JP6780160B1 - Biaxial twisted structure - Google Patents

Biaxial twisted structure Download PDF

Info

Publication number
JP6780160B1
JP6780160B1 JP2019090217A JP2019090217A JP6780160B1 JP 6780160 B1 JP6780160 B1 JP 6780160B1 JP 2019090217 A JP2019090217 A JP 2019090217A JP 2019090217 A JP2019090217 A JP 2019090217A JP 6780160 B1 JP6780160 B1 JP 6780160B1
Authority
JP
Japan
Prior art keywords
sub
twisted
developed view
main
vertices
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019090217A
Other languages
Japanese (ja)
Other versions
JP2020186018A (en
Inventor
有働貴子
有働洋
Original Assignee
Lal−Lal株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lal−Lal株式会社 filed Critical Lal−Lal株式会社
Priority to JP2019090217A priority Critical patent/JP6780160B1/en
Application granted granted Critical
Publication of JP6780160B1 publication Critical patent/JP6780160B1/en
Publication of JP2020186018A publication Critical patent/JP2020186018A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

【課題】簡素な展開図で表現可能な二軸方向にねじれた曲面からなる構造体を提供する。【解決手段】展開図が合同で回転対称的な凸多角形2つをずらして共有辺でつないだ二次元的な形状であり、その展開図を辺に沿って連結して得られる三次元的な形状を特徴とするもので、可展面としての曲面を含み、二軸方向にねじれた外観の構造体であり、箱の場合はフラップおよび折れ線を加えて組み立てることで得られ、容器の場合はその形に成型することで得られ、建築物の場合はその形の骨格を基礎とすることで得られる。【選択図】図1PROBLEM TO BE SOLVED: To provide a structure composed of a curved surface twisted in a biaxial direction which can be expressed by a simple development view. SOLUTION: The development drawing is a two-dimensional shape in which two convex polygons that are congruent and rotationally symmetric are staggered and connected by a common side, and the development drawing is connected along the sides to obtain a three-dimensional shape. It is a structure with a biaxially twisted appearance, including a curved surface as a developable surface. In the case of a box, it is obtained by adding flaps and fold lines, and in the case of a container. Is obtained by molding into that shape, and in the case of buildings, it is obtained by building on the skeleton of that shape. [Selection diagram] Fig. 1

Description

本発明は、簡素な展開図で表現可能な曲面からなるねじれた外観の構造体に関する。 The present invention relates to a twisted appearance structure consisting of curved surfaces that can be represented by a simple development view.

一般的な箱の基本形状は角柱である。中でも直方体は、簡素な展開図で表現可能で、構造が安定で、直交する三軸方向に充填できるため有用である。一方、他の基本形状(例えば、反角柱)が使われることは少なく、多様性に乏しい。また、箱の形状は平坦な面からなる多面体がほとんどであり、曲面体が少ない。箱などで曲面を作り出す方法も限定され、直線状の辺を曲線状にすることによって本来平坦な面を曲面に変えている。 The basic shape of a general box is a prism. Among them, the rectangular parallelepiped is useful because it can be represented by a simple development view, the structure is stable, and it can be filled in the orthogonal triaxial directions. On the other hand, other basic shapes (eg, antiprism) are rarely used and are less diverse. In addition, the shape of the box is mostly a polyhedron composed of flat surfaces, and there are few curved surfaces. The method of creating a curved surface with a box or the like is also limited, and the originally flat surface is changed to a curved surface by making the straight side curved.

そこで、本発明は、簡素な展開図で表現可能で、角柱や反角柱とは異なる基本形状を有し、本質的に曲面体であり、二軸方向にねじれた外観をもち、箱、容器、玩具、建築物等として利用可能な意匠性の高い構造体を提供する。 Therefore, the present invention can be expressed by a simple development view, has a basic shape different from that of a prism or an antiprism, is essentially a curved surface, has a twisted appearance in the biaxial direction, and has a box, a container, and a container. Provide a highly designed structure that can be used as a toy, a building, etc.

〔1〕構造体であって、その三次元的な形状は、合同で回転対称的な凸多角形2つをずらして共有辺でつないだ二次元的な形状の展開図を辺に沿って連結することで得られ、展開図における凸多角形の頂点を主頂点とし、各主頂点は3価で他の主頂点に連結する2本の主辺と主頂点とは異なりかつ展開図における凸多角形内の回転対称的な位置に配置された副頂点に連結する1本の副辺を有し、各副頂点は3価で主頂点と連結する1本の副辺と他の副頂点に連結する2本の副辺を有し、全ての副辺が展開図における凸多角形内の回転対称的な位置に配置されていることを特徴とする、可展面としての曲面を有し、二軸方向にねじれた外観の構造体。展開図がとても簡素である。角柱や反角柱とは異なる基本形状を有する。多面体ではなく曲面体が得られる。主辺と副辺が構造体の稜線を形成する。主辺は構造体の基本骨格を形成し、副辺はデザイン性を高めるのに役立つ。副辺の設計により、上面と下面をほぼ平坦にすると、箱や容器等として利用しやすい。 [1] The three-dimensional shape of the structure is a development of a two-dimensional shape in which two congruent and rotationally symmetric convex polygons are staggered and connected by a common side, and connected along the sides. The vertices of the convex polygon in the developed view are the main vertices, and each main vertex is trivalent and is different from the two main vertices and the main vertices connected to the other main vertices. It has one sub-vertex connected to the sub-vertexs arranged at rotationally symmetrical positions in the square, and each sub-vertex is trivalently connected to the main vertex and one sub-vertex connected to the other sub-vertex. It has a curved surface as an extendable surface, characterized in that it has two sub-sides, and all the sub-sides are arranged at rotationally symmetric positions in the convex polygon in the developed view. A structure with an axially twisted appearance. The development view is very simple. It has a basic shape different from that of prisms and antiprisms. A curved surface is obtained instead of a polyhedron. The main side and the sub side form the ridgeline of the structure. The main side forms the basic skeleton of the structure, and the sub-side helps to enhance the design. By designing the secondary side, if the upper and lower surfaces are made almost flat, it can be easily used as a box or container.

〔2〕前記の構造体は、展開図における凸多角形が正多角形であることを特徴とする、〔1〕に記載の構造体。均整の取れた優美な外観の構造体が得られる。 [2] The structure according to [1], wherein the convex polygon in the developed view is a regular polygon. A well-proportioned and graceful appearance structure is obtained.

〔3〕前記の構造体は、展開図にフラップと折れ線を加えて組み立てられる箱であることを特徴とする、〔1〕に記載の構造体。箱の場合、フラップは構造体を安定化させる、開け口を形成する等の用途に用いる。折れ線は、主辺や副辺に沿って設けられる [3] The structure according to [1], wherein the structure is a box assembled by adding flaps and polygonal lines to a developed view . In the case of boxes, the flaps are used to stabilize the structure, form openings, etc. The polygonal line is provided along the main side and the sub side .

〔4〕前記の構造体は、展開図を組み立てて得られる三次元的な形状に成型された容器であることを特徴とする、〔1〕に記載の構造体。 [4] The structure according to [1], wherein the structure is a container molded into a three-dimensional shape obtained by assembling a developed view .

〔5〕前記の構造体は、構造体の回転対称軸を回転軸として、回転軸方向の流れに対して流体中で回転することを特徴とする、〔1〕に記載の構造体。 [5] The structure is a rotation axis of rotational symmetry axis of the structure, characterized in that it rotates in the fluid relative to the flow direction of the rotation axis, the structure according to [1].

本発明では、次のような効果が得られる。
(1)簡素な展開図で表現可能な、可展面からなる曲面体である。
(2)反角柱とは異なる基本形状で、二軸方向にねじれた外観の構造体である。
(3)意匠性の高い箱、容器、建築物等として利用できる。
(4)流体中で回転する構造体やぎこちなく転がる構造体が得られる。
In the present invention, the following effects can be obtained.
(1) A curved surface made of a developable surface that can be expressed by a simple development view.
(2) The structure has a basic shape different from that of an antiprism and has a twisted appearance in the biaxial direction.
(3) It can be used as a highly designed box, container, building, etc.
(4) A structure that rotates in a fluid or a structure that rolls awkwardly can be obtained.

ねじれ構造体(正方形型)の斜視図Perspective view of a twisted structure (square type) 正方形型ねじれ構造体とペンローズの正方形Square twisted structure and Penrose square 正方形型ねじれ構造体の展開図と種類 Development view and type of square twisted structure 正多角形型ねじれ構造体の展開図と断面図 Development view and cross-sectional view of regular polygonal twisted structure 長方形型ねじれ構造体の展開図 Development view of rectangular twisted structure 正方形型および長方形型ねじれ構造体の設計例Design examples of square and rectangular twisted structures 直線状および曲線状の辺を含む正方形型ねじれ構造体の設計例Design example of a square twisted structure including straight and curved sides フラップ等を含む正方形型ねじれ箱の展開図の例An example of a development view of a square twisted box including flaps, etc. 流体中で回転する正方形型ねじれ構造体の例Example of a square twisted structure that rotates in a fluid ぎこちなく転がる長方形型ねじれ構造体の例An example of a rectangular twisted structure that rolls awkwardly

この発明は、数々の基礎形状の多面体を調べている過程で発想されたものである。特に、およそ球状の多面体のうち、頂点の価数が3価と4価で四角形だけからなる多面体の一種からヒントを得て、それを発展させたものである。ただし、本発明の構造体は多面体ではなく、可展面からなる曲面体である(可展面:伸縮させずに平面上に展開できる曲面)。 This invention was conceived in the process of investigating a number of polyhedra with basic shapes. In particular, it is a development of a polyhedron with vertices of trivalent and tetravalent, which is inspired by a type of polyhedron consisting only of quadrilaterals, among the approximately spherical polyhedra. However, the structure of the present invention is not a polyhedron, but a curved surface composed of a developable surface (develable surface: a curved surface that can be developed on a plane without expansion and contraction).

構造体の展開図はとても簡素であるが、それから得られる三次元的な形状は複雑である。これは、角柱や反角柱とは異なる基本形状である。二軸方向にねじれ、均整のとれた優美な外観の構造体である。上面と下面がほぼ平坦な構造体は、準安定的に水平面上に静置することができるため、箱、容器、建築物等の構造体として利用可能である。特に、正方形型・長方形型・正六角形型ねじれ構造体はその形状が空間充填立体に似ているため、箱や容器として収納等に有用である。さらに、ねじれ構造により特有な動きが生み出される。風車のように回転する構造体や、ぎこちなく転がる構造体が得られ、玩具や部品等としても利用可能である。 The development of the structure is very simple, but the three-dimensional shape obtained from it is complicated. This is a basic shape that is different from prisms and antiprisms. It is a structure that is twisted in the biaxial direction and has a well-proportioned and elegant appearance. A structure having a substantially flat upper surface and a substantially flat lower surface can be used as a structure such as a box, a container, or a building because it can be placed on a horizontal plane in a metastable manner. In particular, the square, rectangular, and regular hexagonal twisted structures are useful for storage as boxes and containers because their shapes resemble space-filling solids. In addition, the twisted structure creates a unique movement. A structure that rotates like a windmill and a structure that rolls awkwardly can be obtained, and can also be used as toys and parts.

図1は、正方形型のねじれ構造体の斜視図である。構造体の稜線である辺を実線(見える部分)と破線(隠れた部分)で示した。構造体は多面体ではなく曲面体である。構造体は規則的に大きくねじれた外観を有する。ねじれは左右方向と上下方向に対して見られる。左右方向(水平方向)については、構造体の中心を貫く上下軸を回転軸として、構造体の中央領域の上面と下面が反対方向にねじれている。上下方向(鉛直方向)については、構造体の中心から構造体の対辺または対角方向に延ばした水平面上にある軸を回転軸として、構造体の周囲領域の上面と下面がねじれている。(正方形型ねじれ構造体の場合、対辺的または対角的な位置にある周囲領域の上面と下面が反対方向にねじれている)。上面と下面の中央領域はやや平坦であり、構造体を準安定的に置くことができる。それに対して、周辺領域はうねるように大きく曲がっている。構造体を横から見ると、辺が下面の頂点から上面の頂点につながり、その辺を軸として2つの面がくの字型に会合し、緩やかに旋回するように湾曲する。これが規則的に繰り返される。 FIG. 1 is a perspective view of a square-shaped twisted structure. The sides that are the ridges of the structure are shown by solid lines (visible parts) and broken lines (hidden parts). The structure is not a polyhedron but a curved surface. The structure has a regularly large twisted appearance. Twisting is seen in the horizontal and vertical directions. In the left-right direction (horizontal direction), the upper and lower surfaces of the central region of the structure are twisted in opposite directions with the vertical axis penetrating the center of the structure as the rotation axis. In the vertical direction (vertical direction), the upper surface and the lower surface of the peripheral region of the structure are twisted with the axis on the horizontal plane extending from the center of the structure to the opposite side or the diagonal direction as the rotation axis. (In the case of a square twisted structure, the top and bottom surfaces of the perimeter area in diagonal or diagonal positions are twisted in opposite directions). The central regions of the upper and lower surfaces are rather flat, allowing the structure to be placed metastable. On the other hand, the surrounding area is curved like a swell. When the structure is viewed from the side, the sides are connected from the apex of the lower surface to the apex of the upper surface, and the two surfaces meet in a dogleg shape with the side as an axis and are curved so as to gently swivel. This is repeated regularly.

この構造体は反角柱と似ているように見えるが、構造が異なる。反角柱は多面体であり、1)辺は全て直線状で、2)面は全て平坦で、3)頂点は4価で、4)ねじれは一軸方向で(左右軸)、5)ねじれを構成する面は三角形である。一方、ねじれ構造体は曲面体であり、1)辺が曲線状になり、2)面が湾曲し、3)頂点は3価で、4)ねじれは二軸方向で(左右軸と上下軸)、5)ねじれを構成する面は湾曲した四角形または五角形である。ただし、後述のように、ねじれ構造体の極限的な形状として反角柱が得られる。 This structure looks similar to an antiprism, but the structure is different. The antiprism is a polyhedron, 1) all sides are straight, 2) all faces are flat, 3) vertices are tetravalent, 4) twist is uniaxial (left and right axis), and 5) twist. The face is triangular. On the other hand, the twisted structure is a curved surface, 1) the sides are curved, 2) the surface is curved, 3) the vertices are trivalent, and 4) the twist is biaxial (left-right axis and up-down axis). 5) The surfaces that make up the twist are curved quadrangles or pentagons. However, as will be described later, an antiprism can be obtained as an extreme shape of the twisted structure.

図2の左に、正方形型のねじれ構造体を真上から見た平面図とその稜線を示した(実線:見える部分、破線:隠れた部分)。上面と下面の中央領域(この例では中央の正方形の領域)がねじれた位置にある。中央領域は、ほぼ平面的であるが、角の部分が傾斜している。周囲領域は、外側に向かってより傾斜しており、場所によって傾斜角度が変化する。後述の展開図で直線状の辺が、立体ではその多くが曲線状となる。これは、展開図の辺を曲線状にすることで作り出される曲面体とは本質的に異なる。図2の右に、不可能図形であるペンローズの正方形とその稜線を示した。ねじれ構造体と比較すると、周囲領域が似ているが、内側の辺の連結が異なっていることが分かる。 On the left side of FIG. 2, a plan view of the square-shaped twisted structure viewed from directly above and its ridgeline are shown (solid line: visible part, broken line: hidden part). The central areas of the top and bottom surfaces (in this example, the central square area) are in twisted positions. The central region is almost flat, but the corners are sloping. The surrounding area is more inclined toward the outside, and the inclination angle changes depending on the location. In the developed view described later, the straight sides are mostly curved in the solid. This is essentially different from the curved surface created by curving the sides of the developed view. On the right side of FIG. 2, the Penrose square, which is an impossible figure, and its ridgeline are shown. Compared with the twisted structure, it can be seen that the surrounding area is similar, but the connection of the inner sides is different.

図3は、正方形型ねじれ構造体の展開図を示す。展開図は、立体の三次元的な形状を平面上に展開することで二次元的な形状として表現したものである。これは、初等幾何学で見られる展開図のことであり、フラップ等の付加的な要素を含まないものである。例えば、立方体の展開図は、6つの合同な正方形の平面配置で示される。ただし、ここでいう展開図は、同じ三次元的な形状を表現している同等な展開図を含む。例えば、立方体が11種類の異なる展開図で表現できるように、同じ形を表している展開図を同等とする。 FIG. 3 shows a developed view of a square twisted structure. The developed view is expressed as a two-dimensional shape by developing a three-dimensional shape of a three-dimensional object on a plane. This is a crease pattern found in elementary geometry and does not include additional elements such as flaps . For example, a crease pattern of a cube is shown in a plane arrangement of six congruent squares. However, the developed view referred to here includes an equivalent developed view expressing the same three-dimensional shape. For example, the developments representing the same shape are equivalent so that the cube can be represented by 11 different developments .

ねじれ構造体の展開図は、合同で回転対称的な凸多角形2つが共有辺でずれてつながった形をしている。ここで、合同とは形と大きさが同じで重なり合う図形のことである。回転対称とは回転対称軸を回転軸として図形を360/n度(nは2以上の整数)回転させたとき元の図形と重なり合う対称性を意味する(n回対称と呼ぶ)。凸多角形とは全ての内角が180度未満である多角形であり、各辺は直線状の線分で構成される。正方形型ねじれ構造体の展開図の場合、凸多角形の形状が正方形であり(内角は全て90度で4回対称)、2つの合同な正方形がずれて共有する辺においてつながった形をしている。これは、一般的な角柱の展開図よりも簡素である。 The developed view of the twisted structure has a shape in which two congruent and rotationally symmetric convex polygons are connected by being displaced at a common side. Here, congruence is a figure having the same shape and size and overlapping. Rotational symmetry means symmetry that overlaps with the original figure when the figure is rotated 360 / n degrees (n is an integer of 2 or more) with the axis of rotation symmetry as the axis of rotation (called n-fold symmetry). A convex polygon is a polygon in which all internal angles are less than 180 degrees, and each side is composed of straight line segments. In the case of the developed view of the square twisted structure, the shape of the convex polygon is square (all internal angles are 90 degrees and 4 times symmetric), and the two congruent squares are offset and connected at the shared side. There is. This is simpler than a typical prism development.

2つの合同な凸多角形のつなぎ方には、幾つかのタイプがある。図では、上方向にずらしたもの(中央上)、下方向にずらしたもの(左上)、また、辺の中点までずらしたもの(右上)の3種類を示した。また、その下に、それから得られる立体構造の平面図を示している。左と中央の展開図は、2つの凸多角形を同じ幅だけ共有辺に沿って反対方向にずらしたものであり、これらは展開図が鏡像であるとともに、それから得られる立体も鏡像体(キラル)となる。紙等で模型を作る場合、同じ展開図であっても、山折りまたは谷折りで鏡像体が得られる。一方、右の展開図の場合、その鏡像も同じ立体構造を表現し、鏡像体がない。また、この場合、上面と下面の中央領域がなくなる。 There are several types of ways to connect two congruent convex polygons. In the figure, three types are shown: one that is shifted upward (upper center), one that is shifted downward (upper left), and one that is shifted to the midpoint of the side (upper right). Below that, a plan view of the three-dimensional structure obtained from it is shown. The left and center crease patterns are two convex polygons offset in opposite directions along the common side by the same width, and these are mirror images of the crease pattern and the solids obtained from them are also enantiomers (chiral). ). When making a model from paper or the like, a mirror image can be obtained by folding a mountain or a valley even if the same development is made. On the other hand, in the case of the developed view on the right, the mirror image also expresses the same three-dimensional structure, and there is no enantiomer. Further, in this case, the central regions of the upper surface and the lower surface are eliminated.

図4のように、ねじれ構造体は四角形に限らず、五角形、六角形等と拡張することができる。ねじれ構造体の断面を見ると、周囲領域が“く”の字型をしている。くの字の折れ曲がった部分が側面の稜線であり、そこで上下の二つの面が会合する。その面はおよそ同じ角度を保ちながら稜線の軸を中心に旋回するように湾曲する。およその角度δは二面角の式を用いて、正方形型では90度、正五角形型では76.3度、正六角形型では70.5度となる(正三角形型の場合は180度となる)。 As shown in FIG. 4, the twisted structure is not limited to the quadrangular type , and can be expanded to a pentagonal type , a hexagonal type, or the like. Looking at the cross section of the twisted structure, the surrounding area has a "dogleg" shape. The bent part of the dogleg is the ridgeline of the side, where the two upper and lower faces meet. The surface curves so as to swivel around the axis of the ridge while maintaining approximately the same angle. The approximate angle δ is 90 degrees for the square type, 76.3 degrees for the regular pentagon type, and 70.5 degrees for the regular hexagon type (180 degrees for the equilateral triangle type) using the formula of the dihedral angle.

ねじれ構造体は正多角形型だけに限らず、辺の長さを変えて設計することもできる。図5では長方形型ねじれ構造体の基本展開図を示している。長方形型のように、辺の長さが変わっても構造体の中央領域はおよそ平坦であるが、縦横比が大きくなると対角線方向にしなりはじめる(中央領域の角付近が傾斜している)。 The twisted structure is not limited to the regular polygon type, and can be designed by changing the length of the side. FIG. 5 shows a basic development view of a rectangular twisted structure. Like the rectangular shape, the central region of the structure is approximately flat even if the length of the sides changes, but as the aspect ratio increases, it begins to become diagonal (the corners of the central region are inclined).

図6に、正方形型および長方形型ねじれ構造体のより詳しい展開図を示す。
合同な凸n角形(nは4以上の整数)の場合は、主要な頂点(主頂点)が2n個あり、これがねじれ構造体の骨格を作る頂点となる。ただし、展開図において2つの凸多角形の頂点が組み立ての際に重ならない位置に配置する必要がある。四角形型ねじれ構造体の場合、主頂点は8個である(図の[1]から[8])。また、主頂点を結ぶ辺(主辺)は2n本ある。四角形型ねじれ構造体の場合、主辺は8本(展開図の実線)ある。
FIG. 6 shows a more detailed development view of the square and rectangular twisted structures.
In the case of a congruent convex n-sided polygon (n is an integer of 4 or more), there are 2n main vertices (main vertices), which are the vertices that make up the skeleton of the twisted structure. However, in the developed view, it is necessary to arrange the vertices of the two convex polygons at positions where they do not overlap during assembly. In the case of a quadrilateral twisted structure, there are eight main vertices ([1] to [8] in the figure). In addition, there are 2n sides (main sides) connecting the main vertices. In the case of a quadrangular twisted structure, there are eight main sides (solid lines in the developed view).

主頂点に加えて、副次的な頂点(副頂点)を展開図の凸多角形内の回転対称的な位置に取ることができる。副頂点は構造体の形状をよりデザイン的にするのに有用である。図6の例では、副頂点が上面と下面に各4つの計8個ある(図の[a]から[h])。各々の副頂点は3価であり、1つの主頂点と連結し(例:[a]→[2])、他の2つの副頂点と連結する(例:[a]→[b]および[a]→[d])。この操作で得られる副次的な辺(副辺)は、直線状でも曲線状でもよく、その全てについて展開図における凸多角形内の回転対称的な位置に配置する。図6の例では、副辺が直線状で上面と下面に各8本の計16本ある(展開図の破線)。 In addition to the main vertex, the secondary vertex (sub-vertex) can be located at a rotationally symmetric position within the convex polygon of the developed view. Subvertices are useful for making the shape of the structure more designable. In the example of FIG. 6, there are a total of eight sub-vertices, four on the upper surface and four on the lower surface ([a] to [h] in the figure). Each sub-vertex is trivalent, concatenated with one major vertex (eg [a] → [2]) and with the other two sub-vertices (eg [a] → [b] and [ a] → [d]). The secondary sides (secondary sides) obtained by this operation may be linear or curved, and all of them are arranged at rotationally symmetric positions in the convex polygon in the developed view . In the example of FIG. 6, the sub-sides are straight and there are a total of 16 lines, 8 on each of the upper surface and the lower surface (broken line in the developed view).

前述の中央領域および周囲領域は、副辺を用いて定義することができる。構造体の上面についてみると、中央領域は副頂点[a][b][c][d]で囲まれた領域であり、周領域は中央領域より外側の領域である。 The above-mentioned central region and peripheral region can be defined by using sub-edges. As for the upper surface of the structure, the central region is a region surrounded by the minor vertex [a] [b] [c ] [d], ambient region is a region outside the central region.

正方形型ねじれ構造体を例にとり、その構造の特徴を示す。展開図において、共有辺に沿った凸多角形のずれ幅をA、中央領域の幅をBとすると、正方形の辺の長さXは2A+Bである。ここで、副辺を主辺と平行にとると、その幅はAであり、1つの主頂点と2つの副辺が直線上に並び(例:主頂点[2]と副頂点[a][d]が直線上に並ぶ)、中央領域は正方形になる。この場合、近似的に、ねじれ箱の高さH、ねじれ角度(上下の中央領域の傾斜角度)εは次のようになる。
Taking a square twisted structure as an example, the characteristics of the structure are shown. In the developed view , assuming that the deviation width of the convex polygon along the common side is A and the width of the central region is B, the length X of the side of the square is 2A + B. Here, if the sub-edge is taken parallel to the main edge, its width is A, and one primary vertex and two sub-edges are aligned on a straight line (example: principal vertex [2] and sub-vertex [a] [ d] line up on a straight line), and the central area becomes a square. In this case, approximately, the height H of the twist box and the twist angle (tilt angle of the upper and lower central regions) ε are as follows.

長方形型ねじれ構造体はより複雑になる。中央領域はより湾曲する。上面の主頂点(図では[2][4][6][8])を対角
的に結ぶ2つの測地線は長さが異なり、長い測地線の方向に中央領域がしなる(例:測地線[2]-[6]よりも測地線[4]-[8]が長い)。また、中央領域の長辺側と短辺側における高さが異なり、長辺側が高い。これらは長辺と短辺の長さの比が大きくなるほど顕著になる。
The rectangular twisted structure becomes more complex. The central region is more curved. The two geodesics that diagonally connect the main vertices of the top surface ([2] [4] [6] [8] in the figure) have different lengths, and the central region bends in the direction of the long geodesic (example: Geodesic line [4]-[8] is longer than geodesic line [2]-[6]). Further, the heights on the long side and the short side of the central region are different, and the height on the long side is higher. These become more prominent as the ratio of the lengths of the long side to the short side increases.

図7では、正方形型ねじれ構造体を例にとり、副頂点の位置を回転対称性を保ちながら変えたものである。上の図は副辺が直線状の例である。この場合、中央領域はほぼ平坦な正方形の面、周領域は湾曲した五角形の面になる。一方、下の図は副辺が曲線状の例である。この場合、中央領域は双曲状の四角形、周領域の湾曲した面は線分と弧の辺からなる五角形になる。中央領域の各辺の中点を結ぶ部分はほぼ平坦で、角の部分が傾斜する。 In FIG. 7, taking a square twisted structure as an example, the positions of the sub-vertexs are changed while maintaining rotational symmetry. The figure above is an example where the secondary side is straight. In this case, the central region surface of the substantially flat square, ambient region is a pentagonal plane curved. On the other hand, the figure below is an example in which the secondary side is curved. In this case, the central region hyperbolic square, curved surface of the ambient region is a pentagon consisting of lines and arcs sides. The part connecting the midpoints of each side of the central region is almost flat, and the corner part is inclined.

各々の副頂点をそれと連結している主頂点に近づけてゆくと(例えば、[a]→[2]、[b]→[4]、[c]→[6]、[d]→[8]等)、その極限として反角柱を得る。このとき、ねじれ構造体の側面を構成する面が平坦な三角形になるとともに、主頂点が4価になる。 When each sub-vertex is brought closer to the main vertex connected to it (for example, [a] → [2], [b] → [4], [c] → [6], [d] → [8] ] Etc.), obtain an antiprism as the limit. At this time, the surface forming the side surface of the twisted structure becomes a flat triangle, and the main apex becomes tetravalent.

図1から図10に記載されたねじれ構造体は、実際に、紙やプラスチックシートを用いて試作されたものである。 The twisted structures shown in FIGS. 1 to 10 are actually prototypes using paper or a plastic sheet.

ねじれ構造体は、その展開図から曲面が形成される。例えば、紙やプラスチックシートなどの通常平坦で可撓性があり伸縮しにくい素材でねじれ構造体を作ると、曲面の形成にともなってひずみが蓄えられる。つまり、このような素材で構造体を作ると、面が平坦な多面体型の箱と比べて構造が不安定化する。そのため、構造を十分な強度で維持する工夫(接着、掛合等)が必要になる。 A curved surface is formed from the developed view of the twisted structure. For example, when a twisted structure is made of a normally flat, flexible, and hard-to-stretch material such as paper or plastic sheet, strain is accumulated as the curved surface is formed. That is, when a structure is made of such a material, the structure becomes unstable as compared with a polyhedral box having a flat surface. Therefore, it is necessary to devise (adhesion, engagement, etc.) to maintain the structure with sufficient strength.

一方、容器であれば(例えばプラスチック製など)、鋳型を作り、射出成型等の方法で作製するとよい。容器の場合は、最初からねじれた外観で成型されるため、それに伴うひずみの生成はない。また、建造物であれば、主辺と副辺にあたる骨格を作れば、全体で支え合う形になる。補強のためには、構造を三角分割または四角分割するように副次的な骨格を設ければよい。 On the other hand, if it is a container (for example, made of plastic), it is preferable to make a mold and make it by a method such as injection molding. In the case of a container, since it is molded with a twisted appearance from the beginning , there is no resulting strain. Also, in the case of a building, if you create a skeleton that corresponds to the main side and the sub side, it will support each other as a whole. For reinforcement, a secondary skeleton may be provided to divide the structure into triangulations or squares.

図8に、紙やプラスチックシート等の素材を折り曲げて箱とする場合の付加的な要素を含む展開図の例を示す。これは、展開図に付加的な要素としてフラップ等を加えたものである。左上の付加的な要素を含む展開図は、接着剤等を一切使うことなく、折れ線に沿って曲げて組み立てると安定した正方形型ねじれ構造体ができる(山折りまたは谷折りで鏡像体ができる)。この場合、構造を安定化させているのは、箱の角部分(主頂点近傍)を支えるコーナーフラップ[10]と側面を支えるサイドフラップ[11]である。構造をさらに安定化させる必要がある場合、接着(左下、接着フラップ[12]を接着面とする例)や掛合(右上、掛合片[T]をスリット[S]に差し込む例)等の方法を使うことができる。 FIG. 8 shows an example of a development view including additional elements when a material such as paper or a plastic sheet is folded into a box. This is a development drawing with flaps and the like added as additional elements . The developed view including the additional elements on the upper left can be assembled by bending along the polygonal line without using any adhesive, etc., to form a stable square twisted structure (a mirror image can be formed by mountain fold or valley fold). .. In this case, it is the corner flaps [10] that support the corners (near the main apex) of the box and the side flaps [11] that support the sides that stabilize the structure. If the structure needs to be further stabilized, methods such as bonding (lower left, example with the adhesive flap [12] as the bonding surface) and engagement (upper right, example of inserting the engagement piece [T] into the slit [S]) can be used. Can be used.

ねじれ構造体は回転対称の立体であり、多くの場合、鏡像体を有する。紙等で構造体を作ると風車の様になる。実際に、構造体の回転対称軸に軸をつけて息を吹きかけると回転する。図9に、流体中での正方形型ねじれ構造体の動きを示した。図のように、構造体の回転対称軸を回転軸として、回転軸の方向を流れの方向と同じになるように構造体を流体中に配置すると、構造体は流体中で回転する。この例では、左側から右側に向かう流れに対して、ねじれ構造体は時計回りに回転する。鏡像体であれば、反対方向に回転する。簡単には、構造体の平面図において中央領域が傾斜している方向に回転する。 The twisted structure is a rotationally symmetric solid and often has an enantiomer. If you make a structure out of paper, it will look like a windmill. Actually, when the axis is attached to the axis of rotational symmetry of the structure and breath is blown, it rotates. FIG. 9 shows the movement of the square twisted structure in a fluid. As shown in the figure, when the structure is arranged in the fluid so that the axis of rotation symmetry of the structure is the axis of rotation and the direction of the axis of rotation is the same as the direction of flow, the structure rotates in the fluid. In this example, the twisted structure rotates clockwise with respect to the flow from left to right. If it is an enantiomer, it rotates in the opposite direction. Simply, in the plan view of the structure, the central region rotates in the direction of inclination.

動きに関わるもう一つの例を挙げる。図10は、長方形型ねじれ構造体の特殊な例であり、図6における中央領域の縦幅Cを0としたもである(B>C、Y=2A)。この構造体を斜面に置くと進行方向を小刻みに変えながらぎこちなく転がる。 Here is another example of movement. Figure 10 is a special case of rectangular-type twisted structure, it's also set to 0 the vertical width C of the central region in FIG. 6 (B> C, Y = 2A). When this structure is placed on a slope, it rolls awkwardly while changing the direction of travel in small steps.

δ:側面の角度
ε:ねじれ角度
H:箱の高さ
1〜8:主頂点
a〜h:副頂点
X:四角形の横幅
Y:四角形の縦幅
A:2つの四角形のずれ幅
B:中央領域の横幅
C:中央領域の縦幅
10:コーナーフラップ
11:サイドフラップ
12:接着フラップ
S:スリット
T:掛合片
 
δ: Side angle ε: Twist angle
H: Box height
1-8: Main apex
a to h: Sub-vertex
X: Width of rectangle
Y: Vertical width of the rectangle
A: Misalignment width of two quadrangles
B: Width of the central area
C: Vertical width of the central area
10: Corner flap
11: Side flap
12: Adhesive flap
S: Slit
T: Kakeya
 

Claims (5)

構造体であって、その三次元的な形状は、合同で回転対称的な凸多角形2つをずらして共有辺でつないだ二次元的な形状の展開図を辺に沿って連結することで得られ、展開図における凸多角形の頂点を主頂点とし、各主頂点は3価で他の主頂点に連結する2本の主辺と主頂点とは異なりかつ展開図における凸多角形内の回転対称的な位置に配置された副頂点に連結する1本の副辺を有し、各副頂点は3価で主頂点と連結する1本の副辺と他の副頂点に連結する2本の副辺を有し、全ての副辺が展開図における凸多角形内の回転対称的な位置に配置されていることを特徴とする、可展面としての曲面を有し、二軸方向にねじれた外観の構造体。It is a structure, and its three-dimensional shape is formed by connecting two congruent and rotationally symmetric convex polygons that are connected by a common side by shifting the development of the two-dimensional shape along the side. Obtained, the vertices of the convex polygon in the developed view are the main vertices, and each main vertex is different from the two main sides and the main vertices connected to the other main vertices by trivalence, and in the convex polygon in the developed view. It has one sub-side that connects to the sub-vertexs arranged at rotationally symmetric positions, and each sub-vertex has one sub-side that connects to the main vertex with a trivalent value and two that connects to the other sub-vertices. It has a curved surface as an extendable surface and is biaxially characterized in that all the sub-sides are arranged at rotationally symmetrical positions in the convex polygon in the developed view. A structure with a twisted appearance. 前記の構造体は、展開図における凸多角形が正多角形であることを特徴とする、請求項1に記載の構造体。 The structure according to claim 1, wherein the convex polygon in the developed view is a regular polygon. 前記の構造体は、展開図にフラップと折れ線を加えて組み立てられる箱であることを特徴とする、請求項1に記載の構造体。 The structure according to claim 1, wherein the structure is a box assembled by adding flaps and polygonal lines to a developed view . 前記の構造体は、展開図を組み立てて得られる三次元的な形状に成型された容器であることを特徴とする、請求項1に記載の構造体。 The structure according to claim 1, wherein the structure is a container molded into a three-dimensional shape obtained by assembling a developed view . 前記の構造体は、構造体の回転対称軸を回転軸として、回転軸方向の流れに対して流体中で回転することを特徴とする、請求項1に記載の構造体。
The structure is a rotation axis of rotational symmetry axis of the structure, characterized in that it rotates in the fluid relative to the flow direction of the rotation axis, the structure of claim 1.
JP2019090217A 2019-05-10 2019-05-10 Biaxial twisted structure Active JP6780160B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019090217A JP6780160B1 (en) 2019-05-10 2019-05-10 Biaxial twisted structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019090217A JP6780160B1 (en) 2019-05-10 2019-05-10 Biaxial twisted structure

Publications (2)

Publication Number Publication Date
JP6780160B1 true JP6780160B1 (en) 2020-11-04
JP2020186018A JP2020186018A (en) 2020-11-19

Family

ID=73022420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019090217A Active JP6780160B1 (en) 2019-05-10 2019-05-10 Biaxial twisted structure

Country Status (1)

Country Link
JP (1) JP6780160B1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792470A (en) * 1987-04-21 1988-12-20 Clark Harold E Twisted boxboard furniture
US7665653B2 (en) * 2005-12-15 2010-02-23 Graphic Packaging International, Inc. Twisted carton
JP2008196549A (en) * 2007-02-09 2008-08-28 Toyoda Gosei Co Ltd Mounting structure
JP2015145260A (en) * 2014-01-31 2015-08-13 日本テトラパック株式会社 Manufacturing method of package, and package
JP6931144B2 (en) * 2017-05-16 2021-09-01 国立大学法人 東京大学 Manufacturing method of sensor unit and sensor element

Also Published As

Publication number Publication date
JP2020186018A (en) 2020-11-19

Similar Documents

Publication Publication Date Title
US8157608B1 (en) One-piece polyhedral construction modules
Demaine et al. Origamizer: A practical algorithm for folding any polyhedron
US5169352A (en) System of structural form bodies
US20020078653A1 (en) Card like construction element
US4964834A (en) Triangle based interconnecting block set
US20110190106A1 (en) Folding pattern
JP6440044B1 (en) Paneled geometric puzzle
WO2003022384A1 (en) A system and set of intercleaving dichotomized polyhedral elements and extensions
US4007555A (en) Combination of block units
US4753622A (en) Building block kit
JP2005524502A (en) Connectable elements for structure assembly sets
JP6780160B1 (en) Biaxial twisted structure
US2936939A (en) Box structures
US6386936B1 (en) Building block set
US20230406564A1 (en) Biaxially twisted structure
JP5637477B2 (en) Foldable hollow polyhedron
JP2590253Y2 (en) Simple building model
JPH07291261A (en) Method of forming polyhedron and use of material therefor
WO2000002634A1 (en) Polygonal folding object
US20230133745A1 (en) Basic connecting block and connecting block group
KR101971641B1 (en) Construction of paper ware
JP6914414B1 (en) Top toys
Zalgaller Some bendings of a long cylinder
JPH04133882U (en) Polyhedral toys and cube toys
JP3039283U (en) Mosaic pieces and combinations

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190511

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190511

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190711

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20190906

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200708

R150 Certificate of patent or registration of utility model

Ref document number: 6780160

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370