JP2021116504A - Deodorant antibacterial sheet-like material and method for manufacturing the same - Google Patents

Deodorant antibacterial sheet-like material and method for manufacturing the same Download PDF

Info

Publication number
JP2021116504A
JP2021116504A JP2020012434A JP2020012434A JP2021116504A JP 2021116504 A JP2021116504 A JP 2021116504A JP 2020012434 A JP2020012434 A JP 2020012434A JP 2020012434 A JP2020012434 A JP 2020012434A JP 2021116504 A JP2021116504 A JP 2021116504A
Authority
JP
Japan
Prior art keywords
coordination polymer
polymer particles
sheet
porous coordination
woven fabric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020012434A
Other languages
Japanese (ja)
Other versions
JP7290330B2 (en
Inventor
俊也 狩野
Toshiya Karino
俊也 狩野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2020012434A priority Critical patent/JP7290330B2/en
Publication of JP2021116504A publication Critical patent/JP2021116504A/en
Application granted granted Critical
Publication of JP7290330B2 publication Critical patent/JP7290330B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Woven Fabrics (AREA)

Abstract

To provide a deodorant antibacterial sheet-like material, in which the sheet-like material using a porous coordination polymer does not become a source of odor due to storage of bad odor, does not reduce odor adsorption ability, and has a stable and continuous deodorizing effect.SOLUTION: In a sheet-like material in which porous coordination polymer particles are exposed on at least one surface of a sheet base material, the porous coordination polymer particles are composed of an organic complex unit and a crosslinkable organic compound. Both of them are alternately connected in multiple directions to form a crystal structure having a group of hollow cells, and the organic complex unit is composed of a compound having 1 to 6 metal ions with a valency of 2 to 4 and 2 to 4 carboxyl groups, and at least a group of the hollow cells should carry a photocatalytic metal oxide. The sheet base material may comprise a woven fabric as a core material.SELECTED DRAWING: None

Description

本発明は臭気吸着と臭気物質の分解による消臭効果を発現する抗菌性のシート状物と、その製造方法に関し、詳しくは悪臭成分、及びVOC成分などの不快臭気成分全般に対して臭気濃度を効果的に減少させる減臭効果、並び消臭効果を発現し、しかもシート状物自体が臭くならず、かつ、シート状物の臭気吸着能が低下せず、消臭効果が安定的かつ持続的である抗菌性(菌、黴、ウイルスの増殖抑止)のシート状物と、その製造方法の発明に関する。本発明の消臭抗菌性シート状物は、フィルム、シート、テープ、ターポリン、メッシュシート、帆布、布帛などの態様で供され、天井膜、空間仕切り、カーテン、敷物、カバー、ブラインド、日用雑貨など加工されて使用される。 The present invention relates to an antibacterial sheet-like substance that exhibits a deodorizing effect by adsorbing odors and decomposing odorous substances, and a method for producing the same. It exerts a deodorizing effect and a deodorizing effect that effectively reduces it, and the sheet-like material itself does not smell, and the odor adsorption capacity of the sheet-like material does not decrease, and the deodorizing effect is stable and continuous. The present invention relates to an antibacterial (bacteria, mold, virus growth inhibitory) sheet-like substance and a method for producing the same. The deodorant and antibacterial sheet-like material of the present invention is provided in the form of a film, sheet, tape, tarpaulin, mesh sheet, canvas, cloth, etc. It is processed and used.

以前、本出願人は遮熱機能の減衰を招く原因となる煤塵付着汚れを防ぐ機能を有し、遮熱機能を効率的に持続させることができる採光性の遮熱膜材に関する発明として、光触媒物質、及び熱制御性物質を用いた膜材(特許文献1)を提案した。特に光触媒物質の態様(段落〔0063〕の1つとして、酸化チタンなどの光触媒物質を、シリカ、(合成)ゼオライト、チタンゼオライト、リン酸ジルコニウム、リン酸カルシウム、リン酸亜鉛カルシウム、ハイドロタルサイト、ヒドロキシアパタイト、シリカアルミナ、ケイ酸カルシウム、ケイ酸アルミン酸マグネシウム、ケイソウ土などの無機系多孔質微粒子に担持させたものを使用すること、そして光触媒物質を無機系多孔質微粒子に担持させる手段として、光触媒物質を含有する金属アルコラートによるゾル−ゲル薄膜製造工程を応用した表面処理を用いることを例示した。特許文献1の膜材の発明において光触媒物質を担持する無機系多孔質微粒子は、膜材への煤塵付着汚れを防ぐための存在で、無機系多孔質微粒子内に既に酸化チタンなどの光触媒物質を担持した状態にあり、さらに臭気分子を効果的に吸着できるような状態にないことは明らかである。 Previously, the applicant has a photocatalyst as an invention relating to a light-collecting heat-shielding film material which has a function of preventing soot and dust adhering stains which cause deterioration of the heat-shielding function and can efficiently maintain the heat-shielding function. We have proposed a film material (Patent Document 1) using a substance and a heat-controllable substance. In particular, as one aspect of the photocatalytic substance (as one of paragraphs [0063], a photocatalytic substance such as titanium oxide is used as silica, (synthetic) zeolite, titanium zeolite, zirconium phosphate, calcium phosphate, calcium zinc phosphate, hydrotalcite, hydroxyapatite. , Silica alumina, calcium silicate, magnesium silicate aluminate, silica soil and other inorganic porous fine particles, and as a means to support the photocatalytic substance on the inorganic porous fine particles, a photocatalytic substance It was exemplified that a surface treatment applying a sol-gel thin film manufacturing process using a metal alcoholate containing a substance is used. In the invention of the film material of Patent Document 1, the inorganic porous fine particles supporting the photocatalytic substance are dust on the film material. It is clear that the photocatalytic substance such as titanium oxide is already supported in the inorganic porous fine particles, and the odor molecules are not effectively adsorbed.

また、本出願人は、減臭効果と遮熱効果とを有する建築養生メッシュシートの発明として、無機多孔性物質、酸化・還元性物質、及び光触媒性物質などの臭気分子不活性化粒子を用いたメッシュシート(特許文献2)を提案した。特に、無機多孔性物質や酸化・還元性物質などと共に光触媒性物質を用いることで、建築養生メッシュシートが太陽光の照射を受け続ける限り、光触媒性物質を活性化し、それによって臭気分子を吸着した無機多孔性物質や、臭気分子が配位した酸化・還元性物質に常時作用し、この光触媒性物質の作用によって物理吸着や化学配位により捕捉した臭気分子を分解し、無臭化することで、無機多孔性物質や酸化・還元性物質を吸着や配位前の初期状態にリセットし、新たな臭気分子を捕捉できるようになることを段落〔0014〕に開示し、また無機多孔性物質として、活性炭、添着活性炭、白竹炭、活性白土、ゼオライト、ベントナイト、セピオライト、シラス、シリカ、シリカ−マグネシア、モレキュラーシーブなどを用いることを段落〔0023〕に開示した。しかしながら特許文献2のメッシュシートでは、臭気分子を吸着する無機多孔性物質と、臭気分子を分解する光触媒性物質とが別個に存在することで、臭気分子の分解効率が劣ることが後の検討で明らかとなった。 In addition, the applicant has used odor molecule-inactivating particles such as inorganic porous substances, oxidizing / reducing substances, and photocatalytic substances as inventions of a building curing mesh sheet having a deodorizing effect and a heat-shielding effect. We proposed a mesh sheet (Patent Document 2). In particular, by using a photocatalytic substance together with an inorganic porous substance or an oxidizing / reducing substance, the photocatalytic substance was activated as long as the building curing mesh sheet was continuously irradiated with sunlight, thereby adsorbing odor molecules. By constantly acting on inorganic porous substances and oxidizing / reducing substances coordinated by odor molecules, and by the action of these photocatalytic substances, odor molecules captured by physical adsorption or chemical coordination are decomposed and deodorized. It is disclosed in paragraph [0014] that inorganic porous substances and oxidizing / reducing substances can be reset to the initial state before adsorption and coordination, and new odor molecules can be captured, and as inorganic porous substances, It is disclosed in paragraph [0023] that activated charcoal, impregnated activated charcoal, white bamboo charcoal, activated white clay, zeolite, bentonite, sepiolite, silas, silica, silica-magnesia, molecular sieve and the like are used. However, in the mesh sheet of Patent Document 2, it will be examined later that the decomposition efficiency of the odor molecules is inferior because the inorganic porous substance that adsorbs the odor molecules and the photocatalytic substance that decomposes the odor molecules are separately present. It became clear.

金属イオン(2つ以上の有機配位子と結合可能)と有機配位子(配位結合可能な部位を2つ以上有する)が交互に連結して形成され内部に多数の立体網目状空間を持つ多孔性配位高分子が種々知られ、有機配位子のサイズをコントロールすること、すなわち特定の有機化合物を用いることで任意の立体網目状空間に調整し、この立体網目状空間に特定のガス(メタンガス、二酸化炭素など)を大量貯蔵させる検討(特許文献3、特許文献4)がなされている。その他、多孔性配位高分子の立体網目状空間サイズのコントロールによって、ガスの分離フィルターとする試み、イオン電導性を付与した個体電解質の応用、未反応イオン部位を触媒とする試み、などが検討されている。また、この多孔性配位高分子のガス吸着性、金属イオンの抗菌性を利用した生活臭(タバコ臭、動物臭、排泄臭、生ごみ臭、汗臭)用消臭剤、成形品(繊維、繊維製品、フィルター)、抗ウイルス剤(特許文献5)が提案されている。多孔性配位高分子はシリカやゼオライトなどの無機多孔質粒子よりも吸着能及び吸着容量が大きいことで、消臭剤として用いた場合、より短時間で多くの臭気物質を吸着、貯蔵すること、すなわち効果的な消臭を可能とし得る。しかしながら、多孔性配位高分子の種類、立体網目状空間サイズの設計によっては、悪臭を貯蔵した多孔性配位高分子、または成形品が臭気の発生源となること、あるいは熱、静電気、摩擦などの刺激によって悪臭成分が多孔性配位高分子や成形品から逆戻り放出される可能性が否定できないものである。従って多孔性配位高分子の種類、立体網目状空間サイズの設計に無関係に、悪臭を貯蔵した多孔性配位高分子、または成形品が臭気の発生源となることがなく、しかも消臭効果と抗菌効果を兼備する多孔性配位高分子、及び成形品(例えば、フィルム、シート、テープ、ターポリン、メッシュシート、帆布、布帛などのシート状物)が存在すれば、各種産業分野、及び家庭において、さらに消臭用途、衛生用途での利便性を向上させることができるようになる。 Metal ions (which can be bonded to two or more organic ligands) and organic ligands (which have two or more sites that can be coordinated) are alternately linked to form a large number of three-dimensional network spaces inside. Various porous coordination polymers are known to have, and by controlling the size of the organic ligand, that is, by using a specific organic compound, it is adjusted to an arbitrary three-dimensional network space, and the specific three-dimensional network space is specified. Studies have been made on storing a large amount of gas (methane gas, carbon dioxide, etc.) (Patent Documents 3 and 4). In addition, attempts to use it as a gas separation filter by controlling the three-dimensional network space size of the porous coordination polymer, application of a solid electrolyte with ionic conductivity, and an attempt to use an unreacted ion site as a catalyst are being investigated. Has been done. In addition, deodorants for daily life odors (tobacco odor, animal odor, excretion odor, kitchen waste odor, sweat odor) and molded products (fibers) that utilize the gas adsorption of this porous coordination polymer and the antibacterial properties of metal ions. , Textile products, filters), antiviral agents (Patent Document 5) have been proposed. Porous coordination polymers have higher adsorption capacity and adsorption capacity than inorganic porous particles such as silica and zeolite, so when used as a deodorant, they adsorb and store more odorous substances in a shorter time. That is, it may enable effective deodorization. However, depending on the type of the porous coordination polymer and the design of the three-dimensional network space size, the porous coordination polymer that stores the malodor or the molded product may be the source of the odor, or heat, static electricity, or friction. It cannot be denied that the malodorous component may be released back from the porous coordination polymer or the molded product due to such stimuli. Therefore, regardless of the type of the porous coordination polymer and the design of the three-dimensional network space size, the porous coordination polymer that stores the malodor or the molded product does not become a source of odor and has a deodorizing effect. If there is a porous coordination polymer that also has an antibacterial effect and a molded product (for example, a sheet-like material such as a film, a sheet, a tape, a tarpaulin, a mesh sheet, a sail cloth, or a cloth), various industrial fields and households. In, it becomes possible to further improve the convenience in deodorant use and sanitary use.

特開2003−251728号公報Japanese Unexamined Patent Publication No. 2003-251728 特開2015−014093号公報Japanese Unexamined Patent Publication No. 2015-014093 特開2001−348361号公報Japanese Unexamined Patent Publication No. 2001-348361 特開2016−193957号公報JP-A-2016-193957 特開2019−088499号公報Japanese Unexamined Patent Publication No. 2019-088499

本発明は、多孔性配位高分子を用いたシート状物(例えば、フィルム、シート、テープ、ターポリン、メッシュシート、帆布、布帛など)が悪臭の貯蔵による臭気の発生源となることがなく、しかも臭気吸着能が低下せず、消臭効果が安定的かつ持続的である抗菌性(菌、黴、ウイルスの増殖抑止)シート状物の提供を課題とする。この課題が解決されることで、フィルム、シート、テープ、ターポリン、メッシュシート、帆布、布帛などの態様で、天井膜、空間仕切り、カーテン、敷物、カバー、ブラインド、日用雑貨などに加工され、安定した消臭効果、抗菌・防黴効果の恩恵が期待できる。 In the present invention, a sheet-like material using a porous coordination polymer (for example, a film, a sheet, a tape, a tarpaulin, a mesh sheet, a canvas, a cloth, etc.) does not become a source of an odor due to storage of a bad odor. Moreover, it is an object to provide an antibacterial (bacteria, mold, virus growth inhibitory) sheet-like substance in which the odor adsorbing ability is not lowered and the deodorizing effect is stable and long-lasting. By solving this problem, it will be processed into ceiling membranes, space partitions, curtains, rugs, covers, blinds, daily necessities, etc. in the form of films, sheets, tapes, tarpaulins, mesh sheets, canvas, fabrics, etc. The benefits of stable deodorant effect and antibacterial / antifungal effect can be expected.

本発明はかかる点を考慮し検討を重ねた結果、シート基材の少なくとも1面に多孔性配位高分子粒子が露出したシート状物において、多孔性配位高分子粒子の多孔部である空洞セル群の少なくとも一部に光触媒性金属酸化物を担持させることによって、シート状物が悪臭の貯蔵による臭気の発生源となることがなく、しかも臭気吸着能が低下せず、消臭効果が安定的かつ持続的である抗菌性シート状物が得られることを見出して本発明を完成させるに至った。 As a result of repeated studies in consideration of this point, the present invention has a cavity which is a porous portion of the porous coordination polymer particles in a sheet-like material in which the porous coordination polymer particles are exposed on at least one surface of the sheet base material. By supporting a photocatalytic metal oxide in at least a part of the cell group, the sheet-like material does not become a source of odor due to storage of bad odor, and the odor adsorption ability does not decrease, and the deodorizing effect is stable. The present invention has been completed by finding that an antibacterial sheet-like substance that is both target and durable can be obtained.

すなわち本発明の消臭抗菌性シート状物は、シート基材の少なくとも1面に多孔性配位高分子粒子が露出したシート状物であって、前記多孔性配位高分子粒子が、有機錯体ユニット及び架橋性有機化合物とで構成され、両者が多方向に交互に連結して空洞セル群を有する結晶構造を成し、前記有機錯体ユニットが2〜4価の金属イオン1〜6個、及び2〜4個のカルボキシル基を有する化合物からなり、少なくとも前記空洞セル群が光触媒性金属酸化物を担持していることが好ましい。有機錯体ユニット同士が、架橋性有機化合物を介在して多方向に規則的に連結することで形成された立体幾何学形状の空間(立方体格子状に限定されないジャングルジム状)が空洞セル群となる。この空洞セル群によって、悪臭成分、及びVOC成分などの不快臭気成分全般に対して臭気濃度を効果的に減少させる減臭効果、並び消臭効果を発現し、しかもシート状物が吸着(捕捉)した不快臭気成分を、シート状物の担持する光触媒性金属酸化物の触媒活性によって逐次分解除去する作用でシート状物自体を臭いものとせず、また熱、静電気、摩擦などの刺激によって悪臭成分が多孔性配位高分子から逆戻り放出されることのないシート状物で、しかも臭気吸着能が低下せず、消臭効果が安定的かつ持続的となる抗菌性シート状物(例えば、フィルム、シート、テープ、ターポリン、メッシュシート、帆布、布帛など)を得ることを可能とする。 That is, the deodorant antibacterial sheet-like substance of the present invention is a sheet-like substance in which the porous coordination polymer particles are exposed on at least one surface of the sheet base material, and the porous coordination polymer particles are organic complexes. It is composed of a unit and a crosslinkable organic compound, and the two are alternately connected in multiple directions to form a crystal structure having a cavity cell group, and the organic complex unit has 1 to 6 metal ions having 2 to 4 valences and 1 to 6 metal ions. It is preferably composed of a compound having 2 to 4 carboxyl groups, and at least the cavity cell group carries a photocatalytic metal oxide. A space having a three-dimensional geometry (a jungle gym shape not limited to a cubic lattice shape) formed by regularly connecting organic complex units in multiple directions via a crosslinkable organic compound forms a cavity cell group. .. This group of hollow cells exerts a deodorizing effect and a deodorizing effect that effectively reduces the odor concentration for all unpleasant odor components such as malodorous components and VOC components, and also adsorbs (captures) sheet-like substances. The unpleasant odor component that has been formed is sequentially decomposed and removed by the catalytic activity of the photocatalytic metal oxide carried by the sheet-like material, so that the sheet-like material itself does not become odorous, and the malodorous component is generated by stimuli such as heat, static electricity, and friction. An antibacterial sheet-like material (for example, a film, a sheet) that is a sheet-like material that is not released back from the porous coordination polymer, and that does not reduce the odor adsorption capacity and has a stable and long-lasting deodorizing effect. , Tape, tarpaulin, mesh sheet, sail cloth, cloth, etc.).

本発明の消臭抗菌性シート状物は、前記架橋性有機化合物が、構造中に2〜4個の窒素原子を有する有機配位子、または構造中に1〜2個のカルボキシル基及び1〜2個の窒素原子を有する有機配位子、であることが好ましい。架橋性有機化合物は、有機錯体ユニット同士が、架橋性有機化合物を介在して多方向に規則的に連結することで形成された立体幾何学形状の空間が空洞セル群となる。従って架橋性有機化合物の分子量が大きい程、あるいは分子鎖の分岐が多い程、あるいは有機錯体ユニットの体積が大きい程、あるいは有機錯体ユニットと有機錯体ユニットとの結合角が大きい程、得られる空洞セルのサイズ(すなわち多孔性配位高分子の孔)が広大となる。また化学構造中の配座2〜4個の選択によって幾何学的形状の結晶構造(空洞セルの形状、及びサイズ)が任意設計される。この結晶構造の任意設計によって、吸着(捕捉)可能な臭気成分(化学物質)をコントロールすることを可能とする。 In the deodorant antibacterial sheet-like substance of the present invention, the crosslinkable organic compound is an organic ligand having 2 to 4 nitrogen atoms in the structure, or 1 to 2 carboxyl groups and 1 to 2 carboxyl groups in the structure. It is preferably an organic ligand having two nitrogen atoms. In the crosslinkable organic compound, a space having a three-dimensional geometric shape formed by regularly connecting organic complex units in multiple directions with the crosslinkable organic compound interposed therebetween is a cavity cell group. Therefore, the larger the molecular weight of the crosslinkable organic compound, the more branches of the molecular chain, the larger the volume of the organic complex unit, or the larger the bond angle between the organic complex unit and the organic complex unit, the more the hollow cell obtained. (That is, the pores of the porous coordination polymer) become vast. Further, the crystal structure (shape and size of the hollow cell) having a geometric shape is arbitrarily designed by selecting 2 to 4 conformations in the chemical structure. The arbitrary design of this crystal structure makes it possible to control the odorous components (chemical substances) that can be adsorbed (captured).

本発明の消臭抗菌性シート状物は、前記光触媒性金属酸化物が、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上であることが好ましい。光触媒性金属酸化物の光触媒活性により、多孔性配位高分子の空洞セルに捕捉した有機系臭気ガスを分解し、またウイルス、菌、黴などの増殖を抑止する。特に光触媒性金属酸化物が可視光応答型光触媒であると屋内用途にも用途が広がるので好ましい。可視光応答型光触媒は、助触媒添加(担持)型光触媒、アニオンドープ型光触媒、カチオンドープ型光触媒、アニオンとカチオンの両方をドープした共ドープ型光触媒、金属ハロゲン化物担持型光触媒、酸素欠損型光触媒、などを用いることができる。 In the deodorant antibacterial sheet of the present invention, the photocatalytic metal oxide is selected from titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide. It is preferable that the number is one or more. The photocatalytic activity of the photocatalytic metal oxide decomposes the organic odorous gas trapped in the hollow cells of the porous coordination polymer, and suppresses the growth of viruses, fungi, molds, and the like. In particular, it is preferable that the photocatalytic metal oxide is a visible light responsive photocatalyst because its use expands to indoor applications. Visible light-responsive photocatalysts include cocatalyst-added (supported) photocatalysts, anion-doped photocatalysts, cation-doped photocatalysts, co-doped photocatalysts doped with both anions and cations, metal halide-supported photocatalysts, and oxygen-deficient photocatalysts. , Etc. can be used.

本発明の消臭抗菌性シート状物は、前記シート基材、及び/または前記多孔性配位高分子粒子にアルコキシシラン化合物の加水分解物が結合していることが好ましい。これによってシート基材に対する多孔性配位高分子粒子の密着安定性をより強固なものとすることができる。特にシート基材と多孔性配位高分子粒子の間にアルコキシシラン化合物の加水分解物が結合していることが好ましい。 The deodorant antibacterial sheet-like substance of the present invention preferably has a hydrolyzate of an alkoxysilane compound bonded to the sheet base material and / or the porous coordination polymer particles. As a result, the adhesion stability of the porous coordination polymer particles to the sheet substrate can be further strengthened. In particular, it is preferable that the hydrolyzate of the alkoxysilane compound is bonded between the sheet base material and the porous coordination polymer particles.

本発明の消臭抗菌性シート状物は、前記シート基材の表面が、シラノール基含有有機シラン化合物のゾルゲル縮合薄膜、またはチタノール基含有有機チタン化合物のゾルゲル縮合薄膜、で被覆されていることが好ましい。これによってシート基材に対する多孔性配位高分子粒子の密着安定性をより強固なものとすることができる。特にゾルゲル縮合薄膜と多孔性配位高分子粒子の間にアルコキシシラン化合物の加水分解物が結合しているか、ゾルゲル縮合薄膜中に多孔性配位高分子粒子が分散した状態であることが好ましい。 In the deodorant antibacterial sheet-like material of the present invention, the surface of the sheet base material is coated with a sol-gel condensed thin film of a silanol group-containing organic silane compound or a sol-gel condensed thin film of a titanol group-containing organic titanium compound. preferable. As a result, the adhesion stability of the porous coordination polymer particles to the sheet substrate can be further strengthened. In particular, it is preferable that the hydrolyzate of the alkoxysilane compound is bonded between the sol-gel condensed thin film and the porous coordination polymer particles, or that the porous coordination polymer particles are dispersed in the sol-gel condensed thin film.

本発明の消臭抗菌性シート状物は、前記シート基材が織物を芯材として含み、前記織物が、1)経糸及び緯糸からなる織物、または2)経糸及び左上バイアス糸/右上バイアス糸からなる三軸織物、または3)経糸、緯糸及び左上バイアス糸/右上バイアス糸からなる四軸織物、の何れかであることが好ましい。これによってターポリン、メッシュシート、帆布の産業用シート材とすることができ、特に三軸織物、四軸織物などを使用すれば、糸条同士の交差が複雑となり、多軸方向に拡がるネットワークによって産業用シート材に加えられる屈曲、はためきなどの外力ストレスの拡散性が増し、ストレスを広域に分散して受けることで産業用シート材に及ぼすダメージを緩和し、同時に引裂などの外力に対する抵抗力を多方向で向上させることができる。ターポリンの態様は、日除けテント、テント倉庫、防音シート、建築養生シート、天井膜、間仕切りシート、横断幕、懸垂幕、電飾看板シート、フレキシブルコンテナ、フロアシート、屋上防水シート、などの加工用原反に、メッシュシートの態様は、建築養生シート、吸音膜、間仕切りシート、横断幕、懸垂幕、などの加工用原反に、帆布の態様は、テント倉庫、屋形テント、トラック幌、トラック荷台カバー、野積シートカバー、などの加工用原反に用いることができる。 In the deodorant antibacterial sheet-like material of the present invention, the sheet base material contains a woven fabric as a core material, and the woven fabric is composed of 1) a woven fabric consisting of warp yarns and weft yarns, or 2) from warp yarns and upper left bias yarn / upper right bias yarn. It is preferable to use either a triaxial woven fabric, or 3) a quaternary woven fabric consisting of warp yarns, weft yarns, and upper left bias yarn / upper right bias yarn. As a result, it can be used as an industrial sheet material for tarpaulins, mesh sheets, and canvas. Especially when triaxial woven fabrics and quadruped woven fabrics are used, the intersection of threads becomes complicated, and the industry spreads in multiple axes. The diffusivity of external force stress such as bending and fluttering applied to the sheet material increases, and the stress is distributed over a wide area to alleviate the damage to the industrial sheet material, and at the same time, it has a large resistance to external force such as tearing. Can be improved in direction. Tarpaulins are used for processing raw fabrics such as awning tents, tent warehouses, soundproof sheets, building curing sheets, ceiling membranes, partition sheets, banners, hanging curtains, illuminated sign sheets, flexible containers, floor sheets, and rooftop waterproof sheets. In addition, the mesh sheet is used for processing raw fabrics such as building curing sheets, sound absorbing films, partition sheets, banners, hanging curtains, etc., and the canvas is used for tent warehouses, house-shaped tents, truck hoods, truck carrier covers, and open piles. It can be used for processing raw fabrics such as seat covers.

本発明の消臭抗菌性シート状物の製造方法は、シート基材の少なくとも1面に、空洞セル群を有する多孔性配位高分子粒子を含むゾルゲル縮合薄膜を形成する工程、前記多孔性配位高分子粒子を含むゾルゲル縮合薄膜上に光触媒性金属酸化物を含む溶液を塗布し、前記多孔性配位高分子粒子の空洞セル群の一部または全部に前記光触媒性金属酸化物を担持させる工程、を含むことが好ましい。(ここで、空洞セル群の一部または全部、とは空洞セルの数に対する一部または全部であって、空洞セル体積に対する一部または全部の意味ではない。) The method for producing a deodorant antibacterial sheet-like material of the present invention is a step of forming a sol-gel condensed thin film containing porous coordination polymer particles having a porosity cell group on at least one surface of a sheet base material, the said porous arrangement. A solution containing a photocatalytic metal oxide is applied onto a sol-gel condensed thin film containing polymer particles, and the photocatalytic metal oxide is supported on a part or all of the cavity cells of the porous coordination polymer particles. It is preferable to include a step. (Here, a part or all of a group of hollow cells is a part or all of the number of hollow cells, and does not mean a part or all of the volume of hollow cells.)

本発明の消臭抗菌性シート状物の製造方法は、前記多孔性配位高分子粒子が、有機錯体ユニット及び架橋性有機化合物とで構成され、両者が多方向に交互に連結して空洞セル群を有する結晶構造を成し、前記有機錯体ユニットが2〜4価の金属イオン1〜6個、及び2〜4個のカルボキシル基を有する化合物であることが好ましい。 In the method for producing a deodorant antibacterial sheet of the present invention, the porous coordination polymer particles are composed of an organic complex unit and a crosslinkable organic compound, and the two are alternately connected in multiple directions to form a hollow cell. It is preferable that the organic complex unit has a crystal structure having a group and has 1 to 6 metal ions having 2 to 4 valences and 2 to 4 carboxyl groups.

本発明の消臭抗菌性シート状物の製造方法は、前記シート基材が織物を芯材として含み、前記織物が、1)経糸及び緯糸からなる織物、または2)経糸及び左上バイアス糸/右上バイアス糸からなる三軸織物、または3)経糸、緯糸及び左上バイアス糸/右上バイアス糸からなる四軸織物、の何れかを含ませることが好ましい。 In the method for producing a deodorant antibacterial sheet-like material of the present invention, the sheet base material contains a woven fabric as a core material, and the woven fabric is 1) a woven fabric composed of warp yarns and weft yarns, or 2) warp yarns and upper left bias yarn / upper right. It is preferable to include either a triaxial woven fabric made of a bias yarn, or 3) a quadruped woven fabric consisting of a warp yarn, a weft yarn, and an upper left bias yarn / upper right bias yarn.

本発明の消臭抗菌性シート状物の製造方法は、空洞セル群を有する多孔性配位高分子粒子、及び光触媒性金属酸化物を含む溶液を配合する工程、前記多孔性配位高分子粒子の空洞セル群の一部または全部に前記光触媒性金属酸化物を担持させる工程(攪拌工程、熟成工程:攪拌工程と熟成工程は兼用可能な工程)、シート基材の少なくとも1面に光触媒性金属酸化物を担持する多孔性配位高分子粒子を含むゾルゲル縮合薄膜形成溶液を塗布(乾燥工程を含む)し、光触媒性金属酸化物を担持する多孔性配位高分子粒子を含むゾルゲル縮合薄膜塗膜を形成する工程、を含むことが好ましい。(ここで、空洞セル群の一部または全部、とは空洞セルの数に対する一部または全部であって、空洞セル体積に対する一部または全部の意味ではない。) The method for producing a deodorant antibacterial sheet of the present invention is a step of blending a solution containing a porous coordination polymer particle having a cavity cell group and a photocatalytic metal oxide, and the porous coordination polymer particle. A step of supporting the photocatalytic metal oxide in a part or all of the hollow cell group of the above (stirring step, aging step: a step in which the stirring step and the aging step can be combined), a photocatalytic metal on at least one surface of the sheet base material. A sol-gel condensed thin film forming solution containing porous coordinated polymer particles carrying an oxide is applied (including a drying step), and a sol-gel condensed thin film containing porous coordinated polymer particles carrying a photocatalytic metal oxide is applied. It is preferable to include a step of forming a film. (Here, a part or all of a group of hollow cells is a part or all of the number of hollow cells, and does not mean a part or all of the volume of hollow cells.)

本発明の消臭抗菌性シート状物の製造方法は、前記多孔性配位高分子粒子が、有機錯体ユニット及び架橋性有機化合物とで構成され、両者が多方向に交互に連結して空洞セル群を有する結晶構造を成し、前記有機錯体ユニットが2〜4価の金属イオン1〜6個、及び2〜4個のカルボキシル基を有する化合物であることが好ましい。 In the method for producing a deodorant antibacterial sheet of the present invention, the porous coordination polymer particles are composed of an organic complex unit and a crosslinkable organic compound, and the two are alternately connected in multiple directions to form a hollow cell. It is preferable that the organic complex unit has a crystal structure having a group and has 1 to 6 metal ions having 2 to 4 valences and 2 to 4 carboxyl groups.

本発明の消臭抗菌性シート状物の製造方法は、前記シート基材が織物を芯材として含み、前記織物が、1)経糸及び緯糸からなる織物、または2)経糸及び左上バイアス糸/右上バイアス糸からなる三軸織物、または3)経糸、緯糸及び左上バイアス糸/右上バイアス糸からなる四軸織物、の何れかを含ませることが好ましい。 In the method for producing a deodorant antibacterial sheet-like material of the present invention, the sheet base material contains a woven fabric as a core material, and the woven fabric is 1) a woven fabric composed of warp yarns and weft yarns, or 2) warp yarns and upper left bias yarn / upper right. It is preferable to include either a triaxial woven fabric made of a bias yarn, or 3) a quadruped woven fabric consisting of a warp yarn, a weft yarn, and an upper left bias yarn / upper right bias yarn.

本発明により、悪臭成分、及びVOC成分などの不快臭気成分全般に対して臭気濃度を効果的に減少させる減臭効果、並び消臭効果を発現し、しかもシート状物が吸着(捕捉)した不快臭気成分をシート状物の担持する光触媒物質の触媒活性によって逐次分解除去する作用でシート状物自体を臭いものとせず、また熱、静電気、摩擦などの刺激によって悪臭成分が多孔性配位高分子から逆戻り放出されることのないシート状物で、しかも臭気吸着能が低下せず、消臭効果が安定的かつ持続的となる抗菌性シート状物を得ることを可能とする。本発明の消臭抗菌性シート状物は、フィルム、シート、テープ、ターポリン、メッシュシート、帆布、布帛などの態様で供され、天井膜、空間仕切り、カーテン、敷物、カバー、ブラインドなど加工されて使用される。使用例は、工場、醸造、農場、畜産場、水産加工場、下水道、マンホール、廃棄物処理場、汚水汚泥処理施設、病院、介護施設、葬儀施設、動物園、公共浴場、公衆トイレ、飲食店、などの任意の場所、及び家庭(トイレ、浴室、キッチン、ベッド、シューズボックス、タンス、クローゼット、ペットケージ、などに任意のカットサイズで使用)など特に限定はなく、いずれも消臭効果、抗菌効果(菌、黴、ウイルスの増殖抑止)が発現される。 INDUSTRIAL APPLICABILITY According to the present invention, a deodorizing effect and a deodorizing effect that effectively reduce the odor concentration with respect to all unpleasant odor components such as malodorous components and VOC components are exhibited, and the sheet-like material is adsorbed (captured). The sheet-like substance itself is not made odorous by the action of sequentially decomposing and removing the odorous component by the catalytic activity of the photocatalyst substance that carries the sheet-like substance, and the malodorous component is a porous coordination polymer due to stimuli such as heat, static electricity, and friction. It is possible to obtain an antibacterial sheet-like substance that is not released back from the water, and that the odor adsorbing ability does not decrease and the deodorizing effect is stable and long-lasting. The deodorant and antibacterial sheet-like material of the present invention is provided in the form of a film, sheet, tape, tarpaulin, mesh sheet, canvas, cloth, etc., and is processed such as a ceiling film, a space partition, a curtain, a rug, a cover, and a blind. used. Examples of use are factories, brewing, farms, livestock farms, fishery processing plants, sewers, manholes, waste treatment plants, sewage sludge treatment facilities, hospitals, nursing homes, funeral facilities, zoos, public baths, public toilets, restaurants, etc. There are no particular restrictions on any location such as, and home (used in any cut size for toilets, bathrooms, kitchens, beds, shoe boxes, tons, closets, pet cages, etc.), and all have deodorant and antibacterial effects. (Bacterial, sludge, virus growth suppression) is expressed.

本発明の消臭抗菌性シート状物は、シート基材の少なくとも1面に多孔性配位高分子粒子が露出したシート状物であって、前記多孔性配位高分子粒子が、有機錯体ユニット及び架橋性有機化合物とで構成され、両者が多方向に交互に連結して空洞セル群を有するジャングルジム状(立方体格子状に限定されない)の結晶構造を成し、前記有機錯体ユニットが2〜4価の金属イオン1〜6個、及び2〜4個のカルボキシル基を有する化合物からなり、少なくとも前記空洞セル群が光触媒性金属酸化物を担持する態様で、さらに架橋性有機化合物が、構造中に2〜4個の窒素原子を有する有機配位子、または構造中に1〜2個のカルボキシル基及び1〜2個の窒素原子を有する有機配位子である態様で、さらにシート基材、及び/または多孔性配位高分子粒子にアルコキシシラン化合物の加水分解物が結合している態様で、さらにシート基材の表面が、シラノール基含有有機シラン化合物のゾルゲル縮合薄膜、またはチタノール基含有有機チタン化合物のゾルゲル縮合薄膜、で被覆されている態様で、さらにシート基材が織物を芯材として含み、織物が、1)経糸及び緯糸からなる織物、または2)経糸及び左上バイアス糸/右上バイアス糸からなる三軸織物、または3)経糸、緯糸及び左上バイアス糸/右上バイアス糸からなる四軸織物の何れかである態様である。 The deodorant antibacterial sheet-like material of the present invention is a sheet-like material in which the porous coordination polymer particles are exposed on at least one surface of the sheet base material, and the porous coordination polymer particles are organic complex units. And a crosslinkable organic compound, both of which are alternately connected in multiple directions to form a jungle gym-like (not limited to cubic lattice-like) crystal structure having a group of hollow cells, and the organic complex unit is 2 to 2 It is composed of a compound having 1 to 6 tetravalent metal ions and 2 to 4 carboxyl groups, and at least the cavity cell group carries a photocatalytic metal oxide, and a crosslinkable organic compound is further contained in the structure. An organic ligand having 2 to 4 nitrogen atoms in the structure, or an organic ligand having 1 to 2 carboxyl groups and 1 to 2 nitrogen atoms in the structure, further And / or in a mode in which a hydrolyzate of an alkoxysilane compound is bonded to the porous coordination polymer particles, the surface of the sheet substrate is a solgel condensed thin film of a silanol group-containing organic silane compound, or a titanol group-containing organic. In the embodiment of being coated with a solgel condensed thin film of a titanium compound, the sheet base material further contains a woven fabric as a core material, and the woven fabric is 1) a woven fabric composed of warp and weft, or 2) warp and upper left bias yarn / upper right bias. It is an embodiment of either a triaxial woven fabric composed of yarns, or a quadruaxial woven fabric composed of warp yarns, weft yarns and upper left bias yarn / upper right bias yarn.

多孔性配位高分子粒子は、有機錯体ユニット及び架橋性有機化合物とで構成され、両者が多方向に交互に連結してジャングルジム状(立方体格子状に限定されない)の空洞セル群を有する結晶構造を成すものである。有機錯体ユニットは2〜4価の金属イオン1〜6個、及び2〜4個のカルボキシル基を有する化合物からなる立体的な複合構造体で、架橋性有機化合物をピラー部に例えた場合、有機錯体ユニットはジョイント部に相当する。多孔性配位高分子粒子の多孔は結晶構造内の空洞セル群に該当し、粒子径001μm〜10μmである。有機錯体ユニットには2〜4価の金属イオンを有し、1つの錯体部に1つの金属イオン、もしくは同一金属イオンによる2〜4つの金属イオン集合体、または同一金属イオンによる5〜6つの金属イオン集合体による錯体構造物が挙げられる。2価の金属イオンは、マンガンイオン、コバルトイオン、ニッケルイオン、銅イオン、亜鉛イオン、鉄イオン、マグネシウムイオン、モリブデンイオン、パラジウムイオンなどが挙げられる。また3価イオンは、クロムイオン、鉄イオン、アルミニウムイオンなどが挙げられる。また4価イオンは、チタンイオン、ジルコニウムイオンなどが挙げられる。特に規則的な結晶構造を形成するために2価イオン(特にコバルトイオン、ニッケルイオン、銅イオン、亜鉛イオン)、または3価イオン(特にクロムイオン、鉄イオン)の使用が好ましい。多孔性配位高分子粒子を構成する金属イオンは複数種の併用であってもよいが、空洞セル群の規則性を整えるために単独使用が好ましい。3種以上用いた場合、結合の規則性が乱れ、得られる多孔性配位高分子粒子の空洞セルの構造解析を困難とすることがある。 The porosity polymer particles are composed of an organic complex unit and a crosslinkable organic compound, and the two are alternately connected in multiple directions to form a jungle gym-like (not limited to a cubic lattice) cavity cell group. It forms a structure. The organic complex unit is a three-dimensional composite structure composed of a compound having 1 to 6 metal ions of 2 to 4 valence and 2 to 4 carboxyl groups, and when a crosslinkable organic compound is compared to a pillar portion, it is organic. The complex unit corresponds to the joint portion. Porosity Coordination The porosity of polymer particles corresponds to a group of hollow cells in a crystal structure, and has a particle size of 001 μm to 10 μm. The organic complex unit has 2 to 4 valent metal ions, one metal ion in one complex part, 2 to 4 metal ion aggregates by the same metal ion, or 5 to 6 metals by the same metal ion. Examples include complex structures made up of ionic aggregates. Examples of the divalent metal ion include manganese ion, cobalt ion, nickel ion, copper ion, zinc ion, iron ion, magnesium ion, molybdenum ion and palladium ion. Examples of trivalent ions include chromium ions, iron ions, and aluminum ions. Examples of tetravalent ions include titanium ions and zirconium ions. In particular, it is preferable to use divalent ions (particularly cobalt ions, nickel ions, copper ions, zinc ions) or trivalent ions (particularly chromium ions, iron ions) in order to form a regular crystal structure. Although a plurality of types of metal ions constituting the porous coordination polymer particles may be used in combination, they are preferably used alone in order to adjust the regularity of the cavity cell group. When three or more kinds are used, the regularity of bonding may be disturbed, which may make it difficult to analyze the structure of the hollow cell of the obtained porous coordination polymer particles.

有機錯体ユニットを形成する2〜4個のカルボキシル基を有する化合物は、上記金属イオンと錯体を形成し、ZnO(CO 、ZnO(CO 、CrO(CO 、FeO(CO 、CuO(CO 、ZnO(CO 、CrO(CO 、CoO(CO 、FeO(CO 、Zr(OH)(CO 12、Zr(CO 、Zn(CO 、Co(CO 、Ni(CO 、のようなパーツを構造中に有する複数の金属イオンの集合体となって4個、6個、8個、または12個の錯部を形成し、架橋性有機化合物と連結することによってピラー部を形成する。従って、分子設計的、構造解析的に1種、多くて2種のカルボキシル基を有する化合物を用いることが好ましい。3種以上用いた場合、結合の規則性が乱れ、得られる多孔性配位高分子粒子の空洞セルの構造解析が困難となることがある。 The compound having 2 to 4 carboxyl groups forming an organic complex unit forms a complex with the above metal ions, and is Zn 4 O (CO 2 ) 6 , Zn 3 O (CO 2 ) 6 , Cr 3 O. (CO 2 ) 6 , Fe 3 O (CO 2 ) 6 , Cu 2 O (CO 2 ) 4 , Zn 2 O (CO 2 ) 4 , Cr 2 O (CO 2 ) 4 , Co 2 O (CO 2 ) 4 , Fe 2 O (CO 2 ) 4 , Zr 6 O 4 (OH) 4 (CO 2 ) 12 , Zr 6 O 8 (CO 2 ) 8 , Zn 3 O 3 (CO 2 −) ) 3 , Co 3 O 3 (CO 2 ) 3 , Ni 3 O 3 (CO 2 ) 3 , etc. 4 or 6 as an aggregate of multiple metal ions having parts in the structure , 8 or 12 complex portions are formed and linked with a crosslinkable organic compound to form pillar portions. Therefore, it is preferable to use a compound having one kind and at most two kinds of carboxyl groups in terms of molecular design and structural analysis. When three or more kinds are used, the regularity of bonding may be disturbed, and it may be difficult to analyze the structure of the hollow cell of the obtained porous coordination polymer particles.

有機錯体ユニットを形成する2〜4個のカルボキシル基を有する化合物は、構造中に2個のカルボキシル基を有する化合物として、フマル酸、トランス,トランスムコン酸、フタル酸、イソフタル酸、テレフタル酸、ビフェニル4,4’−ジカルボン酸、2−ヒドロキシテレフタル酸、9,10−アントラセンジカルボン酸、2,5−ジアミノテレフタル酸、2,5−ジヒドロキシテレフタル酸、2,6−ナフテレンテレフタル酸、5−シアノ−1,3−ベンゼンジカルボン酸、2−アミノテレフタル酸、3,5−ピリジンジカルボン酸、2,3−ピラジンジカルボン酸、2,2’−ジアミノ−4,4’−スチルベンジカルボン酸、2,2’−ジニトロ−4,4’−スチルベンジカルボン酸、などが挙げられる。また構造中に3個のカルボキシル基を有する化合物としては、1,3,5−ベンゼントリカルボン酸、ビフェニル−3,4’,5−トリカルボン酸、1,3,5−トリス(4−カルボキシフェニル)ベンゼン、1,3,5−トリス(4’−カルボキシ[1,1’−ビフェニル]−4−イル)ベンゼン、1,3,5−トリス(4−カルボキシフェニル)トリアジン、などが挙げられる。また構造中に4個のカルボキシル基を有する化合物としては、ビフェニル−3,3’,5,5’−テトラカルボン酸、3,3’,5,5’−テトラカルボキシジフェニルメタン、[1,1’,4’1”]ターフェニル−3,3”,5,5”−テトラカルボン酸、1,2,4,5−テトラキス(4−カルボキシフェニル)ベンゼン、などが挙げられる。これらはピラー部となる架橋性有機化合物とのジョイント部を形成するので、分子設計的、構造解析的に1種、多くて2種の有機配位子を用いることが好ましい。3種以上用いた場合、結合の規則性が乱れ、得られる多孔性配位高分子粒子の空洞セルの構造解析を困難とすることがある。この有機錯体ユニット同士が、架橋性有機化合物を介在して多方向に規則的に連結することで形成された立体幾何学形状(立方体格子状に限定されないジャングルジム状)の空間が空洞セル群を形成する。従って有機錯体ユニットの分子量が大きい程、あるいは分子鎖の分岐が多い程、あるいは有機錯体ユニットの体積が大きい程、あるいは有機錯体ユニットと有機錯体ユニットとの結合角が大きい程、得られる空洞セルのサイズが広大となる。空洞セルのサイズは3nm〜12nmが好ましい。 Compounds having 2 to 4 carboxyl groups forming an organic complex unit are compounds having 2 carboxyl groups in the structure, such as fumaric acid, trans, transmuconic acid, phthalic acid, isophthalic acid, terephthalic acid, and biphenyl. 4,4'-dicarboxylic acid, 2-hydroxyterephthalic acid, 9,10-anthracendicarboxylic acid, 2,5-diaminoterephthalic acid, 2,5-dihydroxyterephthalic acid, 2,6-naphthereneterephthalic acid, 5-cyano -1,3-benzenedicarboxylic acid, 2-aminoterephthalic acid, 3,5-pyridinedicarboxylic acid, 2,3-pyrazinedicarboxylic acid, 2,2'-diamino-4,4'-stillbenzdicarboxylic acid, 2,2 '-Dinitro-4,4'-stillbenzicarboxylic acid, etc. may be mentioned. Examples of the compound having three carboxyl groups in the structure include 1,3,5-benzenetricarboxylic acid, biphenyl-3,4', 5-tricarboxylic acid, and 1,3,5-tris (4-carboxyphenyl). Benzene, 1,3,5-tris (4'-carboxy [1,1'-biphenyl] -4-yl) benzene, 1,3,5-tris (4-carboxyphenyl) triazine, and the like can be mentioned. Examples of the compound having four carboxyl groups in the structure include biphenyl-3,3', 5,5'-tetracarboxylic dian, 3,3', 5,5'-tetracarboxydiphenylmethane, [1,1'. , 4'1 "] terphenyl-3,3", 5,5 "-tetracarboxylic dian, 1,2,4,5-tetrakis (4-carboxyphenyl) benzene, and the like. Since a joint portion is formed with the crosslinkable organic compound, it is preferable to use one kind, at most two kinds of organic ligands in terms of molecular design and structural analysis. The properties may be disturbed, making it difficult to analyze the structure of the hollow cells of the obtained porous coordination polymer particles. These organic complex units are regularly linked in multiple directions via a crosslinkable organic compound. The space of the three-dimensional geometric shape (jungle gym shape not limited to the cubic lattice shape) formed by this forms a group of hollow cells. Therefore, the larger the molecular weight of the organic complex unit, the more branches of the molecular chain, or The larger the volume of the organic complex unit or the larger the bonding angle between the organic complex unit and the organic complex unit, the wider the size of the obtained hollow cell. The size of the hollow cell is preferably 3 nm to 12 nm.

架橋性有機化合物は、構造中に2〜4個の窒素原子を有する有機配位子、または構造中に1〜2個のカルボキシル基及び1〜2個の窒素原子を有する有機配位子から任意に選択使用することができる。構造中に2個以上の窒素原子を有する架橋性有機化合物としては、例えば、ピリジン及びピリジン誘導体、アゾピリジン及びアゾピリジン誘導体、ピラジン及びピラジン誘導体、ビピリジン及びビピリジン誘導体、ピペリジン及びピペリジン誘導体、ジピリジル及びジピリジル誘導体、トリアジン及びトリアジン誘導体、イミダゾール及びイミダゾール誘導体、1,4−ジアザビシクロ[2,2,2]オクタン、などのヘテロ原子を両末端に有する環状構造化合物が挙げられる。また構造中に1〜2個のカルボキシル基、及び1〜2個の窒素原子を有する架橋性有機化合物としては、ピリジンジカルボン酸及びピリジンジカルボン酸誘導体、ビピリジンジカルボン酸及びビピリジンジカルボン酸誘導体、ピラジンジカルボン酸及びピラジンジカルボン酸誘導体、ピラゾリンジカルボン酸及びピラゾリンジカルボン酸誘導体、ピラゾールジカルボン酸及びピラゾールジカルボン酸誘導体、キノキサリンジカルボン酸及びキノキサリンジカルボン酸誘導体、イミダゾリンジカルボン酸及びイミダゾリンジカルボン酸誘導体、イミダゾールジカルボン酸及びイミダゾールジカルボン酸誘導体、ジイミドジカルボン酸及びジイミドジカルボン酸誘導体、キノリンジカルボン酸及びキノリンジカルボン酸誘導体、ビキノリンジカルボン酸及びビキノリンジカルボン酸誘導体、ピリジン誘導体トリカルボン酸、ビピリジン誘導体トリカルボン酸、ピラジン誘導体トリカルボン酸、ピラゾリン誘導体トリカルボン酸、ピラゾール誘導体トリカルボン酸、キノキサリン誘導体トリカルボン酸、イミダゾリン誘導体トリカルボン酸、イミダゾール誘導体トリカルボン酸、ジイミド誘導体トリカルボン酸、キノリン誘導体トリカルボン酸、ビキノリン誘導体トリカルボン酸、ピリジン誘導体テトラカルボン酸、ビピリジン誘導体テトラカルボン酸、ピラジン誘導体テトラカルボン酸、ピラゾリン誘導体テトラカルボン酸、ピラゾール誘導体テトラカルボン酸、キノキサリン誘導体テトラカルボン酸、イミダゾリン誘導体テトラカルボン酸、イミダゾール誘導体テトラカルボン酸、ジイミド誘導体テトラカルボン酸、キノリン誘導体テトラカルボン酸、ビキノリン誘導体テトラカルボン酸、などが挙げられる。これらは架橋性有機化合物によるピラー部を形成するので、分子設計的、構造解析的に1種、多くて2種の有機配位子を用いることが好ましい。3種以上用いた場合、結合の規則性が乱れ、得られる多孔性配位高分子粒子の構造解析を困難とすることがある。有機錯体ユニット同士は、これらの架橋性有機化合物を介在して多方向に規則的に連結することで形成された立体幾何学形状(立方体格子状に限定されないジャングルジム状)の空間が空洞セル群を形成する。従って架橋性有機化合物の分子量が大きい程、あるいは分子鎖の分岐が多い程、あるいは架橋性有機化合物の体積が大きい程、得られる空洞セルのサイズが広大となる。空洞セルのサイズは3nm〜12nmが好ましい。 The crosslinkable organic compound is arbitrary from an organic ligand having 2 to 4 nitrogen atoms in the structure, or an organic ligand having 1 to 2 carboxyl groups and 1 to 2 nitrogen atoms in the structure. Can be selected and used for. Examples of the crosslinkable organic compound having two or more nitrogen atoms in the structure include pyridine and pyridine derivatives, azopyridine and azopyridine derivatives, pyrazine and pyrazine derivatives, bipyridine and bipyridine derivatives, piperidin and piperidin derivatives, dipyridyl and dipyridyl derivatives, and the like. Cyclic structure compounds having heteroatoms such as triazine and triazine derivatives, imidazole and imidazole derivatives, 1,4-diazabicyclo [2,2,2] octane, etc. at both ends can be mentioned. Further, examples of the crosslinkable organic compound having 1 to 2 carboxyl groups and 1 to 2 nitrogen atoms in the structure include pyridinedicarboxylic acid and pyridinedicarboxylic acid derivative, bipyridinedicarboxylic acid and bipyridinedicarboxylic acid derivative, and pyrazinedicarboxylic acid. And pyrazinedicarboxylic acid derivatives, pyrazoline dicarboxylic acid and pyrazoline dicarboxylic acid derivatives, pyrazole dicarboxylic acid and pyrazole dicarboxylic acid derivatives, quinoxalin dicarboxylic acid and quinoxalin dicarboxylic acid derivatives, imidazoline dicarboxylic acid and imidazoline dicarboxylic acid derivatives, imidazole dicarboxylic acid and imidazole dicarboxylic acid. Acid derivatives, diimide dicarboxylic acid and diimide dicarboxylic acid derivatives, quinoline dicarboxylic acid and quinoline dicarboxylic acid derivatives, biquinolin dicarboxylic acid and biquinolin dicarboxylic acid derivatives, pyridine derivative tricarboxylic acid, bipyridine derivative tricarboxylic acid, pyrazine derivative tricarboxylic acid, pyrazoline derivative tricarboxylic Acid, pyrazole derivative tricarboxylic acid, quinoxalin derivative tricarboxylic acid, imidazoline derivative tricarboxylic acid, imidazoline derivative tricarboxylic acid, diimide derivative tricarboxylic acid, quinoline derivative tricarboxylic acid, biquinolin derivative tricarboxylic acid, pyridine derivative tetracarboxylic acid, bipyridine derivative tetracarboxylic acid, pyrazine Derivative tetracarboxylic acid, pyrazoline derivative tetracarboxylic acid, pyrazole derivative tetracarboxylic acid, quinoxalin derivative tetracarboxylic acid, imidazoline derivative tetracarboxylic acid, imidazole derivative tetracarboxylic acid, diimide derivative tetracarboxylic acid, quinoline derivative tetracarboxylic acid, biquinolin derivative tetra Examples include carboxylic acids. Since these form pillar portions by a crosslinkable organic compound, it is preferable to use one kind, at most two kinds of organic ligands in terms of molecular design and structural analysis. When three or more kinds are used, the regularity of bonding may be disturbed, which may make it difficult to analyze the structure of the obtained porous coordination polymer particles. The organic complex units are a group of hollow cells in which a space having a three-dimensional geometric shape (a jungle gym shape not limited to a cubic lattice shape) formed by regularly connecting organic complex units in multiple directions via these crosslinkable organic compounds is formed. To form. Therefore, the larger the molecular weight of the crosslinkable organic compound, the more branches of the molecular chain, or the larger the volume of the crosslinkable organic compound, the larger the size of the obtained hollow cell. The size of the cavity cell is preferably 3 nm to 12 nm.

多孔性配位高分子粒子の空洞セル群の少なくとも一部に担持する光触媒性金属酸化物は、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上の粒子径3〜15nmの粒子ゾルが挙げられ、特に酸化チタンゾルが好ましい。光触媒性金属酸化物の光触媒活性により、多孔性配位高分子の空洞セルに捕捉した有機系臭気ガスを分解し、またウイルス、菌、黴などの増殖を抑止する。また光触媒性金属酸化物は、波長400nmから800nmの可視光を吸収して活性を示すものが好ましく、これらは、1)上記の光触媒性金属酸化物に、銀、プラチナ、金、銅、ロジウム、パラジウム、ルテニウム、イリジウムなどの金属およびそれらの金属の化合物を助触媒として添加(担持)した助触媒添加(担持)型光触媒、2)上記の光触媒性金属酸化物に、窒素、炭素、硫黄、リン、ホウ素、フッ素などをドープしたアニオンドープ型光触媒、3)上記の光触媒性金属酸化物に、クロム、ニオブ、マンガン、コバルト、バナジウム、鉄、ニッケルなどの遷移金属イオンをドープしたカチオンドープ型光触媒、4)上記の光触媒性金属酸化物に、アニオンとカチオンの両方をドープした共ドープ型光触媒、5)上記の光触媒性金属酸化物に、白金、パラジウム、ロジウムなど貴金属のハロゲン化物を担持させた金属ハロゲン化物担持型光触媒、6)上記の光触媒性金属酸化物から部分的に酸素を引き抜いた酸素欠損型光触媒、などを用いることができる。光触媒性金属酸化物は、上記より1種、または2種以上を併用して用いることができ、多孔性配位高分子粒子の表面にも担持させることが好ましい。 Photocatalytic metal oxides carried in at least a part of the cavity cells of the porous coordination polymer particles include titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and oxidation. Examples thereof include one or more particle sol having a particle diameter of 3 to 15 nm selected from iron, and titanium oxide sol is particularly preferable. The photocatalytic activity of the photocatalytic metal oxide decomposes the organic odorous gas trapped in the hollow cells of the porous coordination polymer, and suppresses the growth of viruses, fungi, molds, and the like. Further, the photocatalytic metal oxide preferably exhibits activity by absorbing visible light having a wavelength of 400 nm to 800 nm, and these are 1) the above photocatalytic metal oxide, silver, platinum, gold, copper, rhodium, and the like. Cocatalytic addition (supporting) type photocatalyst to which metals such as palladium, ruthenium, iridium and compounds of those metals are added (supported) as cocatalysts, 2) Nitrogen, carbon, sulfur, phosphorus to the above photocatalytic metal oxides , Boron, fluorine-doped anion-doped photocatalyst, 3) Catalytic-doped photocatalyst in which the above photocatalytic metal oxide is doped with transition metal ions such as chromium, niobium, manganese, cobalt, vanadium, iron, and nickel. 4) A co-doped photocatalyst in which both anions and cations are doped in the above photocatalytic metal oxide, 5) A metal in which a halide of a noble metal such as platinum, palladium, or rhodium is supported on the above photocatalytic metal oxide. A halide-supporting photocatalyst, 6) an oxygen-deficient photocatalyst in which oxygen is partially extracted from the above-mentioned photocatalytic metal oxide, and the like can be used. From the above, the photocatalytic metal oxide can be used alone or in combination of two or more, and is preferably supported on the surface of the porous coordination polymer particles.

多孔性配位高分子粒子の空洞セル群の一部または全部、さらに多孔性配位高分子粒子の表面に光触媒性金属酸化物を担持させる方法(ここで、空洞セル群の一部または全部、とは空洞セルの数に対する一部または全部であって、空洞セル体積に対する一部または全部の意味ではない。)、及びシート基材に光触媒性金属酸化物を担持する多孔性配位高分子粒子を含むゾルゲル縮合薄膜形成溶液を形成(乾燥工程を含む)する方法は、1)シート基材の少なくとも1面に、空洞セル群を有する多孔性配位高分子粒子を含むゾルゲル縮合薄膜を形成する工程、前記多孔性配位高分子粒子を含むゾルゲル縮合薄膜上に光触媒性金属酸化物を含む溶液を塗布し、前記多孔性配位高分子粒子の空洞セル群の一部または全部に前記光触媒性金属酸化物を担持させる工程、すなわち多孔性配位高分子粒子を含むゾルゲル縮合薄膜塗膜上に光触媒性金属酸化物を含む溶液を塗布することによって光触媒性金属酸化物が多孔性配位高分子粒子の空洞セル群の少なくとも一部に担持され、同時に多孔性配位高分子粒子の表面に光触媒性金属酸化物を担持させることができる。この方法によれば、光触媒性金属酸化物は多孔性配位高分子粒子の表面、及び多孔性配位高分子粒子の空洞セル群の一部または全部に担持された態様となる。また、別の方法として、2)空洞セル群を有する多孔性配位高分子粒子、及び光触媒性金属酸化物を含む溶液を配合する工程、前記多孔性配位高分子粒子の空洞セル群の一部または全部、さらに多孔性配位高分子粒子の表面に光触媒性金属酸化物を担持させる工程(攪拌工程、熟成工程:攪拌工程と熟成工程は兼用可能な工程)、シート基材の少なくとも1面に光触媒性金属酸化物を担持する多孔性配位高分子粒子を含むゾルゲル縮合薄膜形成溶液を塗布(乾燥工程を含む)し、光触媒性金属酸化物を担持する多孔性配位高分子粒子を含むゾルゲル縮合薄膜塗膜を形成する工程、を含む方法で、光触媒性金属酸化物を担持する多孔性配位高分子粒子を含むゾルゲル縮合薄膜が形成される。この方法によれば、光触媒性金属酸化物は多孔性配位高分子粒子の表面と、空洞セル群の一部または全部に担持された態様となる。上述の2つの方法で得られた光触媒性金属酸化物を担持する多孔性配位高分子粒子では、空洞セル全体に臭気物質を取り込む空間余裕が大きいほど、消臭効果の発現が迅速、かつ絶大となるため、個々の空洞セル内が多量の光触媒性金属酸化物で充填されない状態(空洞セルの体積の50%以上が余裕空間となる状態)、多孔性配位高分子粒子の表面、及び表面近傍に集中して光触媒性金属酸化物を担持させ、粒子内部の空洞セルを温存してもよい。多孔性配位高分子粒子と光触媒性金属酸化物との質量比は、50:1〜1:1、特に10:1〜3:2が好ましい。 A method of supporting a part or all of the cavity cell group of the porous coordination polymer particles, and further supporting a photocatalytic metal oxide on the surface of the porous coordination polymer particles (here, a part or all of the cavity cell group). Is part or all of the number of cavity cells, not part or all of the volume of the cavity cells), and porous coordinating polymer particles carrying a photocatalytic metal oxide on the sheet substrate. The method for forming a sol-gel condensed thin film forming solution containing (including a drying step) is as follows: 1) A sol-gel condensed thin film containing porous coordination polymer particles having a group of hollow cells is formed on at least one surface of a sheet base material. In the step, a solution containing a photocatalytic metal oxide is applied onto a sol-gel condensed thin film containing the porous coordination polymer particles, and the photocatalytic property is applied to a part or all of the cavity cells of the porous coordination polymer particles. The step of supporting the metal oxide, that is, by applying a solution containing the photocatalytic metal oxide on the sol-gel condensed thin film coating film containing the porous coordination polymer particles, the photocatalytic metal oxide becomes the porous coordination polymer. It can be supported on at least a part of the cavity cell group of the particles, and at the same time, the photocatalytic metal oxide can be supported on the surface of the porous coordination polymer particles. According to this method, the photocatalytic metal oxide is supported on the surface of the porous coordination polymer particles and a part or all of the cavity cells of the porous coordination polymer particles. Further, as another method, 2) a step of blending a solution containing a porous coordination polymer particle having a cavity cell group and a photocatalytic metal oxide, one of the cavity cell group of the porous coordination polymer particle. A step of supporting a photocatalytic metal oxide on a part or all of the surface of the porous coordination polymer particles (stirring step, aging step: a step in which the stirring step and the aging step can be combined), at least one surface of the sheet base material. A sol-gel condensed thin film forming solution containing porous coordination polymer particles carrying a photocatalytic metal oxide is applied to the film (including a drying step), and the porous coordination polymer particles carrying a photocatalytic metal oxide are contained. A sol-gel condensed thin film containing porous coordination polymer particles carrying a photocatalytic metal oxide is formed by a method including the step of forming a sol-gel condensed thin film coating film. According to this method, the photocatalytic metal oxide is supported on the surface of the porous coordination polymer particles and a part or all of the cavity cell group. In the porous coordination polymer particles carrying the photocatalytic metal oxide obtained by the above two methods, the larger the space margin for taking in the odorous substance in the entire cavity cell, the faster and greater the deodorizing effect is exhibited. Therefore, the inside of each cavity cell is not filled with a large amount of photocatalytic metal oxide (a state in which 50% or more of the volume of the cavity cell is a marginal space), the surface of the porous coordination polymer particles, and the surface. The photocatalytic metal oxide may be carried in the vicinity in a concentrated manner to preserve the hollow cells inside the particles. The mass ratio of the porous coordination polymer particles to the photocatalytic metal oxide is preferably 50: 1 to 1: 1, particularly preferably 10: 1 to 3: 2.

本発明の消臭抗菌性シート状物において、シート基材、及び/または多孔性配位高分子粒子にアルコキシシラン化合物の加水分解物が結合していることが、多孔性配位高分子粒子とシート基材との密着性向上、脱落防止の固着性向上のために好ましい。アルコキシシラン化合物は、一般式:XR−Si(Y)で表される分子中に2個以上の異なった反応基を有する化合物で、例えば、X=アミノ基、ビニル基、エポキシ基、メタクリル基、アクリル基、クロル基、メルカプト基、イソシアヌレート基、イソシアネート基、など(R=アルキル鎖)、Y=メトキシ基、エトキシ基などである。シランカップリング剤は、アミノシラン、ビニルシラン、エポキシシラン、メタクリルシラン、アクリルシラン、クロルシラン、メルカプトシラン、イソシアヌレートシラン、イソシアネートシラン、などが挙げられる。多孔性配位高分子粒子にアルコキシシラン化合物の加水分解物を結合させる処理は、多孔性配位高分子粒子(光触媒性金属酸化物を担持させる前でも、担持させた後、の何れでも可)を1種以上のアルコキシシラン化合物を1〜5質量%濃度で含む水溶液中で処理し、アルコキシシラン化合物の加水分解物:XR−Si(OH)(X、Yは上記と同じ)を多孔性配位高分子粒子の未反応のカルボキシ基、金属イオンなどに結合させる処理である。また、この処理溶液は直接シート基材にグラビアコート法などの公知の塗工方法で塗布し、加熱乾燥することもできる。また、アルコキシシラン化合物の加水分解物が結合した多孔性配位高分子粒子は、オルガノシリケート化合物、シラノール基含有有機シラン化合物、チタノール基含有有機チタン化合物、などのゾルゲル薄膜を造膜可能な成分中に添加使用し、ゾルゲル薄膜中に多孔性配位高分子粒子が分散し、かつ多孔性配位高分子粒子が露出する態様とすることが好ましい。アルコキシシラン化合物の加水分解物が結合した多孔性配位高分子粒子は、ゾルゲル薄膜中の結合の一部に何らかの形で取り込まれ、シート基材との密着強さ、表面摩耗強さ、を向上させることができる。 In the deodorant antibacterial sheet-like material of the present invention, the fact that the hydrolyzate of the alkoxysilane compound is bonded to the sheet base material and / or the porous coordination polymer particles is the same as the porous coordination polymer particles. It is preferable for improving the adhesion to the sheet base material and improving the adhesiveness to prevent falling off. The alkoxysilane compound is a compound having two or more different reactive groups in the molecule represented by the general formula: XR-Si (Y) 3 , for example, X = amino group, vinyl group, epoxy group, methacryl group. , Acrylic group, chlor group, mercapto group, isocyanurate group, isocyanate group, etc. (R = alkyl chain), Y = methoxy group, ethoxy group and the like. Examples of the silane coupling agent include aminosilane, vinylsilane, epoxysilane, methacrylsilane, acrylicsilane, chlorsilane, mercaptosilane, isocyanuratesilane, and isocyanatesilane. The treatment for binding the hydrolyzate of the alkoxysilane compound to the porous coordination polymer particles may be the porous coordination polymer particles (either before or after the photocatalytic metal oxide is supported). Was treated in an aqueous solution containing one or more alkoxysilane compounds at a concentration of 1 to 5% by mass, and a hydrolyzate of the alkoxysilane compound: XR-Si (OH) 3 (X and Y are the same as above) was made porous. Coordination This is a process of binding to unreacted carboxy groups, metal ions, etc. of polymer particles. Further, this treatment solution can be directly applied to the sheet base material by a known coating method such as a gravure coating method, and heat-dried. Further, the porous coordination polymer particles to which the hydrolyzate of the alkoxysilane compound is bonded are among the components capable of forming a sol-gel thin film such as an organosilicate compound, a silanol group-containing organic silane compound, and a titanol group-containing organic titanium compound. It is preferable that the porous coordinating polymer particles are dispersed in the sol-gel thin film and the porous coordinating polymer particles are exposed. The porous coordination polymer particles to which the hydrolyzate of the alkoxysilane compound is bonded are incorporated into a part of the bonds in the sol-gel thin film in some form to improve the adhesion strength with the sheet substrate and the surface abrasion strength. Can be made to.

本発明の消臭抗菌性シート状物において、シート基材の表面が、シラノール基含有有機シラン化合物のゾルゲル縮合薄膜、またはチタノール基含有有機チタン化合物のゾルゲル縮合薄膜で被覆されていて、しかも多孔性配位高分子粒子がこれらのゾルゲル縮合薄膜中に分散して固着化され、かつ多孔性配位高分子粒子が露出する態様が好ましい。この露出とは多孔性配位高分子粒子の多孔部の空洞セル内に空気やガスを取り込むことを可能とする状態であれば特に限定は無く、多孔性配位高分子粒子のほぼ全体が露出した状態、約半分露出した状態、先端部のみが露出した状態の何れであってもよく、これらの状態が混在した露出状態であってもよい。本発明の消臭抗菌性シート状物において、シート基材の表面全域に多孔性配位高分子粒子が露出し、多孔性配位高分子粒子の露出表面積が大きいほど、多孔性配位高分子粒子内の広大な表面積を有する空洞セル内に、多量の空気やガスを取り込むことができ、そして多孔性配位高分子粒子自体の吸着効果、多孔性配位高分子粒子内に担持する光触媒性金属酸化物による有機系化学物質ガスの分解効果の相乗によって本発明の消臭抗菌性シート状物の消臭効果は迅速、かつ絶大なものとする。多孔性配位高分子粒子のほぼ全体が露出した状態、約半分露出した状態、先端部のみが露出した状態のコントロールは、上記ゾルゲル縮合薄膜と多孔性配位高分子粒子との質量比を、4:1〜1:2、特に2:1〜2:3とする仕込み配合とすることが好ましい。また上記ゾルゲル縮合薄膜と多孔性配位高分子粒子(光触媒性金属酸化物を担持)との質量比を、4:1〜1:2、特に2:1〜2:3とする仕込み配合とすることが好ましい。また上記ゾルゲル縮合薄膜と多孔性配位高分子粒子(光触媒性金属酸化物を担持し、かつアルコキシシラン化合物の加水分解物が結合)との質量比を、4:1〜1:2、特に2:1〜2:3とする仕込み配合とすることが好ましい。 In the deodorant antibacterial sheet-like material of the present invention, the surface of the sheet base material is coated with a sol-gel condensed thin film of a silanol group-containing organic silane compound or a sol-gel condensed thin film of a titanol group-containing organic titanium compound, and is porous. It is preferable that the coordination polymer particles are dispersed and fixed in these sol-gel condensed thin films, and the porous coordination polymer particles are exposed. This exposure is not particularly limited as long as it is possible to take in air or gas into the cavity cell of the porous portion of the porous coordination polymer particles, and almost the entire porous coordination polymer particles are exposed. It may be in a state of being exposed, in a state of being about half exposed, in a state of exposing only the tip portion, or in an exposed state in which these states are mixed. In the deodorant antibacterial sheet-like substance of the present invention, the porous coordination polymer particles are exposed over the entire surface of the sheet base material, and the larger the exposed surface area of the porous coordination polymer particles, the more the porous coordination polymer. A large amount of air and gas can be taken into the hollow cell having a large surface area in the particle, and the adsorption effect of the porous coordination polymer particle itself and the photocatalytic property carried in the porous coordination polymer particle. Due to the synergistic effect of the decomposition effect of the organic chemical substance gas by the metal oxide, the deodorizing effect of the deodorant antibacterial sheet-like substance of the present invention is made rapid and tremendous. The control of the state where almost all of the porous coordination polymer particles are exposed, the state where about half is exposed, and the state where only the tip is exposed is the mass ratio of the sol-gel condensed thin film and the porous coordination polymer particles. It is preferable to use a preparation composition of 4: 1 to 1: 2, particularly 2: 1 to 2: 3. Further, the mass ratio of the sol-gel condensed thin film and the porous coordination polymer particles (supporting a photocatalytic metal oxide) is 4: 1 to 1: 2, particularly 2: 1 to 2: 3. Is preferable. Further, the mass ratio of the sol-gel condensed thin film and the porous coordination polymer particles (supporting a photocatalytic metal oxide and binding to a hydrolyzate of an alkoxysilane compound) was set to 4: 1 to 1: 2, especially 2. It is preferable to use a preparation compound of 1: 1 to 2: 3.

シラノール基含有有機シラン化合物は、化学式:SiO(OR)で表される4官能加水分解性シラン化合物であり、式中、Rは炭素原子数1〜10のアルキル基(特に炭素数1〜3の低級アルキル基)、またはアリール基(特にフェニル基)で具体的に、テトラメトキシシラン(Si(OCH):別名テトラメチルシリケート)、テトラエトキシシラン(Si(OC):別名テトラエチルシリケート)、テトラプロポキシシラン(Si(OC):別名テトラプロピルシリケート)、テトラブトキシシラン(Si(OC):別名テトラブチルシリケート)、テトラフェノキシシラン(Si(OC):別名テトラフェニルシリケート)、ジメトキシジエトキシシラン(Si(OCH)(OC):別名ジメチルジエチルシリケート)などである。シラノール基含有有機シラン化合物の多量体は、化学式:Sin−1(OR)2(n+1)で表される縮合体であり、式中、Rは炭素原子数1〜10のアルキル基(特に炭素数1〜3の低級アルキル基)、またはアリール基(特にフェニル基)、nは4官能加水分解性シラン化合物の縮合分子数を表す多量化度(所謂n量体)で、nが2以上のシラノール基含有有機シラン化合物多量体は、4官能加水分解性シラン化合物が加水分解して生成するシラノール基同士の反応で2分子以上が縮合して生成する多量体であり、nの表す多量化度は多量体1分子中に含有するSi原子数を意味する。本発明においては多量化度2〜10、好ましくは4〜6のシラノール基含有有機シラン化合物多量体(Sin−1(OR)2(n+1))によるゾルゲル縮合薄膜であることが好ましい。このゾルゲル縮合薄膜の原子配列はヨコ軸とタテ軸からなる四角格子網目をモデルとすれば、ヨコ軸とタテ軸の交点にSi原子が配置され、上下左右に隣接するSi−Si原子間にO原子が配置されたイメージである。 The silanol group-containing organic silane compound is a tetrafunctional hydrolyzable silane compound represented by the chemical formula: SiO (OR) 4 , in which R is an alkyl group having 1 to 10 carbon atoms (particularly 1 to 3 carbon atoms). (Lower alkyl group), or aryl group (particularly phenyl group), specifically tetramethoxysilane (Si (OCH 3 ) 4 : also known as tetramethylsilicate), tetraethoxysilane (Si (OC 2 H 5 ) 4 : alias. Tetraethyl silicate), tetrapropoxysilane (Si (OC 3 H 7 ) 4 : also known as tetrapropyl silicate), tetrabutoxysilane (Si (OC 4 H 9 ) 4 : also known as tetrabutyl silicate), tetraphenoxysilane (Si (OC 6)) H 6 ) 4 : Also known as tetraphenyl silicate), dimethoxydiethoxysilane (Si (OCH 3 ) 2 (OC 2 H 5 ) 2 : also known as dimethyl diethyl silicate), and the like. Multimers of the silanol group-containing organosilane compound has the formula: Si n O n-1 ( OR) a condensate represented by 2 (n + 1), wherein, R is an alkyl group having 1 to 10 carbon atoms ( In particular, a lower alkyl group having 1 to 3 carbon atoms), an aryl group (particularly a phenyl group), or n is a degree of increase (so-called n-mer) representing the number of condensed molecules of a tetrafunctional hydrolyzable silane compound, and n is 2. The above silanol group-containing organic silane compound multimer is a multimer formed by condensing two or more molecules by the reaction between silanol groups produced by hydrolysis of a tetrafunctional hydrolyzable silane compound, and is represented by n. The degree of quantification means the number of Si atoms contained in one molecule of the multimer. Multimeric degree 2-10 in the present invention, it is preferred that preferably a sol-gel condensation thin silanol group-containing organosilane compound multimers of 4~6 (Si n O n-1 (OR) 2 (n + 1)). If the atomic arrangement of this sol-gel condensed thin film is modeled on a square lattice network consisting of horizontal and vertical axes, Si atoms are arranged at the intersections of the horizontal and vertical axes, and O between the Si-Si atoms adjacent to each other in the vertical and horizontal directions. It is an image in which atoms are arranged.

チタノール基含有有機チタン化合物は、化学式:TiO(OR)で表される4官能加水分解性チタン化合物であり、式中、Rは炭素原子数1〜10のアルキル基(特に炭素数1〜3の低級アルキル基)、またはアリール基(特にフェニル基)で具体的に、テトラメトキシチタン(Ti(OCH):別名テトラメチルチタネート)、テトラエトキシチタン(Ti(OC):別名テトラエチルチタネート)、テトラプロポキシチタン(Ti(OC):別名テトラプロピルチタネート)、テトラブトキシチタン(Ti(OC):別名テトラブチルチタネート)、テトラフェノキシチタン(Ti(OC):別名テトラフェニルチタネート)、ジメトキシジエトキシチタン(Ti(OCH)(OC):別名ジメチルジエチルチタネート)などのチタニウムアルコキシド化合物、さらにはトリブトキシチタンステアレート、イソプロポキシチタントリステアレートなどのチタニウムアシレート化合物:Ti(OOCR)、またさらにジイソプロポキシチタンビスアセチルアセトナト、ジイソプロポキシチタンビスエチルアセトアセテートなどのチタニウムキレート化合物:(ROO)Ti(OR)錯体、その他、イソプロポキシチタントリイソステアレート、イソプロポキシチタンジメタクリレートイソステアレート、イソプロポキシチタントリスジオクチルホスフェート、ビスジオクチルホスフェートエチレングリコラートチタン、ジブトキシビストリエタノールアミナトチタンなどが例示できる。チタノール基含有有機チタン化合物の多量体は、化学式:Tin−1(OR)2(n+1)で表される縮合体であり、式中Rは炭素原子数1〜10のアルキル基(特に炭素数1〜3の低級アルキル基)、またはアリール基(特にフェニル基)、nは4官能加水分解性チタン化合物の縮合分子数を表す多量化度(所謂n量体)で、nが2以上のチタノール基含有有機チタン化合物多量体は、4官能加水分解性チタン化合物が加水分解して生成するチタノール基同士の反応で2分子以上が縮合して生成する多量体であり、nの表す多量化度は多量体1分子中に含有するTi原子数を意味する。本発明においては多量化度2〜10、好ましくは4〜6のチタノール基含有有機チタン化合物多量体(Tin−1(OR)2(n+1))によるゾルゲル縮合薄膜が好ましい。このゾルゲル縮合薄膜の原子配列はヨコ軸とタテ軸からなる四角格子網目をモデルとすれば、ヨコ軸とタテ軸の交点にTi原子が配置され、上下左右に隣接するTi−Ti原子間にO原子が配置されたイメージである。 The titanol group-containing organic titanium compound is a tetrafunctional hydrolyzable titanium compound represented by the chemical formula: TiO (OR) 4 , in which R is an alkyl group having 1 to 10 carbon atoms (particularly 1 to 3 carbon atoms). (Lower alkyl group), or aryl group (particularly phenyl group), specifically tetramethoxytitanium (Ti (OCH 3 ) 4 : also known as tetramethyl titanate), tetraethoxytitanium (Ti (OC 2 H 5 ) 4 : alias. tetraethyl titanate), tetrapropoxytitanium (Ti (OC 3 H 7) 4: aliases tetrapropyl titanate), titanium tetrabutoxide (Ti (OC 4 H 9) 4: aliases tetrabutyl titanate), tetraphenoxy titanium (Ti (OC 6 H 6 ) 4 : Titanium alkoxide compounds such as (also known as tetraphenyl titanate) and dimethoxydiethoxy titanium (Ti (OCH 3 ) 2 (OC 2 H 5 ) 2 : also known as dimethyl diethyl titanate), as well as tributoxytitanium stearate and iso. Titanium acylate compounds such as propoxytitanium tristearate: Ti (OOCR) n , and further titanium chelate compounds such as diisopropoxytitanium bisacetylacetonato and diisopropoxytitanium bisethylacetoacetate: (ROO) 2 Ti (OR) 2 Examples of the complex and others include isopropoxytitanium triisostearate, isopropoxytitanium dimethacrylate isostearate, isopropoxytitanium trisdioctyl phosphate, bisdioctyl phosphate ethylene glycolate titanium, and dibutoxybistriethanol aminatotitanium. Multimers of Chitanoru group-containing organic titanium compound has the formula: Ti n O n-1 ( OR) a condensate represented by 2 (n + 1), wherein R is an alkyl group having 1 to 10 carbon atoms (especially A lower alkyl group having 1 to 3 carbon atoms), an aryl group (particularly a phenyl group), or n is a degree of increase (so-called n-mer) representing the number of condensed molecules of a tetrafunctional hydrolyzable titanium compound, and n is 2 or more. The titanol group-containing organic titanium compound multimer is a multimer formed by condensing two or more molecules by the reaction between titanol groups produced by hydrolysis of a tetrafunctional hydrolyzable titanium compound, and is represented by n. Degree means the number of Ti atoms contained in one molecule of the multimer. Multimeric degree 2-10 in the present invention, preferably Chitanoru group-containing organic titanium compound polymer of 4~6 (Ti n O n-1 (OR) 2 (n + 1)) by the sol-gel condensation is preferably a thin film. If the atomic arrangement of this sol-gel condensed thin film is modeled on a square lattice network consisting of horizontal and vertical axes, Ti atoms are arranged at the intersections of the horizontal and vertical axes, and O between the Ti-Ti atoms adjacent to each other on the top, bottom, left, and right. It is an image in which atoms are arranged.

ゾルゲル縮合薄膜形成用組成物(水/アルコール溶媒)に含有する、シラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物などの加水分解生成物の濃度は0.01〜30質量%、特に0.1〜5質量%の範囲が好ましい。またこのゾルゲル縮合薄膜形成用組成物中にはゾルゲル縮合薄膜の耐摩耗性、及び耐久性をより増強するために無機コロイド(シリカゾル、アンチモンゾル、アルミナゾル、ジルコニアゾルなど)をシラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物の加水分解生成物の濃度に対して0.1〜25質量%含むことができる。加水分解促進には、アルミニウム、チタニウム、ジルコニウムなどの金属類にアルコキシ基が結合した金属アルコキシド、又はこれらの金属アルコキシドにケト・エノール互変異性体を構成しうる金属キレート化合物、無機酸(塩酸、硝酸、リン酸など)、有機酸(ギ酸、酢酸、ベンゼンスルホン酸など)、アンモニア、有機アミン、ジブチル錫ジラウレート、ジブチル錫ジオクチエートなどの化合物を加水分解触媒として任意量使用することができる。 The concentration of hydrolysis products such as silanol group-containing organic silane compound or titanol group-containing organic titanium compound contained in the composition for forming a solgel condensed thin film (water / alcohol solvent) is 0.01 to 30% by mass, particularly 0. The range of 1 to 5% by mass is preferable. Further, in this sol-gel condensed thin film forming composition, an inorganic colloid (silica sol, antimon sol, alumina sol, zirconia sol, etc.) is added to the silanol group-containing organic silane compound in order to further enhance the abrasion resistance and durability of the sol-gel condensed thin film. , Or 0.1 to 25% by mass based on the concentration of the hydrolysis product of the titanol group-containing organic titanium compound. To promote hydrolysis, metal alkoxides in which an alkoxy group is bonded to metals such as aluminum, titanium, and zirconium, or metal chelate compounds that can form keto-enol metamutates to these metal alkoxides, inorganic acids (hydrolysis, Compounds such as nitric acid, phosphoric acid, etc.), organic acids (gilic acid, acetic acid, benzenesulfonic acid, etc.), ammonia, organic amines, dibutyltin dilaurate, dibutyltin dioctate, etc. can be used in arbitrary amounts as the hydrolysis catalyst.

本発明の消臭抗菌性シート状物はシート基材が織物を芯材として含んでいてもよい。織物として、1)経糸及び緯糸からなる織物、または2)経糸及び左上バイアス糸/右上バイアス糸からなる三軸織物、または3)経糸、緯糸、及び左上バイアス糸/右上バイアス糸からなる四軸織物、である。また上記織物は、平織物(二軸織物、三軸織物、四軸織物)、斜子織物(2×2、3×3、4×4などの正則斜子織、3×2、4×2、4×3、5×3、2×3、2×4、3×4、3×5などの不規則斜子織)、綾織物(経糸、緯糸とも最少3本ずつ用いた最小構成単位を有する:3枚斜文、4枚斜文、5枚斜文、6枚斜文など)、朱子織物(経糸、緯糸とも最少5本ずつ用いた最小構成単位を有する:2飛び、3飛び、4飛び、5飛びなどの正則朱子)、及び変化平織物、変化綾織物、変化朱子織物など、さらに蜂巣織物、梨子地織物、破れ斜文織物、昼夜朱子織物、もじり織物(紗織物、絽織物)、縫取織物、二重織物などの織物が使用できる。織物の目付量は100〜500g/m、空隙率は0〜25%、が適している。これらの織物には精練、漂白、染色、柔軟化、撥水、防黴、防炎、カレンダー、などの公知の染色整理加工を施したものを使用することもできる。 In the deodorant antibacterial sheet-like material of the present invention, the sheet base material may contain a woven fabric as a core material. As the woven fabric, 1) a woven fabric consisting of warp threads and weft threads, or 2) a triaxial woven fabric consisting of warp threads and upper left bias yarn / upper right bias yarn, or 3) a quaternary fabric consisting of warp yarns, weft yarns, and upper left bias yarn / upper right bias yarn. ,. The above-mentioned woven fabrics include plain woven fabrics (biaxial woven fabrics, triaxial woven fabrics, quaternary woven fabrics), diagonal woven fabrics (2x2, 3x3, 4x4 and other regular diagonal woven fabrics, 3x2, 4x2). , 4x3, 5x3, 2x3, 2x4, 3x4, 3x5, etc. Has: 3 woven fabrics, 4 woven fabrics, 5 woven fabrics, 6 woven fabrics, etc.), Akiko woven fabric (with a minimum of 5 warp and weft threads, etc.) Regular woven fabrics such as jumping and 5 jumping), changing plain woven fabrics, changing twill woven fabrics, changing brocade fabrics, etc. , Woven fabrics such as sewn fabrics and double woven fabrics can be used. The basis weight of the woven fabric is 100 to 500 g / m 2 , and the porosity is 0 to 25%. As these woven fabrics, those that have undergone known dyeing arrangement processing such as scouring, bleaching, dyeing, softening, water repellency, mold proofing, flame proofing, and calendar can also be used.

織物を構成する糸条は、合成繊維、天然繊維(綿、ケナフ)、半合成繊維(レーヨン)、無機繊維(ガラス、シリカ、アルミナ)及びこれらの2種以上から成る混合繊維など、何れの繊維も使用できるが、汎用的には、ポリプロピレン繊維、ポリエチレン繊維、ポリビニルアルコール繊維、ポリエステル(ポリエチレンテレフタレート:PET、ポリブチレンテレフタレート:PBT、ポリナフタレンテレフタレート:PNTなど)繊維、ナイロン繊維、アラミド繊維及び、これらの混用繊維(混撚・合撚)などの合成繊維による、1)マルチフィラメント糸条、2)短繊維紡績糸条、3)及びカバリング糸条、から選ばれた1種以上の糸条が使用できる。マルチフィラメント糸条は、ナイロン、ポリエステルなどの熱可塑性樹脂を紡糸口金から押出して紡糸した長繊維紡原糸を3〜5倍に延伸した長繊維紡糸束(50〜500本のフィラメント束)のまま無撚、または1〜200回/m撚りを掛けた、繊度125〜2000デニール(139〜2222dtex)の糸条が好ましい。これらのマルチフィラメント糸条には、タスラン糸条、ウーリー糸条などの嵩高加工糸条を包含する。短繊維紡績糸条は、ナイロン、ポリエステルなどの熱可塑性樹脂を紡糸口金から押出して紡糸した長繊維紡糸束(延伸していてもよい)を3.8〜5.8mm長程度に切断したステープルを開繊練条したスライバを引き伸ばしたロービング(粗糸)とし、これに所定の番手太さにドラフトと撚りを掛けてトウ紡績したものが好ましい。撚糸は単糸または単糸2本を引き揃えてS(右)撚りもしくはZ(左)撚りしたもの、また単糸または単糸2本を引き揃えて下撚りした加撚糸を2本引き揃えて上撚りを掛けてなる双糸が挙げられる。これらの撚糸の撚り回数は200〜2000回/m程度である。またカバリング糸条は、上記マルチフィラメント糸束の外周に上記短繊維を巻き付けたカバリング糸条が挙げられ、芯鞘複合糸条もカバリング糸条に包含される。 The threads that make up the woven fabric are any fibers such as synthetic fibers, natural fibers (cotton, kenaf), semi-synthetic fibers (rayon), inorganic fibers (glass, silica, alumina) and mixed fibers consisting of two or more of these. Polypropylene fiber, polyethylene fiber, polyvinyl alcohol fiber, polyester (polyethylene terephthalate: PET, polybutylene terephthalate: PBT, polynaphthalene terephthalate: PNT, etc.) fiber, nylon fiber, aramid fiber, and these One or more kinds of yarns selected from 1) multifilament yarns, 2) short fiber spun yarns, 3) and covering yarns made of synthetic fibers such as mixed fibers (blended / combined twists) can be used. .. The multifilament yarn remains as a long fiber spinning bundle (50 to 500 filament bundles) obtained by stretching a long fiber spinning yarn obtained by extruding a thermoplastic resin such as nylon or polyester from a spinneret and spinning it 3 to 5 times. Threads with a fineness of 125 to 2000 denier (139 to 2222 dtex), which are untwisted or twisted 1 to 200 times / m, are preferable. These multifilament yarns include bulky processed yarns such as Taslan yarns and Woolly yarns. The short fiber spun yarn is a staple made by cutting a long fiber spun bundle (which may be stretched) spun by extruding a thermoplastic resin such as nylon or polyester from a spinneret to a length of about 3.8 to 5.8 mm. It is preferable to use a roving (coarse yarn) obtained by stretching an open-fiber kneaded sliver, and tow-spin the sliver by applying a draft and a twist to a predetermined count thickness. The twisted yarn is a single yarn or two single yarns aligned and S (right) twisted or Z (left) twisted, or two single yarns or two single yarns aligned and two under-twisted twisted yarns aligned. Examples include twin yarns that are twisted on top. The number of twists of these twisted yarns is about 200 to 2000 times / m. Further, the covering yarn includes a covering yarn in which the short fibers are wound around the outer circumference of the multifilament yarn bundle, and the core-sheath composite yarn is also included in the covering yarn.

本発明の消臭抗菌性シート状物において、シート基材は熱可塑性樹脂組成物による厚さ0.1mm〜0.29mmのフィルム、または厚さ0.3mm〜5mmのシートであることが好ましい。熱可塑性樹脂組成物の熱可塑性樹脂は、軟質塩化ビニル樹脂(可塑剤配合)、塩化ビニル系共重合体樹脂、塩素化塩化ビニル樹脂、オレフィン樹脂(PE,PP)、オレフィン系共重合体樹脂、エチレン−酢酸ビニル共重合体樹脂(EVA)、エチレン−(メタ)アクリル酸(エステル)共重合体樹脂、ウレタン樹脂、酢酸ビニル系共重合体樹脂、スチレン系共重合体樹脂、ポリエステル系共重合体樹脂、フッ素含有共重合体樹脂など、ショアA硬度35〜85程度の熱可塑性樹脂、またはエラストマーであり、これらにはウレタンゴム、アクリルゴム、ブタジエンゴム、クロルスルホン化ポリエチレン、SBR、EPDM、EPMなどを含み、ゴム弾性を強化させたものでもよい。エラストマーとは2種以上のモノマーからなるブロック共重合体樹脂で、個々のブロック成分がハードセグメント、及びソフトセグメントを構成する樹脂である。これらの熱可塑性樹脂、エラストマーのうち、特に高周波溶着性を有する軟質塩化ビニル樹脂、塩化ビニル系共重合体樹脂、塩素化塩化ビニル樹脂、エチレン−酢酸ビニル共重合体樹脂(EVA)、エチレン−(メタ)アクリル酸(エステル)共重合体樹脂、ウレタン樹脂、及びフッ素含有共重合体樹脂などを高周波溶着性付与成分として被覆層に対し50質量%以上含有することが好ましい。熱可塑性樹脂組成物は、上記熱可塑性樹脂を主体に、安定剤、フィラー、着色剤、顔料、メタリック顔料、蓄光顔料、難燃剤、防炎剤、紫外線吸収剤、光安定剤、防黴剤、抗菌剤、帯電防止剤、架橋剤などの公知の添加剤を任意に組み合わせ配合したものである。 In the deodorant antibacterial sheet-like material of the present invention, the sheet base material is preferably a film having a thickness of 0.1 mm to 0.29 mm or a sheet having a thickness of 0.3 mm to 5 mm made of a thermoplastic resin composition. The thermoplastic resin of the thermoplastic resin composition includes a soft vinyl chloride resin (containing a plasticizer), a vinyl chloride-based copolymer resin, a chlorinated vinyl chloride resin, an olefin resin (PE, PP), an olefin-based copolymer resin, and the like. Ethylene-vinyl acetate copolymer resin (EVA), ethylene- (meth) acrylic acid (ester) copolymer resin, urethane resin, vinyl acetate-based copolymer resin, styrene-based copolymer resin, polyester-based copolymer It is a thermoplastic resin having a Shore A hardness of about 35 to 85, such as a resin or a fluorine-containing copolymer resin, or an elastomer, which includes urethane rubber, acrylic rubber, butadiene rubber, chlorosulfonated polyethylene, SBR, EPDM, EPM, and the like. , And the rubber elasticity may be strengthened. The elastomer is a block copolymer resin composed of two or more kinds of monomers, and is a resin in which each block component constitutes a hard segment and a soft segment. Among these thermoplastic resins and elastomers, soft vinyl chloride resin having high frequency welding property, vinyl chloride-based copolymer resin, chlorinated vinyl chloride resin, ethylene-vinyl acetate copolymer resin (EVA), ethylene- ( It is preferable to contain 50% by mass or more of a meta) acrylic acid (ester) copolymer resin, urethane resin, fluorine-containing copolymer resin and the like as a high-frequency weldability-imparting component with respect to the coating layer. The thermoplastic resin composition is mainly composed of the above-mentioned thermoplastic resin, and is composed of stabilizers, fillers, colorants, pigments, metallic pigments, phosphorescent pigments, flame retardants, flame retardants, ultraviolet absorbers, light stabilizers, fungicides, and the like. It is an arbitrary combination of known additives such as antibacterial agents, antistatic agents, and cross-linking agents.

本発明の消臭抗菌性シート状物が、シート基材に織物を芯材として含む場合、その製造方法は、熱可塑性樹脂組成物(特に好ましくは塩化ビニル樹脂/可塑剤など)を熱混練し、カレンダー法、またはTダイス押出法で溶融圧延したフィルム、またはシートを使用し、これを織物の表裏に熱ラミネートで積層することで得られる。この熱ラミネートは例えば、熱ロール/ゴムロールの連続圧着ユニットを1〜2と、冷却ロールユニット、及び巻取ユニットを有するラミネーターを用い、ラミネーターの1回通しまたは2回通しの工程により熱溶融圧着する方法が挙げられる。また、シート基材に織物を芯材として含む態様として、織物の表裏に溶液状の熱可塑性樹脂組成物(特に好ましくは塩化ビニル樹脂/可塑剤などによるペースト)をナイフコート、クリアランスコート、グラビアコートなどのコーティング法により塗工し、これを熱乾燥、または加熱ゲル化によって、樹脂被覆層を形成したもの、または溶液状の熱可塑性樹脂組成物(特に好ましくは塩化ビニル樹脂ペースト)を充填した液浴中に織物を浸漬し、これを引き上げると同時に1対のゴムロール間で圧搾し、直後に熱乾燥、または加熱ゲル化させるディッピング法によって、織物の表裏に樹脂被覆層を形成したものが挙げられる。 When the deodorant antibacterial sheet-like material of the present invention contains a woven fabric as a core material in the sheet base material, the production method thereof is to heat-knead a thermoplastic resin composition (particularly preferably a vinyl chloride resin / plasticizer or the like). It is obtained by using a film or sheet melt-rolled by the calendar method or the T-die extrusion method and laminating this on the front and back of the woven fabric by thermal lamination. In this thermal laminating, for example, a continuous crimping unit of a hot roll / rubber roll is used, and a laminator having a cooling roll unit and a winding unit is used, and heat melt crimping is performed by a one-time or two-time process of the laminator. The method can be mentioned. Further, as a mode in which the sheet base material contains the woven fabric as the core material, a solution-like thermoplastic resin composition (particularly preferably a vinyl chloride resin / a paste made of a plasticizer or the like) is applied to the front and back surfaces of the woven fabric as a knife coat, a clearance coat, or a gravure coat. A liquid in which a resin coating layer is formed by coating by a coating method such as, and this is heat-dried or heat-gelled, or a liquid filled with a solution-like thermoplastic resin composition (particularly preferably vinyl chloride resin paste). A resin coating layer is formed on the front and back sides of the woven fabric by a dipping method in which the woven fabric is immersed in a bath, pulled up, squeezed between a pair of rubber rolls, and immediately immediately heat-dried or heat-gelled. ..

本発明を下記の実施例及び比較例を挙げて更に説明するが、本発明の態様はこれらの例の範囲に限定されるものではない。実施例及び比較例において、試験シートの減臭性・消臭性は下記の試験方法により測定し、評価した。
〈減臭性・消臭性〉
容積5LのTedlar(登録商標)ガスバリヤーバッグを4個用意し、各々のバッグに濃度10ppmに調整した4種の化学物質ガス、1)アンモニア(塩基性)、2)イソ吉草酸(酸性)、3)硫化水素(酸性)、4)トルエン(VOC)を各々3L封入した4バッグを3セット準備した。
10cm×10cmサイズの試験シート状物(片面に多孔性配位高分子粒子が露出)を、1)→2)→3)→4)の順にバッグ内に入れ、各々ブラックライト(ピーク365nm)照射(多孔性配位高分子粒子露出面に照射:照射距離2.5cm:テドラーバッグ内に密封静置)の環境下、各々25℃×20分、25℃×40分、25℃×60分、の3水準を室内静置した後の各々のガス濃度をガス検知管(ガステック)で測定した。
※ブラックライト 機種SL−B01A5(オーム電機株式会社)
W55mm×H160mm×D25mm
<抗菌性>
抗菌性(JIS Z2801:2010年準拠)
シート状物試験片(実施例1〜5,比較例1〜5)の表面に菌液を滴下して植菌し(植菌数10)、試験片が菌液に接するように、菌液と試験片シートを密着させ、35℃、相対湿度90%以上の環境下、ブラックライト(ピーク365nm)照射(多孔性配位高分子粒子露出面に照射:照射距離2.5cm)条件下で24時間培養した。培養後、試験片シートを洗い流し1cmあたりの生菌数を測定し、抗菌活性値(対象区における菌数対数値から実施例または比較例の試験片シートにおける菌数対数値を差し引いた値)を算出した。なお、対象区は多孔性配位高分子粒子を含有しないシートとした。
また実施例1〜5のシート状物試験片にブラックライトの照射を行わず、ブラックライトの有無による抗菌効果の対比試験を行った結果を参考例1〜5の扱いとした。
表中の数値は試験片1cm当たりの生菌数であり、「ND」は生菌の不検出(Not Detected)とする。菌液調整溶液は1/200NB培地を用いた。使用した菌種を以下に示す。
黄色ぶどう球菌「Staphylococcus aureus subsp. aureus 12732」
大腸菌「Escherichia coli NBRC 3972」
※ブラックライト 機種SL−B01A5(オーム電機株式会社)
W55mm×H160mm×D25mm
<防黴性:JIS Z2911培養試験>
幅3cm×長さ3cmのシート状物(実施例1〜5,比較例1〜5)に、下記試験用黴の胞子を接種し、ポテト・デキストロース寒天培地上に置き、ブラックライト(ピーク365nm)照射(多孔性配位高分子粒子露出面に照射:照射距離2.5cm)条件下、28℃×7日間、及び14日間、黴の発生状況を観察し、以下の判定基準で評価した。
また実施例1〜5のシート状物試験片にブラックライトの照射を行わず、ブラックライトの有無による防黴効果の対比試験を行った結果を参考例1〜5の扱いとした。
1:接種部分に菌糸の発育が認められない
2:接種部分に認められる菌糸の発育部分の面積が全面積の1/3を超えない
3:接種部分に認められる菌糸の発育部分の面積が全面積の1/3を超える
〈試験用黴〉(A)+(B)+(C)の混合黴
(A)Aspergillus niger NBRC 105649(黒黴)
(B)Penicillium citrinum NBRC 6352(青黴)
(C)Cladosporium cladosporioides NBRC 6348(クロカワ黴)
※ブラックライト 機種SL−B01A5(オーム電機株式会社)
W55mm×H160mm×D25mm
The present invention will be further described with reference to the following examples and comparative examples, but the aspects of the present invention are not limited to the scope of these examples. In Examples and Comparative Examples, the deodorizing property and deodorizing property of the test sheet were measured and evaluated by the following test method.
<Deodorant / Deodorant>
Four Tedlar® gas barrier bags with a volume of 5 L were prepared, and each bag was adjusted to a concentration of 10 ppm. Four types of chemical gas, 1) ammonia (basic), 2) isovaleric acid (acidic), 3 sets of 4 bags each containing 3 L of hydrogen sulfide (acidic) and 4) toluene (VOC) were prepared.
Place a 10 cm x 10 cm size test sheet (with porous coordination polymer particles exposed on one side) in the bag in the order of 1) → 2) → 3) → 4) and irradiate each with black light (peak 365 nm). Under the environment of (irradiation of exposed surface of porous coordination polymer particles: irradiation distance 2.5 cm: sealed in a tedler bag), 25 ° C x 20 minutes, 25 ° C x 40 minutes, 25 ° C x 60 minutes, respectively. The gas concentration of each of the three levels after being allowed to stand indoors was measured with a gas detector tube (Gastec).
* Black light model SL-B01A5 (Ohm Electric Co., Ltd.)
W55mm x H160mm x D25mm
<Antibacterial>
Antibacterial (JIS Z2801: 2010 compliant)
Sheet specimens (Examples 1-5, Comparative Example 1-5) was inoculated by dropping a bacterial solution on the surface of (inoculation number 10 4), so that the test piece is in contact with the bacterial liquid, bacterial suspension And the test piece sheet are brought into close contact with each other, and under the conditions of black light (peak 365 nm) irradiation (irradiation on the exposed surface of the porous coordination polymer particles: irradiation distance 2.5 cm) in an environment of 35 ° C. and a relative humidity of 90% or more, 24 Incubated for hours. After culturing, the test piece sheet was washed away, the viable cell count per 1 cm 2 was measured, and the antibacterial activity value (value obtained by subtracting the bacterial count logarithmic value in the test piece sheet of the example or comparative example from the bacterial count logarithmic value in the target group). Was calculated. The target group was a sheet containing no porous coordination polymer particles.
Further, the results of the comparison test of the antibacterial effect depending on the presence or absence of black light without irradiating the sheet-shaped test pieces of Examples 1 to 5 with black light were treated as Reference Examples 1 to 5.
The numerical value in the table is the number of viable bacteria per 1 cm 2 of the test piece, and "ND" is defined as "Not Detected". A 1/200 NB medium was used as the bacterial solution adjusting solution. The bacterial species used are shown below.
Staphylococcus aureus subsp. Aures 12732
Escherichia coli NBRC 3972
* Black light model SL-B01A5 (Ohm Electric Co., Ltd.)
W55mm x H160mm x D25mm
<Antifungal property: JIS Z 2911 culture test>
A sheet-like material (Examples 1 to 5 and Comparative Examples 1 to 5) having a width of 3 cm and a length of 3 cm was inoculated with the following test mold spores, placed on a potato dextrose agar medium, and black light (peak 365 nm). Under the conditions of irradiation (irradiation of the exposed surface of the porous coordination polymer particles: irradiation distance 2.5 cm), the state of mold generation was observed at 28 ° C. for 7 days and 14 days, and evaluated according to the following criteria.
Further, the results of a comparison test of the antifungal effect depending on the presence or absence of black light without irradiating the sheet-shaped test pieces of Examples 1 to 5 with black light were treated as Reference Examples 1 to 5.
1: No hyphal growth in the inoculated area 2: The area of the hyphal growth area in the inoculated area does not exceed 1/3 of the total area 3: The total area of the hyphal growth area in the inoculated area More than 1/3 of the area <Test mold> (A) + (B) + (C) mixed mold (A) Aspergillus niger NBRC 105649 (black mold)
(B) Penicillium citrinum NBRC 6352 (Penicillium)
(C) Cladosporium cladosporioides NBRC 6348 (Kurokawa mold)
* Black light model SL-B01A5 (Ohm Electric Co., Ltd.)
W55mm x H160mm x D25mm

[実施例1]
織物
1000デニール(1111dtex)のポリエチレンテレタレート(PET)繊維(フィラメント数192本)からなり、S撚50T/mを施したPETマルチフィラメント糸条を経糸群及び緯糸群に用い、経糸群は1インチ間16本の織組織とし、また緯糸群は1インチ間16本の織組織とする平織物を用いた。この織物の質量は150g/m、空隙率(目抜け部総和)は14%であった。
<シート基材>
この織物を基材として、その両面に下記〔配合1〕の軟質塩化ビニル樹脂組成物からなる厚さ0.2mmのカレンダー成型フィルムを表裏の被覆層として、ラミネーターでの熱圧着による溶融ラミネートを施して、厚さ0.7mm、質量830g/mのシート基材を得た。
〔配合1〕:軟質塩化ビニル樹脂組成物(コンパウンド)
塩化ビニル樹脂(K値71.5) 100質量部
4−シクロヘキセン−1,2−ジカルボン酸ビス(2−エチルヘキシル)(可塑剤)
55質量部
リン酸トリクレジル(防炎可塑剤) 10質量部
エポキシ化大豆油(安定剤兼可塑剤) 5質量部
バリウム/亜鉛複合安定剤 2質量部
三酸化アンチモン(難燃剤) 10質量部
ルチル型酸化チタン(白顔料) 5質量部
ベンゾトリアゾール骨格化合物(紫外線吸収剤) 0.3質量部
<多孔性配位高分子粒子(1)>
下記有機錯体ユニット及び架橋性有機化合物との多角的交互連結体による粒子径0.5〜1μmの結晶粒子
有機錯体ユニット:テレフタル酸銅「Cu(CCO)
架橋性有機化合物:1,4−ジアザビシクロ[2,2,2]オクタン「C12
〈光触媒性金属酸化物の担持〉
多孔性配位高分子粒子(1)、酸化チタンゾル(1次粒子径5nm)、水(50質量%)/エタノール(50質量%)をこの順番に質量比率、2(固形分):1(固形分):10で配合した溶液を密閉容器内、80℃で2時間攪拌した後、ろ過物を乾燥し、光触媒性金属酸化物を表面及び内部に担持する多孔性配位高分子粒子(1a)を得た。
アルコキシシラン化合物による処理
多孔性配位高分子粒子(1a)、アルコキシシラン化合物(エポキシシラン:3-グリシドキシプロピルトリメトキシシラン)、水をこの順番に質量比率、10(固形分):1(固形分):100で配合した溶液を密閉容器内、30℃で2時間攪拌した後、ろ過物を乾燥し、エポシシラン化合物の加水分解物が結合した多孔性配位高分子粒子(1b)を得た。
<シラノール基含有有機シラン化合物のゾルゲル縮合薄膜の形成>
下記〔配合2〕の組成を配合してゾルゲル縮合薄膜形成用組成物(1)を得た。
次にシート基材の片表面上に、このゾルゲル縮合薄膜形成用組成物(1)を100メッシユのグラビアロールによりグラビア塗工し、120℃の熱風炉で2分間加熱乾燥し、ゾルゲル縮合薄膜形成用組成物(1)をゾルゲル硬化させてシラノール基含有有機シラン化合物のゾルゲル縮合薄膜(1)を形成し、厚さ0.7mm、質量833g/mの多孔性配位高分子粒子(1b)が表面に露出している消臭抗菌性シート状物(1)を得た。
〔配合2〕ゾルゲル縮合薄膜形成用組成物(1)
エチルシリケート(Si(OC):SiO換算40質量%)5質量%、及び
[Si(OC)12]のテトラエトキシシラン5量体が95質量%の混合体
25質量部
加水分解触媒:2%塩酸 1質量部
多孔性配位高分子粒子(1b) 10質量部
水(50質量%)/エタノール(50質量%) 100質量部
[Example 1]
< Woven fabric >
A PET multifilament yarn made of 1000 denier (1111 dtex) polyethylene terephthalate (PET) fiber (192 filaments) and subjected to S twist 50 T / m is used for the warp and weft groups, and the warp group is 1 inch apart. A plain woven fabric having 16 weaves and 16 wefts per inch was used as the weft group. The mass of this woven fabric was 150 g / m 2 , and the porosity (total porosity) was 14%.
< Sheet base material >
Using this woven fabric as a base material, melt-laminated by thermocompression bonding with a laminator is applied to both sides of a calendar-molded film having a thickness of 0.2 mm and made of the following [Formulation 1] soft vinyl chloride resin composition as a coating layer on the front and back surfaces. A sheet substrate having a thickness of 0.7 mm and a mass of 830 g / m 2 was obtained.
[Formulation 1]: Soft vinyl chloride resin composition (compound)
Vinyl chloride resin (K value 71.5) 100 parts by mass 4-cyclohexene-1,2-dicarboxylic acid bis (2-ethylhexyl) (plasticizer)
55 parts by mass Tricredil phosphate (flame retardant plasticizer) 10 parts by mass Eoxidized soybean oil (stabilizer and plasticizer) 5 parts by mass Barium / zinc composite stabilizer 2 parts by mass Antimon trioxide (flame retardant) 10 parts by mass Rutyl type Titanium oxide (white pigment) 5 parts by mass Bentriazole skeleton compound (ultraviolet absorber) 0.3 parts by mass
< Porosity Coordination Polymer Particles (1) >
Crystalline particles with a particle size of 0.5 to 1 μm formed by a multi-faceted alternating conjugate of the following organic complex unit and crosslinkable organic compound Organic complex unit: Copper terephthalate “Cu 2 (C 6 H 4 CO 2 ) 4
Crosslinkable organic compound: 1,4-diazabicyclo [2,2,2] octane "C 6 H 12 N 2 "
<Supporting photocatalytic metal oxide>
Porous coordination polymer particles (1), titanium oxide sol (primary particle diameter 5 nm), water (50% by mass) / ethanol (50% by mass) in this order by mass ratio, 2 (solid content): 1 (solid) Minutes): After stirring the solution prepared in 10 at 80 ° C. for 2 hours in a closed container, the filtrate is dried, and the porous coordination polymer particles (1a) carrying a photocatalytic metal oxide on the surface and inside. Got
< Treatment with an alkoxysilane compound >
Porous coordination polymer particles (1a), alkoxysilane compound (epoxysilane: 3-glycidoxypropyltrimethoxysilane), and water in this order by mass ratio, 10 (solid content): 1 (solid content): 100 The solution prepared in (1) was stirred in a closed container at 30 ° C. for 2 hours, and then the filtrate was dried to obtain porous coordination polymer particles (1b) to which a hydrolyzate of an epoxysilane compound was bound.
< Formation of sol-gel condensed thin film of silanol group-containing organic silane compound >
The composition of the following [Formulation 2] was blended to obtain a sol-gel condensed thin film forming composition (1).
Next, the composition (1) for forming a sol-gel condensed thin film is gravure-coated on one surface of the sheet base material with a gravure roll of 100 meshille, and heated and dried in a hot air furnace at 120 ° C. for 2 minutes to form a sol-gel condensed thin film. The composition (1) for sol-gel is cured to form a sol-gel condensed thin film (1) of a silanol group-containing organic silane compound, and the porous coordination polymer particles (1b) having a thickness of 0.7 mm and a mass of 833 g / m 2 are formed. Obtained a deodorant antibacterial sheet-like substance (1) exposed on the surface.
[Formulation 2] Composition for forming a sol-gel condensed thin film (1)
Ethyl silicate (Si (OC 2 H 5 ) 4 : SiO 2 equivalent 40% by mass) 5% by mass, and
A mixture of 95% by mass of the tetraethoxysilane pentamer of [Si 5 O 4 (OC 2 H 5 ) 12].
25 parts by mass Hydrolysis catalyst: 2% hydrochloric acid 1 part by mass Porous coordination polymer particles (1b) 10 parts by mass Water (50% by mass) / ethanol (50% by mass) 100 parts by mass

[実施例2]
実施例1の多孔性配位高分子粒子(1)を多孔性配位高分子粒子(2)に変更した以外は実施例1と同様として、厚さ0.7mm、質量833g/mの多孔性配位高分子粒子(2b)が表面に露出している消臭抗菌性シート状物(2)を得た。
<多孔性配位高分子粒子(2)>
下記有機錯体ユニット及び架橋性有機化合物との多角的交互連結体による粒子径0.5〜1μmの結晶粒子
有機錯体ユニット:テレフタル酸亜鉛「ZnO(CCO)
架橋性有機化合物:1,4−ジアザビシクロ[2,2,2]オクタン「C12
〈光触媒性金属酸化物の担持〉
多孔性配位高分子粒子(2)を用い、実施例1の多孔性配位高分子粒子(1a)の製造プロセスと同様に行い、光触媒性金属酸化物を表面及び内部に担持する多孔性配位高分子粒子(2a)を得た。
アルコキシシラン化合物による処理
多孔性配位高分子粒子(2a)を用い、実施例1の多孔性配位高分子粒子(1b)の製造プロセスと同様に行い、エポシシラン化合物の加水分解物が結合した多孔性配位高分子粒子(2b)を得た。
[Example 2]
The same as in Example 1 except that the porous coordination polymer particles (1) of Example 1 were changed to the porous coordination polymer particles (2), the thickness was 0.7 mm and the mass was 833 g / m 2 . A deodorant antibacterial sheet-like substance (2) in which the sex coordination polymer particles (2b) were exposed on the surface was obtained.
< Porosity Coordination Polymer Particles (2) >
Crystalline particles with a particle size of 0.5 to 1 μm formed by a multi-faceted alternating conjugate of the following organic complex unit and crosslinkable organic compound Organic complex unit: Zinc terephthalate “Zn 4 O (C 6 H 4 CO 2 ) 6
Crosslinkable organic compound: 1,4-diazabicyclo [2,2,2] octane "C 6 H 12 N 2 "
<Supporting photocatalytic metal oxide>
Using the porous coordination polymer particles (2), the same as the production process of the porous coordination polymer particles (1a) of Example 1 was carried out, and the porous coordination supporting the photocatalytic metal oxide on the surface and inside. Coordination polymer particles (2a) were obtained.
< Treatment with an alkoxysilane compound >
Using the porous coordination polymer particles (2a), the same procedure as in the production process of the porous coordination polymer particles (1b) of Example 1 was carried out, and the porous coordination polymer to which the hydrolyzate of the eposisilane compound was bound was carried out. Particles (2b) were obtained.

[実施例3]
実施例1の多孔性配位高分子粒子(1)を多孔性配位高分子粒子(3)に変更した以外は実施例1と同様として、厚さ0.7mm、質量833g/mの多孔性配位高分子粒子(3b)が表面に露出している消臭抗菌性シート状物(3)を得た。
<多孔性配位高分子粒子(3)>
下記有機錯体ユニット及び架橋性有機化合物との多角的交互連結体による粒子径0.5〜1μmの結晶粒子
有機錯体ユニット:2,6-ナフタレンジカルボン酸銅「Cu(C10CO)
架橋性有機化合物:1,4-ジアザビシクロ[2,2,2]オクタン「C12
〈光触媒性金属酸化物の担持〉
多孔性配位高分子粒子(3)を用い、実施例1の多孔性配位高分子粒子(1a)の製造プロセスと同様に行い、光触媒性金属酸化物を表面及び内部に担持する多孔性配位高分子粒子(3a)を得た。
アルコキシシラン化合物による処理
多孔性配位高分子粒子(3a)を用い、実施例1の多孔性配位高分子粒子(1b)の製造プロセスと同様に行い、エポシシラン化合物の加水分解物が結合した多孔性配位高分子粒子(3b)を得た。
[Example 3]
The same as in Example 1 except that the porous coordination polymer particles (1) of Example 1 were changed to the porous coordination polymer particles (3), the thickness was 0.7 mm and the mass was 833 g / m 2 . A deodorant antibacterial sheet-like substance (3) in which the sex coordination polymer particles (3b) were exposed on the surface was obtained.
< Porosity Coordination Polymer Particles (3) >
Crystalline particles with a particle size of 0.5 to 1 μm formed by a multi-layered alternating conjugate of the following organic complex unit and a crosslinkable organic compound Organic complex unit: Copper 2,6-naphthalenedicarboxylic acid “Cu 2 (C 10 H 6 CO 2 ) 4 "
Crosslinkable Organic Compounds: 1,4-diazabicyclo [2,2,2] octane "C 6 H 12 N 2 "
<Supporting photocatalytic metal oxide>
Using the porous coordination polymer particles (3), the same as the production process of the porous coordination polymer particles (1a) of Example 1 was carried out, and the porous coordination supporting the photocatalytic metal oxide on the surface and inside. Coordination polymer particles (3a) were obtained.
< Treatment with an alkoxysilane compound >
Using the porous coordination polymer particles (3a), the same procedure as in the production process of the porous coordination polymer particles (1b) of Example 1 was carried out, and the porous coordination polymer to which the hydrolyzate of the eposisilane compound was bound was carried out. Particles (3b) were obtained.

[実施例4]
実施例1の多孔性配位高分子粒子(1)を多孔性配位高分子粒子(4)に変更した以外は実施例1と同様として、厚さ0.7mm、質量833g/mの多孔性配位高分子粒子(4b)が表面に露出している消臭抗菌性シート状物(4)を得た。
<多孔性配位高分子粒子(4)>
下記有機錯体ユニット及び架橋性有機化合物との多角的交互連結体による粒子径0.5〜1μmの結晶粒子
有機錯体ユニット:2,3-ピラジンジカルボン酸銅「Cu(CCO)
架橋性有機化合物:ピリジン「CN」
〈光触媒性金属酸化物の担持〉
多孔性配位高分子粒子(4)を用い、実施例1の多孔性配位高分子粒子(1a)の製造プロセスと同様に行い、光触媒性金属酸化物を表面及び内部に担持する多孔性配位高分子粒子(4a)を得た。
アルコキシシラン化合物による処理
多孔性配位高分子粒子(4a)を用い、実施例1の多孔性配位高分子粒子(1b)の製造プロセスと同様に行い、エポシシラン化合物の加水分解物が結合した多孔性配位高分子粒子(4b)を得た。
[Example 4]
The same as in Example 1 except that the porous coordination polymer particles (1) of Example 1 were changed to the porous coordination polymer particles (4), the thickness was 0.7 mm and the mass was 833 g / m 2 . A deodorant antibacterial sheet-like substance (4) in which the sex coordination polymer particles (4b) were exposed on the surface was obtained.
< Porosity Coordination Polymer Particles (4) >
Crystalline particles with a particle size of 0.5 to 1 μm by a multi-layered alternating conjugate of the following organic complex unit and crosslinkable organic compound Organic complex unit: Copper 2,3-pyrazinedicarboxylic acid "Cu 2 (C 4 H 2 N 2 CO) 2 ) 4 "
Crosslinkable Organic Compound: Pyridine "C 5 H 5 N"
<Supporting photocatalytic metal oxide>
Using the porous coordination polymer particles (4), the same procedure as the production process of the porous coordination polymer particles (1a) of Example 1 was carried out, and the porous coordination supporting the photocatalytic metal oxide on the surface and inside. Coordination polymer particles (4a) were obtained.
< Treatment with an alkoxysilane compound >
Using the porous coordination polymer particles (4a), the same procedure as in the production process of the porous coordination polymer particles (1b) of Example 1 was carried out, and the porous coordination polymer to which the hydrolyzate of the eposisilane compound was bound was carried out. Particles (4b) were obtained.

[実施例5]
実施例1の多孔性配位高分子粒子(1)を多孔性配位高分子粒子(5)に変更した以外は実施例1と同様として、厚さ0.7mm、質量833g/mの多孔性配位高分子粒子(5b)が表面に露出している消臭抗菌性シート状物(5)を得た。
<多孔性配位高分子粒子(5)>
下記有機錯体ユニット及び架橋性有機化合物との多角的交互連結体による粒子径0.5〜1μmの結晶粒子
有機錯体ユニット:1,3,5-ベンゼントリカルボン酸銅「Cu(CCO)
架橋性有機化合物:ピリジン「CN」
〈光触媒性金属酸化物の担持〉
多孔性配位高分子粒子(5)を用い、実施例1の多孔性配位高分子粒子(1a)の製造プロセスと同様に行い、光触媒性金属酸化物を表面及び内部に担持する多孔性配位高分子粒子(5a)を得た。
アルコキシシラン化合物による処理
多孔性配位高分子粒子(5a)を用い、実施例1の多孔性配位高分子粒子(1b)の製造プロセスと同様に行い、エポシシラン化合物の加水分解物が結合した多孔性配位高分子粒子(5b)を得た。
[Example 5]
The same as in Example 1 except that the porous coordination polymer particles (1) of Example 1 were changed to the porous coordination polymer particles (5), the thickness was 0.7 mm and the mass was 833 g / m 2 . A deodorant antibacterial sheet-like substance (5) in which the sex coordination polymer particles (5b) were exposed on the surface was obtained.
< Porosity Coordination Polymer Particles (5) >
Crystalline particles with a particle size of 0.5 to 1 μm by a multi-layered alternating conjugate of the following organic complex unit and crosslinkable organic compound Organic complex unit: 1,3,5-benzenetricarboxylic acid copper "Cu 3 (C 6 H 4 CO) 2 ) 6 "
Crosslinkable Organic Compound: Pyridine "C 5 H 5 N"
<Supporting photocatalytic metal oxide>
Using the porous coordination polymer particles (5), the same procedure as the production process of the porous coordination polymer particles (1a) of Example 1 was carried out, and the porous coordination supporting the photocatalytic metal oxide on the surface and inside. Coordination polymer particles (5a) were obtained.
< Treatment with an alkoxysilane compound >
Using the porous coordination polymer particles (5a), the same procedure as the production process of the porous coordination polymer particles (1b) of Example 1 was carried out, and the porous coordination polymer to which the hydrolyzate of the eposisilane compound was bound was carried out. Particles (5b) were obtained.

[実施例6]
実施例1の0.7mm、質量830g/mのシート基材を用い、それ以降の実施例1の製造プロセスを変更した。
アルコキシシラン化合物による多孔性配位高分子粒子処理
実施例1の多孔性配位高分子粒子(1)、アルコキシシラン化合物(エポキシシラン:3-グリシドキシプロピルトリメトキシシラン)、水をこの順番に質量比率、10(固形分):1(固形分):100で配合した溶液を密閉容器内、30℃で2時間攪拌した後、ろ過物を乾燥し、エポシシラン化合物の加水分解物が結合した多孔性配位高分子粒子(1c)を得た。
<シラノール基含有有機シラン化合物のゾルゲル縮合薄膜の形成>
下記〔配合3〕の組成を配合してゾルゲル縮合薄膜形成用組成物(2)を得た。
次にシート基材の片表面上に、このゾルゲル縮合薄膜形成用組成物(2)を100メッシユのグラビアロールによりグラビア塗工し、120℃の熱風炉で2分間加熱乾燥し、ゾルゲル縮合薄膜形成用組成物(2)をゾルゲル硬化させてシラノール基含有有機シラン化合物のゾルゲル縮合薄膜(2)を形成し、厚さ0.7mm、質量832g/mのシート状物を得た。
〔配合3〕ゾルゲル縮合薄膜形成用組成物(2)
エチルシリケート(Si(OC):SiO換算40質量%)5質量%、及び
[Si(OC)12]のテトラエトキシシラン5量体が95質量%の混合体
25質量部
加水分解触媒:2%塩酸 1質量部
多孔性配位高分子粒子(1c) 10質量部
水(50質量%)/エタノール(50質量%) 100質量部
多孔性配位高分子粒子への光触媒性金属酸化物担持
多孔性配位高分子粒子(1c)、酸化チタンゾル(1次粒子径5nm)、水(50質量%)/エタノール(50質量%)をこの順番に質量比率、2(固形分):1(固形分):10で配合した溶液を、シート状物のシラノール基含有有機シラン化合物のゾルゲル縮合薄膜上に、100メッシユのグラビアロールによりグラビア塗工し、120℃の熱風炉で2分間加熱乾燥し、光触媒性金属酸化物を表面及び内部に担持する多孔性配位高分子粒子(1d)が表面に露出している厚さ0.7mm、質量833g/mの消臭抗菌性シート状物(6)を得た。
[Example 6]
A sheet substrate of 0.7 mm and a mass of 830 g / m 2 of Example 1 was used, and the subsequent production process of Example 1 was changed.
< Treatment of porous coordination polymer particles with an alkoxysilane compound >
The porous coordination polymer particles (1) of Example 1, the alkoxysilane compound (epoxysilane: 3-glycidoxypropyltrimethoxysilane), and water in this order have a mass ratio of 10 (solid content): 1 (solid). Minutes): The solution prepared in 100 was stirred in a closed container at 30 ° C. for 2 hours, and then the filtrate was dried to obtain porous coordination polymer particles (1c) to which a hydrolyzate of an epoxysilane compound was bound. ..
< Formation of sol-gel condensed thin film of silanol group-containing organic silane compound >
The composition of the following [Formulation 3] was blended to obtain a sol-gel condensed thin film forming composition (2).
Next, the composition (2) for forming a sol-gel condensed thin film is gravure-coated on one surface of the sheet base material with a gravure roll of 100 meshille, and heated and dried in a hot air furnace at 120 ° C. for 2 minutes to form a sol-gel condensed thin film. The composition (2) for use was cured by sol-gel to form a sol-gel condensed thin film (2) of a silanol group-containing organic silane compound, and a sheet-like product having a thickness of 0.7 mm and a mass of 832 g / m 2 was obtained.
[Formulation 3] Composition for forming a sol-gel condensed thin film (2)
Ethyl silicate (Si (OC 2 H 5 ) 4 : SiO 2 equivalent 40% by mass) 5% by mass, and
A mixture of 95% by mass of the tetraethoxysilane pentamer of [Si 5 O 4 (OC 2 H 5 ) 12].
25 parts by mass Hydrolysis catalyst: 2% hydrochloric acid 1 part by mass Porous coordination polymer particles (1c) 10 parts by mass Water (50% by mass) / ethanol (50% by mass) 100 parts by mass < Porosity coordination polymer particles Photocatalytic metal oxide support to
Porous coordination Polymer particles (1c), titanium oxide sol (primary particle diameter 5 nm), water (50% by mass) / ethanol (50% by mass) in this order by mass ratio, 2 (solid content): 1 (solid) Minutes): The solution prepared in 10 was gravure-coated on a sol-gel condensed thin film of a silanol group-containing organic silane compound in the form of a sheet with a gravure roll of 100 messille, and heated and dried in a hot air furnace at 120 ° C. for 2 minutes. A deodorant antibacterial sheet (6 ) having a thickness of 0.7 mm and a mass of 833 g / m 2 in which porous coordination polymer particles (1d) carrying a photocatalytic metal oxide are exposed on the surface and inside. ) Was obtained.

[実施例7]
実施例6において、多孔性配位高分子粒子(1)を多孔性配位高分子粒子(2)に変更した以外は実施例6と同様の製造プロセスとして、多孔性配位高分子粒子(2d)が表面に露出している厚さ0.7mm、質量833g/mの消臭抗菌性シート状物(7)を得た。
[Example 7]
In Example 6, the porous coordination polymer particles (2d) are produced in the same manner as in Example 6 except that the porous coordination polymer particles (1) are changed to the porous coordination polymer particles (2). ) Was exposed on the surface, and a deodorant antibacterial sheet-like product (7) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained.

[実施例8]
実施例6において、多孔性配位高分子粒子(1)を多孔性配位高分子粒子(3)に変更した以外は実施例6と同様の製造プロセスとして、多孔性配位高分子粒子(3d)が表面に露出している厚さ0.7mm、質量833g/mの消臭抗菌性シート状物(8)を得た。
[Example 8]
In Example 6, the porous coordination polymer particles (3d) are produced in the same manner as in Example 6 except that the porous coordination polymer particles (1) are changed to the porous coordination polymer particles (3). ) Was exposed on the surface, and a deodorant antibacterial sheet-like product (8) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained.

[実施例9]
実施例6において、多孔性配位高分子粒子(1)を多孔性配位高分子粒子(4)に変更した以外は実施例6と同様の製造プロセスとして、多孔性配位高分子粒子(4d)が表面に露出している厚さ0.7mm、質量833g/mの消臭抗菌性シート状物(9)を得た。
[Example 9]
In Example 6, the same manufacturing process as in Example 6 except that the porous coordination polymer particles (1) were changed to the porous coordination polymer particles (4), the porous coordination polymer particles (4d) were used. ) Was exposed on the surface, and a deodorant antibacterial sheet-like product (9) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained.

[実施例10]
実施例6において、多孔性配位高分子粒子(1)を多孔性配位高分子粒子(5)に変更した以外は実施例6と同様の製造プロセスとして、多孔性配位高分子粒子(5d)が表面に露出している厚さ0.7mm、質量833g/mの消臭抗菌性シート状物(10)を得た。
[Example 10]
In Example 6, the porous coordination polymer particles (5d) are produced in the same manner as in Example 6 except that the porous coordination polymer particles (1) are changed to the porous coordination polymer particles (5). ) Was exposed on the surface, and a deodorant antibacterial sheet-like product (10) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained.

[実施例11〜15]
実施例1〜5で使用した光触媒性金属酸化物としての酸化チタンゾル(1次粒子径5nm)を、可視光応答型酸化チタンゾル(Si,N共ドープ:Feイオン担持)、及び可視光応答型酸化タングステンゾル(Cu/Ptイオン共担持)を50質量%:50質量%のブレンドにて、等量置換して用いた以外は、個々実施例1〜10と同様として、多孔性配位高分子粒子(1e)〜(5e)が表面に露出している、厚さ0.7mm、質量833g/mの消臭抗菌性シート状物(11)〜(20)を得た。この2種類の可視光応答型の光触媒性金属酸化物の併用によって、より広範囲の可視光領域の波長に対する光触媒活性を効果的とすることができる。
[Examples 11 to 15]
The titanium oxide sol (primary particle diameter 5 nm) used as the photocatalytic metal oxide used in Examples 1 to 5 was used as a visible light responsive titanium oxide sol (Si and N co-doped: Fe ion-supported) and visible light responsive oxidation. Porous coordination polymer particles in the same manner as in Individual Examples 1 to 10, except that tungsten sol (co-supported with Cu / Pt ions) was used by substituting equal amounts in a blend of 50% by mass: 50% by mass. Deodorant antibacterial sheet-like materials (11) to (20) having a thickness of 0.7 mm and a mass of 833 g / m 2 in which (1e) to (5e) were exposed on the surface were obtained. The combined use of these two types of visible light responsive photocatalytic metal oxides can make photocatalytic activity effective for wavelengths in a wider range of visible light regions.

Figure 2021116504
Figure 2021116504

Figure 2021116504
Figure 2021116504

Figure 2021116504
Figure 2021116504

[比較例1]
実施例1の消臭抗菌性シート状物(1)に用いる多孔性配位高分子粒子(1)から、酸化チタンゾルによる光触媒性金属酸化物の担持を省略し、光触媒性金属酸化物を担持しない多孔性配位高分子粒子(1)を用いた以外は実施例1と同様の製造プロセスとしてシート状物(21)を得た。得られたシート状物(21)は、光触媒性金属酸化物の担持を省略したことで、実施例1の消臭抗菌性シート状物(1)と比較して、消臭・減臭性、及び抗菌性・防黴性に劣るものであった。
[Comparative Example 1]
From the porous coordination polymer particles (1) used for the deodorant antibacterial sheet-like material (1) of Example 1, the support of the photocatalytic metal oxide by the titanium oxide sol is omitted, and the photocatalytic metal oxide is not supported. A sheet-like product (21) was obtained by the same production process as in Example 1 except that the porous coordination polymer particles (1) were used. The obtained sheet-like material (21) has deodorant and deodorant properties as compared with the deodorant and antibacterial sheet-like material (1) of Example 1 by omitting the support of the photocatalytic metal oxide. And it was inferior in antibacterial and antifungal properties.

[比較例2]
実施例2の消臭抗菌性シート状物(2)に用いる多孔性配位高分子粒子(2)から、酸化チタンゾルによる光触媒性金属酸化物の担持を省略し、光触媒性金属酸化物を担持しない多孔性配位高分子粒子(2)を用いた以外は実施例2(実施例1)と同様の製造プロセスとしてシート状物(22)を得た。得られたシート状物(22)は、光触媒性金属酸化物の担持を省略したことで、実施例2の消臭抗菌性シート状物(2)と比較して、消臭・減臭性、及び抗菌性・防黴性に劣るものであった。
[Comparative Example 2]
From the porous coordination polymer particles (2) used in the deodorant antibacterial sheet-like material (2) of Example 2, the support of the photocatalytic metal oxide by the titanium oxide sol is omitted, and the photocatalytic metal oxide is not supported. A sheet-like material (22) was obtained as a production process similar to that of Example 2 (Example 1) except that the porous coordination polymer particles (2) were used. The obtained sheet-like material (22) has deodorant and deodorant properties as compared with the deodorant and antibacterial sheet-like material (2) of Example 2 by omitting the support of the photocatalytic metal oxide. And it was inferior in antibacterial and antifungal properties.

[比較例3]
実施例3の消臭抗菌性シート状物(3)に用いる多孔性配位高分子粒子(3)から、酸化チタンゾルによる光触媒性金属酸化物の担持を省略し、光触媒性金属酸化物を担持しない多孔性配位高分子粒子(3)を用いた以外は実施例3(実施例1)と同様の製造プロセスとしてシート状物(23)を得た。得られたシート状物(23)は、光触媒性金属酸化物の担持を省略したことで、実施例3の消臭抗菌性シート状物(3)と比較して、消臭・減臭性、及び抗菌性・防黴性に劣るものであった。
[Comparative Example 3]
From the porous coordination polymer particles (3) used in the deodorant antibacterial sheet-like material (3) of Example 3, the support of the photocatalytic metal oxide by the titanium oxide sol is omitted, and the photocatalytic metal oxide is not supported. A sheet-like material (23) was obtained as a production process similar to that of Example 3 (Example 1) except that the porous coordination polymer particles (3) were used. The obtained sheet-like material (23) has deodorant and deodorant properties as compared with the deodorant and antibacterial sheet-like material (3) of Example 3 by omitting the support of the photocatalytic metal oxide. And it was inferior in antibacterial and antifungal properties.

[比較例4]
実施例4の消臭抗菌性シート状物(4)に用いる多孔性配位高分子粒子(4)から、酸化チタンゾルによる光触媒性金属酸化物の担持を省略し、光触媒性金属酸化物を担持しない多孔性配位高分子粒子(4)を用いた以外は実施例4(実施例1)と同様の製造プロセスとしてシート状物(24)を得た。得られたシート状物(24)は、光触媒性金属酸化物の担持を省略したことで、実施例4の消臭抗菌性シート状物(4)と比較して、消臭・減臭性、及び抗菌性・防黴性に劣るものであった。
[Comparative Example 4]
From the porous coordination polymer particles (4) used in the deodorant antibacterial sheet-like material (4) of Example 4, the support of the photocatalytic metal oxide by the titanium oxide sol is omitted, and the photocatalytic metal oxide is not supported. A sheet-like material (24) was obtained as a production process similar to that of Example 4 (Example 1) except that the porous coordination polymer particles (4) were used. The obtained sheet-like material (24) has deodorant and deodorant properties as compared with the deodorant and antibacterial sheet-like material (4) of Example 4 by omitting the support of the photocatalytic metal oxide. And it was inferior in antibacterial and antifungal properties.

[比較例5]
実施例5の消臭抗菌性シート状物(5)に用いる多孔性配位高分子粒子(5)から、酸化チタンゾルによる光触媒性金属酸化物の担持を省略し、光触媒性金属酸化物を担持しない多孔性配位高分子粒子(5)を用いた以外は実施例5(実施例1)と同様の製造プロセスとしてシート状物(25)を得た。得られたシート状物(25)は、光触媒性金属酸化物の担持を省略したことで、実施例5の消臭抗菌性シート状物(5)と比較して、消臭・減臭性、及び抗菌性・防黴性に劣るものであった。
[Comparative Example 5]
From the porous coordination polymer particles (5) used in the deodorant antibacterial sheet-like material (5) of Example 5, the support of the photocatalytic metal oxide by the titanium oxide sol is omitted, and the photocatalytic metal oxide is not supported. A sheet-like material (25) was obtained as a production process similar to that of Example 5 (Example 1) except that the porous coordination polymer particles (5) were used. The obtained sheet-like material (25) has deodorant and deodorant properties as compared with the deodorant and antibacterial sheet-like material (5) of Example 5 by omitting the support of the photocatalytic metal oxide. And it was inferior in antibacterial and antifungal properties.

[参考例1〜5]
実施例1〜5の消臭抗菌性シート状物(1〜5)の減臭性・消臭性試験、及び抗菌性・防黴性試験において、共にブラックライトの照射を省略した条件で試験した。ブラックライトの照射を省略したことで、多孔性配位高分子粒子が担持する光触媒性金属酸化物が不活性となり、消臭・減臭性、及び抗菌性・防黴性は比較例1〜5並みに劣るものとなったが、何れも光触媒性金属酸化物を担持している分、室内光による光触媒性金属酸化物の活性化が進行したものと考察され、比較例1〜5よりも消臭・減臭性、及び抗菌性・防黴性は上廻るものであった。
[Reference Examples 1 to 5]
In the deodorant / deodorant property test and the antibacterial / antifungal property test of the deodorant antibacterial sheet-like material (1 to 5) of Examples 1 to 5, both were tested under the condition that the irradiation of black light was omitted. .. By omitting the irradiation with black light, the photocatalytic metal oxide carried by the porous coordination polymer particles becomes inactive, and the deodorizing / deodorizing properties and the antibacterial / antifungal properties are in Comparative Examples 1 to 5. Although it was inferior to the same level, it is considered that the activation of the photocatalytic metal oxide by room light proceeded because all of them carry the photocatalytic metal oxide, and they disappeared from Comparative Examples 1 to 5. The odor / deodorant property, and the antibacterial / anti-metal property were superior.

Figure 2021116504
Figure 2021116504

Figure 2021116504
Figure 2021116504

実施例1〜5の消臭抗菌性シート状物(1)〜(5)は、シート基材の表面に多孔性配位高分子粒子が露出したシート状物で、多孔性配位高分子粒子が光触媒性金属酸化物を担持する態様で、光触媒性金属酸化物を多孔性配位高分子粒子に担持させる製造プロセスと、光触媒性金属酸化物を担持する多孔性配位高分子粒子を含むゾルゲル縮合薄膜を形成する製造プロセスを含むものである。アンモニア、イソ吉草酸、硫化水素、トルエンの各々のガスの減少傾向は異なるものの、ブラックライト照射条件、試験時間20分、40分、60分と時間経過を増す毎に、ガス濃度に減少傾向にあり、60分後にはほぼ全てが3ppm以下となった。またブラックライト照射条件での抗菌性及び防黴性の効果も優れて十分なものであった。参考例1〜5として実施例1〜5の消臭抗菌性シート状物(1)〜(5)にブラックライトの照射を行わなかった場合、消臭・減臭効果、及び抗菌性及び防黴性の効果は明らかに劣るものとなったが、しかし、光触媒性金属酸化物の活性、不活性に係わらず、多孔性配位高分子粒子の存在のみでも十分な消臭・減臭効果、及び抗菌性及び防黴性の効果であった。この理由は多孔性配位高分子粒子も光触媒性金属酸化物も含まないシート基材(ブランク)における消臭・減臭試験、及び抗菌試験及び防黴試験の対比結果が、アンモニア、イソ吉草酸、硫化水素、トルエンの各々のガスにおいて、試験60分後にも10ppmと変化せず、また大腸菌数10以上、黄色ブドウ球菌数10以上に増殖したことから、金属錯体である多孔性配位高分子の存在のみによっても相当な消臭・減臭効果、及び抗菌性及び防黴性の効果が発現可能であることが明らかとなった。従ってさらに光触媒性金属酸化物を担持する多孔性配位高分子を用いることで、本願発明の消臭抗菌性シート状物は、この多孔性配位高分子自体の消臭・減臭効果、及び抗菌性及び防黴性の有効性を凌駕する発明であることは瞭然である。また実施例6〜10の消臭抗菌性シート状物(6)〜(10)は、シート基材の表面に多孔性配位高分子粒子が露出したシート状物で、多孔性配位高分子粒子が光触媒性金属酸化物を担持する態様で、多孔性配位高分子粒子を含むゾルゲル縮合薄膜を形成する製造プロセスと、多孔性配位高分子粒子の表面上に光触媒性金属酸化物を塗工する製造プロセスを含むものである。施例6〜10の消臭抗菌性シート状物(6)〜(10)は、実施例1〜5の消臭抗菌性シート状物(1)〜(5)同様、試験時間20分、40分、60分と時間経過を増す毎に、ガス濃度に減少傾向にあったが、製造プロセスの差異によって、実施例1〜5の消臭抗菌性シート状物(1)〜(5)よりもやや減臭効果に劣るものであった。また実施例11〜15の消臭抗菌性シート状物(11)〜(15)は、シート基材の表面に多孔性配位高分子粒子が露出したシート状物で、多孔性配位高分子粒子が可視光応答型の光触媒性金属酸化物を担持する態様で、光触媒性金属酸化物を多孔性配位高分子粒子に担持させる製造プロセスと、可視光応答型の光触媒性金属酸化物を担持する多孔性配位高分子粒子を含むゾルゲル縮合薄膜を形成する製造プロセスを含むものである。実施例11〜15の消臭抗菌性シート状物(11)〜(15)は、実施例1〜5の消臭抗菌性シート状物(1)〜(5)同様、試験時間20分、40分、60分と時間経過を増す毎に、ガス濃度に減少傾向にあり、可視光応答型の光触媒性金属酸化物を担持する多孔性配位高分子粒子を用いたことで、実施例1〜5の消臭抗菌性シート状物(1)〜(5)よりも減臭効果、及び減臭の速さにおいてやや優れていた。比較例1〜5の消臭抗菌性シート状物(21)〜(25)は、シート基材の表面に多孔性配位高分子粒子が露出したシート状物で、多孔性配位高分子粒子が光触媒性金属酸化物を担持していない態様である。比較例1〜5の消臭抗菌性シート状物(21)〜(25)は、多孔性配位高分子粒子が光触媒性金属酸化物を担持していないことによって、初期効果を主体とする多孔性配位高分子粒子による吸着効果のみに依存する消臭・減臭効果となり、20分以降の消臭・減臭効果は低調で、また抗菌性・防黴性も光触媒性金属酸化物無しでは低調であった。また参考例1〜5の消臭抗菌性シート状物(1)〜(5)は、実施例1〜5そのものであるが、ブラックタイトの照射を省略した試験のため、多孔性配位高分子粒子が光触媒性金属酸化物を担持していながら、光触媒性金属酸化物を不活性の状態として室内光のみで試験を行ったことで、比較例1〜5のシート状物(21)〜(25)同様、初期効果を主体とする多孔性配位高分子粒子による吸着効果のみに依存する減臭効果となり、20分以降の減臭効果は低調、また抗菌性・防黴性もブラックライトの照射無しでは低調であった。但し比較例1〜5のシート状物、参考例1〜5の消臭抗菌性シート状物ともに多孔性配位高分子粒子の存在により、シート基材(ブランク)と対比して、各段の消臭・減臭効果、並び抗菌性・防黴性を有していた。従ってこの多孔性配位高分子粒子に光触媒性金属酸化物を担持させ、さらにブラックライトを照射することによる本願発明の消臭抗菌性シート状物は、さらに多孔性配位高分子粒子の消臭・減臭効果、及び抗菌性・防黴性の効果を向上させたものであると結論されるものである。 The deodorant antibacterial sheet-like substances (1) to (5) of Examples 1 to 5 are sheet-like substances in which the porous coordination polymer particles are exposed on the surface of the sheet base material, and the porous coordination polymer particles. A production process in which the photocatalytic metal oxide is supported on the porous coordination polymer particles and a sol-gel containing the porous coordination polymer particles carrying the photocatalytic metal oxide. It includes a manufacturing process for forming a condensed thin film. Although the decreasing tendency of each gas of ammonia, isovaleric acid, hydrogen sulfide, and toluene is different, the gas concentration tends to decrease as the time passes, such as black light irradiation conditions, test time of 20 minutes, 40 minutes, and 60 minutes. After 60 minutes, almost all of them were 3 ppm or less. In addition, the antibacterial and antifungal effects under black light irradiation conditions were also excellent and sufficient. As Reference Examples 1 to 5, when the deodorant and antibacterial sheet-like substances (1) to (5) of Examples 1 to 5 were not irradiated with black light, the deodorant and deodorant effects, and the antibacterial and antifungal properties were obtained. Although the sexual effect was clearly inferior, however, regardless of the activity or inactivity of the photocatalytic metal oxide, the presence of the porous coordination polymer particles alone had a sufficient deodorizing / deodorizing effect, and It was an antibacterial and antifungal effect. The reason for this is that the comparison results of the deodorization / deodorization test, the antibacterial test and the anti-corrosion test on the sheet base material (blank) containing neither porous coordination polymer particles nor photocatalytic metal oxides are ammonia and isovaleric acid. , hydrogen sulfide, in each of the gas toluene, 10 ppm and does not change even 60 minutes after the test, also coli number 10 4 or more, since it has grown to several 10 4 or more Staphylococcus aureus, porous coordination is a metal complex It has been clarified that a considerable deodorizing / deodorizing effect, as well as antibacterial and antifungal effects can be exhibited only by the presence of the polymer. Therefore, by further using a porous coordination polymer supporting a photocatalytic metal oxide, the deodorant antibacterial sheet-like material of the present invention has the deodorizing / deodorizing effect of the porous coordination polymer itself and the deodorizing effect. It is clear that the invention surpasses the effectiveness of antibacterial and antifungal properties. Further, the deodorant antibacterial sheet-like substances (6) to (10) of Examples 6 to 10 are sheet-like substances in which the porous coordination polymer particles are exposed on the surface of the sheet base material, and are the porous coordination polymers. A manufacturing process for forming a sol-gel condensed thin film containing porous coordination polymer particles in a manner in which the particles carry a photocatalytic metal oxide, and a photocatalytic metal oxide coating on the surface of the porous coordination polymer particles. It includes a manufacturing process to be processed. The deodorant antibacterial sheet-like substances (6) to (10) of Examples 6 to 10 have a test time of 20 minutes and 40, as in the deodorant antibacterial sheet-like substances (1) to (5) of Examples 1 to 5. The gas concentration tended to decrease as the time passed, such as 1 minute and 60 minutes, but due to the difference in the manufacturing process, it was more than the deodorant antibacterial sheet-like substances (1) to (5) of Examples 1 to 5. The deodorant effect was slightly inferior. Further, the deodorant antibacterial sheet-like substances (11) to (15) of Examples 11 to 15 are sheet-like substances in which the porous coordination polymer particles are exposed on the surface of the sheet base material, and are the porous coordination polymers. A manufacturing process in which the particles carry a visible light responsive photocatalytic metal oxide on the porous coordination polymer particles, and a visible light responsive photocatalytic metal oxide supported. It includes a manufacturing process for forming a sol-gel condensed thin film containing porous coordination polymer particles. The deodorant antibacterial sheet-like substances (11) to (15) of Examples 11 to 15 have a test time of 20 minutes and 40, similarly to the deodorant antibacterial sheet-like substances (1) to (5) of Examples 1 to 5. Every minute and 60 minutes, the gas concentration tends to decrease, and by using porous coordination polymer particles carrying a visible light-responsive photocatalytic metal oxide, Examples 1 to 1. It was slightly superior to the deodorant and antibacterial sheet-like substances (1) to (5) of No. 5 in the deodorizing effect and the speed of deodorizing. The deodorant antibacterial sheet-like substances (21) to (25) of Comparative Examples 1 to 5 are sheet-like substances in which the porous coordination polymer particles are exposed on the surface of the sheet base material, and the porous coordination polymer particles. Is an embodiment in which the photocatalytic metal oxide is not supported. The deodorant antibacterial sheet-like substances (21) to (25) of Comparative Examples 1 to 5 are porous mainly due to the initial effect because the porous coordination polymer particles do not carry the photocatalytic metal oxide. Porosity The deodorizing and deodorizing effect depends only on the adsorption effect of the polymer particles, and the deodorizing and deodorizing effect after 20 minutes is low, and the antibacterial and anti-porosity properties are also without photocatalytic metal oxides. It was sluggish. Further, the deodorant antibacterial sheet-like substances (1) to (5) of Reference Examples 1 to 5 are the same as Examples 1 to 5, but because of the test omitting the irradiation of black tight, the porous coordination polymer The sheets of Comparative Examples 1 to 5 (21) to (25) were tested by using only room light with the photocatalytic metal oxide in an inactive state while the particles carried the photocatalytic metal oxide. ) Similarly, the deodorizing effect depends only on the adsorption effect of the porous coordination polymer particles, which is mainly the initial effect. Without it, it was sluggish. However, due to the presence of porous coordination polymer particles in both the sheet-like material of Comparative Examples 1 to 5 and the deodorant antibacterial sheet-like material of Reference Examples 1 to 5, each stage is compared with the sheet base material (blank). It had deodorant and deodorant effects, as well as antibacterial and antifungal properties. Therefore, the deodorant antibacterial sheet of the present invention obtained by supporting a photocatalytic metal oxide on the porous coordination polymer particles and further irradiating the porous coordination polymer particles with black light further deodorizes the porous coordination polymer particles. -It is concluded that the deodorizing effect and the antibacterial and anti-blackening effects have been improved.

本発明により、悪臭成分、及びVOC成分などの不快臭気成分全般に対して臭気濃度を効果的に減少させる減臭効果、並び消臭効果を発現し、しかもシート状物が吸着(捕捉)した不快臭気成分をシート状物の担持する光触媒物質の触媒活性によって逐次分解する作用でシート状物自体を臭いものとせず、また熱、静電気、摩擦などの刺激によって悪臭成分が多孔性配位高分子から逆戻り放出されることのないシート状物で、しかも臭気吸着能が低下せず、消臭効果が安定的かつ持続的となる抗菌性シート状物を得ることを可能とする。本発明の消臭抗菌性シート状物は、フィルム、シート、テープ、ターポリン、メッシュシート、帆布、布帛などの態様で供され、天井膜、空間仕切り、カーテン、敷物、カバー、ブラインドなど加工されて使用される。使用例は、工場、醸造、農場、畜産場、水産加工場、下水道、マンホール、廃棄物処理場、汚水汚泥処理施設、病院、介護施設、葬儀施設、動物園、公共浴場、公衆トイレ、飲食店、などの任意の場所、及び家庭(トイレ、浴室、キッチン、ベッド、シューズボックス、タンス、クローゼット、ペットケージ、などに任意のカットサイズで使用)など特に限定はなく、いずれも消臭効果、抗菌効果(菌、黴、ウイルスの増殖抑止)が発現される。
INDUSTRIAL APPLICABILITY According to the present invention, a deodorizing effect and a deodorizing effect that effectively reduce the odor concentration with respect to all unpleasant odor components such as malodorous components and VOC components are exhibited, and the sheet-like material is adsorbed (captured). The sheet-like substance itself is not made odorous by the action of sequentially decomposing the odorous component by the catalytic activity of the photocatalyst substance that carries the sheet-like substance, and the malodorous component is released from the porous coordination polymer by stimuli such as heat, static electricity, and friction. It is possible to obtain an antibacterial sheet-like substance that is not released back and has a stable and long-lasting deodorizing effect without lowering the odor adsorption ability. The deodorant and antibacterial sheet-like material of the present invention is provided in the form of a film, sheet, tape, tarpaulin, mesh sheet, canvas, cloth, etc., and is processed such as a ceiling film, a space partition, a curtain, a rug, a cover, and a blind. used. Examples of use are factories, brewing, farms, livestock farms, fishery processing plants, sewers, manholes, waste treatment plants, sewage sludge treatment facilities, hospitals, nursing homes, funeral facilities, zoos, public baths, public toilets, restaurants, etc. There are no particular restrictions on any location such as, and home (used in any cut size for toilets, bathrooms, kitchens, beds, shoe boxes, tons, closets, pet cages, etc.), and all have deodorant and antibacterial effects. (Bacterial, sludge, virus growth suppression) is expressed.

Claims (12)

シート基材の少なくとも1面に多孔性配位高分子粒子が露出したシート状物であって、前記多孔性配位高分子粒子が、有機錯体ユニット及び架橋性有機化合物とで構成され、両者が多方向に交互に連結して空洞セル群を有する結晶構造を成し、前記有機錯体ユニットが2〜4価の金属イオン1〜6個、及び2〜4個のカルボキシル基を有する化合物からなり、少なくとも前記空洞セル群が光触媒性金属酸化物を担持していることを特徴とする消臭抗菌性シート状物。 It is a sheet-like material in which the porous coordination polymer particles are exposed on at least one surface of the sheet base material, and the porous coordination polymer particles are composed of an organic complex unit and a crosslinkable organic compound, both of which are composed of an organic complex unit and a crosslinkable organic compound. The organic complex unit is composed of a compound having 1 to 6 metal ions of 2 to 4 valence and 2 to 4 carboxyl groups by alternately connecting in multiple directions to form a crystal structure having a group of hollow cells. A deodorant antibacterial sheet-like substance characterized in that at least the cavity cell group carries a photocatalytic metal oxide. 前記架橋性有機化合物が、構造中に2〜4個の窒素原子を有する有機配位子、または構造中に1〜2個のカルボキシル基及び1〜2個の窒素原子を有する有機配位子、である請求項1に記載の消臭抗菌性シート状物。 The crosslinkable organic compound is an organic ligand having 2 to 4 nitrogen atoms in the structure, or an organic ligand having 1 to 2 carboxyl groups and 1 to 2 nitrogen atoms in the structure. The deodorant antibacterial sheet-like substance according to claim 1. 前記光触媒性金属酸化物が、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上である請求項1または2に記載の消臭抗菌性シート状物。 Claim 1 or 2 in which the photocatalytic metal oxide is one or more selected from titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide. The deodorant antibacterial sheet-like material described. 前記シート基材、及び/または前記多孔性配位高分子粒子にアルコキシシラン化合物の加水分解物が結合している請求項1〜3の何れか1項に記載の消臭抗菌性シート状物。 The deodorant antibacterial sheet-like substance according to any one of claims 1 to 3, wherein a hydrolyzate of an alkoxysilane compound is bound to the sheet base material and / or the porous coordination polymer particles. 前記シート基材の表面が、シラノール基含有有機シラン化合物のゾルゲル縮合薄膜、またはチタノール基含有有機チタン化合物のゾルゲル縮合薄膜、で被覆されている請求項1〜4の何れか1項に記載の消臭抗菌性シート状物。 The elimination according to any one of claims 1 to 4, wherein the surface of the sheet base material is coated with a sol-gel condensed thin film of a silanol group-containing organic silane compound or a sol-gel condensed thin film of a titanol group-containing organic titanium compound. Odor antibacterial sheet-like material. 前記シート基材が織物を芯材として含み、前記織物が、1)経糸及び緯糸からなる織物、または2)経糸及び左上バイアス糸/右上バイアス糸からなる三軸織物、または3)経糸、緯糸及び左上バイアス糸/右上バイアス糸からなる四軸織物、の何れかである請求項1〜5の何れか1項に記載の消臭抗菌性シート状物。 The sheet base material contains a woven fabric as a core material, and the woven fabric is 1) a woven fabric consisting of warp and weft, or 2) a triaxial woven fabric consisting of warp and upper left bias yarn / upper right bias yarn, or 3) warp, weft and The deodorant antibacterial sheet-like material according to any one of claims 1 to 5, which is any one of a four-axis woven fabric composed of an upper left bias yarn and an upper right bias yarn. シート基材の少なくとも1面に、空洞セル群を有する多孔性配位高分子粒子を含むゾルゲル縮合薄膜を形成する工程、前記多孔性配位高分子粒子を含むゾルゲル縮合薄膜上に光触媒性金属酸化物を含む溶液を塗布し、前記多孔性配位高分子粒子の空洞セル群の一部または全部に前記光触媒性金属酸化物を担持させる工程、を含むことを特徴とする消臭抗菌性シート状物の製造方法。 A step of forming a sol-gel condensed thin film containing porous coordination polymer particles having a group of hollow cells on at least one surface of a sheet base material, photocatalytic metal oxidation on the sol-gel condensed thin film containing the porous coordination polymer particles. A deodorant antibacterial sheet, which comprises a step of applying a solution containing a substance and carrying the photocatalytic metal oxide on a part or all of the hollow cell group of the porosity-coordinating polymer particles. How to make things. 前記多孔性配位高分子粒子が、有機錯体ユニット及び架橋性有機化合物とで構成され、両者が多方向に交互に連結して空洞セル群を有する結晶構造を成し、前記有機錯体ユニットが2〜4価の金属イオン1〜6個、及び2〜4個のカルボキシル基を有する化合物である請求項7に記載の消臭抗菌性シート状物の製造方法。 The porous coordination polymer particles are composed of an organic complex unit and a crosslinkable organic compound, and the two are alternately connected in multiple directions to form a crystal structure having a cavity cell group, and the organic complex unit is 2 The method for producing a deodorant antibacterial sheet-like substance according to claim 7, which is a compound having 1 to 6 ~ 4 valent metal ions and 2 to 4 carboxyl groups. 前記シート基材が織物を芯材として含み、前記織物が、1)経糸及び緯糸からなる織物、または2)経糸及び左上バイアス糸/右上バイアス糸からなる三軸織物、または3)経糸、緯糸及び左上バイアス糸/右上バイアス糸からなる四軸織物、の何れかを含ませる請求項7または8に記載の消臭抗菌性シート状物の製造方法。 The sheet base material contains a woven fabric as a core material, and the woven fabric is 1) a woven fabric consisting of warp and weft, or 2) a triaxial woven fabric consisting of warp and upper left bias yarn / upper right bias yarn, or 3) warp, weft and The method for producing a deodorant antibacterial sheet-like material according to claim 7 or 8, wherein any of the upper left bias yarn and the quadruple woven fabric composed of the upper right bias yarn is included. 空洞セル群を有する多孔性配位高分子粒子、及び光触媒性金属酸化物を含む溶液を配合する工程、前記多孔性配位高分子粒子の空洞セル群の一部または全部に前記光触媒性金属酸化物を担持させる工程(攪拌工程、熟成工程:攪拌工程と熟成工程は兼用可能な工程)、シート基材の少なくとも1面に光触媒性金属酸化物を担持する多孔性配位高分子粒子を含むゾルゲル縮合薄膜形成溶液を塗布(乾燥工程を含む)し、光触媒性金属酸化物を担持する多孔性配位高分子粒子を含むゾルゲル縮合薄膜塗膜を形成する工程、を含むことを特徴とする消臭抗菌性シート状物の製造方法。 A step of blending a solution containing a porous coordination polymer particle having a cavity cell group and a photocatalytic metal oxide, and the photocatalytic metal oxidation in a part or all of the cavity cell group of the porous coordination polymer particle. A sol-gel containing porous coordination polymer particles that support a photocatalytic metal oxide on at least one surface of a sheet base material, a step of supporting an object (stirring step, aging step: a step in which the stirring step and the aging step can be combined). Deodorization comprising a step of applying a condensed thin film forming solution (including a drying step) to form a sol-gel condensed thin film coating film containing porous coordination polymer particles carrying a photocatalytic metal oxide. A method for producing an antibacterial sheet. 前記多孔性配位高分子粒子が、前記多孔性配位高分子粒子が、有機錯体ユニット及び架橋性有機化合物とで構成され、両者が多方向に交互に連結して空洞セル群を有する結晶構造を成し、前記有機錯体ユニットが2〜4価の金属イオン1〜6個、及び2〜4個のカルボキシル基を有する化合物である請求項10に記載の消臭抗菌性シート状物の製造方法。 A crystal structure in which the porous coordination polymer particles are composed of an organic complex unit and a crosslinkable organic compound, and the porous coordination polymer particles are alternately connected in multiple directions to have a cavity cell group. The method for producing a deodorant antibacterial sheet-like substance according to claim 10, wherein the organic complex unit is a compound having 1 to 6 metal ions of 2 to 4 valence and 2 to 4 carboxyl groups. .. 前記シート基材が織物を芯材として含み、前記織物が、1)経糸及び緯糸からなる織物、または2)経糸及び左上バイアス糸/右上バイアス糸からなる三軸織物、または3)経糸、緯糸及び左上バイアス糸/右上バイアス糸からなる四軸織物、の何れかを含ませる請求項10または11に記載の消臭抗菌性シート状物の製造方法。
The sheet base material contains a woven fabric as a core material, and the woven fabric is 1) a woven fabric consisting of warp and weft, or 2) a triaxial woven fabric consisting of warp and upper left bias yarn / upper right bias yarn, or 3) warp, weft and The method for producing a deodorant antibacterial sheet-like material according to claim 10 or 11, wherein any of the upper left bias yarn / the quadruple woven fabric composed of the upper right bias yarn is included.
JP2020012434A 2020-01-29 2020-01-29 Deodorant antibacterial sheet-like material and method for producing the same Active JP7290330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020012434A JP7290330B2 (en) 2020-01-29 2020-01-29 Deodorant antibacterial sheet-like material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020012434A JP7290330B2 (en) 2020-01-29 2020-01-29 Deodorant antibacterial sheet-like material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2021116504A true JP2021116504A (en) 2021-08-10
JP7290330B2 JP7290330B2 (en) 2023-06-13

Family

ID=77174201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020012434A Active JP7290330B2 (en) 2020-01-29 2020-01-29 Deodorant antibacterial sheet-like material and method for producing the same

Country Status (1)

Country Link
JP (1) JP7290330B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015237A (en) * 2021-10-29 2022-02-08 厦门赋源高科技有限公司 Antibacterial composite material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208110A (en) * 2007-01-31 2008-09-11 Nissan Motor Co Ltd Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
WO2013021944A1 (en) * 2011-08-05 2013-02-14 国立大学法人京都大学 Metal nanoparticle-pcp complex and manufacturing method therefor
JP2015007028A (en) * 2013-05-29 2015-01-15 独立行政法人物質・材料研究機構 Oxidation reaction method and organic synthesis method, and oxidation reaction catalyst composition
CN107376847A (en) * 2017-06-23 2017-11-24 孝感市元达新材料科技有限公司 A kind of air purifier multifunctional composite filter net materials and preparation method
JP2019088499A (en) * 2017-11-15 2019-06-13 大原パラヂウム化学株式会社 Deodorant for life smell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208110A (en) * 2007-01-31 2008-09-11 Nissan Motor Co Ltd Porous metal complex, method for producing porous metal complex, adsorbing material, separation material, gas adsorbing material and hydrogen adsorbing material
WO2013021944A1 (en) * 2011-08-05 2013-02-14 国立大学法人京都大学 Metal nanoparticle-pcp complex and manufacturing method therefor
JP2015007028A (en) * 2013-05-29 2015-01-15 独立行政法人物質・材料研究機構 Oxidation reaction method and organic synthesis method, and oxidation reaction catalyst composition
CN107376847A (en) * 2017-06-23 2017-11-24 孝感市元达新材料科技有限公司 A kind of air purifier multifunctional composite filter net materials and preparation method
JP2019088499A (en) * 2017-11-15 2019-06-13 大原パラヂウム化学株式会社 Deodorant for life smell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114015237A (en) * 2021-10-29 2022-02-08 厦门赋源高科技有限公司 Antibacterial composite material and preparation method thereof

Also Published As

Publication number Publication date
JP7290330B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
US20090093359A1 (en) Fiber Fabric Having VOC Removing Function
CN101084342B (en) Sheets to be used in filters, masks and so on having bactericidal effect
JP2008002007A (en) Nanoparticle support material and method for producing the same
JP2013212238A (en) Odor-reducing mesh sheet
JP2006082071A (en) Photocatalytic composition, building material for interior finish, coating material, synthetic resin molded body, method for utilizing photocatalyst and method for decomposing harmful substance
JP6678037B2 (en) Membrane materials for tent structures
JP2007262621A (en) Fiber having photocatalytic ability, cloth using the fiber, and cloth product using the cloth
JP2019064078A (en) Antistatic antibacterial film material
JP7290330B2 (en) Deodorant antibacterial sheet-like material and method for producing the same
JP7333076B2 (en) Antistatic antibacterial antifungal film material
JP6076077B2 (en) air filter
JPH11342310A (en) Functional electret filter and its production and air purifier
JP3713122B2 (en) Deodorant fiber products
JP2005521797A (en) Organic and / or inorganic fiber materials having bactericidal properties and use thereof
TW201625322A (en) Deodorant and deodorizing product
JP2022013196A (en) Deodorant antibacterial anti-fungal substance, deodorant antibacterial anti-fungal coating composition, and deodorant antibacterial anti-fungal coat
JP7339666B2 (en) Deodorant antibacterial sheet-like material and method for producing the same
JP5022561B2 (en) Environmental purification materials
KR102207479B1 (en) Transition metal compound-loaded titanium oxide
JP2017122052A (en) Film material for tent structure
JP2008214830A (en) Functional fiber material and functional fishing net formed by using the same
JP7348654B2 (en) Antistatic deodorizing sheet material and manufacturing method thereof
KR102466308B1 (en) Textile finishing material for furniture and manufacturing method thereof
JPH08266902A (en) Environment purifying material using photocatalyst and its composition
JP2003213565A (en) Flame-retardant antimicrobial textile product and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230525

R150 Certificate of patent or registration of utility model

Ref document number: 7290330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150