲がそれぞれn=2あるいはn=1に限られることを除き、特徴7と全く同様にして得られる、折り畳むことのできる開口のある四角柱状構造体。
[特徴10]
側面V1,11,22,22,1と側面V1,31,42,42,3の一方を欠いた四角柱状構造体であり、特徴7の条件(3)の折線Qn,j,0n,5-j,0の代わりに折線Qn,5-k,0n,k,0(n=1,2;j=1,2;k=2j−1,2j)を設け、これと特徴7条件(1)〜(2)及び(4)〜(6)のjの範囲がそれぞれj=2あるいはj=1に限られことを除き特徴7と全く同様にして得られる、折り畳むことのできる開口のある四角柱状構造体。
[特徴11]
点R1,k、及び点R2,kを決定するに際し、以下の条件を満たすことを特徴とする特徴7〜10の何れか1項に記載の四角柱状構造体。
n,k,1n,kR3-n,k>∠Qn,k,1n,kn,k≧αk(n=1,2;k=1,2,3,4)。
[特徴12]
線分Qn,k,0n,k,iの長さに関し、次の条件を同時に満たすことを特徴とする特徴7〜11の何れか1項に記載の四角柱状構造体。
0<gn,k,2<0.83,gn,k,2<gn,k,3<0.92
ここでgn,k,i=L(Qn,k,0n,k,i)/L(Qn,k,0n,k,1)である。(n=1,2;k=1,2,3,4;i=2,3)
[特徴13]
線分Qn,k,1n,k,0(k=1,2,3,4)の一部または全部にスリットを設けるに際して、Qn,k,1n,k,2(k=1,2,3,4)の部分のみにスリットを設けることを特徴とする特徴7〜12の何れか1項に記載の四角柱構造体。
[特徴14]
全ての稜線、スリットおよび折線に沿って面を切り離し、ヒンジを各折線の谷折り側の面材の表面に設置し面を接合することを特徴とする特徴7〜13の何れか1項に記載の折り畳むことのできる四角柱状構造体。
[特徴15]
折線の両側の面間を有限の距離を持ってヒンジで接合することを特徴とする特徴7〜13の何れか1項に記載の四角柱状構造体。
[特徴16]
任意の多角形を底面に持つ多角形構造体を底面に垂直な面で切断することで複数の開口を持つ四角柱に分離し、それぞれの分離された開口を持つ四角柱を特徴2〜6に記載された、開口を持つ四角柱から選択し、該開口のある四角柱を多角形構造体の切断線に沿ってヒンジにより接合し山折りの折線とすることで構成することを特徴とする、面の変形なしに稜線および折線の周りの回転によって折り畳むことのできる多角柱状構造体。
[特徴17]
任意の多角形を底面に持つ多角形構造体を底面に垂直な面で切断することで複数の開口を持つ四角柱に分離し、それぞれの分離された開口を持つ四角柱を特徴8〜15に記載された、開口を持つ四角柱から選択し、該開口のある四角柱を多角形構造体の切断線に沿ってヒンジにより接合し山折りの折線とすることで構成することを特徴とする、面の変形なしに稜線および折線の周りの回転によって折り畳むことのできる多角柱状構造体。
Moreover, the present invention may be carried out with the following features.
[Feature 1]
In a square pillar composed of congruent quadrangles V 1,1 V 1 , 2 V 1 , 3 V 1 , 4 and quadrangles V 2, 1 V 2 , 2 V 2 , 3 V 2 , 4 facing each other.
The intersection of the bisectors of the internal angles drawn from the two vertices V n, 2j-1 , V n, 2j in the plane of the bottom surface V n, 1 V n, 2 V n, 3 V n, 4 is P n, Defined as j, 0 (n = 1,2; j = 1,2),
The foot of the perpendicular line drawn from the intersection P n, j, 0 to the line segment V n, 2j-1 V n, 2j is defined as P n, j, 1 (n = 1, 2; j = 1, 2).
The intersection of a straight line passing through two points P n, 1,0 , P n, 2,0 and a line segment V n, 2j-1 V n, 2j is defined as Z n, j, 0 (n = 1, 2, 0). J = 1,2),
Two different points are taken on the line segment P n, j, 0 P n, j, 1 , and the one close to the point P n, j, 1 is defined as P n, j, 2, and the one far away is P n. When defined as, j, 3 (n = 1,2; j = 1,2), it is characterized by satisfying all of the following conditions, by rotation around each ridge and each polygonal line without deforming the surface. A foldable square columnar structure.
(1) Let the line segment V n, j V n, 5-j (n = 1, 2; j = 1, 2) be a mountain fold polygonal line.
(2) Line segments V n, 2j-1 V n, 2j , P n, j, 0 P n, j, 1 are mountain folds, and line segments V n, k P n, j, 0 are valley folds. the fold lines, the line segment V n, k P n, j, 2 a line V n, k P n, j, 3 of one mountain folding fold line, and the other as a polygonal line for valley fold, the point P n , J, 1 to line segments P n, j, 0 P n, j, 1 are provided with (slits) in all or part (n = 1, 2, j = 1, 2, k = 2j-1,2j ).
(3) P n, 1,0 P n, 2,0 (n = 1, 2) is a valley fold line.
(4) Let V 1, k V 2, k (k = j, 5-j; j = 1, 2) be a mountain fold fold line.
(5) P 1, j, 1 P 2, j, 1 (j = 1, 2) is a valley fold line.
[Feature 2]
A square columnar structure lacking one or both of the two facing sides V 1,1 V 1,4 V 2,4 V 2,1 , V 1,2 V 1,3 V 2,3 V 2, 2. Yes, the range of j of the conditions (1) and (4) described in the feature 1 is limited to j = 2 or j = 1, respectively, or if both sides are lacking, the conditions (1) and (4) are lacking. A square columnar structure with foldable openings, obtained in exactly the same manner as in Feature 1.
[Feature 3]
Facing bottom surface V 1,1 V 1 , 2 V 1 , 3 V 1 , 4 , V 2 , 1 V 2 , 2 V 2 , 3 V 2 , 4 It is a square columnar structure lacking one of them, and feature 1 A square columnar structure with a foldable opening, which is obtained in exactly the same manner as in Feature 1, except that the range of n in the conditions (1) to (3) is limited to n = 2 or n = 1, respectively. ..
[Feature 4]
It is a square columnar structure lacking one of the side surface V 1,1 V 1,2 V 2,2 V 2,1 and the side surface V 1,3 V 1,4 V 2,4 V 2,3, and has the feature 1. Instead of the polygonal line P n, 1,0 P n, 2,0 of the condition (3), the polygonal line P n, 5-k, 0 Z n, k, 0 (n = 1, 2, j = 1, 2, k) = 2j-1,2j) is provided, and this and the condition (1) to (5) of feature 1 are obtained in exactly the same manner as feature 1 except that the range of j is limited to j = 2 or j = 1, respectively. A square columnar structure with a foldable opening.
[Feature 5]
When the length of the line segment P n, j, 0 P n, j, i is L (P n, j, 0 P n, j, i ), the following equation is satisfied at the same time. The tetrahedral structure according to any one of 1 to 4.
0 <f n, j, 2 <0.83, f n, j, 2 <f n, j, 3 <0.92 (n = 1, 2; j = 1, 2)
Here, f n, j, i = L (P n, j, 0 P n, j, i ) / L (P n, j, 0 P n, j, 1 ). (N = 1,2; i = 2,3; j = 1,2)
[Feature 6]
Line segment P n, j, 0 P n, j, 1, (n = 1, 2; j = 1, 2) When providing a cut (slit) for the line segment P n, j, 2 P n, j The square columnar structure according to any one of features 1 to 5, wherein a cut is provided only at a portion of 1 , 1 (n = 1, 2; j = 1, 2).
[Feature 7]
From a surface of finite thickness composed of congruent quadrilateral V 1,1 V 1 , 2 V 1 , 3 V 1 , 4 and quadrangle V 2, 1 V 2 , 2 V 2 , 3 V 2 , 4 as the bottom surface In the quadrangular pillars that are constructed
Bottom V n, 1 V n, 2 V n, 3 V n, 2 vertices V n in the 4, 2j-1, V n , the intersection of P n bisector of the interior angle drawn from 2j, j, Defined as 0 (n = 1,2; j = 1,2),
The foot of the perpendicular line drawn from the point P n, j, 0 to the line segment V n, 2j-1 V n, 2j is defined as P n, j, 1 (n = 1,2; j = 1,2).
The intersection of a straight line passing through two points P n, 1,0 , P n, 2,0 and a line segment V n, 2j-1 V n, 2j is defined as Z n, j, 0 (n = 1, 2, 0). J = 1,2),
Parallel lines are provided on both sides of the line segment Z n, 1,0 Z n, 2,0 at a distance of t 0 , and the intersection of the parallel line and the line segment V n, k P n, 1,0 is Q n, k, 0 , the intersection of the parallel line and the line segment V n, k Z n, j, 0 is defined as Z n, j, k (n = 1,2; j = 1,2; k = 1, 2,3,4),
The foot of the perpendicular line drawn from the point Q n, k, 0 to the line segment V n, k P n, j , 1 is defined as Q n, k, 1 (n = 1, 2, j = 1, 2, k). = 2j-1,2j),
Two points are taken on the line segment Q n, k, 0 Q n, k, 1 , and the points close to Q n, k, 0 are close to Q n, k, 2 , Q n, k, 1. Is defined as Q n, k, 3 (n = 1,2; j = 1,2; k = 2j-1,2j).
The intersection of the line segment Q n, 2j-1,0 Q n, 2j, 0 and the line segment P n, j, 0 P n, j, 1 is defined as S n, j (n = 1, 2, j). = 0,1),
Relative line V 1, k V 2, k , parallel lines and the line segment V 1 provided at a distance of t 1 in side containing it, k Q 1, k, 1 and line V 2, k Q The intersections of 2, k and 1 are defined as Y 1, k and Y 2, k , respectively (k = 1, 2, 3, 4).
Two different points are taken on the line segment Y 1, k Y 2, k , and the points close to Y 1, k are defined as R 1, k , and the points close to Y 2, k are defined as F, k (k). = 1,2,3,4),
The internal angles around the tops V 1, k and V 2, k of the bottom surface are 2 α k (k = 1 , 2, 3, 4) , and the thickness of the bottom surface V n, 1 V n, 2 V n, 3 V n, 4. is but T b, n (n = 1,2 ), side V 1,2j-1 V 1,2j V 2,2j V 2,2j-1 having a thickness of T l, j (j = 1,2 ) When, a quadrangular columnar structure that can be folded by rotation around a ridge and a fold line without surface deformation, characterized in that it satisfies all of the following conditions with respect to the quadrangular columnar structure.
(1) Let the line segments V n, j V n, 5-j be mountain fold polygonal lines. (N = 1,2; j = 1,2)
(2) Line segment V n, k Q n, k, 1 , Q n, k, 0 Q n, k, 1 , S n, j P n, j, 1 is a mountain fold fold line, line segment V n, k Q n, k, 0 is the valley fold fold line, line segment V n, k Q n, k, 2 and any of the line segments V n, k Q n, k, 3 is the valley fold fold line, the other is the mountain fold Make a fold line and cut it into line segments Q n, 2j-1, i Q n, 2j, i , from point Q n, k, 1 to part of line segment Q n, k, 0 Q n, k, 1 . All are provided with slits (n = 1,2; i = 0,1; j = 1,2; k = 2j-1,2j).
(3) Let the line segment Q n, j, 0 Q n, 5-j, 0 (n = 1, 2; j = 1, 2) be a valley fold polygonal line.
(4) Line segments R 1, k R 2, k are mountain-folded polygonal lines, and slits are provided in V n, k R n, k (n = 1, 2, j = 1, 2, k = 2j-1). , 2j).
(5) Let the line segments V 1, k V 2, k be mountain fold polygonal lines (j = 1, 2; k = j, 5-j).
(6) P 1, j, 1 P 2, j, 1 is a mountain fold fold line, and line segments Q 1, k, 1 Q 2, k, 1 are valley fold fold lines (j = 1, 2,; k = j, 5-j).
(7) t 0 and t 1 satisfy the following conditions at the same time.
2 × max {T ln ; (n = 1, 2)} + max {T bn ; (n = 1, 2)} <t 0 <min {Un , k cosα j / sinα 3-j ; (n = 1) , 2; k = 1,2; j = 1,2)}
max {T bn ,; (n = 1, 2)} <t 1 <min {L (V n, k Q n, k, 1 ); (n = 1, 2, k = 1, 2, 3, 4) )}
Here, it is assumed that Un, k = L (P n, k, 0 P n, k, 1 ) (n = 1,2; k = 1,2).
[Feature 8]
A square columnar structure lacking one or both of the side V 1,1 V 1,4 V 2,4 V 2,1 and the side V 1,2 V 1,3 V 2,3 V 2, 2. The range of j in the conditions (1) and (4) of the feature 7 is limited to j = 2 or j = 1, respectively, or if both sides are lacking, the condition (1) and (4) are lacking. A square columnar structure with foldable openings, obtained in exactly the same way.
[Feature 9]
It is a square columnar structure lacking one of the bottom surface V 1,1 V 1, 2 V 1 , 3 V 1 , 4 and the bottom surface V 2, 1 V 2 , 2 V 2 , 3 V 2 , 4 , and the condition of feature 7. A square column with a foldable opening obtained in exactly the same manner as in Feature 7, except that the range of n in (1)-(4) and (7) is limited to n = 2 or n = 1, respectively. Structure.
[Feature 10]
It is a square columnar structure lacking one of the side surface V 1,1 V 1,2 V 2,2 V 2,1 and the side surface V 1,3 V 1,4 V 2,4 V 2,3, and has the feature 7. Polygonal line Q n, j, 0 Q n, 5-j, 0 instead of the polygonal line Q n, 5-k, 0 Z n, k, 0 (n = 1, 2; j = 1, 2) ; K = 2j-1,2j) is provided, and the range of j in the feature 7 conditions (1) to (2) and (4) to (6) is limited to j = 2 or j = 1, respectively. A square columnar structure with a foldable opening, obtained in exactly the same manner as in Feature 7.
[Feature 11]
The square columnar structure according to any one of features 7 to 10, wherein when determining points R 1, k and points R 2, k, the following conditions are satisfied.
Q n, k, 1 V n, k R 3-n, k > ∠ Q n, k, 1 V n, k R n, k ≧ α k (n = 1, 2, k = 1, 2, 3, 4).
[Feature 12]
The square columnar structure according to any one of features 7 to 11, characterized in that the following conditions are simultaneously satisfied with respect to the lengths of the line segments Q n, k, 0 Q n, k, i.
0 <g n, k, 2 <0.83, g n, k, 2 <gn , k, 3 <0.92
Here, g n, k, i = L (Q n, k, 0 Q n, k, i ) / L (Q n, k, 0 Q n, k, 1 ). (N = 1,2; k = 1,2,3,4; i = 2,3)
[Feature 13]
When providing slits in part or all of the line segments Q n, k, 1 Q n, k, 0 (k = 1, 2, 3, 4), Q n, k, 1 Q n, k, 2 (k) = The square pillar structure according to any one of features 7 to 12, characterized in that slits are provided only in the portions 1, 2, 3, 4).
[Feature 14]
Item 2. Foldable square columnar structure.
[Feature 15]
The square columnar structure according to any one of features 7 to 13, wherein the surfaces on both sides of the folded line are joined by a hinge at a finite distance.
[Feature 16]
By cutting a polygonal structure having an arbitrary polygon on the bottom surface on a plane perpendicular to the bottom surface, it is separated into quadrangular prisms with multiple openings, and the quadrangular prisms with each separated opening are featured in 2-6. It is characterized in that it is formed by selecting from the described quadrangular prisms having openings and joining the quadrangular prisms having the openings with hinges along the cutting line of the polygonal structure to form a mountain fold fold line. A polygonal prismatic structure that can be folded by rotation around ridges and folds without surface deformation.
[Feature 17]
By cutting a polygonal structure having an arbitrary polygon on the bottom surface on a plane perpendicular to the bottom surface, it is separated into quadrangular prisms with multiple openings, and the quadrangular prisms with each separated opening are featured in 8 to 15. It is characterized in that it is formed by selecting from the described quadrangular prisms having openings and joining the quadrangular prisms having the openings with hinges along the cutting line of the polygonal structure to form a mountain fold fold line. A polygonal prismatic structure that can be folded by rotation around ridges and folds without surface deformation.

10 中空四角柱状構造体
12 第1の端壁
14 第2の端壁
16 第1の側壁
18 第2の側壁
20 第3の側壁
22 第4の側壁
50 底面
52 四角形
54 四角形
60 底面
62 四角形
64 四角形
66 四角形
70 中空四角柱状構造体
72 端壁
74 側壁
76 側壁
78 側壁
80 側壁
100 中空四角柱状構造体
102 端壁
104 端壁部分
106 端壁部分
108 側壁
110 側壁
112 端壁部分
114 端壁部分
116 側壁部分
118 側壁部分
120 側壁部分
122 側壁部分
10 Hollow square columnar structure 12 1st end wall 14 2nd end wall 16 1st side wall 18 2nd side wall 20 3rd side wall 22 4th side wall 50 Bottom surface 52 Square 54 Square 60 Bottom surface 62 Square 64 Square 66 Rectangle 70 Hollow square pillar structure 72 End wall 74 Side wall 76 Side wall 78 Side wall 80 Side wall 100 Hollow square pillar structure 102 End wall 104 End wall part 106 End wall part 108 Side wall 110 Side wall 112 End wall part 114 End wall part 116 Side wall Part 118 Side wall part 120 Side wall part 122 Side wall part

Claims (9)

合同な四角形Vn,1,1n,1,2n,2,2n,2,1(n=1,2)を底面として構成され、ヒンジで接合された折れ線の周りの面の回転で、面の変形なしに折り畳むことのできる中空の四角柱状構造体であって、底面とともに折り畳まれる側面V1,i,11,i,22,i,22,i,1(i=1,2)を「壁側面」、それ自体が折り畳まれることなく底面の変形に付随して移動する側面V1,1,j1,2,j2,2,j2,1,j(j=1,2)を「蓋側面」とするとき、次の3つの構成を具備することを特徴とする中空四角柱状構造体。
構成1:底面と壁側面の境界領域における折り畳み構成。
構成2:底面及び壁側面の中央部の折り畳み線に沿った折り畳みによる面の干渉を解消する構成。
構成3:蓋側面と壁側面の境界領域における折り畳みによる面の干渉を解消する構成。
Congruent quadrilateral V n, 1,1 V n, 1,2 V n, 2,2 V n, 2,1 (n = 1, 2) is the bottom surface, and the surface around the hinged line It is a hollow quadrangular columnar structure that can be folded without deformation of the surface by the rotation of, and the side surfaces V 1, i, 1 V 1, i, 2 V 2, i, 2 V 2, i that can be folded together with the bottom surface. , 1 (i = 1, 2) is the "wall side", the side that moves with the deformation of the bottom without folding itself V 1,1, j V 1,2, j V 2,2, j A hollow quadrangular columnar structure characterized by having the following three configurations when V 2,1, j (j = 1, 2) is defined as a "cover side surface".
Configuration 1: Folding configuration in the boundary area between the bottom surface and the side surface of the wall.
Configuration 2: A configuration that eliminates surface interference due to folding along the folding line at the center of the bottom surface and the side surface of the wall.
Configuration 3: A configuration that eliminates surface interference due to folding in the boundary region between the lid side surface and the wall side surface.
以下に示す構成1、2、3を用いることを特徴とする請求項1に記載の中空四角柱状構造体。
構成1:底面を構成する頂点Vn,i,jに対し該底面内の内角の等角二等分線を頂点Vn,i,jから引き底面内にその終点Qn,i,j,0を設ける。Qn,i,j,0から、最近接する壁側面と底面の境界の稜線Vn,i,1n,i,2上におろした垂線の足を点Qn,i,j,1とし、線分Qn,i,j,0n,i,j,1上に点Qn,i,j,0に近いほうから2点Qn,i,j,2、Qn,i,j,3を取る。線分Vn,i,jn,i,j,0、Q1,i,j,12,i,j,1を谷折り線、線分Qn,i,j,0n,i,j,2、Vn,i,jn,i,j,1を山折り線、Vn,i,jn,i,j,2とVn,i,jn,i,j,3に関しては何れか一方を山折り線とし他方を谷折りとし、かつQn,i,j,2n,i,j,1にスリット(線状の切断)を設ける(n=1,2;i=1,2;j=1,2)。壁側面V1,i,11,i,22,i,22,i,1を欠く場合は頂点V1,i,1、V1,i,2、V2,i,2、V2,i,1に関して、本構成は設ける必要がない(i=1,2)。
構成2:底面Vn,1,1n,1,2n,2,2n,2,1と隣接する壁側面V1,i,11,i,22,i,22,i,1の稜線と折り畳み軸線AXnとの交点をPn,iとする(n=1,2;i=1,2)。該底面内において線分Pn,1n,2の両側に等しい距離t0で二本の平行線分を設け、頂点Vn,i,jにもっとも近接する該平行線分の終点をZn,i,jとし、終点Zn,i,jは点Qn,i,j,0に一致させる(n=1,2;i=1,2,j=1,2)。さらに線分Qn,i,1,0n,i,2,0と線分Pn,1n,2の交点をSn,i,0とし、交点Sn,i,0から最近接する壁側面と底面の境界の稜線Vn,i,1n,i,2上におろした垂線の足を点Sn,i,1とする(n=1,2;i=1,2)。このとき底面内において線分Sn,i,0n,i,1、Zn,1,jn,2,jを谷折り線とし、線分Qn,i,1,kn,i,2,kにスリットを設け(n=1,2;i=1,2;k=0,1)、かつ線分S1,i,12,i,1を山折り線とする(i=1,2;j=1,2)。壁側面壁側面V1,i,11,i,22,i,22,i,1の何れか一方または双方が欠けていて構成Iが設けられなかった場合は終点Zn,i,jは該平行線と稜線Vn,i,1n,i,2の交点とする。
構成3:壁側面と蓋側面の境界の稜線V1,i,j2,i,jに対し該壁側面内にt1の距離で平行線を設け、その線上に2点を取り、頂点V1,i,j、V2,i,jに近接する点をそれぞれR1,i.j、R2,i,jとする。ここで線分R1,i.j2,i.jを谷折り線、線分V1,i,j1,i.j、V2,i,j2,i.jにスリットを設ける。(i=1,2;j=1,2)。底面Vn,1,1n,1,2n,2,2n,2,1の何れか一方、または、双方が欠けていて構成Iが設けられなかった場合は点Rn,i,jは該平行線と稜線Vn,i,jn,i,j,1の交点とし、線分Vn,i,jn,i,jにはスリットを設けない(n=1,2;i=1,2;j=1,2)。
The hollow square columnar structure according to claim 1, wherein the configurations 1, 2 and 3 shown below are used.
Configuration 1: With respect to the vertices V n, i, j constituting the bottom surface, an isometric bisector of the internal angle in the bottom surface is drawn from the vertices V n, i, j and the end points Q n, i, j, in the bottom surface. Set 0 . From Q n, i, j, 0 , let the foot of the perpendicular line drawn on the ridgeline V n, i, 1 V n, i, 2 of the boundary between the side surface and the bottom surface of the wall that is in close contact be the point Q n, i, j, 1. , Line segment Q n, i, j, 0 Q n, i, j, 1 Two points from the closest point Q n, i, j, 0 on Q n, i, j, 2 , Q n, i, Take j, 3 . Line segment V n, i, j Q n, i, j, 0 , Q 1, i, j, 1 Q 2, i, j, 1 is a valley fold line, line segment Q n, i, j, 0 Q n , i, j, 2 , V n, i, j Q n, i, j, 1 is a mountain fold line, V n, i, j Q n, i, j, 2 and V n, i, j Q n, For i, j, 3 one is a mountain fold line and the other is a valley fold, and slits (linear cutting) are provided in Q n, i, j, 2 Q n, i, j, 1 (n). = 1,2; i = 1,2; j = 1,2). Wall side V 1, i, 1 V 1, i, 2 V 2, i, 2 V 2, i, 1 If lacking, vertices V 1, i, 1 , V 1, i, 2 , V 2, i, It is not necessary to provide this configuration for 2, V 2, i, 1 (i = 1, 2).
Configuration 2: Bottom surface V n, 1,1 V n, 1,2 V n, 2,2 V n, 2, 1 and adjacent wall side surface V 1, i, 1 V 1, i, 2 V 2, i, 2 Let P n, i be the intersection of the ridgeline of V 2, i, 1 and the folding axis AX n (n = 1, 2, i = 1, 2). Two parallel line segments are provided on both sides of the line segment P n, 1 P n, 2 at an equal distance t 0 in the bottom surface, and the end point of the parallel line segment closest to the vertices V n, i, j is Z. Let n, i, j , and the end point Z n, i, j coincide with the point Q n, i, j, 0 (n = 1,2; i = 1,2,j = 1,2). Furthermore, the intersection of the line segment Q n, i, 1,0 Q n, i, 2,0 and the line segment P n, 1 P n, 2 is set to S n, i, 0 , and the intersection S n, i, 0 is the latest. Let the foot of the perpendicular line drawn on the ridge line V n, i, 1 V n, i, 2 of the boundary between the side surface and the bottom surface of the wall in contact be the point S n, i, 1 (n = 1, 2; i = 1, 2). ). At this time, the line segments S n, i, 0 S n, i, 1 , Z n, 1, j Z n, 2, j are set as valley fold lines in the bottom surface, and the line segments Q n, i, 1, k Q n , I, 2, k are provided with slits (n = 1, 2, i = 1, 2, k = 0, 1), and the line segments S 1, i, 1 S 2, i, 1 are defined as mountain fold lines. (I = 1,2; j = 1,2). Wall side wall side V 1, i, 1 V 1 , i, 2 V 2, i, 2 V 2, i, 1 in the case where any one or constructed lacked both I was not provided endpoint Z n , i, j are the intersections of the parallel lines and the ridges V n, i, 1 V n, i, 2.
Configuration 3: A parallel line is provided in the side surface of the wall at a distance of t 1 with respect to the ridge line V 1, i, j V 2, i, j at the boundary between the side surface of the wall and the side surface of the lid, two points are taken on the line, and the apex is taken. Let the points close to V 1, i, j , V 2, i, j be R 1, ij , R 2, i, j , respectively. Here, the line segment R 1, ij R 2, ij is provided with a valley fold line, and the line segments V 1, i, j R 1, ij , V 2, i, j R 2, ij are provided with slits. (I = 1,2; j = 1,2). Bottom surface V n, 1,1 V n, 1,2 V n, 2,2 V n, 2, 1 If one or both are missing and configuration I is not provided, point R n, i and j are the intersections of the parallel lines and the ridge lines V n, i, j Q n, i, j, 1 and no slits are provided in the line segments V n, i, j R n, i, j (n =). 1,2; i = 1,2; j = 1,2).
底面Vn,1,1n,1,2n,2,2n,2,1の厚さTn,b(n=1,2)、壁側面V1,i,11,i,22,i,22,i,1の厚さがTi,w(i=1,2)であるとき、距離t0、t1が以下の条件を同時に満たすことを特徴とする請求項2に記載の中空四角柱状構造体。
Figure 2021123357
Figure 2021123357
ここで、任意の点Aと点Bの間の距離をL(A,B)で表し、U1=L(P1,1,0,P1,1,1)、U2=L(P1,2,0,P1,2,1)と定義する。
Bottom surface V n, 1,1 V n, 1,2 V n, 2,2 V n, 2, 1 thickness T n, b (n = 1, 2), wall side surface V 1, i, 1 V 1 When the thickness of , i, 2 V 2, i, 2 V 2, i, 1 is T i, w (i = 1, 2), the distances t 0 and t 1 satisfy the following conditions at the same time. The hollow square columnar structure according to claim 2.
Figure 2021123357
Figure 2021123357
Here, the distance between any point A and point B is represented by L (A, B), U 1 = L (P 1,1,0 , P 1,1,1 ), U 2 = L (P). It is defined as 1,2,0, P1,2,1).
点Rn,i,j(n=1,2;i=1,2;j=1,2)を決定するに際し、以下の条件を満たすこと特徴とする請求項3に記載の中空四角柱状構造体。
n,i,j,1n,i,j3-n,i,j>∠Qn,i,j,1n,i,jn,i,j≧αi,j(n=1,2;i=1,2;j=1,2)
The hollow square columnar structure according to claim 3, wherein when determining points R n, i, j (n = 1,2; i = 1,2; j = 1,2), the following conditions are satisfied. body.
Q n, i, j, 1 V n, i, j R 3-n, i, j > ∠ Q n, i, j, 1 V n, i, j R n, i, j ≧ α i, j ( n = 1,2; i = 1,2; j = 1,2)
折れ線Qn,i,j,0n,i,j,k(n=1,2;i=1,2;j=1,2;k=2,3)の長さに関し、次の両条件を満たすこと特徴とする請求項4に記載の中空四角柱状構造体。
0<gn,i,j,3<0.83
n,i,j,3<gn,i,j,3<0.95
ここで、gn,i,j,i=L(Qn,i,j,0n,i,j,k)/L(Qn,i,j,0n,i,j,1)(n=1,2;j=1,2;k=2,3)である。
Regarding the length of the polygonal line Q n, i, j, 0 Q n, i, j, k (n = 1,2; i = 1,2; j = 1,2; k = 2,3), both of the following The hollow square columnar structure according to claim 4, wherein the condition is satisfied.
0 <g n, i, j, 3 <0.83
g n, i, j, 3 <g n, i, j, 3 <0.95
Here, g n, i, j, i = L (Q n, i, j, 0 Q n, i, j, k ) / L (Q n, i, j, 0 Q n, i, j, 1) ) (N = 1,2; j = 1,2; k = 2,3).
底面が四角形より辺の数が多い任意の多角形である中空多角柱状構造体に対して、底面に垂直な分割面でこれを切断面に相当する蓋側面が欠けた中空四角柱状構造体に分割し、分割されたそれぞれの中空四角柱状構造体を、請求項1〜5の何れか1項に記載の四角柱状構造体とし、分割面の周囲の辺が山折り線として接合されていることを特徴とする折り畳むことができる中空多角柱状構造体。 For a hollow polygonal columnar structure whose bottom surface is an arbitrary polygon with more sides than a quadrangle, it is divided into a hollow square columnar structure lacking a lid side surface corresponding to a cut surface at a dividing surface perpendicular to the bottom surface. Then, each of the divided hollow quadrangular columnar structures is made into the quadrangular columnar structure according to any one of claims 1 to 5, and the sides around the divided surface are joined as mountain fold lines. A characteristic foldable hollow polygonal columnar structure. 全ての折れ線及び稜線及びスリットで面を一旦切断し、ヒンジをそれぞれの折線に対応する谷折り部に設置して切断された面を接合することを特徴とする請求項6に記載の中空四角柱状構造体及び中空多角柱状構造体。 The hollow square columnar according to claim 6, wherein the surface is cut once at all the polygonal lines, the ridges, and the slits, and the hinges are installed at the valley folds corresponding to the respective polygonal lines to join the cut surfaces. Structures and hollow polygonal columnar structures. 折れ線を有限の幅t′を持つ可撓性材料で置き換え面を接合することを特徴とする請求項7に記載の中空四角柱状構造体及び中空多角柱状構造体。
ここで、可撓性材料の幅t′は、それで接合される2つの面の厚さをそれぞれT′1、T′2とするとき、以下の条件を満たす。
T′1+T′2<t′
The hollow square columnar structure and a hollow polygonal columnar structure according to claim 7, wherein the polygonal line is replaced with a flexible material having a finite width t'to join the replacement surfaces.
The width t of the flexible material 'is so T the thickness of the two surfaces to be joined respectively' 1, T '2 to the time, the following conditions are satisfied.
T '1 + T' 2 < t '
可撓性材料が、FRPヒンジであることを特徴とする請求項8に記載の中空四角柱状構造体及び中空多角柱状構造体。
ここでFRPヒンジは、繊維強化樹脂複合材料からなる板材に、線状に連続してマトリックス樹脂が実質的に存在しない領域を形成し、そのままもしくはマトリックス樹脂のかわりに可撓性のある樹脂を含浸して剛直な繊維強化複合材料を結合するものである。
The hollow square columnar structure and a hollow polygonal columnar structure according to claim 8, wherein the flexible material is an FRP hinge.
Here, the FRP hinge forms a linearly continuous region in which the matrix resin does not substantially exist in the plate material made of the fiber reinforced resin composite material, and impregnates the plate material as it is or instead of the matrix resin with a flexible resin. It binds rigid fiber-reinforced composite materials.
JP2020015742A 2020-01-31 2020-01-31 Hollow polygonal columnar structure Pending JP2021123357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020015742A JP2021123357A (en) 2020-01-31 2020-01-31 Hollow polygonal columnar structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020015742A JP2021123357A (en) 2020-01-31 2020-01-31 Hollow polygonal columnar structure

Publications (1)

Publication Number Publication Date
JP2021123357A true JP2021123357A (en) 2021-08-30

Family

ID=77459846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020015742A Pending JP2021123357A (en) 2020-01-31 2020-01-31 Hollow polygonal columnar structure

Country Status (1)

Country Link
JP (1) JP2021123357A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140631U (en) * 1974-09-17 1976-03-26
JP2004075160A (en) * 2002-08-21 2004-03-11 Hirotani Shoten:Kk Self-standing opening container
JP2018079957A (en) * 2016-11-16 2018-05-24 株式会社デンソー Folding structure body
KR101996188B1 (en) * 2018-11-22 2019-07-08 송재호 Folding box
JP2019214916A (en) * 2018-06-14 2019-12-19 帝人株式会社 Movable solar cell mounting frame and movable building skin structure
JP2019214915A (en) * 2018-06-14 2019-12-19 帝人株式会社 Plate material, plate material for rigid body origami structure, and foldable structure
KR102159902B1 (en) * 2020-02-25 2020-09-24 송재호 Folding box

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5140631U (en) * 1974-09-17 1976-03-26
JP2004075160A (en) * 2002-08-21 2004-03-11 Hirotani Shoten:Kk Self-standing opening container
JP2018079957A (en) * 2016-11-16 2018-05-24 株式会社デンソー Folding structure body
JP2019214916A (en) * 2018-06-14 2019-12-19 帝人株式会社 Movable solar cell mounting frame and movable building skin structure
JP2019214915A (en) * 2018-06-14 2019-12-19 帝人株式会社 Plate material, plate material for rigid body origami structure, and foldable structure
KR101996188B1 (en) * 2018-11-22 2019-07-08 송재호 Folding box
US20200165030A1 (en) * 2018-11-22 2020-05-28 Jae Ho Song Folding box
KR102159902B1 (en) * 2020-02-25 2020-09-24 송재호 Folding box

Similar Documents

Publication Publication Date Title
US5115965A (en) Box for containing spherical bodies
ES2466342T3 (en) Interlocking construction system for assembly
US3572535A (en) Collapsible storage container
JP2020023359A (en) Container apparatus
US20080011746A1 (en) Folding Box With Folding Bellows
JP2021123357A (en) Hollow polygonal columnar structure
US5899842A (en) Method for folding plane surfaces
JP2005314007A (en) Foldable container
ES2695304T3 (en) Corrugated cardboard
ES2924281T3 (en) Collapsible article comprising a plurality of collapsibly interconnected collapsible sections
JP2021196021A (en) Folding structure
JPH07276543A (en) Molded paper pipe
RU2731609C2 (en) Element in the form of a sandwich structure with an open core structure consisting of tightly packed tetrahedrons
JP2021089060A (en) Folding structure
Beatini Translational method for designing folded plate structures
Lynch et al. Volumetric origami-based deployable modular space structures with tailorable stiffness
JP2003312715A (en) Foldable frame body and packing material using it
JP2020099651A (en) Block toy and use method thereof
CN110509290A (en) Software actuator and its manufacturing method
JPH0323420B2 (en)
JP6780160B1 (en) Biaxial twisted structure
Li et al. Three-dimensional transformable modular kirigami based programmable architected materials
Adachi et al. Cylindrical Dual Tiling Origami
JP2007284100A (en) Structure for exhibition building and structure combination therefor
JP3174287B2 (en) Corrugated corner cushioning material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240424