JP2021123017A - Dissimilar material joining structure and method for manufacturing the same - Google Patents

Dissimilar material joining structure and method for manufacturing the same Download PDF

Info

Publication number
JP2021123017A
JP2021123017A JP2020017480A JP2020017480A JP2021123017A JP 2021123017 A JP2021123017 A JP 2021123017A JP 2020017480 A JP2020017480 A JP 2020017480A JP 2020017480 A JP2020017480 A JP 2020017480A JP 2021123017 A JP2021123017 A JP 2021123017A
Authority
JP
Japan
Prior art keywords
resin
metal
ceramic
internal space
dissimilar material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020017480A
Other languages
Japanese (ja)
Other versions
JP7356925B2 (en
Inventor
英一 前花
Eiichi Maehana
英一 前花
大輔 野田
Daisuke Noda
大輔 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu NTC Ltd
Original Assignee
Komatsu NTC Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu NTC Ltd filed Critical Komatsu NTC Ltd
Priority to JP2020017480A priority Critical patent/JP7356925B2/en
Priority to PCT/JP2021/001631 priority patent/WO2021157335A1/en
Publication of JP2021123017A publication Critical patent/JP2021123017A/en
Application granted granted Critical
Publication of JP7356925B2 publication Critical patent/JP7356925B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C69/00Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore
    • B29C69/02Combinations of shaping techniques not provided for in a single one of main groups B29C39/00 - B29C67/00, e.g. associations of moulding and joining techniques; Apparatus therefore of moulding techniques only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/68Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts by incorporating or moulding on preformed parts, e.g. inserts or layers, e.g. foam blocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Plasma & Fusion (AREA)
  • Laser Beam Processing (AREA)
  • Moulding By Coating Moulds (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Powder Metallurgy (AREA)

Abstract

To provide a dissimilar material joining structure capable of obtaining a stronger joining force and a method for manufacturing the same.SOLUTION: A beam structure 30 made of a similar material as a second member 20 is formed on a surface 21 of the second member 20 by a three-dimensional modeling technique. The beam structure 30 is provided with a column part 31 erected on the surface 21 of the second member 20, and a beam part 32 connected to the column part 31. Then, the surface 21 of the second member 20 and an internal space 33 of the beam structure 30 are filled with a first member 10 before solidification and then solidified. Thereby, a dissimilar material joining structure 1 is manufactured in which the first member 10 and the second member 20 material of which is different from that of the first member 10 are joined together.SELECTED DRAWING: Figure 1

Description

本発明は、異材接合構造およびその作製方法に関する。 The present invention relates to a dissimilar material joint structure and a method for producing the same.

自動車などの輸送機器において、燃料消費量の低減が必要不可欠となっており、その一つの手段として、構造部材の材質を適材適所に配置するマルチマテリアル化が推進されている。このマルチマテリアル化には、異なる性質の材料を強固に接合させる異材接合の技術が必要不可欠である。 In transportation equipment such as automobiles, reduction of fuel consumption is indispensable, and as one of the means, multi-materialization is being promoted in which the materials of structural members are arranged in the right places. For this multi-materialization, a technology for joining dissimilar materials that firmly joins materials with different properties is indispensable.

化学的接合力が得られない組み合わせの材質の部材同士の異材接合には、様々な種類がある。例えば溶融溶接などの電子を介した強い結合力が得られる接合の場合、接合する部材の材質の組み合わせが限定されてしまう。
溶接のような接合が困難な場合、機械的な接合や接着剤による接合が行われる。ただし、機械的結合では、ボルトやリベットを用いて部材同士の締結を行うため、それらをはめ込むための穴を部材に形成しておく必要があり、その分部材が大きくなってしまう。また、接着剤による接合は、分子間力や水素結合などの弱い結合力によるものであるため、溶接などと比較するとその接合力はあまり強くない。また、その接合力は、固化した接着剤の破壊強度に依存してしまう。
There are various types of dissimilar material bonding between members made of a combination of materials for which chemical bonding force cannot be obtained. For example, in the case of joining in which a strong bonding force via electrons such as melt welding can be obtained, the combination of materials of the members to be joined is limited.
When joining such as welding is difficult, mechanical joining or joining with an adhesive is performed. However, in the mechanical connection, since the members are fastened to each other by using bolts or rivets, it is necessary to form holes in the members for fitting them, and the members become larger by that amount. Further, since the bonding with an adhesive is due to a weak bonding force such as an intermolecular force or a hydrogen bond, the bonding force is not so strong as compared with welding or the like. Further, the bonding force depends on the breaking strength of the solidified adhesive.

これらの問題を解決する一つの手段として、アンカー効果を狙った接合構造があり、金属と樹脂の組み合わせの異材接合に用いられている(例えば、非特許文献1参照)。この場合、例えば金属材料の表面に細かい凹凸を形成し、その凹凸に液状樹脂を浸透させることで、樹脂材が樹木の根を張ったような形で、金属材に接合される。これにより、分子間力だけではなく材料間の摩擦力が接合力として働くため、強固な異材接合が達成される。 As one means for solving these problems, there is a joining structure aiming at an anchor effect, which is used for joining dissimilar materials in a combination of metal and resin (see, for example, Non-Patent Document 1). In this case, for example, by forming fine irregularities on the surface of the metal material and allowing the liquid resin to permeate the irregularities, the resin material is joined to the metal material in a form as if the roots of a tree were stretched. As a result, not only the intermolecular force but also the frictional force between the materials acts as a bonding force, so that strong dissimilar material bonding is achieved.

瀬戸雅宏、外4名、「樹脂−金属接合射出成形品の接合強さに与える強化繊維の影響」、成形加工、第28巻、第10号、2016、p.427−433Masahiro Seto, 4 outsiders, "Effects of Reinforcing Fibers on Bonding Strength of Resin-Metal Bonding Injection Molded Products", Forming Process, Vol. 28, No. 10, 2016, p. 427-433

前記した非特許文献1に記載の技術では、金属部材の表面に形成された凹凸に樹脂を入り込ませることでアンカー効果を得る異材接合構造が作製される。このような凹凸の形成には、レーザやショットブラスト、エッチングなどの加工技術が用いられる。 In the technique described in Non-Patent Document 1 described above, a dissimilar material joining structure that obtains an anchor effect is produced by allowing a resin to enter the unevenness formed on the surface of a metal member. Processing techniques such as laser, shot blasting, and etching are used to form such irregularities.

しかしながら、金属部材の表面に形成された凹凸に樹脂を入り込ませた異材接合構造の場合、化学的接合力が期待できず、その接合力は部材間の摩擦力にある。しかし、このような異材接合構造は、金属部材の表面に対して概ね垂直な穴(凹部)が形成されるため、金属部材の表面に垂直な方向の引張力に対しては弱い。特に一方の部材がヤング率の低い材質であって比較的小さい力で変形するような場合、外力によって部材間の界面が剥がれて接合力が失われてしまうおそれがある。 However, in the case of a dissimilar material joining structure in which a resin is embedded in the unevenness formed on the surface of a metal member, a chemical joining force cannot be expected, and the joining force is the frictional force between the members. However, such a dissimilar material joining structure is weak against a tensile force in a direction perpendicular to the surface of the metal member because holes (recesses) substantially perpendicular to the surface of the metal member are formed. In particular, when one of the members is made of a material having a low Young's modulus and is deformed by a relatively small force, the interface between the members may be peeled off by an external force and the joining force may be lost.

本発明は、より強固な接合力を得ることができる異材接合構造およびその作製方法を提供することを課題とする。 An object of the present invention is to provide a dissimilar material joining structure capable of obtaining a stronger joining force and a method for producing the same.

前記課題を解決するため、本発明は、第1の部材と、該第1の部材とは材質の異なる第2の部材とが接合された異材接合構造の作製方法である。前記異材接合構造の作製方法は、形成工程と、充填工程と、固化工程とを含む。前記形成工程は、前記第2の部材の表面に、該表面に立設される柱部および該柱部に連設される梁部を備え前記第2の部材と同種の材質の梁構造を、3次元造形技術によって形成するものである。前記充填工程は、前記第2の部材の表面と前記梁構造の内部空間とに、固化前の前記第1の部材を充填させるものである。前記固化工程は、前記充填工程において充填された固化前の前記第1の部材を固化させるものである。 In order to solve the above problems, the present invention is a method for producing a dissimilar material joining structure in which a first member and a second member whose material is different from that of the first member are joined. The method for producing the dissimilar material joint structure includes a forming step, a filling step, and a solidifying step. In the forming step, a column portion erected on the surface and a beam portion connected to the column portion are provided on the surface of the second member, and a beam structure made of the same material as the second member is formed. It is formed by three-dimensional modeling technology. In the filling step, the surface of the second member and the internal space of the beam structure are filled with the first member before solidification. The solidification step solidifies the first member before solidification filled in the filling step.

また、本発明は、第1の部材と、該第1の部材とは材質の異なる第2の部材とが接合された異材接合構造である。前記第2の部材の表面に、該表面に立設される柱部および該柱部に連設される梁部を備え前記第2の部材と同種の材質の梁構造が形成されている。そして、前記第1の部材が前記第2の部材の表面に接触するとともに前記梁構造の内部空間に入り込んでいる。 Further, the present invention is a dissimilar material joining structure in which a first member and a second member whose material is different from that of the first member are joined. On the surface of the second member, a pillar portion erected on the surface and a beam portion connected to the pillar portion are provided, and a beam structure made of the same material as the second member is formed. Then, the first member comes into contact with the surface of the second member and enters the internal space of the beam structure.

本発明によれば、より強固な接合力を得ることができる異材接合構造およびその作製方法を提供できる。 According to the present invention, it is possible to provide a dissimilar material joining structure capable of obtaining a stronger joining force and a method for producing the same.

本発明の第1実施形態に係る異材接合構造を模式的に示す斜視図である。It is a perspective view which shows typically the dissimilar material joining structure which concerns on 1st Embodiment of this invention. 図1に示される第2の部材の表面に形成された梁構造を模式的に示す正面図である。It is a front view which shows typically the beam structure formed on the surface of the 2nd member shown in FIG. 本発明の第1実施形態に係る異材接合構造の作製方法の内容を示すフローチャートである。It is a flowchart which shows the content of the manufacturing method of the dissimilar material joint structure which concerns on 1st Embodiment of this invention. 図3に示される形成工程において使用される3次元造形装置の概略構成を示す図である。It is a figure which shows the schematic structure of the 3D modeling apparatus used in the forming process shown in FIG. 図3に示される充填工程において使用される金型の概略構成を示す図である。It is a figure which shows the schematic structure of the mold used in the filling process shown in FIG. 第2の部材の表面に形成された変形例に係る梁構造を模式的に示す正面図である。It is a front view which shows typically the beam structure which concerns on the deformation example formed on the surface of the 2nd member. 第2の部材の表面に形成された変形例に係る梁構造を模式的に示す正面図である。It is a front view which shows typically the beam structure which concerns on the deformation example formed on the surface of the 2nd member. 第2の部材の表面に形成された変形例に係る梁構造を模式的に示す正面図である。It is a front view which shows typically the beam structure which concerns on the deformation example formed on the surface of the 2nd member. 第2の部材の表面に形成された変形例に係る梁構造を模式的に示す斜視図である。It is a perspective view which shows typically the beam structure which concerns on the modification formed on the surface of the 2nd member. 第2の部材の表面に図9に示す変形例に係る梁構造のうちの複数の四角板形状の柱部のみを形成した比較例を模式的に示す斜視図である。FIG. 5 is a perspective view schematically showing a comparative example in which only a plurality of square plate-shaped columns of the beam structure according to the modified example shown in FIG. 9 are formed on the surface of the second member. 本発明の第3実施形態に係る異材接合構造の作製方法の内容を示すフローチャートである。It is a flowchart which shows the content of the manufacturing method of the dissimilar material joint structure which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係る異材接合構造を模式的に示す斜視図である。It is a perspective view which shows typically the dissimilar material joining structure which concerns on 3rd Embodiment of this invention.

本発明の実施形態について、適宜図面を参照しながら詳細に説明する。
なお、各図において、共通する構成要素や同種の構成要素については、同一の符号を付し、それらの重複する説明を適宜省略する。また、部材のサイズおよび形状は、説明の便宜のため、変形または誇張して模式的に表す場合がある。
Embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
In each figure, common components and components of the same type are designated by the same reference numerals, and duplicate description thereof will be omitted as appropriate. In addition, the size and shape of the member may be deformed or exaggerated schematically for convenience of explanation.

(第1実施形態)
まず、図1〜図5を参照して、第1実施形態について説明する。
図1は、本発明の第1実施形態に係る異材接合構造1を模式的に示す斜視図である。図2は、図1に示される第2の部材20の表面21に形成された梁構造30を模式的に示す正面図である。説明の便宜上、図1に示すように、前後左右上下の方向を設定する。ただし、使用状態においては、異材接合構造1の設置方向が、図1に示す方向と異なっていてもよい。
(First Embodiment)
First, the first embodiment will be described with reference to FIGS. 1 to 5.
FIG. 1 is a perspective view schematically showing a dissimilar material joining structure 1 according to the first embodiment of the present invention. FIG. 2 is a front view schematically showing a beam structure 30 formed on the surface 21 of the second member 20 shown in FIG. For convenience of explanation, as shown in FIG. 1, the front-back, left-right, up-down directions are set. However, in the used state, the installation direction of the dissimilar material joining structure 1 may be different from the direction shown in FIG.

図1に示すように、異材接合構造1は、第1の部材10と、該第1の部材10とは材質の異なる第2の部材20とが接合されたものである。第2の部材20の表面21には、梁構造30が3次元造形技術によって形成されている。 As shown in FIG. 1, the dissimilar material joining structure 1 is formed by joining a first member 10 and a second member 20 whose material is different from that of the first member 10. A beam structure 30 is formed on the surface 21 of the second member 20 by a three-dimensional modeling technique.

図1、図2に示すように、梁構造30は、第2の部材20の表面21に立設される柱部31と、該柱部31に連設される梁部32とを備えている。柱部31は、第2の部材20の表面21に対して略垂直に形成されており、梁部32は、柱部31の延伸方向とは異なる方向に延伸している。ここでは、梁部32は、柱部31の延伸方向に対して直交する方向、すなわち第2の部材20の表面21に対して略水平に形成されている。また、柱部31および梁部32の長手方向に直交する断面形状は四角形を呈しているが、これに限定されるものではなく、例えば円形や楕円形を呈していてもよい。梁構造30の材質は、第2の部材20と同一若しくは同種の材質である。 As shown in FIGS. 1 and 2, the beam structure 30 includes a pillar portion 31 erected on the surface 21 of the second member 20, and a beam portion 32 connected to the pillar portion 31. .. The column portion 31 is formed substantially perpendicular to the surface 21 of the second member 20, and the beam portion 32 extends in a direction different from the extending direction of the column portion 31. Here, the beam portion 32 is formed in a direction orthogonal to the extending direction of the column portion 31, that is, substantially horizontally with respect to the surface 21 of the second member 20. Further, the cross-sectional shapes of the pillar portion 31 and the beam portion 32 orthogonal to the longitudinal direction are quadrangular, but are not limited to this, and may be circular or elliptical, for example. The material of the beam structure 30 is the same as or the same as that of the second member 20.

梁構造30は、ここでは、複数の柱部31と該複数の柱部31の頂部に接合された梁部32とを有する構造体を備えている。具体的には、横方向(図2の左右方向)に並んで配置された4本の柱部31と、4本の柱部31の頂部に接合された1本の梁部32とを有する構造体が、縦方向(図2の紙面に垂直な方向)に3列並んで配置されている。そして、梁部32と第2の部材20の表面21との間に、複数の内部空間33が形成されている。具体的には、柱部31、梁部32、および第2の部材20の表面21に囲まれた空間が内部空間33を形成している。複数の内部空間33は、互いに連通している。 Here, the beam structure 30 includes a structure having a plurality of column portions 31 and a beam portion 32 joined to the tops of the plurality of column portions 31. Specifically, a structure having four pillars 31 arranged side by side in the horizontal direction (horizontal direction in FIG. 2) and one beam 32 joined to the tops of the four pillars 31. The bodies are arranged side by side in three rows in the vertical direction (direction perpendicular to the paper surface of FIG. 2). A plurality of internal spaces 33 are formed between the beam portion 32 and the surface 21 of the second member 20. Specifically, the space surrounded by the pillar portion 31, the beam portion 32, and the surface 21 of the second member 20 forms the internal space 33. The plurality of internal spaces 33 communicate with each other.

第1実施形態では、第1の部材10の材質は、第1の樹脂である。また、第2の部材20の材質は、金属である。ただし、第2の部材20の材質は、セラミック、または第1の樹脂とは異なる種類の第2の樹脂であってもよい。 In the first embodiment, the material of the first member 10 is the first resin. The material of the second member 20 is metal. However, the material of the second member 20 may be ceramic or a second resin of a type different from that of the first resin.

次に、図3〜図5を参照して、異材接合構造1の作製方法について説明する。
図3は、本発明の第1実施形態に係る異材接合構造1(図1参照、以下同様)の作製方法の内容を示すフローチャートである。図4は、図3に示される形成工程(ステップS10)において使用される3次元造形装置100の概略構成を示す図である。図5は、図3に示される充填工程(ステップS20)において使用される成形用型としての金型200の概略構成を示す図である。
Next, a method of manufacturing the dissimilar material joint structure 1 will be described with reference to FIGS. 3 to 5.
FIG. 3 is a flowchart showing the contents of a method for manufacturing a dissimilar material joining structure 1 (see FIG. 1, the same applies hereinafter) according to the first embodiment of the present invention. FIG. 4 is a diagram showing a schematic configuration of a three-dimensional modeling apparatus 100 used in the forming step (step S10) shown in FIG. FIG. 5 is a diagram showing a schematic configuration of a mold 200 as a molding mold used in the filling step (step S20) shown in FIG.

図3に示すように、異材接合構造1の作製方法は、形成工程(ステップS10)と、充填工程(ステップS20)と、固化工程(ステップS30)とを含んでいる。 As shown in FIG. 3, the method for producing the dissimilar material joining structure 1 includes a forming step (step S10), a filling step (step S20), and a solidification step (step S30).

形成工程(ステップS10)は、第2の部材20の表面21(図1参照、以下同様)に、梁構造30(図1参照、以下同様)を3次元造形技術によって形成するものである。充填工程(ステップS20)は、第2の部材20の表面21と梁構造30の内部空間33(図1参照、以下同様)とに、固化前の第1の部材10(図1参照、以下同様)を充填させるものである。固化工程(ステップS30)は、充填工程(ステップS20)において充填された固化前の第1の部材10を固化させるものである。 In the forming step (step S10), the beam structure 30 (see FIG. 1, the same applies hereinafter) is formed on the surface 21 (see FIG. 1, the same applies hereinafter) of the second member 20 by a three-dimensional modeling technique. In the filling step (step S20), the surface 21 of the second member 20 and the internal space 33 of the beam structure 30 (see FIG. 1, the same applies hereinafter) the first member 10 before solidification (see FIG. 1, the same applies hereinafter). ) Is filled. The solidification step (step S30) solidifies the first member 10 before solidification packed in the filling step (step S20).

次に、ステップS10,S20,S30について、さらに具体的に説明する。
形成工程(ステップS10)は、例えば図4に示すような3次元造形装置100を使用して実施される。
Next, steps S10, S20, and S30 will be described more specifically.
The forming step (step S10) is carried out using, for example, the three-dimensional modeling apparatus 100 as shown in FIG.

3次元造形装置100は、本実施形態では、第2の部材20と同種の材質の金属の粉末190の層にエネルギービームとしてのレーザ光125を照射することで3次元の造形体を作る3次元造形装置である。3次元造形装置100は、粉末供給装置110と、エネルギービーム照射装置としてのレーザ光照射装置120と、移動装置130と、制御装置160とを備えている。粉末供給装置110と移動装置130とは、チャンバ170内に収容されている。 In the present embodiment, the three-dimensional modeling apparatus 100 creates a three-dimensional model by irradiating a layer of metal powder 190 made of the same material as the second member 20 with a laser beam 125 as an energy beam. It is a modeling device. The three-dimensional modeling device 100 includes a powder supply device 110, a laser light irradiation device 120 as an energy beam irradiation device, a moving device 130, and a control device 160. The powder supply device 110 and the moving device 130 are housed in the chamber 170.

粉末供給装置110は、造形対象物としての構造部品(完成した製品を含む)である第2の部材20の表面21に向けて粉末190を落下させて供給する。粉末供給装置110は、高精度粉末供給機を利用して構成することができる。金属の粉末190としては、例えば、アルミ合金、鉄鋼、ステンレス鋼、純チタン、チタン合金、ニッケル基合金等が使用され得る。 The powder supply device 110 drops and supplies the powder 190 toward the surface 21 of the second member 20 which is a structural component (including a finished product) as a modeling object. The powder supply device 110 can be configured by utilizing a high-precision powder supply machine. As the metal powder 190, for example, aluminum alloys, steels, stainless steels, pure titaniums, titanium alloys, nickel-based alloys and the like can be used.

レーザ光照射装置120は、粉末供給装置110によって供給されて堆積した粉末190の層にレーザ光125を照射する。レーザ光照射装置120は、レーザ光125を出射するレーザ光源121と、ミラー(ガルバノミラー)122,123と、レンズ系124とを備えている。ミラー122,123の角度を変化させることで、レーザ光125の照射方向を変化させる操作が行われる。 The laser light irradiation device 120 irradiates the layer of the powder 190 supplied and deposited by the powder supply device 110 with the laser light 125. The laser light irradiation device 120 includes a laser light source 121 that emits laser light 125, mirrors (galvano mirrors) 122 and 123, and a lens system 124. By changing the angles of the mirrors 122 and 123, an operation of changing the irradiation direction of the laser beam 125 is performed.

移動装置130は、第2の部材20を移動させる装置である。本実施形態では、移動装置130は、第2の部材20をセットする基台131と、基台131を移動させる駆動機構132とを備えている。駆動機構132は、基台131を前後左右上下の各方向に移動させることができる。チャンバ170は、例えばステンレス等の金属で形成された容器である。真空引きすることによって酸素が除去されたチャンバ170内には、アルゴン、窒素等の不活性ガスが供給されるようになっている。 The moving device 130 is a device for moving the second member 20. In the present embodiment, the moving device 130 includes a base 131 for setting the second member 20, and a driving mechanism 132 for moving the base 131. The drive mechanism 132 can move the base 131 in each of the front-back, left-right, up-down directions. The chamber 170 is a container made of a metal such as stainless steel. An inert gas such as argon or nitrogen is supplied into the chamber 170 from which oxygen has been removed by evacuation.

制御装置160は、図示しないCPU(中央演算処理装置)、およびメモリ、ハードディスク等の記憶部を備えている。記憶部には、3次元造形したい構造の3次元形状データと、加工条件データとが保存される。制御装置160は、加工条件データに基づいて、レーザ光源121、ミラー122,123、およびレンズ系124を制御して、レーザ光125の出力特性、走査速度、走査間隔、および照射位置を調整する。また、制御装置160は、移動装置130を制御する。制御装置160には、表示装置181と、入力装置182とが接続されている。表示装置181は、操作画面、警告メッセージ等の各種情報を表示する。入力装置182は、3次元形状データや加工条件データの作成または入力のためのユーザの操作の受付け、3次元造形作業の開始指示等の各種情報の入力を行う。 The control device 160 includes a CPU (Central Processing Unit) (not shown) and a storage unit such as a memory and a hard disk. The storage unit stores the three-dimensional shape data of the structure to be three-dimensionally modeled and the processing condition data. The control device 160 controls the laser light source 121, the mirrors 122, 123, and the lens system 124 based on the processing condition data to adjust the output characteristics, scanning speed, scanning interval, and irradiation position of the laser beam 125. Further, the control device 160 controls the mobile device 130. A display device 181 and an input device 182 are connected to the control device 160. The display device 181 displays various information such as an operation screen and a warning message. The input device 182 accepts a user's operation for creating or inputting three-dimensional shape data and processing condition data, and inputs various information such as a start instruction for three-dimensional modeling work.

形成工程(ステップS10)では、まず、第2の部材20が移動装置130の基台131にセットされて固定される。そして、チャンバ170内が真空引きされた後、チャンバ170内に不活性ガスが供給される。次に、粉末供給装置110によって、第2の部材20の表面21に向けて、粉末190が適量落下させられて供給される。ここで、制御装置160は、移動装置130を制御して、第2の部材20を水平方向に移動させながら、粉末供給装置110を制御して、第2の部材20の表面21に向けて粉末190を一定量落下させる。これにより、第2の部材20の表面21上に堆積した薄い粉末190の層が形成される。続いて、制御装置160は、移動装置130を制御して、第2の部材20をレーザ光照射装置120の下方に移動させた後に、レーザ光照射装置120を制御して、粉末190の層にレーザ光125を照射させる。これにより、粉末190が溶融・結合して固化された造形領域が形成される。そして、制御装置160は、次の層についての3次元造形を実施するように制御する。このように粉末190の層の所定領域にレーザ光125を照射することで固化された造形領域の層を一層ずつ積層して造形する3次元造形が最後の層(最上層)まで行われる。これにより、第2の部材20の表面21に、梁構造30が形成される。 In the forming step (step S10), first, the second member 20 is set and fixed on the base 131 of the moving device 130. Then, after the inside of the chamber 170 is evacuated, the inert gas is supplied into the chamber 170. Next, the powder supply device 110 drops an appropriate amount of the powder 190 toward the surface 21 of the second member 20 and supplies the powder 190. Here, the control device 160 controls the moving device 130 to move the second member 20 in the horizontal direction, and controls the powder supply device 110 to produce powder toward the surface 21 of the second member 20. Drop 190 by a certain amount. This forms a layer of thin powder 190 deposited on the surface 21 of the second member 20. Subsequently, the control device 160 controls the moving device 130 to move the second member 20 below the laser light irradiating device 120, and then controls the laser light irradiating device 120 to form a layer of the powder 190. The laser beam 125 is irradiated. As a result, a molding region in which the powder 190 is melted and bonded to be solidified is formed. Then, the control device 160 controls to carry out three-dimensional modeling for the next layer. By irradiating the predetermined region of the powder 190 layer with the laser beam 125 in this way, the three-dimensional modeling in which the layers of the solidified modeling region are laminated one by one is performed up to the last layer (top layer). As a result, the beam structure 30 is formed on the surface 21 of the second member 20.

充填工程(ステップS20)は、例えば図5に示すような金型200を使用して実施される。金型200は、相対的に近接離反する上型210および下型220を備えている。上型210には、第1の部材10の材質である第1の樹脂が流入する通路211が形成されている。第1の樹脂としては、例えばエポキシ樹脂が使用され得る。下型220には、第2の部材20を金型200内で位置決めする例えば凹形状の位置決め部221が形成されている。また、上型210と下型220とが合わせられた状態(図5に示す状態)において、上型210と下型220との間に充填空間230が形成される。 The filling step (step S20) is carried out using, for example, a mold 200 as shown in FIG. The mold 200 includes an upper mold 210 and a lower mold 220 that are relatively close to each other. The upper mold 210 is formed with a passage 211 into which the first resin, which is the material of the first member 10, flows in. As the first resin, for example, an epoxy resin can be used. The lower mold 220 is formed with, for example, a concave positioning portion 221 that positions the second member 20 in the mold 200. Further, in a state where the upper mold 210 and the lower mold 220 are combined (the state shown in FIG. 5), a filling space 230 is formed between the upper mold 210 and the lower mold 220.

充填工程(ステップS20)では、まず、上型210と下型220とが開いて互いに離反した状態で、表面21に梁構造30が形成された第2の部材20が、下型220の位置決め部221にセットされて位置決めされる。次に、上型210と下型220とが近接移動して合わせられる。続いて、液状の第1の樹脂が、矢印231で示す方向に通路211を経て、上型210と下型220との間に形成された充填空間230内に流入する。そして、第2の部材20の表面21と梁構造30の内部空間33とに固化前の液状の第1の樹脂が充填させられる。また、液状の第1の樹脂は、梁構造30の周辺を含む充填空間230全体に充填させられる。 In the filling step (step S20), first, the second member 20 having the beam structure 30 formed on the surface 21 in a state where the upper mold 210 and the lower mold 220 are opened and separated from each other is the positioning portion of the lower mold 220. It is set to 221 and positioned. Next, the upper die 210 and the lower die 220 are moved close to each other and matched. Subsequently, the liquid first resin flows into the filling space 230 formed between the upper mold 210 and the lower mold 220 through the passage 211 in the direction indicated by the arrow 231. Then, the surface 21 of the second member 20 and the internal space 33 of the beam structure 30 are filled with the liquid first resin before solidification. Further, the liquid first resin is filled in the entire filling space 230 including the periphery of the beam structure 30.

固化工程(ステップS30)では、充填工程(ステップS20)において充填された固化前の液状の第1の樹脂が固化する。液状の第1の樹脂が固化すると、上型210と下型220とが開いて互いに離反し、第1の部材10と第2の部材20とが梁構造30を介して接合された異材接合構造1が成形品として取り出される。 In the solidification step (step S30), the liquid first resin before solidification filled in the filling step (step S20) is solidified. When the liquid first resin solidifies, the upper mold 210 and the lower mold 220 open and separate from each other, and the first member 10 and the second member 20 are joined via the beam structure 30 to form a dissimilar material joint structure. 1 is taken out as a molded product.

前記したように、本実施形態では、第2の部材20の表面21に、第2の部材20と同種の材質の梁構造30が3次元造形技術によって形成される。梁構造30は、第2の部材20の表面21に立設される柱部31と、該柱部31に連設される梁部32とを備える。そして、第2の部材20の表面21と梁構造30の内部空間33とに、固化前の第1の部材10が充填させられた後、固化させられる。これにより、第1の部材10と、該第1の部材10とは材質の異なる第2の部材20とが接合された異材接合構造1が作製される。異材接合構造1においては、第1の部材10が第2の部材20の表面21に接触するとともに梁構造30の内部空間33に入り込んでいる。 As described above, in the present embodiment, the beam structure 30 made of the same material as the second member 20 is formed on the surface 21 of the second member 20 by the three-dimensional modeling technique. The beam structure 30 includes a pillar portion 31 erected on the surface 21 of the second member 20, and a beam portion 32 connected to the pillar portion 31. Then, the surface 21 of the second member 20 and the internal space 33 of the beam structure 30 are filled with the first member 10 before solidification and then solidified. As a result, a dissimilar material joining structure 1 is produced in which the first member 10 and the second member 20 whose material is different from that of the first member 10 are joined. In the dissimilar material joining structure 1, the first member 10 comes into contact with the surface 21 of the second member 20 and enters the internal space 33 of the beam structure 30.

金属部材の表面に形成された凹凸に樹脂を入り込ませることでアンカー効果を得る従来の異材接合構造では、摩擦力による接合力の向上が可能になる。しかしながら、このような凹凸によるアンカー効果を利用した従来の異材接合構造では、接合相手方の部材の表面に対して概ね垂直な穴(凹部)が形成される。このため、従来の異材接合構造は、接合相手方の部材の表面に平行な方向のせん断力に対しては強いが、垂直な方向の引張力に対しては弱い。 In the conventional dissimilar material joining structure in which the anchor effect is obtained by allowing the resin to enter the unevenness formed on the surface of the metal member, the joining force due to the frictional force can be improved. However, in the conventional dissimilar material joining structure utilizing the anchor effect due to such unevenness, a hole (recess) substantially perpendicular to the surface of the member to be joined is formed. Therefore, the conventional dissimilar material joining structure is strong against the shearing force in the direction parallel to the surface of the member to be joined, but weak against the tensile force in the vertical direction.

これに対し、本実施形態では、部材の表面に垂直な穴だけではなく、例えばラーメン構造のような柱部31と梁部32とが張り巡らされた梁構造30が、3次元造形技術によって第2の部材20の表面21に形成される。その後、第2の部材20の表面21と梁構造30の内部空間33とに液状の樹脂を充填して浸透させ、固化することで、充填した樹脂と接合相手方の部材の材料とが密着して互いに抱え込むような形で接合される。このようにして作製された異材接合構造1の接合力(接合強度)は、分子間力や部材間の摩擦力よりも、異材接合構造1の素材自体の強度に依存することになる。これにより、樹脂と例えば金属とのより強固な異材接合が達成される。
したがって、本実施形態によれば、より強固な接合力を得ることができる異材接合構造1およびその作製方法を提供できる。
また、梁構造30の形状を3次元造形技術によって自在に変更できるため、異材接合構造1の接合力を用途に合わせて調整可能となる。
On the other hand, in the present embodiment, not only the holes perpendicular to the surface of the member but also the beam structure 30 in which the column portion 31 and the beam portion 32 such as the rigid frame structure are stretched is formed by the three-dimensional modeling technique. It is formed on the surface 21 of the member 20 of 2. After that, the surface 21 of the second member 20 and the internal space 33 of the beam structure 30 are filled with a liquid resin, permeated, and solidified, so that the filled resin and the material of the member to be joined are brought into close contact with each other. They are joined in such a way that they hold each other. The bonding force (bonding strength) of the dissimilar material bonding structure 1 produced in this manner depends on the strength of the material itself of the dissimilar material bonding structure 1 rather than the intermolecular force and the frictional force between the members. As a result, stronger dissimilar material bonding between the resin and, for example, metal is achieved.
Therefore, according to the present embodiment, it is possible to provide a dissimilar material joining structure 1 capable of obtaining a stronger joining force and a method for producing the same.
Further, since the shape of the beam structure 30 can be freely changed by the three-dimensional modeling technique, the joining force of the dissimilar material joining structure 1 can be adjusted according to the application.

なお、梁構造30は、図1、図2に示す形状に限定されるものではなく、柱部と梁部とを備える任意の形状に形成され得る。
図6〜図8は、第2の部材20の表面21に形成された変形例に係る梁構造30a〜30cを模式的に示す正面図である。
The beam structure 30 is not limited to the shapes shown in FIGS. 1 and 2, and may be formed in any shape including a column portion and a beam portion.
6 to 8 are front views schematically showing beam structures 30a to 30c according to a modified example formed on the surface 21 of the second member 20.

図6に示す梁構造30aは、第2の部材20の表面21に立設される一対の柱部31aと一対の柱部31aの頂部に接合された梁部32aとを有する門型の構造体を複数備えている。そして、梁部32aと第2の部材20の表面21との間に、内部空間33aが形成されている。具体的には、柱部31a、梁部32a、および第2の部材20の表面21に囲まれた空間が内部空間33aを形成している。 The beam structure 30a shown in FIG. 6 is a gate-shaped structure having a pair of column portions 31a erected on the surface 21 of the second member 20 and a beam portion 32a joined to the tops of the pair of column portions 31a. It has multiple. An internal space 33a is formed between the beam portion 32a and the surface 21 of the second member 20. Specifically, the space surrounded by the pillar portion 31a, the beam portion 32a, and the surface 21 of the second member 20 forms the internal space 33a.

図7に示す梁構造30bは、第2の部材20の表面21に立設される一対の曲がった柱部31bと一対の曲がった柱部31bの頂部に接合された曲がった梁部32bとを有する半円環体形状の構造体を複数備えている。すなわち、梁構造30bは、図6に示す梁構造30aにおける柱部31aと梁部32aとの接合部分をR形状に形成したものである。このように、梁構造において、柱部および梁部は曲がっていてもよい。そして、梁部32bと第2の部材20の表面21との間に、内部空間33bが形成されている。具体的には、柱部31b、梁部32b、および第2の部材20の表面21に囲まれた空間が内部空間33bを形成している。 The beam structure 30b shown in FIG. 7 consists of a pair of curved column portions 31b erected on the surface 21 of the second member 20 and a curved beam portion 32b joined to the tops of the pair of curved column portions 31b. It is provided with a plurality of semicircular ring-shaped structures having the same structure. That is, the beam structure 30b is formed by forming the joint portion between the column portion 31a and the beam portion 32a in the beam structure 30a shown in FIG. 6 in an R shape. As described above, in the beam structure, the column portion and the beam portion may be bent. An internal space 33b is formed between the beam portion 32b and the surface 21 of the second member 20. Specifically, the space surrounded by the pillar portion 31b, the beam portion 32b, and the surface 21 of the second member 20 forms the internal space 33b.

図8に示す梁構造30cは、第2の部材20の表面21に立設される一つの柱部31cと該柱部31cの頂部に接合された梁部32cとを有する逆L字形状の構造体を複数備えている。この場合、梁部32cは、いわゆる片持ち梁である。そして、梁部32cと第2の部材20の表面21との間に、内部空間33cが形成されている。具体的には、柱部31c、梁部32c、および第2の部材20の表面21に囲まれた空間が内部空間33cを形成している。 The beam structure 30c shown in FIG. 8 has an inverted L-shaped structure having one column portion 31c erected on the surface 21 of the second member 20 and a beam portion 32c joined to the top of the column portion 31c. It has multiple bodies. In this case, the beam portion 32c is a so-called cantilever. An internal space 33c is formed between the beam portion 32c and the surface 21 of the second member 20. Specifically, the space surrounded by the pillar portion 31c, the beam portion 32c, and the surface 21 of the second member 20 forms the internal space 33c.

図9は、第2の部材20の表面21に形成された変形例に係る梁構造30dを模式的に示す斜視図である。
図9に示す梁構造30dは、第2の部材20の表面21に立設される複数の四角板形状の柱部31dと複数の柱部31dの頂部に接合された格子状の梁部32dとを備えている。梁部32dは、ここでは複数の短い円筒部が互いに接するように平面上に配置されるように形成されている。そして、梁部32dと第2の部材20の表面21との間に、内部空間33dが形成されている。具体的には、柱部31d、梁部32d、および第2の部材20の表面21に囲まれた空間が内部空間33dを形成している。
FIG. 9 is a perspective view schematically showing a beam structure 30d according to a modified example formed on the surface 21 of the second member 20.
The beam structure 30d shown in FIG. 9 includes a plurality of square plate-shaped column portions 31d erected on the surface 21 of the second member 20 and a lattice-shaped beam portion 32d joined to the tops of the plurality of column portions 31d. It has. The beam portion 32d is formed here so that a plurality of short cylindrical portions are arranged on a plane so as to be in contact with each other. An internal space 33d is formed between the beam portion 32d and the surface 21 of the second member 20. Specifically, the space surrounded by the pillar portion 31d, the beam portion 32d, and the surface 21 of the second member 20 forms the internal space 33d.

図6〜図9に示すような変形例に係る梁構造30a〜30dが第2の部材20の表面21に形成されている場合でも、図1〜図5に示した実施形態と同様の作用効果を得ることができる。すなわち、第1の部材10が第2の部材20の表面21に接触するとともに梁構造30a〜30dの内部空間33a〜33dに入り込むことで、より強固な接合力を得ることができる。
なお、前記した梁構造30,30a〜30dの形状は、一例であってこれらに限定されるものではなく、例えばポーラス構造(多孔質構造)を形成していてもよい。
Even when the beam structures 30a to 30d according to the modified examples as shown in FIGS. 6 to 9 are formed on the surface 21 of the second member 20, the same operation and effect as those of the embodiments shown in FIGS. 1 to 5 Can be obtained. That is, when the first member 10 comes into contact with the surface 21 of the second member 20 and enters the internal spaces 33a to 33d of the beam structures 30a to 30d, a stronger joining force can be obtained.
The shapes of the beam structures 30, 30a to 30d described above are merely examples and are not limited to these, and may form, for example, a porous structure.

(実験例)
図10は、第2の部材20の表面21に図9に示す変形例に係る梁構造30dのうちの複数の四角板形状の柱部31dのみを形成した比較例を模式的に示す斜視図である。
第2の部材20の表面21に図9に示す梁構造30dを形成した場合と、図10に示す複数の四角板形状の柱部31dのみを形成した場合とで接合力(接合強度)を比較する実験を行った。
第2の部材20の材質は、チタンとした。第2の部材20の表面21の寸法は、長手方向寸法A=10mm、短手方向寸法B=5mmとした。第1の部材10(図1参照)の材質は、エポキシ樹脂とし、硬化剤を使用して固化させた。
このような第1の部材10と第2の部材20とが接合された異材接合構造1を作製し、両者を引き離す方向に荷重(力)をかけて引張試験を行った。
引張試験の結果、図10に示す複数の四角板形状の柱部31dのみを形成した場合の破断荷重は10.1kNであり、図9に示す梁構造30dを形成した場合の破断荷重は14.2kNであった。すなわち、梁構造30dを形成した場合は、複数の四角板形状の柱部31dのみを形成した場合の約1.4倍の接合力となり、より強固な接合力を得ることができた。
(Experimental example)
FIG. 10 is a perspective view schematically showing a comparative example in which only a plurality of square plate-shaped column portions 31d of the beam structure 30d according to the modified example shown in FIG. 9 are formed on the surface 21 of the second member 20. be.
The bonding force (bonding strength) is compared between the case where the beam structure 30d shown in FIG. 9 is formed on the surface 21 of the second member 20 and the case where only the plurality of square plate-shaped column portions 31d shown in FIG. 10 are formed. I conducted an experiment to do.
The material of the second member 20 was titanium. The dimensions of the surface 21 of the second member 20 are the longitudinal dimension A = 10 mm and the lateral dimension B = 5 mm. The material of the first member 10 (see FIG. 1) was an epoxy resin, which was solidified using a curing agent.
A dissimilar material joining structure 1 in which the first member 10 and the second member 20 were joined was produced, and a tensile test was performed by applying a load (force) in a direction in which the first member 10 and the second member 20 were joined.
As a result of the tensile test, the breaking load when only the plurality of square plate-shaped column portions 31d shown in FIG. 10 were formed was 10.1 kN, and the breaking load when the beam structure 30d shown in FIG. 9 was formed was 14. It was 2 kN. That is, when the beam structure 30d was formed, the joining force was about 1.4 times that when only the plurality of square plate-shaped column portions 31d were formed, and a stronger joining force could be obtained.

(第2実施形態)
次に、第2実施形態について、前記した第1実施形態と相違する点を主に説明し、共通する構成要素や同種の構成要素については同一の符号を付して説明を適宜省略する。
第2実施形態では、第1の部材10の材質は、第1の樹脂に強化用繊維を複合した繊維強化樹脂(FRP)である。また、第2の部材20の材質は、金属である。ただし、第2の部材20の材質は、セラミック、または第1の樹脂とは異なる種類の第2の樹脂であってもよい。
(Second Embodiment)
Next, the second embodiment will be mainly described in that it differs from the first embodiment described above, and common components and components of the same type are designated by the same reference numerals and description thereof will be omitted as appropriate.
In the second embodiment, the material of the first member 10 is a fiber reinforced plastic (FRP) in which reinforcing fibers are compounded with the first resin. The material of the second member 20 is metal. However, the material of the second member 20 may be ceramic or a second resin of a type different from that of the first resin.

充填工程(ステップS20)では、第2の部材20が金型200にセットされ、第2の部材20の表面21と梁構造30の内部空間33とに、固化前の液状の第1の樹脂とともに強化用繊維が充填させられる。強化用繊維としては、例えば炭素繊維、ガラス繊維、セルロースナノファイバー等が使用され得る。 In the filling step (step S20), the second member 20 is set in the mold 200, and the surface 21 of the second member 20 and the internal space 33 of the beam structure 30 together with the liquid first resin before solidification. Reinforcing fibers are filled. As the reinforcing fiber, for example, carbon fiber, glass fiber, cellulose nanofiber or the like can be used.

例えばチョップドファイバと呼ばれる長さ数mm程度の強化用繊維が混入した繊維強化樹脂は、主に金型200を用いた射出成形によって形状が作り出される。この際に、液状の第1の樹脂とともに強化用繊維が流動しながら金型200に浸透することになる。この金型200に、インサート部品と呼ばれる例えば金属製のナット等の第2の部材20が事前にはめ込まれてセットされる。これにより、成形された第1の樹脂製の第1の部材10と、ナット等の第2の部材20とが一体化されることが可能になる(インサート成形)。ここで、インサート部品を強固に接合する目的で従来のようにアンカー効果を狙った穴(凹凸)を形成しても、行き止まりの穴なのでこれに繊維が入り込むことが難しい。そこで、このような行き止まりの穴ではなく、柱部31と梁部32とを備える梁構造30を形成することで強化用繊維が入りやすい互いに連通した内部空間33が形成される。梁構造30の内部空間33は、第1の樹脂の流動に合わせて配置されるように形成することが好ましい。このような梁構造30が3次元造形技術によってインサート部品等の第2の部材20の表面21に形成される。これにより、梁構造30の内部空間33に強化用繊維が均一に浸透され、繊維強化樹脂と例えば金属とのより強固な異材接合が達成される。 For example, a fiber-reinforced resin containing a reinforcing fiber having a length of about several mm, which is called a chopped fiber, is formed into a shape mainly by injection molding using a mold 200. At this time, the reinforcing fibers flow into the mold 200 together with the liquid first resin. A second member 20 such as a metal nut, which is called an insert component, is preliminarily fitted and set in the mold 200. As a result, the molded first resin member 10 and the second member 20 such as a nut can be integrated (insert molding). Here, even if a hole (unevenness) aimed at an anchor effect is formed for the purpose of firmly joining the insert parts, it is difficult for fibers to enter the hole because it is a dead end hole. Therefore, by forming the beam structure 30 including the column portion 31 and the beam portion 32 instead of such a dead-end hole, an internal space 33 communicating with each other is formed in which reinforcing fibers can easily enter. The internal space 33 of the beam structure 30 is preferably formed so as to be arranged in accordance with the flow of the first resin. Such a beam structure 30 is formed on the surface 21 of a second member 20 such as an insert part by a three-dimensional modeling technique. As a result, the reinforcing fibers are uniformly permeated into the internal space 33 of the beam structure 30, and a stronger dissimilar material bonding between the fiber reinforced resin and, for example, a metal is achieved.

(第3実施形態)
次に、第3実施形態について、前記した第1実施形態と相違する点を主に説明し、共通する構成要素や同種の構成要素については同一の符号を付して説明を適宜省略する。
図11は、本発明の第3実施形態に係る異材接合構造1a(図12参照、以下同様)の作製方法の内容を示すフローチャートである。図12は、本発明の第3実施形態に係る異材接合構造1aを模式的に示す斜視図である。
(Third Embodiment)
Next, the third embodiment will be mainly described in terms of differences from the first embodiment described above, and common components and components of the same type will be designated by the same reference numerals and description thereof will be omitted as appropriate.
FIG. 11 is a flowchart showing the contents of a method for manufacturing a dissimilar material joining structure 1a (see FIG. 12, the same applies hereinafter) according to the third embodiment of the present invention. FIG. 12 is a perspective view schematically showing the dissimilar material joining structure 1a according to the third embodiment of the present invention.

第3実施形態では、第1の部材10の材質は、第1の樹脂に炭素繊維を複合した炭素繊維強化樹脂(CFRP)である。また、第2の部材20の材質は、金属である。ただし、第2の部材20の材質は、セラミック、または第1の樹脂とは異なる種類の第2の樹脂であってもよい。 In the third embodiment, the material of the first member 10 is a carbon fiber reinforced resin (CFRP) in which carbon fibers are compounded with the first resin. The material of the second member 20 is metal. However, the material of the second member 20 may be ceramic or a second resin of a type different from that of the first resin.

図11に示すように、第2実施形態は、形成工程(ステップS10)と充填工程(ステップS20)との間に、織込工程(ステップS12)とを含んでいる。 As shown in FIG. 11, the second embodiment includes a weaving step (step S12) between the forming step (step S10) and the filling step (step S20).

織込工程(ステップS12)では、炭素繊維12が、形成工程(ステップS10)において形成された梁構造30の内部空間33に織り込まれる。 In the weaving step (step S12), the carbon fibers 12 are woven into the internal space 33 of the beam structure 30 formed in the forming step (step S10).

充填工程(ステップS20)では、第2の部材20が金型200にセットされ、第2の部材20の表面21と梁構造30の内部空間33とに、固化前の液状の第1の樹脂が充填させられる。なお、充填工程(ステップS20)の中で、第2の部材20が金型200にセットされた後に、織込工程(ステップS12)が実施されてもよい。 In the filling step (step S20), the second member 20 is set in the mold 200, and the liquid first resin before solidification is formed on the surface 21 of the second member 20 and the internal space 33 of the beam structure 30. It is filled. In the filling step (step S20), the weaving step (step S12) may be performed after the second member 20 is set in the mold 200.

織込工程(ステップS12)で織り込まれる炭素繊維12はプリプレグの状態の炭素繊維強化樹脂における炭素繊維の一部が取り出されたものでも良い。プリプレグは、炭素繊維などで織物を作り、それに樹脂を含浸させたり、樹脂フィルムで圧着させて例えばシート状にしたものである。織り込まれる炭素繊維12としてプリプレグの状態の炭素繊維強化樹脂を使用する場合、プリプレグの状態の炭素繊維強化樹脂における炭素繊維12の一部が取り出される。例えば、プリプレグの状態のシート状の炭素繊維強化樹脂における周縁部の炭素繊維12が取り出される。ただし、プリプレグの状態のシート状の炭素繊維強化樹脂における中央部の炭素繊維12が取り出されてもよい。取り出された炭素繊維12を3次元造形技術によって作製された梁構造30の互いに連通した内部空間33に織り込み、その状態で第1の樹脂を充填して含浸させることで、異材接合構造1aが作製される。充填される第1の樹脂はプリプレグに含浸されている樹脂と同じものでも良い。これにより、炭素繊維強化樹脂と例えば金属とのより強固な異材接合が達成される。 The carbon fiber 12 woven in the weaving step (step S12) may be one in which a part of the carbon fiber in the carbon fiber reinforced resin in the prepreg state is taken out. The prepreg is made of a woven fabric made of carbon fiber or the like, impregnated with a resin, or crimped with a resin film to form a sheet, for example. When the carbon fiber reinforced resin in the prepreg state is used as the woven carbon fiber 12, a part of the carbon fiber 12 in the carbon fiber reinforced resin in the prepreg state is taken out. For example, the carbon fiber 12 at the peripheral portion of the sheet-shaped carbon fiber reinforced resin in the prepreg state is taken out. However, the carbon fiber 12 in the central portion of the sheet-shaped carbon fiber reinforced resin in the prepreg state may be taken out. The taken-out carbon fiber 12 is woven into the internal space 33 of the beam structure 30 manufactured by the three-dimensional modeling technique and is in communication with each other, and in that state, the first resin is filled and impregnated to prepare the dissimilar material bonding structure 1a. Will be done. The first resin to be filled may be the same as the resin impregnated in the prepreg. As a result, stronger dissimilar material bonding between the carbon fiber reinforced resin and, for example, a metal is achieved.

(第4実施形態)
次に、第4実施形態について、前記した第1実施形態と相違する点を主に説明し、共通する構成要素や同種の構成要素については同一の符号を付して説明を適宜省略する。
第4実施形態では、第1の部材10の材質は、金属またはセラミックの焼結部品である。また、第2の部材20の材質は、第1の部材10の材質とは異なる種類の金属またはセラミックである。
(Fourth Embodiment)
Next, the fourth embodiment will be mainly described in terms of differences from the first embodiment described above, and common components and components of the same type will be designated by the same reference numerals and description thereof will be omitted as appropriate.
In the fourth embodiment, the material of the first member 10 is a metal or ceramic sintered part. The material of the second member 20 is a metal or ceramic different from the material of the first member 10.

図3の充填工程(ステップS20)では、第2の部材20が成形用型としての金型にセットされ、第2の部材20の表面21と梁構造30の内部空間33とに、焼結前の金属粉末またはセラミック粉末が充填させられる。また、固化工程(ステップS30)では、充填工程(ステップS20)において充填された金属粉末またはセラミック粉末が熱処理により焼結させられる。これにより、焼結部品と例えば金属製の構造部品とのより強固な異材接合が達成される。 In the filling step (step S20) of FIG. 3, the second member 20 is set in the mold as a molding die, and before sintering, the surface 21 of the second member 20 and the internal space 33 of the beam structure 30 are formed. Metal powder or ceramic powder is filled. Further, in the solidification step (step S30), the metal powder or ceramic powder filled in the filling step (step S20) is sintered by heat treatment. As a result, stronger dissimilar material bonding between the sintered part and the structural part made of metal, for example, is achieved.

(第5実施形態)
次に、第5実施形態について、前記した第1実施形態と相違する点を主に説明し、共通する構成要素や同種の構成要素については同一の符号を付して説明を適宜省略する。
第5実施形態では、第1の部材10の材質は、金属の鋳物部品である。また、第2の部材20の材質は、第1の部材10の材質とは異なる種類の金属またはセラミックである。
(Fifth Embodiment)
Next, the fifth embodiment will be mainly described in terms of differences from the first embodiment described above, and common components and components of the same type will be designated by the same reference numerals and description thereof will be omitted as appropriate.
In the fifth embodiment, the material of the first member 10 is a metal casting part. The material of the second member 20 is a metal or ceramic different from the material of the first member 10.

図3の充填工程(ステップS20)では、第2の部材20が成形用型としての金型にセットされ、第2の部材20の表面21と梁構造30の内部空間33とに、溶融した金属が流し込まれて充填させられる。これにより、鋳物部品と例えば金属製の構造部品とのより強固な異材接合が達成される。 In the filling step (step S20) of FIG. 3, the second member 20 is set in the mold as a molding die, and the molten metal is formed in the surface 21 of the second member 20 and the internal space 33 of the beam structure 30. Is poured and filled. As a result, a stronger dissimilar material joining between the cast part and the structural part made of metal, for example, is achieved.

以上、本発明について、実施形態に基づいて説明したが、本発明は、前記実施形態に記載した構成に限定されるものではない。本発明は、前記実施形態に記載した構成を適宜組み合わせ乃至選択することを含め、その趣旨を逸脱しない範囲において適宜その構成を変更することができるものである。また、前記実施形態の構成の一部について、追加、削除、置換をすることができる。 Although the present invention has been described above based on the embodiment, the present invention is not limited to the configuration described in the embodiment. The present invention can appropriately change the configuration within a range that does not deviate from the gist thereof, including appropriately combining or selecting the configurations described in the above-described embodiment. In addition, a part of the configuration of the embodiment can be added, deleted, or replaced.

例えば、前記した実施形態では、梁構造30,30a〜30dが形成される第2の部材20の表面21は平面を呈しているが、例えば湾曲した板の円弧面等の曲面、円柱の側面、球体の表面(球面)等を呈していてもよい。 For example, in the above-described embodiment, the surface 21 of the second member 20 on which the beam structures 30, 30a to 30d are formed has a flat surface, but for example, a curved surface such as an arc surface of a curved plate, a side surface of a cylinder, etc. It may exhibit the surface (spherical surface) of a sphere or the like.

また、前記した実施形態では、第2の部材20の表面21に梁構造30を3次元造形技術によって形成する際に、粉末供給装置110から第2の部材20の表面21に向けて金属粉末等が落下させられて供給される。ただし、第2の部材20の表面21に向けて金属粉末等を供給する方法は、前記した方法に限定されるものではない。3次元造形技術として、例えば、金属粉末等をローラやブレードを用いて水平に敷き詰めるように供給した後にレーザ光を走査させることで粉末を溶融・結合させる粉末床溶融結合法(PBF法)が使用されてもよい。また、前記した実施形態では、例えば金属の粉末190の層に照射するエネルギービームは、レーザ光125であるが、これに限定されるものではなく、例えば電子ビームであってもよい。 Further, in the above-described embodiment, when the beam structure 30 is formed on the surface 21 of the second member 20 by the three-dimensional modeling technique, metal powder or the like is directed from the powder supply device 110 toward the surface 21 of the second member 20. Is dropped and supplied. However, the method of supplying the metal powder or the like toward the surface 21 of the second member 20 is not limited to the above-mentioned method. As a three-dimensional modeling technique, for example, a powder bed fusion bonding method (PBF method) is used in which metal powder or the like is supplied so as to be spread horizontally using a roller or a blade, and then the powder is melted and bonded by scanning a laser beam. May be done. Further, in the above-described embodiment, the energy beam that irradiates the layer of the metal powder 190, for example, is the laser beam 125, but the energy beam is not limited to this, and may be, for example, an electron beam.

1,1a 異材接合構造
10 第1の部材
12 炭素繊維
20 第2の部材
21 表面
30,30a〜30d 梁構造
31,31a〜31d 柱部
32,32a〜32d 梁部
33,33a〜33d 内部空間
100 3次元造形装置
200 金型(成形用型)
1,1a Dissimilar material joint structure 10 First member 12 Carbon fiber 20 Second member 21 Surface 30, 30a to 30d Beam structure 31, 31a to 31d Pillar part 32, 32a to 32d Beam part 33, 33a to 33d Internal space 100 3D modeling equipment 200 mold (molding mold)

Claims (11)

第1の部材と、該第1の部材とは材質の異なる第2の部材とが接合された異材接合構造の作製方法であって、
前記第2の部材の表面に、該表面に立設される柱部および該柱部に連設される梁部を備え前記第2の部材と同種の材質の梁構造を、3次元造形技術によって形成する形成工程と、
前記第2の部材の表面と前記梁構造の内部空間とに、固化前の前記第1の部材を充填させる充填工程と、
前記充填工程において充填された固化前の前記第1の部材を固化させる固化工程と、
を含むことを特徴とする異材接合構造の作製方法。
A method for producing a dissimilar material joining structure in which a first member and a second member whose material is different from that of the first member are joined.
On the surface of the second member, a pillar portion erected on the surface and a beam portion connected to the pillar portion are provided, and a beam structure made of the same material as the second member is formed by three-dimensional modeling technology. The forming process to form and
A filling step of filling the surface of the second member and the internal space of the beam structure with the first member before solidification.
A solidification step of solidifying the first member before solidification filled in the filling step,
A method for producing a dissimilar material joint structure, which comprises.
前記第1の部材の材質は、第1の樹脂であり、
前記第2の部材の材質は、金属、セラミック、または前記第1の樹脂とは異なる種類の第2の樹脂であり、
前記充填工程は、前記第2の部材を成形用型にセットし、前記第2の部材の表面と前記梁構造の内部空間とに、固化前の液状の前記第1の樹脂を充填させるものであることを特徴とする請求項1に記載の異材接合構造の作製方法。
The material of the first member is the first resin.
The material of the second member is metal, ceramic, or a second resin of a type different from that of the first resin.
In the filling step, the second member is set in a molding mold, and the surface of the second member and the internal space of the beam structure are filled with the liquid first resin before solidification. The method for producing a dissimilar material joint structure according to claim 1, wherein the structure is formed.
前記第1の部材の材質は、第1の樹脂に強化用繊維を複合した繊維強化樹脂であり、
前記第2の部材の材質は、金属、セラミック、または前記第1の樹脂とは異なる種類の第2の樹脂であり、
前記充填工程は、前記第2の部材を成形用型にセットし、前記第2の部材の表面と前記梁構造の内部空間とに、固化前の液状の前記第1の樹脂とともに強化用繊維を充填させるものであることを特徴とする請求項1に記載の異材接合構造の作製方法。
The material of the first member is a fiber-reinforced resin in which reinforcing fibers are compounded with the first resin.
The material of the second member is metal, ceramic, or a second resin of a type different from that of the first resin.
In the filling step, the second member is set in a molding mold, and reinforcing fibers are formed on the surface of the second member and the internal space of the beam structure together with the liquid first resin before solidification. The method for producing a dissimilar material joint structure according to claim 1, wherein the material is to be filled.
前記第1の部材の材質は、第1の樹脂に炭素繊維を複合した炭素繊維強化樹脂であり、
前記第2の部材の材質は、金属、セラミック、または前記第1の樹脂とは異なる種類の第2の樹脂であり、
炭素繊維を、前記形成工程において形成された前記梁構造の内部空間に織り込む織込工程を含み、
前記充填工程は、前記第2の部材を成形用型にセットし、前記第2の部材の表面と前記梁構造の内部空間とに、固化前の液状の前記第1の樹脂を充填させるものであることを特徴とする請求項1に記載の異材接合構造の作製方法。
The material of the first member is a carbon fiber reinforced resin in which carbon fibers are compounded with the first resin.
The material of the second member is metal, ceramic, or a second resin of a type different from that of the first resin.
Including a weaving step of weaving carbon fibers into the internal space of the beam structure formed in the forming step.
In the filling step, the second member is set in a molding mold, and the surface of the second member and the internal space of the beam structure are filled with the liquid first resin before solidification. The method for producing a dissimilar material joint structure according to claim 1, wherein the structure is formed.
前記第1の部材は、金属またはセラミックの焼結部品であり、
前記第2の部材の材質は、前記第1の部材の材質とは異なる種類の金属またはセラミックであり、
前記充填工程は、前記第2の部材を成形用型にセットし、前記第2の部材の表面と前記梁構造の内部空間とに、焼結前の金属粉末またはセラミック粉末を充填させるものであり、
前記固化工程は、前記充填工程において充填された金属粉末またはセラミック粉末を熱処理により焼結させるものであることを特徴とする請求項1に記載の異材接合構造の作製方法。
The first member is a metal or ceramic sintered part.
The material of the second member is a different kind of metal or ceramic from the material of the first member.
In the filling step, the second member is set in a molding mold, and the surface of the second member and the internal space of the beam structure are filled with metal powder or ceramic powder before sintering. ,
The method for producing a dissimilar material bonding structure according to claim 1, wherein the solidification step is for sintering the metal powder or ceramic powder filled in the filling step by heat treatment.
前記第1の部材は、金属の鋳物部品であり、
前記第2の部材の材質は、前記第1の部材の材質とは異なる種類の金属またはセラミックであり、
前記充填工程は、前記第2の部材を成形用型にセットし、前記第2の部材の表面と前記梁構造の内部空間とに、溶融した金属を流し込んで充填させるものであることを特徴とする請求項1に記載の異材接合構造の作製方法。
The first member is a metal casting part.
The material of the second member is a different kind of metal or ceramic from the material of the first member.
The filling step is characterized in that the second member is set in a molding mold, and molten metal is poured into the surface of the second member and the internal space of the beam structure to fill the mold. The method for producing a dissimilar material joint structure according to claim 1.
第1の部材と、該第1の部材とは材質の異なる第2の部材とが接合された異材接合構造であって、
前記第2の部材の表面に、該表面に立設される柱部および該柱部に連設される梁部を備え前記第2の部材と同種の材質の梁構造が形成されており、
前記第1の部材が前記第2の部材の表面に接触するとともに前記梁構造の内部空間に入り込んでいることを特徴とする異材接合構造。
It is a dissimilar material joining structure in which a first member and a second member whose material is different from that of the first member are joined.
On the surface of the second member, a pillar portion erected on the surface and a beam portion connected to the pillar portion are provided, and a beam structure made of the same material as the second member is formed.
A dissimilar material joint structure, characterized in that the first member comes into contact with the surface of the second member and enters the internal space of the beam structure.
前記第1の部材の材質は、第1の樹脂であり、
前記第2の部材の材質は、金属、セラミック、または前記第1の樹脂とは異なる種類の第2の樹脂であることを特徴とする請求項7に記載の異材接合構造。
The material of the first member is the first resin.
The dissimilar material bonding structure according to claim 7, wherein the material of the second member is a metal, ceramic, or a second resin of a type different from that of the first resin.
前記第1の部材の材質は、第1の樹脂に強化用繊維を複合した繊維強化樹脂であり、
前記第2の部材の材質は、金属、セラミック、または前記第1の樹脂とは異なる種類の第2の樹脂であり、
前記梁構造の内部空間に強化用繊維が入り込んでいることを特徴とする請求項7に記載の異材接合構造。
The material of the first member is a fiber-reinforced resin in which reinforcing fibers are compounded with the first resin.
The material of the second member is metal, ceramic, or a second resin of a type different from that of the first resin.
The dissimilar material joining structure according to claim 7, wherein the reinforcing fibers are contained in the internal space of the beam structure.
前記第1の部材は、金属またはセラミックの焼結部品であり、
前記第2の部材の材質は、前記第1の部材の材質とは異なる種類の金属またはセラミックであることを特徴とする請求項7に記載の異材接合構造。
The first member is a metal or ceramic sintered part.
The dissimilar material joining structure according to claim 7, wherein the material of the second member is a metal or ceramic of a type different from the material of the first member.
前記第1の部材は、金属の鋳物部品であり、
前記第2の部材の材質は、前記第1の部材の材質とは異なる種類の金属またはセラミックであることを特徴とする請求項7に記載の異材接合構造。
The first member is a metal casting part.
The dissimilar material joining structure according to claim 7, wherein the material of the second member is a metal or ceramic of a type different from the material of the first member.
JP2020017480A 2020-02-04 2020-02-04 Dissimilar material joining structure and its manufacturing method Active JP7356925B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020017480A JP7356925B2 (en) 2020-02-04 2020-02-04 Dissimilar material joining structure and its manufacturing method
PCT/JP2021/001631 WO2021157335A1 (en) 2020-02-04 2021-01-19 Dissimilar material joint structure and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020017480A JP7356925B2 (en) 2020-02-04 2020-02-04 Dissimilar material joining structure and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021123017A true JP2021123017A (en) 2021-08-30
JP7356925B2 JP7356925B2 (en) 2023-10-05

Family

ID=77199964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020017480A Active JP7356925B2 (en) 2020-02-04 2020-02-04 Dissimilar material joining structure and its manufacturing method

Country Status (2)

Country Link
JP (1) JP7356925B2 (en)
WO (1) WO2021157335A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351687A (en) * 2003-05-28 2004-12-16 Bridgestone Corp Method for manufacturing rubbery composite material
JP2006168291A (en) * 2004-12-20 2006-06-29 Sho Bond Constr Co Ltd Metal fitting for welding and fixation by high frequency induction heating method
JP2008007584A (en) * 2006-06-28 2008-01-17 Okayama Prefecture Joining method for different kinds of members and joined article of different kinds of members
JP2015147364A (en) * 2014-02-07 2015-08-20 旭有機材工業株式会社 Method for laminating thermoplastic resin plate
US20190168462A1 (en) * 2016-10-25 2019-06-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for producing a composite component for a motor vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004351687A (en) * 2003-05-28 2004-12-16 Bridgestone Corp Method for manufacturing rubbery composite material
JP2006168291A (en) * 2004-12-20 2006-06-29 Sho Bond Constr Co Ltd Metal fitting for welding and fixation by high frequency induction heating method
JP2008007584A (en) * 2006-06-28 2008-01-17 Okayama Prefecture Joining method for different kinds of members and joined article of different kinds of members
JP2015147364A (en) * 2014-02-07 2015-08-20 旭有機材工業株式会社 Method for laminating thermoplastic resin plate
US20190168462A1 (en) * 2016-10-25 2019-06-06 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Method for producing a composite component for a motor vehicle

Also Published As

Publication number Publication date
JP7356925B2 (en) 2023-10-05
WO2021157335A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
JP5119123B2 (en) Manufacturing method of three-dimensional shaped object
US10583606B2 (en) Method and supports with powder removal ports for additive manufacturing
JP6170238B1 (en) Control method for three-dimensional additive manufacturing apparatus, control method for three-dimensional additive manufacturing apparatus, and control program for three-dimensional additive manufacturing apparatus
US20110285060A1 (en) Layered manufacturing method and layered manufacturing device
Su et al. An investigation into direct fabrication of fine-structured components by selective laser melting
JP2011173420A (en) Method and apparatus for manufacturing three dimensional object suitable for microtechnology
JP6504064B2 (en) Method of manufacturing metal member
US20090081066A1 (en) Method of forming an article
JP2019183219A (en) Production method of three-dimensional molded article
TW201936369A (en) Systems, devices, and methods for forming parts using additive manufacturing
JP6443300B2 (en) Additive manufacturing equipment
US10919114B2 (en) Methods and support structures leveraging grown build envelope
JP2007146216A (en) Equipment for manufacturing molding with three-dimensional shape
JP2010121187A (en) Three-dimensional shaped article and method for producing the same
US11370030B2 (en) Manufacturing method for three-dimensional molded object, lamination molding apparatus, and three-dimensional molded object
JP2018095955A (en) Method for additively producing three-dimensional objects
WO2021157335A1 (en) Dissimilar material joint structure and manufacturing method therefor
JP2017165035A (en) Lamination shaping apparatus
JP4284321B2 (en) Additive manufacturing method and additive manufacturing apparatus
JP4384420B2 (en) Additive manufacturing method
CN116547103B (en) Laminate and method for producing laminate
Pei et al. History of AM
WO2018003798A1 (en) Method for manufacturing three-dimensionally shaped molding
JP2006248039A (en) Three-dimensional shaping method
JP6820529B2 (en) Mold equipment, manufacturing method of molded products using mold equipment, and manufacturing method of mold equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230925

R150 Certificate of patent or registration of utility model

Ref document number: 7356925

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150