JP2021118163A - Illuminating device - Google Patents

Illuminating device Download PDF

Info

Publication number
JP2021118163A
JP2021118163A JP2020012916A JP2020012916A JP2021118163A JP 2021118163 A JP2021118163 A JP 2021118163A JP 2020012916 A JP2020012916 A JP 2020012916A JP 2020012916 A JP2020012916 A JP 2020012916A JP 2021118163 A JP2021118163 A JP 2021118163A
Authority
JP
Japan
Prior art keywords
layer
light
wavelength conversion
conversion member
excitation light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020012916A
Other languages
Japanese (ja)
Other versions
JP7361618B2 (en
Inventor
徹 三宅
Toru Miyake
徹 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2020012916A priority Critical patent/JP7361618B2/en
Publication of JP2021118163A publication Critical patent/JP2021118163A/en
Application granted granted Critical
Publication of JP7361618B2 publication Critical patent/JP7361618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide an illuminating device that has high conversion efficiency of excitation light for illumination light.SOLUTION: An illuminating device 1 comprises: a board 21 comprising a first reflecting surface 21a; a first layer 11 comprising a first wavelength conversion member 31; a second layer 12 located along the first layer 11 above the first layer 11, and comprising a second wavelength conversion member 32; a third layer 13 located between the first layer 11 and the second layer 12; and a light emitting device 40 for emitting excitation light 71 from an emitting point 13a located inside the third layer 13. The first wavelength conversion member 31 converts at least a portion of the incident excitation light 71 into first converted light. The first reflecting surface 21a reflects the first converted light toward the second layer 12. The second wavelength conversion member 32 converts at least a portion of the incident excitation light into second converted light. The second layer 12 transmits at least a portion of the second converted light and at least a portion of the first converted light incident from the first layer, outward.SELECTED DRAWING: Figure 1

Description

本開示は、照明装置に関する。 The present disclosure relates to a lighting device.

半導体レーザから射出された励起光を受光して励起光とは異なる波長の蛍光を発する蛍光体ユニットと、蛍光体ユニットから発せられた蛍光の一部を少なくとも導波するファイバ束とを有する照明装置が知られている(例えば、特許文献1参照)。 A lighting device having a phosphor unit that receives excitation light emitted from a semiconductor laser and emits fluorescence having a wavelength different from that of the excitation light, and a fiber bundle that waveguides at least a part of the fluorescence emitted from the phosphor unit. Is known (see, for example, Patent Document 1).

特開2013−252440号公報Japanese Unexamined Patent Publication No. 2013-252440

照明光において、励起光の変換効率を高めることが求められる。 In the illumination light, it is required to increase the conversion efficiency of the excitation light.

本開示の一実施形態に係る照明装置は、第1反射面を有する基板と、第1層と、第2層と、第3層と、発光装置とを備える。前記第1層は、前記第1反射面上に位置し、第1波長変換部材を有する。前記第2層は、前記第1層の上方に前記第1層に沿って位置し、第2波長変換部材を有する。前記第3層は、前記第1層と前記第2層との間に位置する。前記発光装置は、前記第3層の内部に位置する射出点から励起光を射出する。前記第1波長変換部材は、前記第1層に入射してきた前記励起光の少なくとも一部を前記励起光と異なるスペクトルで特定される第1変換光に変換する。前記第1反射面は、前記第1波長変換部材で変換されなかった前記励起光を前記第2層に向けて反射する。前記第2波長変換部材は、前記第1層から前記第2層に入射してきた前記励起光の少なくとも一部を前記励起光と異なるスペクトルで特定される第2変換光に変換する。前記第2層は、前記第2変換光の少なくとも一部と、前記第1層から入射してきた前記第1変換光の少なくとも一部とを外方に向けて透過させる。 The lighting device according to the embodiment of the present disclosure includes a substrate having a first reflecting surface, a first layer, a second layer, a third layer, and a light emitting device. The first layer is located on the first reflecting surface and has a first wavelength conversion member. The second layer is located above the first layer along the first layer and has a second wavelength conversion member. The third layer is located between the first layer and the second layer. The light emitting device emits excitation light from an emission point located inside the third layer. The first wavelength conversion member converts at least a part of the excitation light incident on the first layer into the first conversion light specified by a spectrum different from the excitation light. The first reflecting surface reflects the excitation light that has not been converted by the first wavelength conversion member toward the second layer. The second wavelength conversion member converts at least a part of the excitation light incident on the second layer from the first layer into a second conversion light specified by a spectrum different from the excitation light. The second layer transmits at least a part of the second conversion light and at least a part of the first conversion light incident from the first layer toward the outside.

本開示の一実施形態に係る照明装置によれば、励起光の変換効率が高くなる。 According to the lighting device according to the embodiment of the present disclosure, the conversion efficiency of the excitation light is high.

一実施形態に係る照明装置の構成例を示す模式図である。It is a schematic diagram which shows the structural example of the lighting apparatus which concerns on one Embodiment. 波長変換部材の構成例を示す断面図である。It is sectional drawing which shows the structural example of the wavelength conversion member. 本実施形態に係る照明光のスペクトルの一例を示すグラフである。It is a graph which shows an example of the spectrum of the illumination light which concerns on this embodiment. フィルタ特性の一例を示すグラフである。It is a graph which shows an example of a filter characteristic.

(照明装置1の構成)
図1に示されるように、一実施形態に係る照明装置1は、第1層11と、第2層12と、第3層13と、基板21と、発光装置40とを備える。基板21は、XZ平面に沿って延在する。第1層11、第2層12及び第3層13は、基板21に沿って位置し、XZ平面に沿って延在する。第1層11、第2層12及び第3層13のうち、第1層11は、基板21に最も近い側に位置する。第2層12は、基板21から最も遠い側に位置する。第3層13は、第1層11と第2層12との間に位置する。つまり、各層は、基板21から見て、第1層11、第3層13及び第2層12の順に位置する。各層は、Y軸の負の方向の側から正の方向の側に向けて、第1層11、第3層13及び第2層12の順に位置するともいえる。第1層11と第3層13と第2層12とは、この順で、基板21上に積層されているともいえる。
(Configuration of lighting device 1)
As shown in FIG. 1, the lighting device 1 according to the embodiment includes a first layer 11, a second layer 12, a third layer 13, a substrate 21, and a light emitting device 40. The substrate 21 extends along the XZ plane. The first layer 11, the second layer 12, and the third layer 13 are located along the substrate 21 and extend along the XZ plane. Of the first layer 11, the second layer 12, and the third layer 13, the first layer 11 is located on the side closest to the substrate 21. The second layer 12 is located on the side farthest from the substrate 21. The third layer 13 is located between the first layer 11 and the second layer 12. That is, each layer is located in the order of the first layer 11, the third layer 13, and the second layer 12 when viewed from the substrate 21. It can be said that each layer is located in the order of the first layer 11, the third layer 13, and the second layer 12 from the negative direction side of the Y axis to the positive direction side. It can be said that the first layer 11, the third layer 13, and the second layer 12 are laminated on the substrate 21 in this order.

基板21は、第1層11に対向する側(Y軸の正の方向の側)に位置する第1反射面21aを有する。第1反射面21aは、入射してくる光を反射する。第1反射面21aで反射した光は、第1層11を通って、第3層13及び第2層12に向けて進む。第1反射面21aを有する基板21は、第1反射部材とも称される。第1層11は、基板21上、又は、第1反射面21a上に位置するともいえる。第1層11は、第1反射面21aに当接してもよいし、第1反射面21aに対して所定の間隔をあけて位置してもよい。照明装置1は、第1層11と基板21又は第1反射面21aとの間に位置する他の部材を有してもよい。つまり、第1層11の位置は、基板21又は第1反射面21aの直上であってもよいし、直上でなくてもよい。 The substrate 21 has a first reflecting surface 21a located on the side facing the first layer 11 (the side in the positive direction of the Y axis). The first reflecting surface 21a reflects the incident light. The light reflected by the first reflecting surface 21a passes through the first layer 11 and travels toward the third layer 13 and the second layer 12. The substrate 21 having the first reflecting surface 21a is also referred to as a first reflecting member. It can be said that the first layer 11 is located on the substrate 21 or on the first reflecting surface 21a. The first layer 11 may come into contact with the first reflecting surface 21a, or may be positioned at a predetermined distance from the first reflecting surface 21a. The illuminating device 1 may have other members located between the first layer 11 and the substrate 21 or the first reflecting surface 21a. That is, the position of the first layer 11 may or may not be directly above the substrate 21 or the first reflecting surface 21a.

発光装置40は、第3層13の内部に位置する所定点13aから励起光71を射出する。励起光71が射出される所定点13aは、射出点とも称される。発光装置40は、励起光71を射出する光源41を備えてよい。光源41は、所定点13aに位置してもよい。発光装置40は、光源41から射出された励起光71を所定点13aまで伝搬するファイバ42を備えてもよい。励起光71は、所定点13aから第1層11又は第2層12に向けて進む。 The light emitting device 40 emits the excitation light 71 from a predetermined point 13a located inside the third layer 13. The predetermined point 13a from which the excitation light 71 is emitted is also referred to as an emission point. The light emitting device 40 may include a light source 41 that emits excitation light 71. The light source 41 may be located at a predetermined point 13a. The light emitting device 40 may include a fiber 42 that propagates the excitation light 71 emitted from the light source 41 to the predetermined point 13a. The excitation light 71 travels from the predetermined point 13a toward the first layer 11 or the second layer 12.

第1層11は、第1波長変換部材31を含む。第2層12は、第2波長変換部材32を含む。第1波長変換部材31及び第2波長変換部材32は、波長変換部材30とも総称される。波長変換部材30は、所定のスペクトルで特定される励起光71を、異なるスペクトルで特定される光に変換して射出する。第1波長変換部材31及び第2波長変換部材32が変換して射出する光は、それぞれ第1変換光及び第2変換光とも称される。第1変換光及び第2変換光は、変換光とも総称される。励起光71を特定するスペクトルは、励起光スペクトルとも称される。第1変換光及び第2変換光を特定するスペクトルは、それぞれ第1変換光スペクトル及び第2変換光スペクトルとも称される。 The first layer 11 includes a first wavelength conversion member 31. The second layer 12 includes a second wavelength conversion member 32. The first wavelength conversion member 31 and the second wavelength conversion member 32 are also collectively referred to as a wavelength conversion member 30. The wavelength conversion member 30 converts the excitation light 71 specified in a predetermined spectrum into light specified in a different spectrum and emits it. The light converted and emitted by the first wavelength conversion member 31 and the second wavelength conversion member 32 is also referred to as first conversion light and second conversion light, respectively. The first conversion light and the second conversion light are also collectively referred to as conversion light. The spectrum that identifies the excitation light 71 is also referred to as an excitation light spectrum. The spectra that specify the first conversion light and the second conversion light are also referred to as the first conversion light spectrum and the second conversion light spectrum, respectively.

第1波長変換部材31は、入射してきた励起光71の少なくとも一部を第1変換光に変換して射出する。第2波長変換部材32は、入射してきた励起光71の少なくとも一部を第2変換光に変換して射出する。波長変換部材30に入射した励起光71は、他の光に変換されずに励起光71のままで射出されることがある。第1波長変換部材31又は第2波長変換部材32で変換されずにそのまま射出された励起光71は、未変換光とも称される。未変換光のスペクトルは、励起光71のスペクトルと同じである。つまり、未変換光は、励起光スペクトルで特定される。 The first wavelength conversion member 31 converts at least a part of the incident excitation light 71 into the first conversion light and emits it. The second wavelength conversion member 32 converts at least a part of the incident excitation light 71 into the second conversion light and emits it. The excitation light 71 incident on the wavelength conversion member 30 may be emitted as the excitation light 71 without being converted into other light. The excitation light 71 emitted as it is without being converted by the first wavelength conversion member 31 or the second wavelength conversion member 32 is also referred to as unconverted light. The spectrum of the unconverted light is the same as the spectrum of the excitation light 71. That is, the unconverted light is specified by the excitation light spectrum.

第1層11に入射する光は、第1層11又は基板21の第1反射面21aで反射されて第2層12に向けて進む。第1層11又は第1反射面21aで反射されて第2層12に向けて進む光は、第1反射光72とも称される。第1反射光72は、第1波長変換部材31で変換された第1変換光と、第1波長変換部材31で変換されなかった未変換光とを含む。 The light incident on the first layer 11 is reflected by the first reflecting surface 21a of the first layer 11 or the substrate 21 and travels toward the second layer 12. The light reflected by the first layer 11 or the first reflecting surface 21a and traveling toward the second layer 12 is also referred to as the first reflected light 72. The first reflected light 72 includes the first converted light converted by the first wavelength conversion member 31 and the unconverted light not converted by the first wavelength conversion member 31.

第2層12に入射する光の少なくとも一部は、第2層12を透過して照明装置1の外部に射出される。第2層12を透過して照明装置1の外部に射出される光は、透過光73とも称される。第2層12は、透過光73を照明装置1の外部に向けて透過させるともいえる。第2層12に入射する光のうち第2層12を透過しなかった光は、第2層12で反射されて第1層11に向けて進む。第2層12で反射されて第1層11に向けて進む光は、第2反射光74とも称される。透過光73及び第2反射光74は、第2波長変換部材32で変換された第2変換光と、第2波長変換部材32で変換されなかった未変換光とを含む。 At least a part of the light incident on the second layer 12 passes through the second layer 12 and is emitted to the outside of the illuminating device 1. The light transmitted through the second layer 12 and emitted to the outside of the illuminating device 1 is also referred to as transmitted light 73. It can be said that the second layer 12 transmits the transmitted light 73 toward the outside of the lighting device 1. Of the light incident on the second layer 12, the light that has not passed through the second layer 12 is reflected by the second layer 12 and travels toward the first layer 11. The light reflected by the second layer 12 and traveling toward the first layer 11 is also referred to as the second reflected light 74. The transmitted light 73 and the second reflected light 74 include the second converted light converted by the second wavelength conversion member 32 and the unconverted light not converted by the second wavelength conversion member 32.

第1反射光72は、第2層12から入射する第2変換光又は未変換光を含み得る。透過光73及び第2反射光74は、第1層11から入射する第1変換光又は未変換光を含み得る。 The first reflected light 72 may include second converted light or unconverted light incident from the second layer 12. The transmitted light 73 and the second reflected light 74 may include the first converted light or the unconverted light incident from the first layer 11.

<発光装置40>
発光装置40の光源41は、励起光71を射出する。本実施形態において、励起光71は、360nmから430nmまでの波長領域にピーク波長を有するレーザ光であるとする。360nmから430nmまでの波長領域は、紫色光領域とも称される。紫色光領域に含まれるピーク波長を有する光は、紫色光とも称される。つまり、本実施形態において、励起光71として紫色光が用いられるとする。紫色光は、可視光に含まれる。紫色光に対する人間の視感度は、可視光の中の他の色の光と比べて低い。励起光71として紫色光が用いられることによって、励起光71の強度の制御が演色性に影響を及ぼしにくくなる。励起光71としてレーザ光が用いられることによって、励起光71の単色性及び指向性が高められ得る。励起光71のエネルギーが制御されやすくなるとともに、励起光71の進行方向が制御されやすくなる。
<Light emitting device 40>
The light source 41 of the light emitting device 40 emits excitation light 71. In the present embodiment, the excitation light 71 is assumed to be a laser beam having a peak wavelength in the wavelength region from 360 nm to 430 nm. The wavelength region from 360 nm to 430 nm is also referred to as a violet light region. Light having a peak wavelength included in the violet light region is also referred to as violet light. That is, in the present embodiment, it is assumed that purple light is used as the excitation light 71. Purple light is included in visible light. Human luminosity factor for violet light is lower than that of other colors of visible light. By using purple light as the excitation light 71, the control of the intensity of the excitation light 71 is less likely to affect the color rendering property. By using a laser beam as the excitation light 71, the monochromaticity and directivity of the excitation light 71 can be enhanced. The energy of the excitation light 71 is easily controlled, and the traveling direction of the excitation light 71 is easily controlled.

光源41は、LD(Laser Diode)等の半導体レーザを含んで構成されてよい。光源41は、これに限られず、例えばLED(Light Emitting Diode)等の他の種々のデバイスを含んで構成されてもよい。光源41は、第3層13の外部に位置してもよいし、第3層13の内部に位置してもよい。 The light source 41 may include a semiconductor laser such as an LD (Laser Diode). The light source 41 is not limited to this, and may be configured to include various other devices such as an LED (Light Emitting Diode). The light source 41 may be located outside the third layer 13 or inside the third layer 13.

発光装置40のファイバ42は、光を伝搬するコアと、光を全反射してコアに閉じ込めるクラッドとを有する。ファイバ42は、第1端と第2端とを有する。ファイバ42は、第1端において光源41に接続され、光源41から入射する励起光71を伝搬する。励起光71は、ファイバ42の第2端から射出される。ファイバ42の第2端は、第3層13の内部に位置する。ファイバ42の第2端が第3層13の内部に位置することによって、励起光71は、第3層13の内部まで低損失で伝搬できる。ファイバ42の第2端の位置は、所定点13aの位置に対応する。ファイバ42は、可撓性を有する。つまり、ファイバ42は、曲げられてもよい。 The fiber 42 of the light emitting device 40 has a core that propagates light and a clad that totally reflects the light and confine it in the core. The fiber 42 has a first end and a second end. The fiber 42 is connected to the light source 41 at the first end and propagates the excitation light 71 incident from the light source 41. The excitation light 71 is emitted from the second end of the fiber 42. The second end of the fiber 42 is located inside the third layer 13. Since the second end of the fiber 42 is located inside the third layer 13, the excitation light 71 can propagate to the inside of the third layer 13 with low loss. The position of the second end of the fiber 42 corresponds to the position of the predetermined point 13a. The fiber 42 has flexibility. That is, the fiber 42 may be bent.

<基板21>
第1反射面21aを有する基板21は、セラミック、樹脂、半導体、又は金属等の種々の材料を含んで構成されてよい。本実施形態において基板21は、セラミックで構成されるとする。第1反射面21aにおける光の反射率は、基板21を構成する材料の特製に基づいて定まる。基板21がセラミックで構成される場合、第1反射面21aにおける可視光の反射率は、例えば90%以上であり得る。基板21がセラミックで構成される場合、第1反射面21aに入射した光は拡散反射され得る。基板21は、放熱性部材を含んでもよい。放熱性部材は、例えば、アルミニウム、銅を含んでよい。放熱性部材の形状としては、例えば、ヒートパイプ付き、フィン付き等がある。放熱性部材の熱伝導率は、少なくとも空気の熱伝導率よりも高くされてよい。基板21が放熱性部材を含むことによって、第1層11で生じた熱が基板21に放散されやすい。その結果、第1層11が有する第1波長変換部材31の温度が上昇しにくくなる。
<Board 21>
The substrate 21 having the first reflecting surface 21a may be composed of various materials such as ceramics, resins, semiconductors, and metals. In this embodiment, the substrate 21 is made of ceramic. The reflectance of light on the first reflecting surface 21a is determined based on the special material made of the material constituting the substrate 21. When the substrate 21 is made of ceramic, the reflectance of visible light on the first reflecting surface 21a can be, for example, 90% or more. When the substrate 21 is made of ceramic, the light incident on the first reflecting surface 21a can be diffusely reflected. The substrate 21 may include a heat radiating member. The heat radiating member may include, for example, aluminum and copper. Examples of the shape of the heat radiating member include those with a heat pipe and those with fins. The thermal conductivity of the heat-dissipating member may be at least higher than the thermal conductivity of air. Since the substrate 21 includes a heat-dissipating member, the heat generated in the first layer 11 is likely to be dissipated to the substrate 21. As a result, the temperature of the first wavelength conversion member 31 included in the first layer 11 is less likely to rise.

<波長変換部材30>
図2に示されるように、波長変換部材30は、蛍光体35を備える。波長変換部材30は、透光性を有する透光部材38を更に備えてよい。透光部材38は、蛍光体35を内部に含有することによって、略均一に分散された状態で蛍光体35を保持してよい。
<Wavelength conversion member 30>
As shown in FIG. 2, the wavelength conversion member 30 includes a phosphor 35. The wavelength conversion member 30 may further include a translucent member 38 having translucency. The translucent member 38 may hold the phosphor 35 in a substantially uniformly dispersed state by containing the phosphor 35 inside.

蛍光体35は、波長変換部材30に入射してきた励起光71によって励起され、蛍光を発する。蛍光体35が発する蛍光は、360nmから780nmまでの波長領域に含まれるピーク波長を有する。360nmから780nmまでの波長領域は、可視光領域とも称される。可視光領域に含まれるピーク波長を有する光は、可視光とも称される。蛍光体35が蛍光を発することによって、波長変換部材30は、励起光71としての紫色光を、変換光としての可視光に変換する。 The phosphor 35 is excited by the excitation light 71 incident on the wavelength conversion member 30 and emits fluorescence. The fluorescence emitted by the phosphor 35 has a peak wavelength included in the wavelength region from 360 nm to 780 nm. The wavelength region from 360 nm to 780 nm is also referred to as a visible light region. Light having a peak wavelength included in the visible light region is also referred to as visible light. When the phosphor 35 emits fluorescence, the wavelength conversion member 30 converts purple light as excitation light 71 into visible light as conversion light.

透光部材38は、例えば、フッ素樹脂、シリコーン樹脂、アクリル樹脂若しくはエポキシ樹脂等の透光性を有する絶縁樹脂、又は透光性を有するガラス材料等で形成されていてよい。 The translucent member 38 may be formed of, for example, a translucent insulating resin such as a fluororesin, a silicone resin, an acrylic resin or an epoxy resin, or a translucent glass material or the like.

蛍光体35は、紫色光を、例えば400nmから500nmまでの波長領域に含まれるピーク波長を有するスペクトルで特定される光、つまり青色の光に変換してよい。この場合、蛍光体35は、例えば、BaMgAl1017:Eu、又は(Sr,Ca,Ba)10(PO46Cl2:Eu,(Sr,Ba)10(PO46Cl2:Eu等を含んで構成されてよい。 The phosphor 35 may convert violet light into light specified in the spectrum having a peak wavelength included in, for example, a wavelength region from 400 nm to 500 nm, that is, blue light. In this case, the phosphor 35 is, for example, BaMgAl 10 O 17 : Eu, or (Sr, Ca, Ba) 10 (PO 4 ) 6 Cl 2 : Eu, (Sr, Ba) 10 (PO 4 ) 6 Cl 2 : It may be configured to include Eu and the like.

蛍光体35は、紫色光を、例えば450nmから550nmまでの波長領域に含まれるピーク波長を有するスペクトルで特定される光、つまり青緑色の光に変換してよい。蛍光体35は、例えば、(Sr,Ba,Ca)5(PO43Cl:Eu,Sr4Al1425:Eu等を含んで構成されてよい。 The phosphor 35 may convert violet light into light specified in the spectrum having a peak wavelength included in, for example, a wavelength region from 450 nm to 550 nm, that is, blue-green light. The phosphor 35 may be composed of, for example, (Sr, Ba, Ca) 5 (PO 4 ) 3 Cl: Eu, Sr 4 Al 14 O 25 : Eu and the like.

蛍光体35は、紫色光を、例えば500nmから600nmまでの波長領域に含まれるピーク波長を有するスペクトルで特定される光、つまり緑色の光に変換してよい。蛍光体35は、例えば、SrSi2(O,Cl)22:Eu、(Sr,Ba,Mg)2SiO4:Eu2+、又はZnS:Cu,Al、Zn2SiO4:Mn等を含んで構成されてよい。 The phosphor 35 may convert violet light into light specified in the spectrum having a peak wavelength included in, for example, a wavelength region from 500 nm to 600 nm, that is, green light. The phosphor 35 may contain, for example, SrSi 2 (O, Cl) 2 N 2 : Eu, (Sr, Ba, Mg) 2 SiO 4 : Eu 2+ , or ZnS: Cu, Al, Zn 2 SiO 4 : Mn. It may be configured to include.

蛍光体35は、紫色光を、例えば600nmから700nmまでの波長領域に含まれるピーク波長を有するスペクトルで特定される光、つまり赤色の光に変換してよい。蛍光体35は、例えば、Y22S:Eu、Y23:Eu、SrCaClAlSiN3:Eu2+、CaAlSiN3:Eu、又はCaAlSi(ON)3:Eu等を含んで構成されてよい。 The phosphor 35 may convert violet light into light specified in the spectrum having a peak wavelength included in, for example, a wavelength region from 600 nm to 700 nm, that is, red light. The phosphor 35 may contain, for example, Y 2 O 2 S: Eu, Y 2 O 3 : Eu, SrCaClAlSiN 3 : Eu 2+ , CaAlSiN 3 : Eu, CaAlSi (ON) 3 : Eu, and the like. ..

蛍光体35は、紫色光を、例えば680nmから800nmまでの波長領域に含まれるピーク波長を有するスペクトルで特定される光、つまり近赤外光に変換してよい。近赤外光は、680から2500nmまでの波長領域の光を含んでよい。蛍光体35は、例えば、3Ga512:Cr等を含んで構成されてよい。 The phosphor 35 may convert violet light into light specified in the spectrum having a peak wavelength included in, for example, a wavelength region from 680 nm to 800 nm, that is, near infrared light. Near-infrared light may include light in the wavelength range from 680 to 2500 nm. The phosphor 35 may be composed of, for example, 3Ga 5 O 12 : Cr or the like.

蛍光体35は、上述してきた材料に限られず、他の種類の材料を含んで構成されてもよい。蛍光体35は、複数の種類の材料を任意に組み合わせて構成されてもよい。蛍光体35の材料の組み合わせは、特に限定されない。 The phosphor 35 is not limited to the materials described above, and may be configured to include other types of materials. The phosphor 35 may be formed by arbitrarily combining a plurality of types of materials. The combination of materials for the phosphor 35 is not particularly limited.

波長変換部材30は、1種類の蛍光体35を含んでよい。波長変換部材30は、蛍光体35として、第1蛍光体35aと第2蛍光体35bとを含んでよい。第1蛍光体35aで変換される光のピーク波長と、第2蛍光体35bで変換される光のピーク波長とは、互いに異なってよい。 The wavelength conversion member 30 may include one type of phosphor 35. The wavelength conversion member 30 may include the first phosphor 35a and the second phosphor 35b as the phosphor 35. The peak wavelength of the light converted by the first phosphor 35a and the peak wavelength of the light converted by the second phosphor 35b may be different from each other.

波長変換部材30は、励起光71を、励起光スペクトルと異なるスペクトルで特定される変換光に変換して射出する。変換光を特定するスペクトルは、蛍光体35の組み合わせによって、種々のピーク波長を有し得る。波長変換部材30に含まれる蛍光体35の種類が適宜選択されることによって、波長変換部材30は、変換光として、種々のスペクトルで特定される光、種々の色を有する光、又は、種々の色温度を有する光を射出できる。 The wavelength conversion member 30 converts the excitation light 71 into conversion light specified by a spectrum different from the excitation light spectrum and emits it. The spectrum that identifies the converted light may have various peak wavelengths depending on the combination of the phosphors 35. By appropriately selecting the type of the phosphor 35 included in the wavelength conversion member 30, the wavelength conversion member 30 can be converted into light specified in various spectra, light having various colors, or various types of light. Can emit light with a color temperature.

照明装置1は、第1変換光と第2変換光とを含む透過光73を、照明光として外方に射出する。第1変換光のスペクトルと第2変換光のスペクトルとは、互いに異なるスペクトルであり得る。よって、照明光のスペクトルは、第1変換光のスペクトルと第2変換光のスペクトルとを加えたスペクトルになる。照明光は、未変換光を更に含み得る。照明光が未変換光を含む場合、照明光のスペクトルは、未変換光のスペクトルを更に加えたスペクトルになる。 The lighting device 1 emits transmitted light 73 including the first converted light and the second converted light to the outside as illumination light. The spectrum of the first conversion light and the spectrum of the second conversion light can be different spectra from each other. Therefore, the spectrum of the illumination light is a spectrum obtained by adding the spectrum of the first conversion light and the spectrum of the second conversion light. The illumination light may further include unconverted light. When the illumination light includes unconverted light, the spectrum of the illumination light becomes a spectrum obtained by further adding the spectrum of the unconverted light.

照明装置1は、励起光71を可視光等に変換する変換効率を向上させることができる。照明装置1は、このため、内視鏡、一般照明、車載用照明においても励起光71から所望の色の光への変換の効率を向上させることができる。また、変換効率の高い照明装置1は、照明光のスペクトルを、可視光領域に含まれる各波長の強度が均一に近づけられた白色光のスペクトルに近づけることができる。その結果、照明装置1は、照明光の演色性を高めることができる。照明装置1は、照明光のスペクトルを、例えば、太陽からの直射日光、海中の所定の深さまで到達した日光、ろうそくの炎が発する光、又は、蛍の光等の種々の光のスペクトルに近づけることもできる。言い換えれば、照明装置1は、照明光を、種々の色を有する光、又は、種々の色温度を有する光にできる。 The lighting device 1 can improve the conversion efficiency of converting the excitation light 71 into visible light or the like. Therefore, the lighting device 1 can improve the efficiency of conversion of the excitation light 71 to the light of a desired color even in the endoscope, general lighting, and vehicle-mounted lighting. Further, the illumination device 1 having high conversion efficiency can bring the spectrum of illumination light closer to the spectrum of white light in which the intensities of each wavelength included in the visible light region are uniformly approached. As a result, the illuminating device 1 can enhance the color rendering property of the illuminating light. The illuminating device 1 brings the spectrum of the illuminating light close to the spectrum of various lights such as direct sunlight from the sun, sunlight reaching a predetermined depth in the sea, light emitted by a candle flame, or light of a firefly. You can also do it. In other words, the illuminating device 1 can make the illuminating light into light having various colors or light having various color temperatures.

波長変換部材30における励起光71の変換効率が高いほど、未変換光が少なくなるとともに、変換光が多くなる。本実施形態に係る照明装置1において、第1層11で変換されなかった未変換光が第2層12で変換光になり得る。また、第2層12でも変換されなかった未変換光が反射して第1層11又は第2層12に再度入射し、変換光になり得る。このようにすることで、本実施形態に係る照明装置1における励起光71の変換効率が高くなる。励起光71の変換効率の向上によって、発光装置40が射出する励起光71の強度が低減されてよい。その結果、発光装置40に励起光71を射出させるために入力されるエネルギーが削減され得る。また、励起光71の変換効率の向上によって、照明光の演色性が向上し得る。 The higher the conversion efficiency of the excitation light 71 in the wavelength conversion member 30, the less the unconverted light and the more the converted light. In the lighting device 1 according to the present embodiment, the unconverted light that has not been converted in the first layer 11 can become the converted light in the second layer 12. Further, the unconverted light that has not been converted even in the second layer 12 can be reflected and re-entered into the first layer 11 or the second layer 12 to become the converted light. By doing so, the conversion efficiency of the excitation light 71 in the lighting device 1 according to the present embodiment is increased. By improving the conversion efficiency of the excitation light 71, the intensity of the excitation light 71 emitted by the light emitting device 40 may be reduced. As a result, the energy input for emitting the excitation light 71 to the light emitting device 40 can be reduced. Further, by improving the conversion efficiency of the excitation light 71, the color rendering property of the illumination light can be improved.

<比較例との対比>
比較例に係る装置において、励起光71は、波長変換部材30を1回しか通過しないとする。これに対して、本実施形態に係る照明装置1において、励起光71は、波長変換部材30を2回以上通過する可能性が高くなっている。この場合、図3に例示される照明光のスペクトルの、λpで表されている励起光71のピーク波長において、本実施形態に係る照明装置1の照明光の強度は、比較例に係る装置の照明光の強度よりも小さくなっている。したがって、本実施形態に係る照明装置1は、比較例に係る装置よりも、励起光71の変換効率を高めることができる。
<Comparison with comparative example>
In the apparatus according to the comparative example, it is assumed that the excitation light 71 passes through the wavelength conversion member 30 only once. On the other hand, in the lighting device 1 according to the present embodiment, the excitation light 71 is more likely to pass through the wavelength conversion member 30 twice or more. In this case, at the peak wavelength of the excitation light 71 represented by λp in the spectrum of the illumination light illustrated in FIG. 3, the intensity of the illumination light of the illumination device 1 according to the present embodiment is the intensity of the illumination light of the apparatus according to the comparative example. It is less than the intensity of the illumination light. Therefore, the lighting device 1 according to the present embodiment can improve the conversion efficiency of the excitation light 71 as compared with the device according to the comparative example.

また、λcで表されている、第1変換光のスペクトルの波長範囲又は第2変換光のスペクトルの波長範囲を含む波長範囲において、本実施形態に係る照明装置1の照明光の強度は、比較例に係る装置の照明光の強度よりも大きくなっている。したがって、本実施形態に係る照明装置1は、比較例に係る装置よりも、照明光の演色性を高めることができる。 Further, in the wavelength range including the wavelength range of the spectrum of the first conversion light or the wavelength range of the spectrum of the second conversion light represented by λc, the intensity of the illumination light of the illumination device 1 according to the present embodiment is compared. It is higher than the intensity of the illumination light of the device according to the example. Therefore, the lighting device 1 according to the present embodiment can enhance the color rendering property of the lighting light as compared with the device according to the comparative example.

(他の実施形態)
以下、他の実施形態が説明される。
(Other embodiments)
Hereinafter, other embodiments will be described.

<第3層13の構成>
第1層11と第2層12との間に位置する第3層13は、励起光71、未変換光、第1変換光、及び第2変換光を透過させる。言い換えれば、第3層13は、励起光71、第1反射光72、及び第2反射光74を透過させる。第3層13は、空気層であってよい。第3層13は、ガラス又は透明樹脂等の透光性を有する部材で構成されてもよい。第3層13が空気層であったり透光性を有する部材で構成されたりすることによって、第3層13を通過する光が第3層13で吸収されにくく、第3層13で減衰しにくくなる。第3層13で光が減衰しにくいことによって、第2層12に向けて進み第2層12を透過して外部に射出される第1変換光の強度が増大し得るとともに、波長変換部材30に入射する励起光71又は未変換光の強度が増大し得る。その結果、励起光71の変換効率が向上し得るとともに、照明装置1が射出する照明光の強度が増大し得る。
<Structure of third layer 13>
The third layer 13 located between the first layer 11 and the second layer 12 transmits the excitation light 71, the unconverted light, the first converted light, and the second converted light. In other words, the third layer 13 transmits the excitation light 71, the first reflected light 72, and the second reflected light 74. The third layer 13 may be an air layer. The third layer 13 may be made of a translucent member such as glass or a transparent resin. Since the third layer 13 is an air layer or is composed of a member having translucency, the light passing through the third layer 13 is less likely to be absorbed by the third layer 13 and less likely to be attenuated by the third layer 13. Become. Since the light is not easily attenuated in the third layer 13, the intensity of the first converted light that advances toward the second layer 12 and is transmitted to the outside through the second layer 12 can be increased, and the wavelength conversion member 30 can be increased. The intensity of the excitation light 71 or the unconverted light incident on the light may increase. As a result, the conversion efficiency of the excitation light 71 can be improved, and the intensity of the illumination light emitted by the illumination device 1 can be increased.

第3層13は、波長変換部材30で構成されてもよい。第3層13を構成する波長変換部材30は、第3波長変換部材とも称される。第3波長変換部材に含まれる蛍光体35の密度は、第1波長変換部材31及び第2波長変換部材32に含まれる蛍光体35の密度より小さいとする。このようにすることで、第3層13を通過する光が他の光に変換されにくい。なお、蛍光体35の密度は、例えば、波長変換部材30のある断面における蛍光体35の面積占有率からの算出、あるは、同体積における波長変換部材30の蛍光体35を除く部分のみの質量と、蛍光体35を含むものの質量との比較等で算出できる。 The third layer 13 may be composed of the wavelength conversion member 30. The wavelength conversion member 30 constituting the third layer 13 is also referred to as a third wavelength conversion member. It is assumed that the density of the phosphor 35 included in the third wavelength conversion member is smaller than the density of the phosphor 35 contained in the first wavelength conversion member 31 and the second wavelength conversion member 32. By doing so, the light passing through the third layer 13 is less likely to be converted into other light. The density of the phosphor 35 is calculated from, for example, the area occupancy of the phosphor 35 in a certain cross section of the wavelength conversion member 30, or the mass of only the portion of the wavelength conversion member 30 excluding the phosphor 35 in the same volume. Can be calculated by comparing with the mass of the substance containing the phosphor 35 and the like.

励起光71が射出される所定点13aは、第3層13の内部に位置する。所定点13aから射出される励起光71は、所定の立体角で広がりながら第3層13の内部を進行する。そうすると、所定点13aに近いほど、励起光71の強度が高い。 The predetermined point 13a from which the excitation light 71 is emitted is located inside the third layer 13. The excitation light 71 emitted from the predetermined point 13a travels inside the third layer 13 while spreading at a predetermined solid angle. Then, the closer to the predetermined point 13a, the higher the intensity of the excitation light 71.

蛍光体35は、励起光71を吸収して変換光を射出するともいえる。蛍光体35は、励起光71を吸収することによって発熱する。 It can be said that the phosphor 35 absorbs the excitation light 71 and emits the conversion light. The phosphor 35 generates heat by absorbing the excitation light 71.

仮に、第3波長変換部材に含まれる蛍光体35の密度が第1波長変換部材31又は第2波長変換部材32に含まれる蛍光体35の密度より高いとする。この場合、第3層13の所定点13aの近傍において、第3波長変換部材は、高い強度の励起光71を、高密度の蛍光体35によって吸収し発熱する。そうすると、第3波長変換部材は、所定点13aの近傍において局所的に高温になる。このように局所的に発生した熱は、放散されにくい。また、局所的な温度分布の発生によって照明装置1の信頼性が低下し得る。 It is assumed that the density of the phosphor 35 contained in the third wavelength conversion member is higher than the density of the phosphor 35 contained in the first wavelength conversion member 31 or the second wavelength conversion member 32. In this case, in the vicinity of the predetermined point 13a of the third layer 13, the third wavelength conversion member absorbs the high-intensity excitation light 71 by the high-density phosphor 35 and generates heat. Then, the third wavelength conversion member locally becomes hot in the vicinity of the predetermined point 13a. The heat generated locally in this way is difficult to dissipate. In addition, the reliability of the illuminating device 1 may decrease due to the occurrence of a local temperature distribution.

一方で、本実施形態において、第3波長変換部材の蛍光体35の密度が低いことによって、励起光71は、大きい熱容量を有する基板21に熱を放散させやすい第1波長変換部材31、又は、熱を外気に放散させやすい第2波長変換部材32に到達しやすくなる。このようにすることで、照明装置1の内部で発熱する部分が分散され、発熱が放散されやすくなる。その結果、局所的な温度分布が低減され、照明装置1の信頼性が向上し得る。 On the other hand, in the present embodiment, due to the low density of the phosphor 35 of the third wavelength conversion member, the excitation light 71 easily dissipates heat to the substrate 21 having a large heat capacity, or the first wavelength conversion member 31 or It becomes easy to reach the second wavelength conversion member 32 which easily dissipates heat to the outside air. By doing so, the portion that generates heat inside the lighting device 1 is dispersed, and the heat generation is easily dissipated. As a result, the local temperature distribution can be reduced and the reliability of the lighting device 1 can be improved.

また、励起光71が射出される所定点13aが蛍光体35の密度が低い第3波長変換部材の内部に位置することによって、励起光71が第1波長変換部材31及び第2波長変換部材32に到達しやすくなる。その結果、第1変換光及び第2変換光の強度が制御されやすくなる。 Further, since the predetermined point 13a from which the excitation light 71 is emitted is located inside the third wavelength conversion member having a low density of the phosphor 35, the excitation light 71 is the first wavelength conversion member 31 and the second wavelength conversion member 32. Will be easier to reach. As a result, the intensities of the first conversion light and the second conversion light can be easily controlled.

また、所定点13aから射出される励起光71が進む方向は、所定の広がりを有する。励起光71は、ある方向に放射されるエネルギーを表す放射強度によって特定される。励起光71の放射強度は、励起光71の進行方向毎に異なり得る。つまり、励起光71の放射強度は、分布を有し得る。本実施形態において、励起光71の放射強度が最大になる進行方向は、所定点13aから第1層11に向かう方向であってよい。言い換えれば、所定点13aから射出される励起光71の放射強度は、所定点13aから第1層11に向かう方向で最大になってよい。所定点13aから第1層11に向かう方向は、Y軸の負の方向の成分を有する方向ともいえる。励起光71の放射強度が所定点13aから第1層11に向かう方向で最大にされることで、励起光71が第1波長変換部材31と第2波長変換部材32とを両方とも通過し得る。このようにすることで、励起光71は、第1波長変換部材31で第1変換光に変換され得るとともに、第1波長変換部材31を未変換光のままで通過しても第2波長変換部材32で第2変換光に変換され得る。その結果、励起光71が第1変換光又は第2変換光に変換される確率が増大し得る。つまり、励起光71の変換効率が高められ得る。 Further, the direction in which the excitation light 71 emitted from the predetermined point 13a travels has a predetermined spread. The excitation light 71 is specified by a radiant intensity representing energy radiated in a certain direction. The radiation intensity of the excitation light 71 may differ depending on the traveling direction of the excitation light 71. That is, the radiation intensity of the excitation light 71 may have a distribution. In the present embodiment, the traveling direction in which the radiation intensity of the excitation light 71 is maximized may be the direction from the predetermined point 13a toward the first layer 11. In other words, the radiant intensity of the excitation light 71 emitted from the predetermined point 13a may be maximized in the direction from the predetermined point 13a toward the first layer 11. The direction from the predetermined point 13a toward the first layer 11 can be said to have a component in the negative direction of the Y-axis. By maximizing the radiation intensity of the excitation light 71 in the direction from the predetermined point 13a toward the first layer 11, the excitation light 71 can pass through both the first wavelength conversion member 31 and the second wavelength conversion member 32. .. By doing so, the excitation light 71 can be converted into the first conversion light by the first wavelength conversion member 31, and the second wavelength conversion even if the first wavelength conversion member 31 passes through the unconverted light as it is. It can be converted into the second conversion light by the member 32. As a result, the probability that the excitation light 71 is converted into the first conversion light or the second conversion light can be increased. That is, the conversion efficiency of the excitation light 71 can be increased.

<第2反射面22a>
照明装置1は、必須ではないが、第1層11と第2層12との間の間隔を規定するスペーサ部材22を更に備えてもよい。スペーサ部材22は、第3層13と並んで基板21に沿って位置する。第3層13は、スペーサ部材22によって取り囲まれてもよい。第3層13がスペーサ部材22によって取り囲まれる場合、第3層13の基板21に沿う方向(図1のX軸方向)の端は、スペーサ部材22によって特定される。この場合、スペーサ部材22は、第3層13の端に接する端面を有し、端面において第3層13の側から入射する光を反射する。スペーサ部材22の端面は、第2反射面22aとも称される。第2反射面22aは、第3層13が延在する方向(図1のX軸方向)に交差するともいえる。
<Second reflective surface 22a>
The illuminating device 1 may further include, but are not required, a spacer member 22 that defines the spacing between the first layer 11 and the second layer 12. The spacer member 22 is located along the substrate 21 along with the third layer 13. The third layer 13 may be surrounded by the spacer member 22. When the third layer 13 is surrounded by the spacer member 22, the end of the third layer 13 in the direction along the substrate 21 (X-axis direction in FIG. 1) is specified by the spacer member 22. In this case, the spacer member 22 has an end face in contact with the end of the third layer 13, and reflects light incident from the side of the third layer 13 on the end face. The end surface of the spacer member 22 is also referred to as a second reflecting surface 22a. It can be said that the second reflecting surface 22a intersects in the direction in which the third layer 13 extends (the X-axis direction in FIG. 1).

第2反射面22aが第3層13から入射する光を反射することによって、第1層11及び第2層12が狭い範囲に配置され得る。このようにすることで、照明装置1は、狭い面積の第2層12から照明光として透過光73を射出できる。その結果、照明光の輝度が高められ得るとともに、照明装置1が小型化され得る。 The first layer 11 and the second layer 12 can be arranged in a narrow range by the second reflecting surface 22a reflecting the light incident from the third layer 13. By doing so, the illuminating device 1 can emit the transmitted light 73 as the illuminating light from the second layer 12 having a narrow area. As a result, the brightness of the illumination light can be increased and the illumination device 1 can be miniaturized.

第2反射面22aの法線ベクトル22nは、第1層11及び第2層12が広がる方向(図1のX軸方向)の成分と、第1層11と第2層12とが積層する方向(図1のZ軸方向)の成分とを有する。第2反射面22aは、法線ベクトル22nのZ軸方向の成分が第2層12に向かうように構成されてよい。このようにすることで、第2反射面22aで反射する光のうち、第2層12に向かう光が第1層11に向かう光よりも多くなる。第2層12に向かう光が多くなることによって、第2層12を透過して外部に射出される透過光73の強度が増大し得る。その結果、照明光の強度が増大され得る。 The normal vector 22n of the second reflecting surface 22a is a direction in which the components in the direction in which the first layer 11 and the second layer 12 spread (the X-axis direction in FIG. 1) and the first layer 11 and the second layer 12 are laminated. It has a component (in the Z-axis direction of FIG. 1). The second reflecting surface 22a may be configured such that the component of the normal vector 22n in the Z-axis direction is directed toward the second layer 12. By doing so, among the light reflected by the second reflecting surface 22a, the light directed to the second layer 12 is larger than the light directed to the first layer 11. By increasing the amount of light directed to the second layer 12, the intensity of the transmitted light 73 transmitted through the second layer 12 and emitted to the outside can be increased. As a result, the intensity of the illumination light can be increased.

<蛍光体35の配置>
照明装置1において、照明光のスペクトルを所望のスペクトルにするために複数の種類の蛍光体35が必要とされるとする。この場合、第1波長変換部材31が一部の種類の蛍光体35を含みつつ、第2波長変換部材32が他の種類の蛍光体35を含むことによって、照明装置1全体として、照明光のスペクトルを所望のスペクトルにできる。
<Arrangement of phosphor 35>
It is assumed that in the illuminating device 1, a plurality of types of phosphors 35 are required in order to obtain a desired spectrum of illumination light. In this case, the first wavelength conversion member 31 contains some types of phosphors 35, while the second wavelength conversion member 32 contains other types of phosphors 35, so that the illumination device 1 as a whole contains illumination light. The spectrum can be the desired spectrum.

第1波長変換部材31は、基板21に放熱し得る。第2波長変換部材32は、外気に放熱し得る。熱が外気よりも基板21に放散されやすい場合、第2波長変換部材32は、第1波長変換部材31よりも高温になりやすい。第2波長変換部材32の耐熱温度は、第1波長変換部材31の耐熱温度よりも高くされてよい。このようにすることで、照明装置1全体として蛍光体35が劣化しにくくなる。その結果、照明装置1の信頼性が向上し得る。なお、耐熱温度とは、物質が、物性を維持することができる温度のことであり、波長変換部材30であれば、波長変換部材30としての機能が維持できる温度のことである。 The first wavelength conversion member 31 can dissipate heat to the substrate 21. The second wavelength conversion member 32 can dissipate heat to the outside air. When the heat is more easily dissipated to the substrate 21 than the outside air, the second wavelength conversion member 32 tends to have a higher temperature than the first wavelength conversion member 31. The heat-resistant temperature of the second wavelength conversion member 32 may be higher than the heat-resistant temperature of the first wavelength conversion member 31. By doing so, the phosphor 35 as a whole of the lighting device 1 is less likely to deteriorate. As a result, the reliability of the lighting device 1 can be improved. The heat-resistant temperature is a temperature at which the substance can maintain its physical properties, and if it is a wavelength conversion member 30, it is a temperature at which the function as the wavelength conversion member 30 can be maintained.

蛍光体35の耐熱温度は、蛍光体35の種類によって定まる。例えば、緑色の蛍光体35の耐熱温度は、他の色の蛍光体35の耐熱温度よりも低い。例えば、青色の蛍光体35の耐熱温度は、他の色の蛍光体35の耐熱温度よりも高い。各色の蛍光体35の耐熱温度は、例えば、緑色、黄色又は橙色、赤色、青色の順で高くなり得る。 The heat resistant temperature of the phosphor 35 is determined by the type of the phosphor 35. For example, the heat-resistant temperature of the green phosphor 35 is lower than the heat-resistant temperature of the phosphors 35 of other colors. For example, the heat-resistant temperature of the blue phosphor 35 is higher than the heat-resistant temperature of the phosphors 35 of other colors. The heat resistant temperature of the phosphor 35 of each color can be increased in the order of, for example, green, yellow or orange, red, and blue.

波長変換部材30の耐熱温度は、その波長変換部材30に含まれる蛍光体35の種類によって定まる。第2波長変換部材32は、その耐熱温度が第1波長変換部材31の耐熱温度よりも高くなるように、第1波長変換部材31よりも緑色の蛍光体35を少なく含んでもよい。つまり、第2波長変換部材32に含まれる緑色の蛍光体35の密度は、第1波長変換部材31に含まれる緑色の蛍光体35の密度よりも低くされてよい。緑色の蛍光体35は、緑色蛍光体とも称される。 The heat resistant temperature of the wavelength conversion member 30 is determined by the type of the phosphor 35 included in the wavelength conversion member 30. The second wavelength conversion member 32 may contain less green phosphor 35 than the first wavelength conversion member 31 so that the heat resistant temperature thereof is higher than the heat resistant temperature of the first wavelength conversion member 31. That is, the density of the green phosphor 35 contained in the second wavelength conversion member 32 may be lower than the density of the green phosphor 35 contained in the first wavelength conversion member 31. The green phosphor 35 is also referred to as a green phosphor.

本実施形態において、所定点13aから第1層11に向けて進む励起光71は、第1波長変換部材31で第1変換光に変換され得る。第1変換光は、第1反射面21a又は第1波長変換部材31で反射されて第2層12に向けて進み、第2波長変換部材32に到達する。第1変換光は、第2波長変換部材32でさらに変換されて第2変換光になり得る。ここで、第1波長変換部材31に含まれる蛍光体35が射出する光のピーク波長は、第2波長変換部材32に含まれる蛍光体35が射出する光のピーク波長よりも長くされるとする。このようにすることで、第1変換光の波長は、第2波長変換部材32に含まれる蛍光体35が射出する光のピーク波長よりも長くなり得る。その結果、第1変換光が第2波長変換部材32で第2変換光に変換されにくくなる。よって、第1変換光と第2変換光との強度の比率が制御されやすくなる。 In the present embodiment, the excitation light 71 traveling from the predetermined point 13a toward the first layer 11 can be converted into the first conversion light by the first wavelength conversion member 31. The first conversion light is reflected by the first reflection surface 21a or the first wavelength conversion member 31 and travels toward the second layer 12 to reach the second wavelength conversion member 32. The first conversion light can be further converted by the second wavelength conversion member 32 to become the second conversion light. Here, it is assumed that the peak wavelength of the light emitted by the phosphor 35 included in the first wavelength conversion member 31 is longer than the peak wavelength of the light emitted by the phosphor 35 included in the second wavelength conversion member 32. .. By doing so, the wavelength of the first conversion light can be longer than the peak wavelength of the light emitted by the phosphor 35 included in the second wavelength conversion member 32. As a result, the first conversion light is less likely to be converted into the second conversion light by the second wavelength conversion member 32. Therefore, the ratio of the intensities of the first converted light and the second converted light can be easily controlled.

<フィルタ50を備える構成例>
図1に示されるように、照明装置1は、必須ではないが、第2層12の外側に位置するフィルタ50を更に備えてもよい。フィルタ50は、第2層12から見て、第1層11に対向する側の反対側に位置する。図1の上下関係に基づけば、フィルタ50は、第2層12の上方に位置する。図1の座標系に基づけば、フィルタ50は、第2層12に対してY軸の正の方向の側に位置する。
<Configuration example including filter 50>
As shown in FIG. 1, the illuminating device 1 may further include, but is not required, a filter 50 located outside the second layer 12. The filter 50 is located on the side opposite to the side facing the first layer 11 when viewed from the second layer 12. Based on the vertical relationship of FIG. 1, the filter 50 is located above the second layer 12. Based on the coordinate system of FIG. 1, the filter 50 is located on the positive side of the Y-axis with respect to the second layer 12.

フィルタ50は、第2層12上に位置するともいえる。フィルタ50は、第2層12に当接してもよいし、第2層12に対して所定の間隔をあけて位置してもよい。照明装置1は、フィルタ50と第2層12との間に位置する他の部材を更に有してもよい。つまり、フィルタ50の位置は、第2層12の直上であってもよいし、直上でなくてもよい。 It can be said that the filter 50 is located on the second layer 12. The filter 50 may abut on the second layer 12 or may be located at a predetermined interval with respect to the second layer 12. The illuminating device 1 may further have other members located between the filter 50 and the second layer 12. That is, the position of the filter 50 may or may not be directly above the second layer 12.

フィルタ50は、所定の反射特性を有する。フィルタ50は、例えば、図4に示される反射特性を有してよい。反射特性は、入射する光の波長と、各波長の光の反射率との関係を表している。図4の例において、フィルタ50の反射率は、励起光71のピーク波長(λp)を含む波長範囲(λex)において、他の波長範囲(λc)よりも大きくされてよい。言い換えれば、フィルタ50の反射率は、励起光71のピーク波長を含む波長範囲において最も大きくされてよい。励起光71のピーク波長を含む波長範囲でフィルタ50の反射率が高められることによって、未変換光のままの励起光71は、第1層11又は第2層12に向けて反射されて再び第1層11又は第2層12に入射し、波長変換部材30で変換光に変換され得る。その結果、励起光71の変換効率が高められ得る。また、励起光71のピーク波長を含む波長範囲でフィルタ50の反射率が高められることによって、照明装置1の外方に射出される照明光のうち、未変換光のままで射出される励起光71の割合が低減される。その結果、照明光の演色性の向上にあまり寄与しない紫色光の強度が低減され得る、あるいは、所望の色の照明光への変換効率が向上され得る。 The filter 50 has a predetermined reflection characteristic. The filter 50 may have, for example, the reflection characteristics shown in FIG. The reflection characteristic represents the relationship between the wavelength of the incident light and the reflectance of the light of each wavelength. In the example of FIG. 4, the reflectance of the filter 50 may be made larger in the wavelength range (λex) including the peak wavelength (λp) of the excitation light 71 than in the other wavelength range (λc). In other words, the reflectance of the filter 50 may be maximized in the wavelength range including the peak wavelength of the excitation light 71. By increasing the reflectance of the filter 50 in the wavelength range including the peak wavelength of the excitation light 71, the excitation light 71 as the unconverted light is reflected toward the first layer 11 or the second layer 12 and is again second. It can enter the first layer 11 or the second layer 12 and be converted into converted light by the wavelength conversion member 30. As a result, the conversion efficiency of the excitation light 71 can be increased. Further, by increasing the reflectance of the filter 50 in the wavelength range including the peak wavelength of the excitation light 71, among the illumination lights emitted to the outside of the illumination device 1, the excitation light emitted as the unconverted light is emitted. The proportion of 71 is reduced. As a result, the intensity of purple light, which does not contribute much to the improvement of the color rendering property of the illumination light, can be reduced, or the conversion efficiency to the illumination light of a desired color can be improved.

フィルタ50は、所定の透過特性を有する。透過特性は、入射する光の波長と、各波長の光の透過率との関係を表している。フィルタ50の透過率は、励起光71のピーク波長を含む波長範囲において、他の波長範囲よりも小さくされてよい。言い換えれば、フィルタ50の透過率は、励起光71のピーク波長を含む波長範囲において最も小さくされてよい。励起光71のピーク波長を含む波長範囲でフィルタ50の透過率が低くされることによって、照明装置1の外方に射出される照明光のうち、未変換光のままで射出される励起光71の割合が低減される。その結果、照明光の演色性の向上にあまり寄与しない紫色光の強度が低減され得る、あるいは、所望の色の照明光への変換効率が向上され得る。 The filter 50 has predetermined transmission characteristics. The transmission characteristic represents the relationship between the wavelength of the incident light and the transmittance of the light of each wavelength. The transmittance of the filter 50 may be smaller in the wavelength range including the peak wavelength of the excitation light 71 than in other wavelength ranges. In other words, the transmittance of the filter 50 may be minimized in the wavelength range including the peak wavelength of the excitation light 71. By lowering the transmittance of the filter 50 in the wavelength range including the peak wavelength of the excitation light 71, among the illumination lights emitted to the outside of the illumination device 1, the excitation light 71 emitted as the unconverted light The proportion is reduced. As a result, the intensity of purple light, which does not contribute much to the improvement of the color rendering property of the illumination light, can be reduced, or the conversion efficiency to the illumination light of a desired color can be improved.

本開示に係る実施形態について説明する図は模式的なものである。図面上の寸法比率等は、現実のものとは必ずしも一致していない。 The figure illustrating the embodiment according to the present disclosure is schematic. The dimensional ratios on the drawings do not always match the actual ones.

本開示に係る実施形態について、諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形又は修正を行うことが容易であることに注意されたい。従って、これらの変形又は修正は本開示の範囲に含まれることに留意されたい。例えば、各構成部等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の構成部等を1つに組み合わせたり、或いは分割したりすることが可能である。 Although the embodiments according to the present disclosure have been described based on the drawings and examples, it should be noted that those skilled in the art can easily make various modifications or modifications based on the present disclosure. It should be noted, therefore, that these modifications or modifications are within the scope of this disclosure. For example, the functions and the like included in each component and the like can be rearranged so as not to be logically inconsistent, and a plurality of components and the like can be combined or divided into one.

本開示において「第1」及び「第2」等の記載は、当該構成を区別するための識別子である。本開示における「第1」及び「第2」等の記載で区別された構成は、当該構成における番号を交換することができる。例えば、第1変換光は、第2変換光と識別子である「第1」と「第2」とを交換することができる。識別子の交換は同時に行われる。識別子の交換後も当該構成は区別される。識別子は削除してよい。識別子を削除した構成は、符号で区別される。本開示における「第1」及び「第2」等の識別子の記載のみに基づいて、当該構成の順序の解釈、小さい番号の識別子が存在することの根拠に利用してはならない。 In the present disclosure, the descriptions such as "first" and "second" are identifiers for distinguishing the configuration. The configurations distinguished by the descriptions such as "first" and "second" in the present disclosure can exchange numbers in the configurations. For example, the first conversion light can exchange the identifiers "first" and "second" with the second conversion light. The exchange of identifiers takes place at the same time. Even after exchanging identifiers, the configuration is distinguished. The identifier may be deleted. The configuration with the identifier removed is distinguished by a code. Based solely on the description of identifiers such as "first" and "second" in the present disclosure, it shall not be used as a basis for interpreting the order of the configurations and for the existence of identifiers with smaller numbers.

本開示において、X軸、Y軸、及びZ軸は、説明の便宜上設けられたものであり、互いに入れ替えられてよい。本開示に係る構成は、X軸、Y軸、及びZ軸によって構成される直交座標系を用いて説明されてきた。本開示に係る各構成の位置関係は、直交関係にあると限定されるものではない。 In the present disclosure, the X-axis, Y-axis, and Z-axis are provided for convenience of explanation and may be interchanged with each other. The configuration according to the present disclosure has been described using a Cartesian coordinate system composed of the X-axis, the Y-axis, and the Z-axis. The positional relationship of each configuration according to the present disclosure is not limited to being orthogonal.

1 照明装置
11 第1層
12 第2層
13 第3層
13a 所定点
21 基板(21a:第1反射面)
22 スペーサ部材(22a:第2反射面、22n:法線ベクトル)
30 波長変換部材(31:第1波長変換部材、32:第2波長変換部材、35:蛍光体、35a:第1蛍光体、35b:第2蛍光体、38:透光部材)
40 発光装置(41:光源、42:ファイバ)
50 フィルタ
71 励起光
72 第1反射光
73 透過光
74 第2反射光
1 Lighting device 11 1st layer 12 2nd layer 13 3rd layer 13a Predetermined point 21 Substrate (21a: 1st reflective surface)
22 Spacer member (22a: second reflecting surface, 22n: normal vector)
30 Wavelength conversion member (31: first wavelength conversion member, 32: second wavelength conversion member, 35: phosphor, 35a: first phosphor, 35b: second phosphor, 38: translucent member)
40 Light emitting device (41: light source, 42: fiber)
50 Filter 71 Excitation light 72 First reflected light 73 Transmitted light 74 Second reflected light

Claims (16)

第1反射面を有する基板と、
前記第1反射面上に位置し、第1波長変換部材を有する第1層と、
前記第1層の上方に前記第1層に沿って位置し、第2波長変換部材を有する第2層と、
前記第1層と前記第2層との間に位置する第3層と、
前記第3層の内部に位置する射出点から励起光を射出する発光装置と
を備え、
前記第1波長変換部材は、前記第1層に入射してきた前記励起光の少なくとも一部を前記励起光と異なるスペクトルで特定される第1変換光に変換し、
前記第1反射面は、前記第1波長変換部材で変換されなかった前記励起光を前記第2層に向けて反射し、
前記第2波長変換部材は、前記第1層から前記第2層に入射してきた前記励起光の少なくとも一部を前記励起光と異なるスペクトルで特定される第2変換光に変換し、
前記第2層は、前記第2変換光の少なくとも一部と、前記第1層から入射してきた前記第1変換光の少なくとも一部とを外方に向けて透過させる、照明装置。
A substrate having a first reflective surface and
A first layer located on the first reflecting surface and having a first wavelength conversion member, and
A second layer located above the first layer along the first layer and having a second wavelength conversion member,
A third layer located between the first layer and the second layer,
A light emitting device that emits excitation light from an injection point located inside the third layer is provided.
The first wavelength conversion member converts at least a part of the excitation light incident on the first layer into the first conversion light specified by a spectrum different from the excitation light.
The first reflecting surface reflects the excitation light that has not been converted by the first wavelength conversion member toward the second layer.
The second wavelength conversion member converts at least a part of the excitation light incident on the second layer from the first layer into a second conversion light specified by a spectrum different from the excitation light.
The second layer is an illuminating device that transmits at least a part of the second converted light and at least a part of the first converted light incident from the first layer toward the outside.
前記第3層は、透光部材を有する、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the third layer has a translucent member. 前記第3層は、第3波長変換部材を有し、
前記第3波長変換部材に含まれる蛍光体の密度は、前記第1波長変換部材に含まれる蛍光体の密度、及び、前記第2波長変換部材に含まれる蛍光体の密度よりも小さい、請求項1又は2に記載の照明装置。
The third layer has a third wavelength conversion member and has a third wavelength conversion member.
The claim that the density of the phosphor contained in the third wavelength conversion member is smaller than the density of the phosphor contained in the first wavelength conversion member and the density of the phosphor contained in the second wavelength conversion member. The lighting device according to 1 or 2.
前記第3層は、空気層である、請求項1に記載の照明装置。 The lighting device according to claim 1, wherein the third layer is an air layer. 前記第3層の延在方向に交差する第2反射面を有するスペーサ部材を更に備え、
前記第2反射面は、前記第3層から入射してきた光を前記第3層に向けて反射する、請求項1から4までのいずれか一項に記載の照明装置。
Further provided is a spacer member having a second reflective surface intersecting the extending direction of the third layer.
The lighting device according to any one of claims 1 to 4, wherein the second reflecting surface reflects light incident from the third layer toward the third layer.
前記第2反射面の法線ベクトルは、前記第2層に向かう成分を有する、請求項5に記載の照明装置。 The lighting device according to claim 5, wherein the normal vector of the second reflecting surface has a component toward the second layer. 前記第2波長変換部材の耐熱温度は、前記第1波長変換部材の耐熱温度よりも高い、請求項1から6までのいずれか一項に記載の照明装置。 The lighting device according to any one of claims 1 to 6, wherein the heat-resistant temperature of the second wavelength conversion member is higher than the heat-resistant temperature of the first wavelength conversion member. 前記第1波長変換部材及び前記第2波長変換部材はそれぞれ、前記励起光を緑色の光に変換する緑色蛍光体を含み、
前記第2波長変換部材に含まれる前記緑色蛍光体の密度は、前記第1波長変換部材に含まれる前記緑色蛍光体の密度よりも低い、請求項1から7までのいずれか一項に記載の照明装置。
The first wavelength conversion member and the second wavelength conversion member each include a green phosphor that converts the excitation light into green light.
The one according to any one of claims 1 to 7, wherein the density of the green phosphor contained in the second wavelength conversion member is lower than the density of the green phosphor contained in the first wavelength conversion member. Lighting device.
前記第1変換光を特定するスペクトルのピーク波長は、前記第2変換光を特定するスペクトルのピーク波長よりも長い、請求項1から8までのいずれか一項に記載の照明装置。 The illuminating device according to any one of claims 1 to 8, wherein the peak wavelength of the spectrum that identifies the first converted light is longer than the peak wavelength of the spectrum that specifies the second converted light. 前記発光装置は、前記第3層の外部に位置し、前記励起光を射出する光源と、前記光源から前記射出点まで前記励起光を伝搬させるファイバとを有する、請求項1から9までのいずれか一項に記載の照明装置。 Any of claims 1 to 9, wherein the light emitting device is located outside the third layer and has a light source that emits the excitation light and a fiber that propagates the excitation light from the light source to the emission point. The lighting device according to one item. 前記射出点から射出される前記励起光の放射強度は、前記第1層に向かう方向で最大になる、請求項10に記載の照明装置。 The lighting device according to claim 10, wherein the radiation intensity of the excitation light emitted from the injection point is maximized in the direction toward the first layer. 前記発光装置は、前記励起光としてレーザ光を射出する、請求項1から11までのいずれか一項に記載の照明装置。 The lighting device according to any one of claims 1 to 11, wherein the light emitting device emits laser light as the excitation light. 前記第2層上に位置するフィルタを更に備え、
前記フィルタの反射率は、前記励起光を特定するスペクトルのピーク波長を含む波長範囲において、最も大きい、請求項1から12までのいずれか一項に記載の照明装置。
Further provided with a filter located on the second layer,
The lighting device according to any one of claims 1 to 12, wherein the reflectance of the filter is the largest in the wavelength range including the peak wavelength of the spectrum for specifying the excitation light.
前記第2層上に位置するフィルタを更に備え、
前記フィルタの透過率は、前記励起光のピーク波長を含む波長範囲において、最も小さい、請求項1から12までのいずれか一項に記載の照明装置。
Further provided with a filter located on the second layer,
The lighting device according to any one of claims 1 to 12, wherein the transmittance of the filter is the smallest in the wavelength range including the peak wavelength of the excitation light.
前記励起光のピーク波長は、360nm以上且つ430nm以下である、請求項1から14までのいずれか一項に記載の照明装置。 The lighting device according to any one of claims 1 to 14, wherein the peak wavelength of the excitation light is 360 nm or more and 430 nm or less. 前記基板は、放熱性部材を含む、請求項1から15までのいずれか一項に記載の照明装置。 The lighting device according to any one of claims 1 to 15, wherein the substrate includes a heat-dissipating member.
JP2020012916A 2020-01-29 2020-01-29 lighting equipment Active JP7361618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020012916A JP7361618B2 (en) 2020-01-29 2020-01-29 lighting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012916A JP7361618B2 (en) 2020-01-29 2020-01-29 lighting equipment

Publications (2)

Publication Number Publication Date
JP2021118163A true JP2021118163A (en) 2021-08-10
JP7361618B2 JP7361618B2 (en) 2023-10-16

Family

ID=77175194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012916A Active JP7361618B2 (en) 2020-01-29 2020-01-29 lighting equipment

Country Status (1)

Country Link
JP (1) JP7361618B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035885A (en) * 2005-07-26 2007-02-08 Kyocera Corp Light emitting device and illumination device employing it
JP2012204071A (en) * 2011-03-24 2012-10-22 Sharp Corp Lighting device and headlight
JP2015018610A (en) * 2013-07-08 2015-01-29 カシオ計算機株式会社 Lighting device, display device and watch
JP2015504572A (en) * 2011-11-29 2015-02-12 コーニンクレッカ フィリップス エヌ ヴェ Waveguide
JP2015115506A (en) * 2013-12-12 2015-06-22 パナソニックIpマネジメント株式会社 Illumination light source
WO2019230934A1 (en) * 2018-05-31 2019-12-05 シャープ株式会社 Wavelength conversion element and light source device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007035885A (en) * 2005-07-26 2007-02-08 Kyocera Corp Light emitting device and illumination device employing it
JP2012204071A (en) * 2011-03-24 2012-10-22 Sharp Corp Lighting device and headlight
JP2015504572A (en) * 2011-11-29 2015-02-12 コーニンクレッカ フィリップス エヌ ヴェ Waveguide
JP2015018610A (en) * 2013-07-08 2015-01-29 カシオ計算機株式会社 Lighting device, display device and watch
JP2015115506A (en) * 2013-12-12 2015-06-22 パナソニックIpマネジメント株式会社 Illumination light source
WO2019230934A1 (en) * 2018-05-31 2019-12-05 シャープ株式会社 Wavelength conversion element and light source device

Also Published As

Publication number Publication date
JP7361618B2 (en) 2023-10-16

Similar Documents

Publication Publication Date Title
US10514151B2 (en) Light-emitting device, illumination device, and vehicle headlamp
JP5269115B2 (en) LIGHT EMITTING ELEMENT, LIGHT EMITTING DEVICE, VEHICLE HEADLAMP, LIGHTING DEVICE, AND LIGHT EMITTING DEVICE MANUFACTURING METHOD
RU2538098C2 (en) Light source with light emitter arranged inside transparent external flask
US8608328B2 (en) Light source with secondary emitter conversion element
JP6258083B2 (en) Light emitting unit, light emitting device, lighting device, and vehicle headlamp
JP5525537B2 (en) Light emitting device
JP6804448B2 (en) Luminescent device
JP6067629B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP2013546142A (en) Solid state lamp with light guide and photoluminescent material
CN102753883A (en) Lamp comprising a phosphor, radiation source, optical system and heatsink
CN108235720A (en) For generating the optical device of high-luminance light
JP2014044882A (en) Light-emitting device, vehicle headlamp, and illumination apparatus
JP6109521B2 (en) Light emitting device, vehicle headlamp, lighting device, and projector
WO2017043121A1 (en) Light-emitting device and illumination device
JP7361618B2 (en) lighting equipment
JP7361598B2 (en) lighting equipment
JP2014017052A (en) Light source device and light projection device having the same
JP7229902B2 (en) lighting equipment
WO2021201129A1 (en) Optical converting device, and illuminating system
KR101848842B1 (en) Laser lighting apparatus
CN114110524B (en) Light source device and car lamp
CN109798489B (en) Lighting device and automobile lighting lamp
JP6305967B2 (en) Light emitting device, lighting device, and vehicle headlamp
JP6208305B2 (en) Light emitting device, vehicle headlamp and lighting device
JP2020160366A (en) Wavelength conversion element and illumination device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231003

R150 Certificate of patent or registration of utility model

Ref document number: 7361618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150