JP2019214915A - Plate material, plate material for rigid body origami structure, and foldable structure - Google Patents

Plate material, plate material for rigid body origami structure, and foldable structure Download PDF

Info

Publication number
JP2019214915A
JP2019214915A JP2018113925A JP2018113925A JP2019214915A JP 2019214915 A JP2019214915 A JP 2019214915A JP 2018113925 A JP2018113925 A JP 2018113925A JP 2018113925 A JP2018113925 A JP 2018113925A JP 2019214915 A JP2019214915 A JP 2019214915A
Authority
JP
Japan
Prior art keywords
composite material
rigid
soft
hard
hard composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018113925A
Other languages
Japanese (ja)
Inventor
悠生 水田
Hisao Mizuta
悠生 水田
葉子 定延
Yoko Sadanobu
葉子 定延
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Teijin Aramid BV
Original Assignee
Teijin Ltd
Teijin Aramid BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd, Teijin Aramid BV filed Critical Teijin Ltd
Priority to JP2018113925A priority Critical patent/JP2019214915A/en
Publication of JP2019214915A publication Critical patent/JP2019214915A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a plate material for use in a rigid body origami structure by being rigid and light in weight, and a foldable structure composed of the plate material.SOLUTION: A plate material is constituted of: at least two hard composite parts (R) being fiber-reinforced resin composites composed of reinforcing fibers and first matrix resins; and substantially-linear soft composite parts (S) being bendable portions composed of reinforcing fibers and second matrix resins which are arranged while contacting with both a substantially-linear edge of one hard composite part (R) and a substantially-linear edge of the other hard composite part (R). A thickness T (m) of the hard composite part (R) and rotation torque Tr (Nm/m) per unit length of the soft composite part (S) by elastic restoration which is generated when folding the two hard composite parts (R) which adjoin each other with the soft composite parts (S) sandwiched therebetween by an angle of 90° with the same as an axis satisfy a relationship of 50<Tr/T<50000.SELECTED DRAWING: Figure 3

Description

本発明は板材に関し、詳しくは、剛体折紙構造用板材およびそれを用いた可折構造物に関する。   The present invention relates to a board, and more particularly to a board for rigid origami structure and a foldable structure using the same.

剛体折紙を応用した構造は、折れ線周りの折り畳み操作で平面形状から三次元構造を容易に形成することができる。可逆的な折り畳みと展開ができ、折り畳むことによって、可搬性や収納性のある大きさと形状に変形することができることから、可動性または可変性の建築物への応用が期待されている。   A structure using rigid origami can easily form a three-dimensional structure from a planar shape by a folding operation around a folding line. Since it can be reversibly folded and unfolded and can be transformed into a portable and storable size and shape by folding, it is expected to be applied to movable or variable buildings.

特に、多角形の面内の配置が文様群で記述される二次元の繰り返しパターンを持つ場合、その折紙構造は折紙テッセレーションと呼ばれ、意匠性の高さとともに、折り畳みの変形の制御に優れ、さらに、部分的に展開した構造が高い構造剛性を有することから、構造補強用途に利用され、また宇宙空間で利用される太陽電池に用いられた例がある。しかし、工業的応用例は、いまだに限られたものでしかない。   In particular, when the in-plane arrangement of a polygon has a two-dimensional repeating pattern described by a pattern group, the origami structure is called origami tessellation, and it has excellent design and excellent control of folding deformation. Further, since the partially expanded structure has a high structural rigidity, there is an example in which the structure is used for structural reinforcement and used for a solar cell used in outer space. However, industrial applications are still limited.

その理由の一つは、構造物としての堅牢性を求めて剛体面を鉄やアルミニウム等の金属の板材で構成し、折れ線を金属製のヒンジで接合して剛体折紙構造を作ると、重量が大きいために、折り畳むことはできても可搬性に劣り、慣性が大きいため、可動性を実現するために大掛かりな機構を必要とすることにある。   One of the reasons is that the rigid surface is made of a metal plate such as iron or aluminum in order to obtain the rigidity of the structure, and the rigid lines are joined by metal hinges to create a rigid origami structure. Because of its large size, it can be folded but is inferior in portability and has a large inertia, so that a large-scale mechanism is required to realize movability.

本発明は、堅牢でありながら軽量であることで、可動性に優れる剛体折紙構造に用いる板材を提供することを課題とし、さらにそれからなる可折構造物を提供することを課題とする。   An object of the present invention is to provide a plate material used for a rigid origami structure which is excellent in movability because it is robust and lightweight, and further aims to provide a foldable structure comprising the same.

本発明は、補強繊維と第一のマトリクス樹脂からなる繊維強化樹脂複合材である少なくとも二つの硬質複合材部(R)、および一方の硬質複合材部(R)の実質的に直線状の縁と他方の硬質複合材部(R)の実質的に直線状の縁の両方に接して配置され、補強繊維と第二のマトリクス樹脂からなる屈曲可能部分である実質的に直線状の軟質複合材部(S)から構成される板材であって、硬質複合材部(R)の厚みT(m)と、軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)を、軟質複合材部(S)を軸として90°折り曲げたときに発生する弾性回復による軟質複合材部(S)の単位長さあたりの回転トルクTr(Nm/m)とが以下の関係式を満足することを特徴とする板材である。
50<Tr/T<50000
The present invention relates to at least two rigid composite parts (R), which are fiber-reinforced resin composites comprising a reinforcing fiber and a first matrix resin, and a substantially linear edge of one rigid composite part (R). And a substantially linear soft composite material, which is disposed in contact with both of the substantially linear edges of the other hard composite material portion (R) and is a bendable portion composed of a reinforcing fiber and a second matrix resin. A plate material composed of a portion (S), a thickness T (m) of the hard composite material portion (R) and two hard composite material portions (R) adjacent to each other across the soft composite material portion (S). The rotational relation Tr (Nm / m) per unit length of the soft composite part (S) due to elastic recovery generated when the flexible composite part (S) is bent at 90 ° around the axis is represented by the following relational expression. It is a plate material characterized by satisfying.
50 <Tr / T <50000

本発明はまた、補強繊維と第一のマトリクス樹脂とからなる繊維強化樹脂複合材の板材に、第一のマトリクス樹脂が実質的に存在しない屈曲可能部分を実質的に直線状に形成することで繊維強化樹脂複合材の板材を複数の硬質複合材部(R)に区画し、屈曲可能部分に第二のマトリクス樹脂を充填することで軟質複合材部(S)を形成した板材であって、硬質複合材部(R)の厚みT(m)と、軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)を軟質複合材部(S)を軸として90°折り曲げたときに発生する弾性回復による軟質複合材部(S)の単位長さあたりの回転トルクTr(Nm/m)とが以下の関係式を満足することを特徴とする板材である。
50<Tr/T<50000
また、本発明の態様には、上記の板材からなるヒンジが含まれる。
The present invention also provides a plate member of a fiber-reinforced resin composite material comprising a reinforcing fiber and a first matrix resin, wherein a bendable portion substantially free of the first matrix resin is formed substantially linearly. A plate material in which a flexible composite material portion (S) is formed by partitioning a plate material of a fiber-reinforced resin composite material into a plurality of hard composite material portions (R) and filling a bendable portion with a second matrix resin. The thickness T (m) of the hard composite material part (R) and two adjacent hard composite material parts (R) sandwiching the soft composite material part (S) are bent 90 ° about the soft composite material part (S) as an axis. And a rotation torque Tr (Nm / m) per unit length of the soft composite material part (S) due to elastic recovery generated when the elastic member recovers, satisfying the following relational expression.
50 <Tr / T <50000
Further, an aspect of the present invention includes a hinge made of the above-mentioned plate material.

本発明によれば、堅牢でありながら軽量であることで、可動性に優れる剛体折紙構造に用いる板材を提供することができ、さらにそれからなる可折構造物を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the board material used for the rigid origami structure which is excellent in movability can be provided by being lightweight although being robust, and also the foldable structure which consists of it can be provided.

軟質複合材部(S)(図のa)を軸として、両側の硬質複合材部(R)(図のb)を180°の角度を超えて折り曲げた状態を示す側面図である。It is a side view which shows the state which bent the hard composite material part (R) (b of a figure) of both sides more than the angle of 180 degrees centering on the soft composite material part (S) (a of a figure). 軟質複合材部(S)の幅Bと、空隙の厚さDを説明するための側面図である。It is a side view for explaining width B of soft composite material part (S), and thickness D of a gap. Tr/Tを測定する装置の説明図である。台座(p)にはアーム(q)を垂直に取り付けられ、台座面から高さh(m)の位置に荷重検出端(r)が水平方向に向けて設置されている。サンプル(s)の一方の硬質複合材部を台座(p)に全面が接するように配置し、軟質複合材部(折り曲げ軸方向の長さがA(m))を軸として90°の角度になるように他方の硬質複合材部を折り曲げ、その面が荷重検出端に垂直に接するように配置し、このときに検出される荷重値G(N)を用いてTr/Tを算出する。It is explanatory drawing of the apparatus which measures Tr / T. An arm (q) is vertically attached to the pedestal (p), and a load detection end (r) is installed horizontally at a position at a height h (m) from the pedestal surface. One hard composite part of the sample (s) is arranged so that the entire surface thereof is in contact with the pedestal (p), and is formed at an angle of 90 ° about the soft composite part (the length in the bending axis direction is A (m)). The other hard composite material part is bent so that its surface is perpendicular to the load detection end, and Tr / T is calculated using the load value G (N) detected at this time. 剛体折紙構造用板材の剛体折りの折れ線パターンの一例であり、剛体折りを展開したときの平面図である。実施例3では、この折れ線パターンを用いた。It is an example of the bending line pattern of the rigid fold of the board material for rigid origami structure, and is a top view when a rigid fold is developed. In Example 3, this broken line pattern was used. 実施例3で測定に用いたサンプルの切り出し位置と形状である。14 shows the cutout position and shape of a sample used for measurement in Example 3.

本発明の板材において、硬質複合材部(R)と軟質複合材部(S)には連続する同じ補強繊維が含まれることが好ましい。これは、硬質複合材部(R)と軟質複合材部(S)の双方を、同じ補強繊維が貫通している態様を意味する。補強繊維が補強繊維の織物である場合には、該補強繊維の織物を共通の補強繊維として硬質複合材部(R)と軟質複合材部(S)が構成されていることが好ましい。   In the plate material of the present invention, it is preferable that the hard composite material portion (R) and the soft composite material portion (S) contain the same continuous reinforcing fiber. This means an aspect in which the same reinforcing fiber penetrates both the hard composite material portion (R) and the soft composite material portion (S). When the reinforcing fiber is a reinforcing fiber woven fabric, the hard composite material portion (R) and the soft composite material portion (S) are preferably formed by using the reinforcing fiber woven fabric as a common reinforcing fiber.

本発明において、軟質複合材部(S)の幅Bと、軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)を、軟質複合材部(S)を軸として180°を超える角度に折り曲げることができる。180°の角度を超えて折り曲げたときには軟質複合材部(S)の近傍には空隙ができる。この状態を図1に示す。この空隙によって、軟質複合材部(S)の近傍で硬質複合材部(R)が相互に直接接触することが防止される。   In the present invention, the width B of the soft composite material part (S) and two hard composite material parts (R) adjacent to each other with the soft composite material part (S) interposed therebetween are adjusted by 180 degrees with the soft composite material part (S) as an axis. Can be bent to an angle exceeding °. When bent beyond an angle of 180 °, a gap is formed in the vicinity of the soft composite material part (S). This state is shown in FIG. These voids prevent the hard composite parts (R) from coming into direct contact with each other near the soft composite parts (S).

本発明では、硬質複合材部(R)の厚みT(m)と、軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)を軟質複合材部(S)を軸として90°折り曲げたときに発生する弾性回復による軟質複合材部(S)の単位長さあたりの回転トルクTr(Nm/m)とが以下の関係式を満足することが必要である。
50<Tr/T<50000
Tr/Tが50に等しいかこれより小さいと折り畳み状態から平面に戻るときの復元力が乏しく、50000に等しいかこれを超えると折り畳みが困難となる。Tr/Tは、好ましくは100〜10000、さらに好ましくは400〜5000である。
In the present invention, the thickness T (m) of the hard composite material part (R) and the two hard composite material parts (R) adjacent to each other with the soft composite material part (S) interposed therebetween are combined with the soft composite material part (S). It is necessary that the rotational torque Tr (Nm / m) per unit length of the soft composite material part (S) due to elastic recovery caused by bending at 90 ° satisfies the following relational expression.
50 <Tr / T <50000
If Tr / T is less than or equal to 50, the restoring force when returning from the folded state to the plane is poor, and if it is greater than or equal to 50,000, folding becomes difficult. Tr / T is preferably from 100 to 10,000, more preferably from 400 to 5,000.

また、180°の角度に折り曲げたときに一方の硬質複合材部(R)と他方の硬質複合材部(R)との間には厚さDの空隙が生じる。この状態を図2に示す。剛体折紙構造に本発明の板材を使用するときには、この空隙によって硬質複合材部(R)の厚みの影響を回避して、円滑な折り畳みを実現できる。   Further, when bent at an angle of 180 °, a gap having a thickness D is generated between one hard composite material part (R) and the other hard composite material part (R). This state is shown in FIG. When the plate material of the present invention is used for the rigid origami structure, the gap can avoid the influence of the thickness of the hard composite material portion (R) and realize smooth folding.

本発明では、軟質複合材部(S)の幅Bと、軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)を軟質複合材部(S)を軸として180°折り曲げたときに一方の硬質複合材部(R)と他方の硬質複合材部(R)との間に生じる空隙の厚さDとが以下の関係式を満足することが好ましい。
0.1×B<D<0.6×B
さらに好ましくは、以下の関係式を満足する。
0.1×B<D<0.5×B
空隙の厚さDが軟質複合材部(S)の幅Bの0.1倍以下であると、折り畳みのときに硬質複合材部(R)の厚みの影響を排除することが不十分となり好ましくない。また、180°の折り曲げによって軟質複合材部(S)の補強繊維の一部ないし全部に座屈が起こり、繰り返しの曲げ変形に対する耐久性が低下して好ましくない。この場合には、軟質複合材部(S)に隣接する硬質複合材部(R)に遊びが発生しやすく、硬質複合材部(R)に水平な軸力が働く場合には軸力による座屈が起こりやすくなる。
In the present invention, the width B of the soft composite material portion (S) and the two hard composite material portions (R) adjacent to each other with the soft composite material portion (S) interposed therebetween are 180 ° about the soft composite material portion (S) as an axis. It is preferable that the thickness D of the gap formed between one hard composite material part (R) and the other hard composite material part (R) when bent satisfies the following relational expression.
0.1 × B <D <0.6 × B
More preferably, the following relational expression is satisfied.
0.1 × B <D <0.5 × B
When the thickness D of the void is 0.1 times or less of the width B of the soft composite material part (S), it is insufficient to eliminate the influence of the thickness of the hard composite material part (R) during folding, which is preferable. Absent. In addition, buckling occurs in some or all of the reinforcing fibers of the soft composite material portion (S) due to the 180 ° bending, and the durability against repeated bending deformation is undesirably reduced. In this case, play is likely to occur in the hard composite material part (R) adjacent to the soft composite material part (S), and when a horizontal axial force acts on the hard composite material part (R), the seat due to the axial force is generated. Warping is likely to occur.

軟質複合材部(S)が完全弾性体に近い挙動を示す場合には、空隙の厚さDの値は大きくなるが、空隙の厚さDが軟質複合材部(S)の幅Bの0.6倍を超えるようにすることは困難である。座屈発生を抑制し、なおかつ厚みの影響の排除と折り畳み時の省スペース化を両立する観点から、空隙の厚さDは、軟質複合材部(S)の幅Bの0.5倍未満であることが好ましい。   When the soft composite material part (S) exhibits a behavior close to a perfect elastic body, the value of the thickness D of the void increases, but the thickness D of the void is 0% of the width B of the soft composite material part (S). It is difficult to exceed 0.6 times. From the viewpoint of suppressing the occurrence of buckling and eliminating the influence of the thickness and saving the space at the time of folding, the thickness D of the gap is less than 0.5 times the width B of the soft composite material part (S). Preferably, there is.

本発明の板材は、剛体折紙構造に用いられる。剛体折紙構造体を、現実の材料を剛体面に用いて実現するときの課題の一つは、剛体面の厚みによる影響を排除することである。このために、本発明においては、空隙の厚さDを硬質複合材部(R)の厚みTの2倍を超えるようにすることが好ましい。この条件を満たすと、剛体面の厚みによる折り畳み阻害が実質的に発生しない剛体折紙構造用板材を得ることができる。   The plate material of the present invention is used for a rigid origami structure. One of the problems in realizing a rigid origami structure using a real material for a rigid surface is to eliminate the influence of the thickness of the rigid surface. For this reason, in the present invention, it is preferable that the thickness D of the air gap exceeds twice the thickness T of the hard composite material part (R). When this condition is satisfied, it is possible to obtain a rigid origami structural plate material in which folding inhibition due to the thickness of the rigid surface does not substantially occur.

これらの条件を満たす本発明の板材は、好ましくは、補強繊維と第一のマトリクス樹脂とからなる繊維強化樹脂複合材の板材に、第一のマトリクス樹脂が実質的に存在しない屈曲可能部分を実質的に直線状に形成することで繊維強化樹脂複合材の板材を複数の硬質複合材部(R)に区画し、屈曲可能部分に第二のマトリクス樹脂を充填することで軟質複合材部(S)を形成することで作成することができる。   The plate material of the present invention that satisfies these conditions preferably has a bendable portion substantially free of the first matrix resin in a plate material of a fiber-reinforced resin composite material composed of reinforcing fibers and a first matrix resin. The plate member of the fiber reinforced resin composite material is divided into a plurality of hard composite material portions (R) by forming a linear composite shape, and the flexible composite material portion (S) is formed by filling the bendable portion with a second matrix resin. ) Can be created.

<硬質複合材部(R)>
硬質複合材部(R)は、補強繊維と第一のマトリクス樹脂からなる繊維強化樹脂複合材である。
<Hard composite part (R)>
The hard composite material part (R) is a fiber reinforced resin composite material composed of reinforcing fibers and a first matrix resin.

補強繊維としては、例えば炭素繊維、バサルト繊維、ガラス繊維、アラミド繊維、ポリエステル繊維を用いることができる。これらは連続繊維であることが好ましく、連続繊維の織物を用いることが好ましい。   As the reinforcing fibers, for example, carbon fibers, basalt fibers, glass fibers, aramid fibers, and polyester fibers can be used. These are preferably continuous fibers, and a woven fabric of continuous fibers is preferably used.

第一のマトリクス樹脂としては、熱硬化性樹脂または熱可塑性樹脂のうちガラス転移点が室温以上のものを用いる。熱可塑樹脂は結晶性高分子からなるものでもよく非晶性高分子からなるものでもよい。このマトリクス樹脂は、複数の樹脂の混合物であってもよく、また、例えば安定剤、フイラー、難燃剤といった添加剤が含まれていてもよい。   As the first matrix resin, a thermosetting resin or a thermoplastic resin having a glass transition point of room temperature or higher is used. The thermoplastic resin may be made of a crystalline polymer or an amorphous polymer. The matrix resin may be a mixture of a plurality of resins, and may contain additives such as a stabilizer, a filler, and a flame retardant.

熱硬化性樹脂として、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ウレア樹脂、不飽和ポリエステル樹脂、熱硬化性ポリイミドを例示することができる。なかでもエポキシ樹脂が好ましい。   Examples of the thermosetting resin include an epoxy resin, a phenol resin, a melamine resin, a urea resin, an unsaturated polyester resin, and a thermosetting polyimide. Of these, epoxy resins are preferred.

熱可塑性樹脂として、ポリフェニレンスルフィド、ポリサルフォン、ポリエーテルサルフォン、ポリエーテルエーテルケトン、熱可塑性ポリイミド、ポリアミドイミド、非晶ポリアリレート、ポリアミド、ポリアセタール、ポリカーボネート、ポリエステル、ポリオレフィン、ABS樹脂、アクリル樹脂を例示することができる。なかでもポリアミドが好ましい。   Examples of the thermoplastic resin include polyphenylene sulfide, polysulfone, polyether sulfone, polyether ether ketone, thermoplastic polyimide, polyamide imide, amorphous polyarylate, polyamide, polyacetal, polycarbonate, polyester, polyolefin, ABS resin, and acrylic resin. be able to. Among them, polyamide is preferred.

<軟質複合材部(S)>
軟質複合材部(S)は、補強繊維と第二のマトリクス樹脂からなる屈曲可能な部分であり、折り曲げのときにヒンジとしての役割を果たす。軟質複合材部(S)は、一方の硬質複合材部(R)の実質的に直線状の縁と他方の硬質複合材部(R)の実質的に直線状の縁の両方に接して配置されている。
<Soft composite part (S)>
The soft composite material portion (S) is a bendable portion made of the reinforcing fiber and the second matrix resin, and functions as a hinge when bent. The soft composite part (S) is arranged in contact with both the substantially straight edge of one hard composite part (R) and the substantially straight edge of the other hard composite part (R). Have been.

ここで、実質的に直線状の縁とは、好ましくは直線状の縁であるが、軟質複合材部(S)を挟んで隣接する硬質複合材部(R)の折り曲げが軟質複合材部(S)を軸として可能である範囲で変形した形状の縁も含む意味である。   Here, the substantially linear edge is preferably a linear edge, but the bending of the hard composite material portion (R) adjacent to the soft composite material portion (S) is caused by bending of the soft composite material portion (R). It is meant to include an edge of a shape deformed as much as possible around S).

この実質的に直線状の縁には、例えば、軟質複合材部(S)の幅程度の凹凸がある縁も含まれる。折り畳みを確実に行う観点から、実質的に直線状の線は、凹凸の全くない直線状であることが好ましい。   The substantially straight edge includes, for example, an edge having irregularities about the width of the soft composite material portion (S). From the viewpoint of reliable folding, the substantially straight line is preferably a straight line without any unevenness.

第二のマトリクス樹脂は、ヒンジとしての役割を果たすために、その弾性率が第一のマトリクス樹脂の弾性率の10分の1以下であることが好ましい。これは25℃での弾性率についてである。10分の1を超えると軟質複合材部の折り畳み変形時に必要な応力が過大となり、折り畳むときの操作性が低下して好ましくない。第二のマトリクス樹脂は、ガラス転移点が室温以下である架橋性高分子および熱可塑性エラストマーから選ぶことができる。第二のマトリクス樹脂として、例えばシリコン樹脂、スチレン系エラストマー、オレフィン系エラストマー、ポリウレタン系エラストマー、ポリエステル系エラストマー、クロロブレン系エラストマー、アクリロニトリル系エラストマー、天然ゴムなどを例示することができる。特に、耐候性を考慮した場合シリコン樹脂を選択することが好ましい。第二のマトリクス樹脂として架橋性高分子を用いる場合には、未架橋あるいは低架橋の状態で軟質複合材部の補強繊維に含浸した後に架橋反応を完結させることで形成することができる。   Since the second matrix resin plays a role as a hinge, it is preferable that its elastic modulus is 1/10 or less of the elastic modulus of the first matrix resin. This is about the elastic modulus at 25 ° C. If it exceeds 1/10, the stress required for folding deformation of the soft composite material portion becomes excessive, and the operability at the time of folding decreases, which is not preferable. The second matrix resin can be selected from a crosslinkable polymer having a glass transition temperature of room temperature or lower and a thermoplastic elastomer. Examples of the second matrix resin include silicone resin, styrene-based elastomer, olefin-based elastomer, polyurethane-based elastomer, polyester-based elastomer, chlorobrene-based elastomer, acrylonitrile-based elastomer, and natural rubber. In particular, it is preferable to select a silicone resin in consideration of weather resistance. When a crosslinkable polymer is used as the second matrix resin, it can be formed by impregnating the reinforcing fibers of the soft composite material portion in an uncrosslinked or low crosslinked state and then completing the crosslinking reaction.

本発明の板材では、空隙の厚さDは、軟質複合材部(S)の幅Bとの間で、0.1×B<D<0.6×Bの関係を満足することが好ましいが、この条件の満たす板材を得るために、室温において第一のマトリクス樹脂の1/10以下の弾性率を有する第二のマトリクス樹脂を、屈曲可能部分の補強繊維に、含浸率45〜95%の範囲で充填することにより軟質複合材部(S)を形成することが好ましい。含浸率が45%未満であると折り畳み時の繊維挙動が制御されにくくなるとともに耐候性が不足する。含浸率が95%を超えると、180°の曲げに要する応力が過大となる場合があり、実用上ヒンジとしての作用しなくなる場合がある。ここで含浸率P(%)は以下の式で定義される。
P(%)=(((A2−Af)×D1)/((A1−Af)×D2))×100
In the plate material of the present invention, the thickness D of the gap preferably satisfies the relationship of 0.1 × B <D <0.6 × B with the width B of the soft composite material portion (S). In order to obtain a plate material that satisfies this condition, a second matrix resin having an elastic modulus equal to or less than 1/10 of that of the first matrix resin at room temperature is added to the reinforcing fibers of the bendable portion at an impregnation rate of 45 to 95%. It is preferable to form the soft composite material portion (S) by filling in the range. When the impregnation rate is less than 45%, the behavior of the fiber at the time of folding becomes difficult to control, and the weather resistance is insufficient. If the impregnation rate exceeds 95%, the stress required for 180 ° bending may be excessive, and may not function as a hinge in practical use. Here, the impregnation ratio P (%) is defined by the following equation.
P (%) = (((A2-Af) × D1) / ((A1-Af) × D2)) × 100

ただし、硬質複合材部(R)の面密度をA1、軟質複合材部(S)の面密度をA2、強化繊維の面密度をAf、硬質複合材部(R)の形成に用いた第一のマトリクス樹脂の密度をD1、軟質複合材部(S)の形成に用いた第二のマトリクス樹脂の密度をD2とした。   However, the areal density of the hard composite material part (R) is A1, the areal density of the soft composite material part (S) is A2, the areal density of the reinforcing fiber is Af, and the first is used for forming the hard composite material part (R). The density of the matrix resin was D1, and the density of the second matrix resin used for forming the soft composite material portion (S) was D2.

<剛体折紙構造>
本発明はまた、上記の板材の屈曲可能部分が剛体折紙の折れ線パターンに基づいて形成されている剛体折紙構造用板材である。この剛体折紙構造は、折紙構造を構成する材料を面内弾性変形させることなく展開および折り畳みができる折れ線パターンを持つ折紙構造である。
<Rigid origami structure>
The present invention is also a rigid origami structure plate material, wherein the bendable portion of the plate material is formed based on a fold line pattern of the rigid origami paper. This rigid origami structure is a origami structure having a fold line pattern that allows the material constituting the origami structure to be expanded and folded without undergoing in-plane elastic deformation.

剛体折紙構造は、仮想的に厚みが無い剛体面に対して構築されているため、厚みのある現実の材料を剛体面を用いた場合、重畳数が零の場合を除いて、剛体面の厚みのために、剛体面を折り畳んだときに折れ線の周りに、折り畳まれる剛体面同士で空間的な干渉が起こる。このため、一般には折り畳みが不完全にしか実現で場合が多く、折り曲げることができない場合さえある。   Since the rigid origami structure is constructed on a rigid body surface with virtually no thickness, when using a rigid real surface with a thick real material, the thickness of the rigid body surface except for the case where the number of superpositions is zero is zero. Therefore, when the rigid body surfaces are folded, spatial interference occurs between the folded rigid body surfaces around the polygonal line. For this reason, in many cases, folding is only realized incompletely in many cases, and sometimes folding cannot be performed.

この空間的な干渉を回避するためには、個々に試行錯誤が必要であり、一般的に剛体面の厚みの影響を排除する方法は知られていない。剛体折紙構造を、例えば金属ヒンジを用いて作成する場合には、一般的に多数の付加的な折れ線や切り込みを入れることが必要であり、剛体折紙構造とそれを用いた折り畳み可能な可折構造物の製造は、極めて複雑になる。   In order to avoid this spatial interference, trial and error are required individually, and there is generally no known method for eliminating the influence of the thickness of the rigid body surface. When making a rigid origami structure, for example using a metal hinge, it is generally necessary to make a number of additional fold lines and cuts, and a rigid origami structure and a foldable foldable structure using it The production of objects becomes extremely complicated.

本発明の剛体折紙構造用板材は、剛体折紙構造の折れ線パターンを構成する屈曲可能部分のうち重畳数Ncが零のものを除くすべての屈曲可能部分において、軟質複合材部(S)の線幅Bおよび硬質複合材部(R)の厚みTが以下の関係式を満足することで、剛体面の厚みの影響を回避して、厚みを有する現実の剛体面の折り畳みが可能な可折構造物を得ることができる。
Nc×T<B<100×Nc×T
好ましくは、以下の関係式を満足する。
(Nc×T)/0.46<B<100×Nc×T
さらに好ましくは、以下の関係式を満足する。
(Nc×T)/0.45<B<100×Nc×T
The rigid origami structure plate material according to the present invention has a line width of the soft composite material portion (S) in all the bendable portions of the bendable line pattern of the rigid origami structure other than those having a superposition number Nc of zero. B and the thickness T of the hard composite material part (R) satisfy the following relational expression, thereby avoiding the influence of the thickness of the rigid body surface and enabling the folding of the actual rigid body surface having the thickness. Can be obtained.
Nc × T <B <100 × Nc × T
Preferably, the following relational expression is satisfied.
(Nc × T) /0.46 <B <100 × Nc × T
More preferably, the following relational expression is satisfied.
(Nc × T) /0.45 <B <100 × Nc × T

この条件を満たすことにより、追加の折れ線を付加することなく、剛体折紙の折れ線パターンに基づく屈曲可能部分を備える本発明の剛体折紙構造用板材を得ることができる。線幅BがNc×Tと等しいか、これより小さいと、折れ線の内側に重畳する硬質複合材部(R)を収納するスペースが十分ではなく、折り畳みが完全にはできない場合がある。他方、線幅BがNc×Tの100倍と等しいか、これより大きいと、軟質複合材部(S)の幅が大きくなりすぎ、所期の剛体折紙からの外観の乖離が大きくなりすぎて好ましくない。   By satisfying this condition, it is possible to obtain the rigid origami structural plate material of the present invention including a bendable portion based on the fold line pattern of the rigid origami without adding an additional fold line. If the line width B is equal to or smaller than Nc × T, the space for accommodating the hard composite material portion (R) overlapping the inside of the polygonal line is not enough, and the folding may not be completely performed. On the other hand, if the line width B is equal to or larger than 100 times Nc × T, the width of the soft composite material (S) becomes too large, and the deviation of the appearance from the intended rigid origami becomes too large. Not preferred.

前述したように本発明の板材および剛体折紙構造用板材は、180°の角度での折り曲げ状態では、軟質複合材部(S)を挟んで隣接する一方の硬質複合材部(R)と他方の硬質複合材部(R)との間に安定した空隙が形成され、この空隙にさらに他の硬質複合材部(R)を円滑に折り畳むことができる。   As described above, the plate material and the rigid origami structure plate material of the present invention, when bent at an angle of 180 °, have one hard composite material part (R) adjacent to the soft composite material part (S) and the other rigid composite material part (R). A stable gap is formed between the hard composite material part (R) and the other hard composite material part (R) can be smoothly folded in this gap.

ここで、剛体折紙の折れ線の重畳数Ncは、その折れ線で連結される一対の剛体面を完全に折り畳んだときに、その一対の剛体面の内側に一部または全部が挟み込まれる剛体面の総数として定義される。   Here, the superimposed number Nc of the polygonal lines of the rigid origami is the total number of rigid surfaces that are partially or entirely sandwiched inside the pair of rigid surfaces when the pair of rigid surfaces connected by the polygonal line are completely folded. Is defined as

例えば、図3に示された剛体折紙の折れ線パターンは、平行四辺形の繰り返しユニットを持ち、これに含まれる折れ線は2種類であり、それぞれが0の重畳度と4の重畳度を有する。   For example, the polygonal line pattern of the rigid origami shown in FIG. 3 has a parallelogram repeating unit, which includes two types of polygonal lines, each having a superimposition degree of 0 and a superimposition degree of 4.

本発明で用いる剛体折紙のパターンは、多角形のユニットの配列が文様群の条件を満たす対称性を満たすものが好ましい。この場合、外観はテッセレーションとなり、意匠性の高さや力学的な構造設計が容易である。さらに、テッセレーション構造は、変形の自由度を制限することができるため、剛体折紙構造用板材を用いた可折構造物を変形させる場合のアクチュエーションを簡略化することができるので、好ましい。好ましい変形の自由度は1または2ある。   The rigid origami pattern used in the present invention is preferably a pattern in which the arrangement of polygonal units satisfies the symmetry satisfying the condition of the pattern group. In this case, the appearance is tessellation, and high designability and mechanical structural design are easy. Further, the tessellation structure is preferable because the degree of freedom of deformation can be limited, and the actuation when deforming a foldable structure using the rigid origami structure plate can be simplified. The preferred degree of deformation is one or two.

本発明の剛体折紙構造用板材は、屈曲可能部分を折れ線として可逆的に折り畳むことができる。本発明によれば、上記の剛体折紙構造用板材から作成された折り畳み可能な可折構造物が提供される。   The rigid origami structural plate material of the present invention can be reversibly folded using the bendable portion as a folding line. According to the present invention, there is provided a foldable foldable structure made from the above rigid origami structural plate.

<製造方法>
本発明の板材は、例えば、以下のように製造することができる。なお、補強繊維は織物の態様で用いることが好ましい。織物として、例えば、平織、綾織、朱子織、からみ織、模紗織、斜紋織、二重織を用いることができる。一方向のUDであってもよい。
(方法1)
まず、補強繊維織物の屈曲可能部分を形成する部分をマスキングし、第一のマトリクス樹脂を含浸することにより硬質複合材部(R)を形成する。つぎに、マスキングを外した屈曲可能部分の補強繊維の束または織物に、第二のマトリクス樹脂を充填して軟質複合材部(S)を形成する。
(方法2)
まず、補強繊維織物の屈曲可能部分を形成する部分に、第二のマトリクス樹脂を流動可能な状態で充填して軟質複合材部(S)を形成し、つぎに、第一のマトリクス樹脂をこれ以外の部分に含浸して硬質複合材部(R)を形成する。
(方法3)
補強繊維として特に無機繊維を用いる場合には、この方法も用いることができる。すなわち、まず補強繊維の全体に第一のマトリクス樹脂を含浸して硬化させて硬質複合材部(R)を全面に形成し、屈曲可能部分を形成する部分の第一のマトリクス樹脂を選択的に溶融または分解させて除去し、そこに第二のマトリクス樹脂を充填する方法である。溶融または分解には、例えばレーザーや高温加熱空気を用いることができる。
<Manufacturing method>
The plate material of the present invention can be manufactured, for example, as follows. The reinforcing fibers are preferably used in the form of a woven fabric. For example, plain weave, twill weave, satin weave, leno weave, mosaic weave, oblique weave, and double weave can be used as the fabric. It may be a one-way UD.
(Method 1)
First, a portion forming the bendable portion of the reinforcing fiber woven fabric is masked and impregnated with a first matrix resin to form a hard composite material portion (R). Next, the flexible matrix part (S) is formed by filling the second matrix resin into the bundle or the woven fabric of the reinforcing fibers in the bendable portion where the masking has been removed.
(Method 2)
First, the flexible matrix portion (S) is formed by filling a portion of the reinforcing fiber fabric forming the bendable portion with the second matrix resin in a flowable state, and then forming the soft matrix portion (S). The other parts are impregnated to form a hard composite material part (R).
(Method 3)
This method can also be used when an inorganic fiber is used as the reinforcing fiber. That is, first, the entire reinforcing fiber is impregnated with the first matrix resin and cured to form the hard composite material portion (R) on the entire surface, and the first matrix resin in the portion forming the bendable portion is selectively formed. It is a method of melting or decomposing to remove and filling it with a second matrix resin. For melting or decomposition, for example, laser or high-temperature heated air can be used.

上記のいずれの方法においても、軟質複合材部(A)での第二のマトリクス樹脂の含浸率が45〜95%の範囲になるようにすることが好ましい。この含浸率になるように軟質複合材部(B)を形成するためには、例えば、第二のマトリクス樹脂を補強繊維の織物にコーティングして補強繊維の両面表層部に局在させる方法をとることができ、また、第二のマトリクス樹脂を溶剤に溶解させて補強繊維の織物に含浸することでマトリクス樹脂含浸層にミクロあるいはマクロのボイドを含ませる方法をとることができる。   In any of the above methods, it is preferable that the impregnation rate of the second matrix resin in the soft composite material part (A) is in the range of 45 to 95%. In order to form the soft composite material portion (B) so as to have this impregnation rate, for example, a method of coating a second matrix resin on a woven fabric of reinforcing fibers and localizing the woven fabric to both surface layers of the reinforcing fibers is employed. Alternatively, a method in which micro or macro voids are included in the matrix resin impregnated layer can be adopted by dissolving the second matrix resin in a solvent and impregnating the fabric of the reinforcing fibers.

本発明において軟質複合材部(S)の折り曲げに対する変形特性は、軟質複合材部(S)の弾性特性と線幅Bおよび硬質複合材部(R)の厚みTで決まる。弾性特性は、主に軟質複合材部(S)での補強繊維の配向と第二のマトリクス樹脂の含浸状態によって決まる。補強繊維の配向に応じて第二のマトリクス樹脂の含浸状態を適宜調整する。   In the present invention, the deformation characteristics of the soft composite material portion (S) with respect to bending are determined by the elastic characteristics of the soft composite material portion (S), the line width B, and the thickness T of the hard composite material portion (R). The elastic properties are mainly determined by the orientation of the reinforcing fibers in the soft composite material part (S) and the impregnation state of the second matrix resin. The impregnation state of the second matrix resin is appropriately adjusted according to the orientation of the reinforcing fibers.

以下、実施例を用いて本発明を説明する。測定は以下の方法で行った。
(1)マトリクス樹脂の含浸率
含浸率P(%)は、サンプルの軟質複合材部(S)について以下の式で算出した。
P(%)=(((A2−Af)×D1)/((A1−Af)×D2))×100
A1:硬質複合材部(R)の面密度
A2:軟質複合材部(S)の面密度
Af:強化繊維の面密度
D1:硬質複合材部(R)の形成に用いた第一のマトリクス樹脂の密度
D2:軟質複合材部(S)の形成に用いた第二のマトリクス樹脂の密度
Hereinafter, the present invention will be described using examples. The measurement was performed by the following method.
(1) Impregnation rate of matrix resin The impregnation rate P (%) was calculated by the following equation for the soft composite material portion (S) of the sample.
P (%) = (((A2-Af) × D1) / ((A1-Af) × D2)) × 100
A1: Areal density of hard composite material part (R) A2: Areal density of soft composite material part (S) Af: Areal density of reinforcing fiber D1: First matrix resin used for forming hard composite material part (R) D2: density of the second matrix resin used to form the soft composite material part (S)

(2)補強繊維の体積含有率
硬質複合材部(R)における繊維体積含有率Vf(%)は、以下の式で算出した。
Vf(%)=(Af/Df)/(A1/Dt)×100
Af:強化繊維の面密度
A1:硬質複合材部(R)の面密度
Df:硬質複合材部(R)の形成に用いた補強繊維の密度
Dt:硬質複合材部(R)の密度
(2) Volume Content of Reinforcement Fiber The fiber volume content Vf (%) in the hard composite material part (R) was calculated by the following equation.
Vf (%) = (Af / Df) / (A1 / Dt) × 100
Af: Areal density of reinforcing fiber A1: Areal density of hard composite material part (R) Df: Density of reinforcing fiber used for forming hard composite material part (R) Dt: Density of hard composite material part (R)

(3)Tr/T
図3に示すように台座(p)にアーム(q)を垂直に取り付け、台座面から高さh=0.04(m)の位置に荷重検出端(r)を水平方向に設置した測定装置を用意した。サンプルの一方の硬質複合材部(R)を台座(p)に全面が接するように配置し、軟質複合材部(S)(折り曲げ軸方向の長さがA(m))を軸として90°の角度になるように他方の硬質複合材部(R)を折り曲げ、その面が荷重検出端に垂直に接するように配置した。このときに検出された荷重値G(N)を用いて、Tr/Tを以下の式で算出した。
Tr/T=G×h/A
(3) Tr / T
As shown in FIG. 3, a measuring device in which an arm (q) is vertically attached to a pedestal (p), and a load detecting end (r) is horizontally installed at a position of height h = 0.04 (m) from the pedestal surface. Was prepared. One hard composite material part (R) of the sample is arranged so that the whole surface is in contact with the pedestal (p), and the soft composite material part (S) (the length in the bending axis direction is A (m)) is 90 °. The other hard composite material part (R) was bent so as to have an angle of, and the surface was arranged so that its surface was in perpendicular contact with the load detection end. Using the load value G (N) detected at this time, Tr / T was calculated by the following equation.
Tr / T = G × h / A

目付200g/mの平織の炭素繊維織物(帝人株式会社製商品:W3101)を長辺230mm短辺25mmの長方形に切り出したものを3枚重ね、その中央に短辺に平行に、線幅8mmのスリットを設けたマスキングフイルムを置き、その上から半硬化シリコン樹脂(信越化学社製商品:シーラント45)をヘキサンで10倍に希釈したものを炭素繊維織物の両側からそれぞれ注入含浸した。シリコン樹脂を硬化乾燥して軟質複合材部(S)を形成した後、軟質複合材部(S)をマスクして、ナイロン樹脂パウダー(ユニチカ社製商品名:A1015LP−20)を炭素繊維織物の上に散布し、熱プレスでナイロン樹脂を炭素繊維織物に含浸させて冷却し、硬質複合材部(R)を形成することで、剛体折紙構造用板材を得た。 Three pieces of a plain weave carbon fiber woven fabric (manufactured by Teijin Limited: W3101) having a basis weight of 200 g / m 2 cut into a rectangle having a long side of 230 mm and a short side of 25 mm are stacked, and the center thereof is parallel to the short side and has a line width of 8 mm. A masking film provided with a slit was placed, and a semi-cured silicone resin (manufactured by Shin-Etsu Chemical Co., Ltd .: sealant 45) diluted 10-fold with hexane was injected and impregnated from both sides of the carbon fiber fabric from above. After the silicone resin is cured and dried to form the soft composite material part (S), the soft composite material part (S) is masked, and a nylon resin powder (trade name: A1015LP-20 manufactured by Unitika Ltd.) is applied to the carbon fiber fabric. It was sprayed on the top, and the nylon resin was impregnated with the carbon fiber fabric by a hot press and cooled to form a rigid composite part (R), thereby obtaining a rigid origami structural plate.

得られた剛体折紙構造用板材は、111mm×25mmの長方形の硬質複合材部(R)が、直線状の長さ25mmおよび線幅8mmの軟質複合材部(S)の両側に長さ25mmの辺で接して配置された形状である。軟質複合材部(S)における炭素繊維の体積含有率Vfは40%であり、マトリクス樹脂の含浸率Pは80%であった。軟質複合材部(S)および硬質複合材部(R)の厚みTは、いずれも0.75mmであった。   In the obtained rigid origami structural plate material, a rectangular hard composite material part (R) of 111 mm × 25 mm was formed on both sides of a soft composite material part (S) having a linear length of 25 mm and a line width of 8 mm. It is a shape arranged in contact with the sides. The carbon fiber volume content Vf in the soft composite material part (S) was 40%, and the matrix resin impregnation rate P was 80%. The thickness T of each of the soft composite material portion (S) and the hard composite material portion (R) was 0.75 mm.

この剛体折紙構造用板材はTr/Tが1050であった。この剛体折紙構造用板材は、屈曲可能部分の軟質複合材部(S)近傍に空隙を残したまま硬質複合材部(R)の両端部が接触するまで曲げることができ、180°の角度に折り曲げたときの、一方の硬質複合材部(R)と他方の硬質複合材部(R)との間の空隙の厚さDは3mmであった。   This rigid origami structural plate had a Tr / T of 1050. This rigid origami structure plate material can be bent until both ends of the hard composite material portion (R) come into contact with each other while leaving a gap near the soft composite material portion (S) at the bendable portion. When folded, the thickness D of the gap between one hard composite material part (R) and the other hard composite material part (R) was 3 mm.

目付194g/mの平織のアラミド繊維織物(帝人アラミド社製:トワロンType2200の平織加工品)を用いる他は、実施例1と同様にして剛体折紙構造用板材を得た。 A rigid origami structure plate material was obtained in the same manner as in Example 1 except that a plain weave aramid fiber woven fabric (manufactured by Teijin Aramid Co., Ltd .: Twaron Type 2200, plain weave product) having a basis weight of 194 g / m 2 was used.

得られた剛体折紙構造用板材は、111mm×25mmの長方形の硬質複合材部(R)が、直線状の長さ25mmおよび線幅8mmの軟質複合材部(S)の両側に長さ25mmの辺で接して配置された形状である。質複合材部(S)におけるアラミド繊維の体積含有率Vfは40%であり、マトリクス樹脂の含浸率Pは80%であった。軟質複合材部(S)および硬質複合材部(R)の厚みTは、いずれも0.75mmであった。   In the obtained rigid origami structural plate material, a rectangular hard composite material part (R) of 111 mm × 25 mm was formed on both sides of a soft composite material part (S) having a linear length of 25 mm and a line width of 8 mm. It is a shape arranged in contact with the sides. The volume content Vf of aramid fibers in the porous composite material part (S) was 40%, and the impregnation rate P of the matrix resin was 80%. The thickness T of each of the soft composite material portion (S) and the hard composite material portion (R) was 0.75 mm.

この剛体折紙構造用板材はTr/Tが570であった。この剛体折紙構造用板材は、屈曲可能部分の軟質複合材部(S)近傍に空隙を残したまま硬質複合材部(R)の両端部が接触するまで曲げることができ、180°の角度に折り曲げたときの、一方の硬質複合材部(R)と他方の硬質複合材部(R)との間の空隙の厚さDは3mmであった。   This rigid origami structural plate material had a Tr / T of 570. This rigid origami structure plate material can be bent until both ends of the hard composite material portion (R) come into contact with each other while leaving a gap near the soft composite material portion (S) at the bendable portion. When folded, the thickness D of the gap between one hard composite material part (R) and the other hard composite material part (R) was 3 mm.

図3に示すパターンの剛体折紙構造の剛体折紙構造用板材を作成した。この剛体折紙構造において、平行四辺形のユニットの辺の長さはそれぞれ100mmであり、平行四辺形のユニットの二辺がなす角度は60°および120°である。この剛体折紙構造は、重畳数が0と4の折れ線から構成される。   A rigid origami structure plate having a rigid origami structure having the pattern shown in FIG. 3 was prepared. In this rigid origami structure, the length of each side of the parallelogram unit is 100 mm, and the angles formed by the two sides of the parallelogram unit are 60 ° and 120 °. This rigid origami structure is composed of polygonal lines with 0 and 4 superimposed numbers.

まず、重畳数が4の折れ線に対応する軟質樹脂材部(S)の線幅を8mmとし、重畳数が0の折れ線に対応する軟質樹脂部材(S)の線幅を3.5mmとして、マスキングパターンフイルムを作成した。   First, the line width of the soft resin material portion (S) corresponding to the broken line having the number of superpositions of 4 is set to 8 mm, and the line width of the soft resin member (S) corresponding to the broken line having the number of superpositions of 0 is set to 3.5 mm. I made a pattern film.

目付200g/mの平織の炭素繊維織物(帝人株式会社製商品:W3101)を長さ500mm幅500mmに切り出したものを3枚重ね、それに上記のマスキングパターンフイルムを乗せ、その上から半硬化シリコン樹脂(信越化学社製商品:シーラント45)をヘキサンで希釈したものを注入含浸した。シリコン樹脂を硬化乾燥して軟質複合材部(S)を形成した後、軟質複合材部(S)をマスクして、ナイロン樹脂パウダー(ユニチカ社製商品名:A1015LP−20)を炭素繊維織物の上に散布し、熱プレスでナイロン樹脂を炭素繊維織物に含浸させて冷却し、硬質複合材部(R)を形成することで、剛体折紙構造用板材を得た。 A piece of a plain weave carbon fiber woven fabric (product of Teijin Limited: W3101) having a basis weight of 200 g / m 2 cut out to a length of 500 mm and a width of 500 mm is stacked on three sheets, and the above-mentioned masking pattern film is placed thereon. A resin (manufactured by Shin-Etsu Chemical: sealant 45) diluted with hexane was injected and impregnated. After the silicone resin is cured and dried to form the soft composite material part (S), the soft composite material part (S) is masked, and a nylon resin powder (trade name: A1015LP-20 manufactured by Unitika Ltd.) is applied to the carbon fiber fabric. It was sprayed on the top, and the nylon resin was impregnated with the carbon fiber fabric by a hot press and cooled to form a rigid composite part (R), thereby obtaining a rigid origami structural plate.

得られた剛体折紙構造用板材の軟質複合材部(S)におけるアラミド繊維の体積含有率Vfは40%であり、マトリクス樹脂の含浸率Pは80%であった。軟質複合材部(S)の線幅Bは、重畳数4の折れ線に対応する線で8mm、重畳数0の折れ線に対応する線で3.5mmであり、軟質複合材部(S)および硬質複合材部(R)の厚みTは、いずれも0.75mmであった。   The volume fraction Vf of aramid fibers in the soft composite material part (S) of the obtained rigid origami structural board was 40%, and the impregnation rate P of the matrix resin was 80%. The line width B of the soft composite material portion (S) is 8 mm for a line corresponding to the broken line having the number of superpositions of 4, and 3.5 mm for the line corresponding to the broken line having the number of superpositions of 0. The thickness T of each of the composite portions (R) was 0.75 mm.

この剛体折紙構造用板材から切り出したサンプルのTr/Tは660であった。なお、サンプルは、50mm×30mmの長方形の硬質複合材部(R)が長さ30mmおよび線幅3.5mmの軟質複合材部(S)の両側に、長さ30mmの辺で接して配置された形状である。サンプルの切り出し位置と形状を図5に示す。   Tr / T of the sample cut out from the rigid origami structural plate was 660. In the sample, a rectangular rigid composite material part (R) of 50 mm × 30 mm was arranged on both sides of a soft composite material part (S) having a length of 30 mm and a line width of 3.5 mm, in contact with sides of a length of 30 mm. Shape. FIG. 5 shows the cutout position and shape of the sample.

この剛体折紙構造用板材は、屈曲可能部分の軟質複合材部(S)近傍に空隙を残したまま硬質複合材部(R)の両端部が接触するまで曲げることができ、180°の角度に折り曲げたときの、一方の硬質複合材部(R)と他方の硬質複合材部(R)との空隙の厚さDは1.8mmであった。   This rigid origami structure plate material can be bent until both ends of the hard composite material portion (R) come into contact with each other while leaving a gap near the soft composite material portion (S) at the bendable portion. When folded, the thickness D of the gap between one hard composite material part (R) and the other hard composite material part (R) was 1.8 mm.

得られた剛体折紙構造用板材は、折紙構造体となり、完全に折りたたんだ状態から、平板状への可逆的変形が可能な可折構造物であった。この剛体折紙構造用板材は、完全に折りたたんだ状態で外力を解除すると自発的に展開して平板の形状になった。この自発的な展開は繰り返しの試験でも変化はなかった。   The obtained rigid origami structural plate material was an origami structure, and was a foldable structure capable of being reversibly deformed into a flat plate shape from a completely folded state. When the external force was released in a completely folded state, the rigid origami structural plate material spontaneously expanded to a flat plate shape. This spontaneous deployment did not change with repeated testing.

本発明の板材、剛体折紙構造用板材および可折構造物は、建築分野では可動屋根、可動壁、仮設パーチション、仮設建築、サンシェイド、シエルター、音響壁、意匠外壁など、また折り畳み式のコンテイナーなどに利用することができる。   The plate material, the rigid origami structure plate material and the foldable structure of the present invention include movable roofs, movable walls, temporary parchments, temporary constructions, sunshades, shelters, acoustic walls, design exterior walls, etc. It can be used for such purposes.

a 屈曲可能部分である軟質複合材部(S)
b 硬質複合材部(R)
c 重畳数4の折れ線
d 重畳数0の折れ線
p 台座
q アーム
r 荷重検出端
s 測定対象のサンプル
B 軟質複合材部(S)の幅
D 軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)を、軟質複合材部(S)を軸として180°折り曲げたときに一方の硬質複合材部(R)と他方の硬質複合材部(R)との間に生じる空隙の厚さ
a Flexible composite part (S) which is a bendable part
b Hard composite material part (R)
c Lines with 4 superpositions d Lines with 0 superpositions p Pedestal q Arm r Load detecting end s Sample to be measured B Width of soft composite part (S) D Two adjacent soft composite parts (S) A gap formed between one hard composite material part (R) and the other hard composite material part (R) when the hard composite material part (R) is bent 180 ° about the soft composite material part (S) as an axis. Thickness

Claims (10)

補強繊維と第一のマトリクス樹脂からなる繊維強化樹脂複合材である少なくとも二つの硬質複合材部(R)、および一方の硬質複合材部(R)の実質的に直線状の縁と他方の硬質複合材部(R)の実質的に直線状の縁の両方に接して配置され、補強繊維と第二のマトリクス樹脂からなる屈曲可能部分である実質的に直線状の軟質複合材部(S)から構成される板材であって、
硬質複合材部(R)の厚みT(m)と、軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)を、軟質複合材部(S)を軸として90°折り曲げたときに発生する弾性回復による軟質複合材部(S)の単位長さあたりの回転トルクTr(Nm/m)とが以下の関係式を満足することを特徴とする板材。
50<Tr/T<50000
At least two rigid composite parts (R), which are fiber reinforced resin composites composed of reinforcing fibers and a first matrix resin, and a substantially straight edge of one rigid composite part (R) and the other rigid part A substantially linear soft composite part (S) which is disposed in contact with both of the substantially linear edges of the composite part (R) and is a bendable part comprising a reinforcing fiber and a second matrix resin. A plate material composed of
The thickness T (m) of the hard composite material part (R) and two hard composite material parts (R) adjacent to each other with the soft composite material part (S) interposed therebetween are 90 ° about the soft composite material part (S) as an axis. A plate material characterized in that a rotational torque Tr (Nm / m) per unit length of a soft composite material part (S) due to elastic recovery generated when the sheet is bent satisfies the following relational expression.
50 <Tr / T <50000
補強繊維と第一のマトリクス樹脂とからなる繊維強化樹脂複合材の板材に、第一のマトリクス樹脂が実質的に存在しない屈曲可能部分を実質的に直線状に形成することで繊維強化樹脂複合材の板材を複数の硬質複合材部(R)に区画し、屈曲可能部分に第二のマトリクス樹脂を充填することで軟質複合材部(S)を形成した板材であって、
硬質複合材部(R)の厚みT(m)と、軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)を軟質複合材部(S)を軸として90°折り曲げたときに発生する弾性回復による軟質複合材部(S)の単位長さあたりの回転トルクTr(Nm/m)が以下の関係式を満足することを特徴とする板材。
50<Tr/T<50000
A fiber-reinforced resin composite material is formed by forming a bendable portion substantially free of the first matrix resin in a substantially straight line on a plate material of a fiber-reinforced resin composite material comprising a reinforcing fiber and a first matrix resin. Is a plate material in which a soft composite material portion (S) is formed by dividing the plate material into a plurality of hard composite material portions (R) and filling a bendable portion with a second matrix resin.
The thickness T (m) of the hard composite material part (R) and two adjacent hard composite material parts (R) sandwiching the soft composite material part (S) are bent 90 ° about the soft composite material part (S) as an axis. A plate material characterized in that a rotational torque Tr (Nm / m) per unit length of the soft composite material portion (S) due to elastic recovery generated when the rotational speed satisfies the following relational expression.
50 <Tr / T <50000
軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)を軟質複合材部(S)を軸として180°折り曲げたときに一方の硬質複合材部(R)と他方の硬質複合材部(R)との間に生じる空隙の厚さDと硬質複合材部(R)の厚みTが以下の式を満足する、請求項1または2に記載の板材。
2×T<D
When two adjacent hard composite parts (R) sandwiching the soft composite part (S) are bent at 180 ° about the soft composite part (S) as an axis, one hard composite part (R) and the other hard composite part (R) are bent. The plate material according to claim 1 or 2, wherein the thickness D of the gap formed between the rigid composite material portion (R) and the thickness T of the rigid composite material portion (R) satisfies the following expression.
2 × T <D
軟質複合材部(S)における第二のマトリクス樹脂の含浸率が45〜95%であり、かつ第二のマトリクス樹脂は25℃において第一のマトリクス樹脂の1/10以下の弾性率を有する樹脂である、請求項1または2に記載の板材。   The resin impregnation rate of the second matrix resin in the soft composite material part (S) is 45 to 95%, and the second matrix resin has an elastic modulus of 1/10 or less at 25 ° C. of the first matrix resin. The plate material according to claim 1, wherein 請求項4において板材の屈曲可能部分が剛体折紙の折れ線パターンに基づいて形成されている、剛体折紙構造用板材。   The rigid origami structural plate according to claim 4, wherein the bendable portion of the plate is formed based on a fold line pattern of the rigid origami. 剛体折紙の折れ線パターンを構成する屈曲可能部分のうち重畳数Ncが零のものを除くすべての屈曲可能部分において、軟質複合材部(S)の線幅Bおよび硬質複合材部(R)の厚みTが以下の関係式を満足する、請求項5に記載の剛体折紙構造用板材。
Nc×T<B<100×Nc×T
(ここで、剛体折紙の折れ線の重畳数Ncは、その折れ線で連結される一対の剛体面を完全に折り畳んだときに、その一対の剛体面の内側に一部または全部が挟み込まれる剛体面の総数として定義される。)
The line width B of the soft composite material portion (S) and the thickness of the hard composite material portion (R) in all the bendable portions of the bendable line pattern of the rigid origami except those having a superimposed number Nc of zero are formed. The rigid origami structural plate according to claim 5, wherein T satisfies the following relational expression.
Nc × T <B <100 × Nc × T
(Here, the superimposed number Nc of the fold lines of the rigid origami is the number of the rigid surfaces that are partially or wholly sandwiched inside the pair of rigid surfaces when the pair of rigid surfaces connected by the fold line are completely folded. Defined as total.)
剛体折紙の自由度が1または2である、請求項5記載の剛体折紙構造用板材。   The rigid origami structural plate according to claim 5, wherein the rigid origami has one or two degrees of freedom. 請求項7記載の剛体折紙構造用板材から作成された折り畳み可能な可折構造物。   A foldable foldable structure made from the rigid origami structural plate according to claim 7. 軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)が、軟質複合材部(S)を軸として両面に180°を超えて折り曲げることができる、請求項1または2に記載の板材からなるヒンジ。   The two hard composite parts (R) adjacent to each other with the soft composite part (S) interposed therebetween can be bent over 180 ° on both sides about the soft composite part (S) as an axis. A hinge made of the plate material according to 1. 軟質複合材部(S)の幅Bと、軟質複合材部(S)を挟んで隣接する二つの硬質複合材部(R)を軟質複合材部(S)を軸として180°折り曲げたときに一方の硬質複合材部(R)と他方の硬質複合材部(R)との間に生じる空隙の厚さDとが以下の関係式を満足することを特徴とする請求項1記載の板材。
0.1×B<D<0.6×B
When the width B of the soft composite material portion (S) and two hard composite material portions (R) adjacent to each other with the soft composite material portion (S) interposed therebetween are bent 180 ° about the soft composite material portion (S) as an axis. The plate material according to claim 1, wherein a thickness D of a gap formed between the one hard composite material part (R) and the other hard composite material part (R) satisfies the following relational expression.
0.1 × B <D <0.6 × B
JP2018113925A 2018-06-14 2018-06-14 Plate material, plate material for rigid body origami structure, and foldable structure Pending JP2019214915A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018113925A JP2019214915A (en) 2018-06-14 2018-06-14 Plate material, plate material for rigid body origami structure, and foldable structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018113925A JP2019214915A (en) 2018-06-14 2018-06-14 Plate material, plate material for rigid body origami structure, and foldable structure

Publications (1)

Publication Number Publication Date
JP2019214915A true JP2019214915A (en) 2019-12-19

Family

ID=68918527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018113925A Pending JP2019214915A (en) 2018-06-14 2018-06-14 Plate material, plate material for rigid body origami structure, and foldable structure

Country Status (1)

Country Link
JP (1) JP2019214915A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230226778A1 (en) * 2022-01-18 2023-07-20 Tianjin University Foldable frp plate and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143107A (en) * 1980-04-10 1981-11-07 Shigenori Kanegae Module panel for furniture
JPS58186002U (en) * 1982-06-05 1983-12-10 東罐興業株式会社 Connecting device for plate-shaped bodies
JPS63104512U (en) * 1986-12-26 1988-07-06
JP2004353354A (en) * 2003-05-30 2004-12-16 Kajima Corp Panel structure using fiber reinforced material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56143107A (en) * 1980-04-10 1981-11-07 Shigenori Kanegae Module panel for furniture
JPS58186002U (en) * 1982-06-05 1983-12-10 東罐興業株式会社 Connecting device for plate-shaped bodies
JPS63104512U (en) * 1986-12-26 1988-07-06
JP2004353354A (en) * 2003-05-30 2004-12-16 Kajima Corp Panel structure using fiber reinforced material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230226778A1 (en) * 2022-01-18 2023-07-20 Tianjin University Foldable frp plate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
DK2247802T3 (en) Panel with fiber reinforced core
KR102202215B1 (en) Deployable barrier inspired by origami
Del Broccolo et al. AUXHEX–A Kirigami inspired zero Poisson’s ratio cellular structure
WO2013014992A1 (en) Fiber-reinforced composite material
EP1930519B1 (en) Sandwich panel
KR20150128665A (en) Triaxial fiber-reinforced composite laminate
JP4699425B2 (en) Sandwich panel
JP2008137204A (en) Sandwich panel
JP2019214915A (en) Plate material, plate material for rigid body origami structure, and foldable structure
JP2020009762A (en) Heat generation panel and manufacturing method thereof
EP3250773A1 (en) Expandable panel
JP5920979B2 (en) Aircraft components
Deleo et al. Composite origami: Foldable structures based on tachi-miura-polyhedron origami technique
BR102014021942A2 (en) article, tray, and method of fabricating a composite structure
WO2016185743A1 (en) Honeycomb core, honeycomb sandwiching structure, and method for producing honeycomb core
JP2019214914A (en) Plate material, plate material for rigid body origami structure, and foldable structure
US20230226778A1 (en) Foldable frp plate and manufacturing method thereof
JP2021130955A (en) roof
KR101368890B1 (en) Fatigue test apparatus for membrane
JP2021025164A (en) Fiber structure and fiber-reinforce composite material
US20210080090A1 (en) Extendible coiled member and related methods
O’NEIL et al. Deployable structures constructed from composite origami
JP2021066188A (en) Foldable boom
Chen et al. Design and testing of a space deployable mechanism
JP2020063095A (en) Structure and hinge body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220520

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220607