JP2022013196A - Deodorant antibacterial anti-fungal substance, deodorant antibacterial anti-fungal coating composition, and deodorant antibacterial anti-fungal coat - Google Patents

Deodorant antibacterial anti-fungal substance, deodorant antibacterial anti-fungal coating composition, and deodorant antibacterial anti-fungal coat Download PDF

Info

Publication number
JP2022013196A
JP2022013196A JP2020115597A JP2020115597A JP2022013196A JP 2022013196 A JP2022013196 A JP 2022013196A JP 2020115597 A JP2020115597 A JP 2020115597A JP 2020115597 A JP2020115597 A JP 2020115597A JP 2022013196 A JP2022013196 A JP 2022013196A
Authority
JP
Japan
Prior art keywords
organic
coordination polymer
porous coordination
oxide
deodorant antibacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020115597A
Other languages
Japanese (ja)
Inventor
俊也 狩野
Toshiya Karino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiraoka and Co Ltd
Original Assignee
Hiraoka and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiraoka and Co Ltd filed Critical Hiraoka and Co Ltd
Priority to JP2020115597A priority Critical patent/JP2022013196A/en
Publication of JP2022013196A publication Critical patent/JP2022013196A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Catalysts (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

To provide a substance capable of stably maintaining a deodorization effect for reducing efficiently, odor concentration, antibacterial and anti-fungal effects, and antiviral property, a coating composition using the same substance, and a coat formed of the coating composition.SOLUTION: A deodorant antibacterial anti-fungal substance has a porous coordination polymer formed of organic complex units and cross linkable organic compounds. In the porous coordination polymer, a three dimensional lattice group in which the organic complex units and the cross linkable organic compounds are alternately coupled in multi directions is provided. In the deodorant antibacterial anti-fungal substance, (1) the organic complex unit is formed of a compound having 1-6 divalent to tetravalent metal ions, and 2-4 carboxyl groups, (2) the cross linkable organic compound is an organic ligand having 2-4 nitrogen atoms in a structure, or having 1-2 carboxyl groups and 1-2 nitrogen atoms in the structure, and in addition, a photocatalytic metal oxide is carried in the three-dimensional lattice group.SELECTED DRAWING: None

Description

本発明は、雑菌腐敗、黴の繁殖、生体排泄物、などの悪臭成分、タバコの煙、排気ガス、揮発性化学物質などの不快臭気成分全般に対して臭気濃度を効果的に減少させる消臭効果、及び悪臭の原因となり得る雑菌や黴の増殖を抑止する抗菌防黴性を安定的に持続し、さらにウイルス感染に対しても抑止効果を有する消臭性抗菌防黴物質と、この消臭性抗菌防黴物質を含んでなる消臭性抗菌防黴塗料組成物と、この消臭性抗菌防黴物質を含んでなる消臭性抗菌防黴塗膜の発明に関する。本発明の消臭性抗菌防黴物質、消臭性抗菌防黴塗料組成物、及び消臭性抗菌防黴塗膜は、フィルム、シート、テープ、プラスチック成型品、金属板、ターポリン、メッシュシート、合成皮革、帆布、織物、布帛、不織布、紙、などの素材に用いられ、これらの消臭性抗菌防黴物質、または消臭性抗菌防黴塗膜を付帯する素材は、天井膜、空間仕切り、巻上昇降式シートシャッター、カーテン、壁紙、敷物、カバー、ブラインド、エアフィルター、医療用不織布防護衣、不織布マスク、など加工されて、工場、オフィス、学校、商業施設、病院、介護施設、式場、ごみ集積場、公衆トイレ、動物園などに広く使用される。特に本発明の消臭性抗菌防黴物質を配合したターポリン、帆布などの樹脂被覆加工された織物、または消臭性抗菌防黴塗膜を表面に付帯するターポリン、帆布などの樹脂被覆加工された織物は、医療用仮設パーティション、空気注入式仮設膜構造による医療用陰圧テントシェルター、に適して用いることができる。 INDUSTRIAL APPLICABILITY The present invention effectively reduces the odor concentration of all unpleasant odor components such as rot of germs, propagation of mold, biological excrement, and unpleasant odor components such as cigarette smoke, exhaust gas, and volatile chemical substances. A deodorant antibacterial antibacterial substance that stably maintains the antibacterial and antifungal properties that suppress the growth of germs and molds that can cause stinks, and also has an antibacterial effect against virus infection, and this deodorant. The present invention relates to a deodorant antibacterial antifungal coating composition containing a sex antibacterial antifungal substance, and an invention of a deodorant antibacterial antifungal coating film containing the deodorant antibacterial antifungal substance. The deodorant antibacterial anti-mold material, the deodorant antibacterial anti-mold coating composition, and the deodorant anti-bacterial anti-mold coating film of the present invention include films, sheets, tapes, plastic molded products, metal plates, tarpaulins, mesh sheets, and the like. Used for materials such as synthetic leather, sail cloth, woven fabric, cloth, non-woven fabric, paper, etc., these deodorant antibacterial anti-mold substances or materials incidental with deodorant anti-bacterial anti-mold coating materials are ceiling films, space partitions, etc. , Roll-up lift sheet shutter, curtain, wallpaper, rug, cover, blind, air filter, medical non-woven protective clothing, non-woven mask, etc. are processed, factory, office, school, commercial facility, hospital, nursing facility, ceremony hall Widely used in garbage collection areas, public toilets, zoos, etc. In particular, a tarpaulin containing the deodorant antibacterial antifungal substance of the present invention, a woven fabric coated with a resin such as canvas, or a tarpaulin having a deodorant antibacterial antifungal coating film on the surface, and a resin coating such as canvas. The woven fabric can be suitable for medical temporary partitions, medical negative pressure tent shelters with an inflatable temporary membrane structure.

以前、本出願人は遮熱機能の減衰を招く原因となる煤塵付着汚れを防ぐ機能を有し、遮熱機能を効率的に持続させることができる採光性の遮熱膜材に関する発明として、光触媒物質、及び熱制御性物質を用いた膜材(特許文献1)を提案した。特に光触媒物質の態様(段落〔0063〕の1つとして、酸化チタンなどの光触媒物質を、シリカ、(合成)ゼオライト、チタンゼオライト、リン酸ジルコニウム、リン酸カルシウム、リン酸亜鉛カルシウム、ハイドロタルサイト、ヒドロキシアパタイト、シリカアルミナ、ケイ酸カルシウム、ケイ酸アルミン酸マグネシウム、ケイソウ土などの無機系多孔質微粒子に担持させたものを使用すること、そして光触媒物質を無機系多孔質微粒子に担持させる手段として、光触媒物質を含有する金属アルコラートによるゾル-ゲル薄膜製造工程を応用した表面処理を用いることを例示した。特許文献1の膜材の発明において光触媒物質を担持する無機系多孔質微粒子は、テント膜材への煤塵付着汚れを防ぐための存在で、無機系多孔質微粒子内に既に酸化チタンなどの光触媒物質を担持した状態にあり、さらに臭気分子を効果的に分解処理できるような吸着容量ではなかった。 Previously, the applicant has a photocatalyst as an invention relating to a light-collecting heat-shielding film material which has a function of preventing soot and dust adhering stains which cause deterioration of the heat-shielding function and can efficiently maintain the heat-shielding function. We have proposed a film material (Patent Document 1) using a substance and a heat-controllable substance. In particular, as one of the aspects of the photocatalytic substance (as one of paragraphs [0063], the photocatalytic substance such as titanium oxide is used as silica, (synthetic) zeolite, titanium zeolite, zirconium phosphate, calcium phosphate, zinc calcium phosphate, hydrotalcite, hydroxyapatite. , Silica alumina, calcium silicate, magnesium silicate aluminate, photocatalytic material as a means for supporting the photocatalytic substance on the inorganic porous fine particles such as silica soil, and as a means for supporting the photocatalytic substance on the inorganic porous fine particles. It is exemplified that a surface treatment applying a sol-gel thin film manufacturing process using a metal alcoholate containing the above is used. In the invention of the film material of Patent Document 1, the inorganic porous fine particles supporting the photocatalytic substance are used for the tent film material. It exists to prevent soot and dirt from adhering to dust, and has already carried a photocatalytic substance such as titanium oxide in the inorganic porous fine particles, and its adsorption capacity is not such that odor molecules can be effectively decomposed.

また、本出願人は、減臭効果と遮熱効果とを有する建築養生メッシュシートの発明として、無機多孔性物質、酸化・還元性物質、及び光触媒性物質などの臭気分子不活性化粒子を用いたメッシュシート(特許文献2)を提案した。特に、無機多孔性物質や酸化・還元性物質などと共に光触媒性物質を用いることで、建築養生メッシュシートが太陽光の照射を受け続ける限り、光触媒性物質を活性化し、それによって臭気分子を吸着した無機多孔性物質や、臭気分子が配位した酸化・還元性物質に常時作用し、この光触媒性物質の作用によって物理吸着や化学配位により捕捉した臭気分子を分解し、無臭化することで、無機多孔性物質や酸化・還元性物質を吸着や配位前の初期状態にリセットし、新たな臭気分子を捕捉できるようになることを段落〔0014〕に開示し、また無機多孔性物質として、活性炭、添着活性炭、白竹炭、活性白土、ゼオライト、ベントナイト、セピオライト、シラス、シリカ、シリカ-マグネシア、モレキュラーシーブなどを用いることを段落〔0023〕に開示した。しかしながら特許文献2のメッシュシートでは、臭気分子を吸着する無機多孔性物質と、臭気分子を分解する光触媒性物質とが別個に存在することで、臭気分子の分解効率が劣ることが後の検討で明らかとなった。 In addition, the applicant uses odor molecule-inactivating particles such as inorganic porous substances, oxidizing / reducing substances, and photocatalytic substances as the invention of the building curing mesh sheet having a deodorizing effect and a heat-shielding effect. The mesh sheet (Patent Document 2) was proposed. In particular, by using photocatalytic substances together with inorganic porous substances and oxidizing / reducing substances, as long as the building curing mesh sheet continues to be exposed to sunlight, the photocatalytic substances are activated, thereby adsorbing odor molecules. By constantly acting on inorganic porous substances and oxidizing / reducing substances coordinated by odor molecules, and by the action of this photocatalytic substance, odor molecules captured by physical adsorption or chemical coordination are decomposed and deodorized. It is disclosed in paragraph [0014] that inorganic porous substances and oxidizing / reducing substances can be reset to the initial state before adsorption and coordination, and new odor molecules can be captured, and as inorganic porous substances, It is disclosed in paragraph [0023] that activated charcoal, impregnated activated charcoal, white bamboo charcoal, activated white clay, zeolite, bentnite, sepiolite, silas, silica, silica-magnesia, molecular sieve and the like are used. However, in the mesh sheet of Patent Document 2, the decomposition efficiency of the odor molecules is inferior due to the separate presence of the inorganic porous substance that adsorbs the odor molecules and the photocatalytic substance that decomposes the odor molecules. It became clear.

金属イオン(2つ以上の有機配位子と結合可能)と有機配位子(配位結合可能な部位を2つ以上有する)が交互に連結して形成され内部に多数の立体網目状空間を持つ多孔性配位高分子が種々知られ、有機配位子のサイズをコントロールすること、すなわち特定の有機化合物を用いることで任意の立体網目状空間に調整し、この立体網目状空間に特定のガス(メタンガス、二酸化炭素など)を大量貯蔵させる検討(特許文献3、特許文献4)がなされている。その他、多孔性配位高分子の立体網目状空間サイズのコントロールによって、ガスの分離フィルターとする試み、イオン電導性を付与した個体電解質の応用、未反応イオン部位を触媒とする試み、などが検討されている。また、この多孔性配位高分子のガス吸着性、金属イオンの抗菌性を利用した生活臭(タバコ臭、動物臭、排泄臭、生ごみ臭、汗臭)用消臭剤、成形品(繊維、繊維製品、フィルター)、抗ウイルス剤(特許文献5)が提案されている。多孔性配位高分子はシリカやゼオライトなどの無機多孔質粒子よりも吸着能及び吸着容量が大きいことで、消臭剤として用いた場合、より短時間で多くの臭気物質を吸着、貯蔵すること、すなわち効果的な消臭が可能となる。しかしながら、多孔性配位高分子の種類、立体網目状空間サイズの設計によっては、熱、静電気、摩擦などの刺激によって臭気物質が多孔性配位高分子や成形品から逆戻り放出する可能性、他の臭気物質と置換する懸念があった。従って多孔性配位高分子の種類、立体網目状空間サイズの設計に無関係に、優れた消臭効果、及び抗菌防黴効果、さらには抗ウイルス効果を安定持続する素材(例えば、フィルム、シート、テープ、プラスチック成型品、金属板、ターポリン、メッシュシート、合成皮革、帆布、織物、布帛、不織布、紙、などの素材)が存在すれば、各種産業分野、及び家庭において、さらに消臭用途、抗菌防黴用途、さらには抗ウイルス用途での利便性を向上させることができる。 Metal ions (capable of binding to two or more organic ligands) and organic ligands (having two or more coordination-bondable sites) are alternately linked to form a large number of three-dimensional network spaces inside. Various porous coordination polymers are known to have, and by controlling the size of the organic ligand, that is, by using a specific organic compound, it is adjusted to an arbitrary three-dimensional network space, and a specific three-dimensional network space is specified. Studies have been made on storing a large amount of gas (methane gas, carbon dioxide, etc.) (Patent Documents 3 and 4). In addition, attempts to use a gas separation filter by controlling the three-dimensional network space size of the porous coordination polymer, application of a solid electrolyte with ionic conductivity, and an attempt to use an unreacted ion site as a catalyst are being investigated. Has been done. In addition, deodorants and molded products (fibers) for daily odors (tobacco odor, animal odor, excretion odor, garbage odor, sweat odor) that utilize the gas adsorption property of this porous coordination polymer and the antibacterial property of metal ions. , Textile products, filters), antiviral agents (Patent Document 5) have been proposed. Porous coordination polymers have higher adsorption capacity and adsorption capacity than inorganic porous particles such as silica and zeolite, so when used as a deodorant, they adsorb and store more odorous substances in a shorter time. That is, effective deodorization is possible. However, depending on the type of porous coordination polymer and the design of the three-dimensional network space size, odorous substances may be released back from the porous coordination polymer and molded products due to stimuli such as heat, static electricity, and friction. There was a concern that it would replace the odorous substance of. Therefore, regardless of the type of porous coordination polymer and the design of the three-dimensional network space size, materials that stably maintain excellent deodorizing effect, antibacterial and antibacterial effect, and antiviral effect (for example, film, sheet, etc.) If tapes, plastic moldings, metal plates, tarpaulins, mesh sheets, synthetic leather, canvas, woven fabrics, fabrics, non-woven fabrics, paper, etc. are present, they can be used in various industrial fields and at home for further deodorization and antibacterial purposes. It is possible to improve the convenience in anti-woven fabric applications and further anti-virus applications.

特開2003-251728号公報Japanese Patent Application Laid-Open No. 2003-251728 特開2015-014093号公報Japanese Patent Application Laid-Open No. 2015-014093 特開2001-348361号公報Japanese Unexamined Patent Publication No. 2001-348361 特開2016-193957号公報Japanese Unexamined Patent Publication No. 2016-193957 特開2019-088499号公報Japanese Unexamined Patent Publication No. 2019-084499

本発明は、雑菌腐敗、黴の繁殖、生体排泄物、などの悪臭成分、タバコの煙、排気ガス、揮発性化学物質などの不快臭気成分全般に対して臭気濃度を効果的に減少させる消臭効果、及び悪臭の原因となり得る雑菌や黴の増殖を抑止する抗菌防黴性を安定的に持続し、さらにウイルス感染に対しても抑止効果を有する消臭性抗菌防黴物質と、この消臭性抗菌防黴物質を含んでなる消臭性抗菌防黴塗料組成物と、この消臭性抗菌防黴物質を含んでなる消臭性抗菌防黴塗膜の提供を課題とする。この消臭性抗菌防黴物質、消臭性抗菌防黴塗料組成物、及び消臭性抗菌防黴塗膜の提供によりこれらは、フィルム、シート、テープ、プラスチック成型品、金属板、ターポリン、メッシュシート、合成皮革、帆布、織物、布帛、不織布、紙、などの素材に用いられ、これらの消臭性抗菌防黴物質、または消臭性抗菌防黴塗膜を付帯する素材は、天井膜、空間仕切り、巻上昇降式シートシャッター、カーテン、壁紙、敷物、カバー、ブラインド、エアフィルター、衣類、など加工されて、工場、オフィス、学校、商業施設、病院、介護施設、式場、ごみ集積場、公衆トイレ、動物園などに広く使用される。特に本発明の消臭性抗菌防黴物質、または消臭性抗菌防黴塗膜を付帯するターポリン、帆布などは空気膜構造の医療用陰圧テントに適して用いることができる。 INDUSTRIAL APPLICABILITY The present invention effectively reduces the odor concentration of all unpleasant odor components such as rot of germs, propagation of mold, biological excrement, and unpleasant odor components such as cigarette smoke, exhaust gas, and volatile chemical substances. A deodorant antibacterial antibacterial substance that stably maintains the antibacterial and antifungal properties that suppress the growth of germs and molds that can cause stinks, and also has an antibacterial effect against virus infection, and this deodorant. An object of the present invention is to provide a deodorant antibacterial antifungal coating composition containing a sex antibacterial antifungal substance and a deodorant antibacterial antifungal coating film containing the deodorant antibacterial antifungal substance. By providing this deodorant antibacterial anti-mold material, deodorant antibacterial anti-mold coating composition, and deodorant anti-bacterial anti-mold coating film, these are film, sheet, tape, plastic molded product, metal plate, tarpaulin, mesh. Used for materials such as sheets, synthetic leather, sail cloth, woven fabrics, fabrics, non-woven fabrics, paper, etc., these deodorant antibacterial anti-mold materials or materials incidental with deodorant antibacterial anti-mold coating materials are ceiling films, Space dividers, hoisting and elevating sheet shutters, curtains, wallpapers, rugs, covers, blinds, air filters, clothing, etc. are processed into factories, offices, schools, commercial facilities, hospitals, nursing homes, ceremonial halls, garbage collection sites, etc. Widely used in public toilets and zoos. In particular, the deodorant antibacterial antifungal substance of the present invention, tarpaulin, canvas or the like incidental with the deodorant antibacterial antifungal coating film can be appropriately used for a medical negative pressure tent having an air film structure.

本発明はかかる点を考慮し種々検討を行った結果、有機錯体ユニット及び架橋性有機化合物とで構成され、この両者が多方向に交互に連結して成る立体格子群を有する多孔性配位高分子において、立体格子群に光触媒性金属酸化物を担持させることによって、悪臭成分、不快臭気成分全般に対して臭気濃度を効果的に減少させる消臭効果、及び悪臭や不快臭の原因となり得る雑菌や黴の増殖を抑止する抗菌防黴性を安定的に持続し、さらにウイルス感染に対しても抑止効果を有する消臭性抗菌防黴物質が得られ、さらにこの消臭性抗菌防黴物質を含んでなる消臭性抗菌防黴塗料組成物が得られ、そしてこの消臭性抗菌防黴物質を含んでなる消臭性抗菌防黴塗膜が得られることを見出して本発明を完成させるに至った。 As a result of various studies in consideration of this point, the present invention is composed of an organic complex unit and a crosslinkable organic compound, and has a porous coordination height having a three-dimensional lattice group in which both are alternately connected in multiple directions. In the molecule, by supporting a photocatalytic metal oxide in a three-dimensional lattice group, a deodorant effect that effectively reduces the odor concentration with respect to malodorous components and unpleasant odorous components in general, and germs that can cause malodors and unpleasant odors. A deodorant antibacterial and antifungal substance that stably maintains antibacterial and antifungal properties that suppress the growth of sardines and has an antibacterial effect against virus infection can be obtained. To complete the present invention, it has been found that a deodorant antibacterial anti-mold coating composition comprising the same deodorant antibacterial anti-mold coating composition can be obtained, and a deodorant anti-bacterial anti-mold coating material containing the deodorant anti-bacterial anti-mold substance can be obtained. I arrived.

すなわち本発明の消臭性抗菌防黴物質は、有機錯体ユニット及び架橋性有機化合物とで構成され、この両者が多方向に交互に連結して成る立体格子群を有する多孔性配位高分子(金属有機構造体)であって、1)前記有機錯体ユニットが2~4価の金属イオン1~6個、及びカルボキシル基を2~4個有する化合物からなり、2)また前記架橋性有機化合物が、構造中に2~4個の窒素原子を有する有機配位子、または構造中に1~2個のカルボキシル基及び1~2個の窒素原子を有する有機配位子であり、さらに前記立体格子群に光触媒性金属酸化物を担持していることが好ましい。有機錯体ユニット同士が、架橋性有機化合物を介在して多方向に規則的に連結することで形成された立体幾何学形状の空間(立方体格子状に限定されないジャングルジム状)が立体格子群となる。この立体格子群が、悪臭成分、や不快臭気成分などを効率的に吸着することで、臭気濃度を短時間で減少させる安定持続的な消臭効果を発現し、さらに安定持続的な抗菌効果と抗ウイルス効果を発現する。特に立体格子群に光触媒性金属酸化物を担持していることにより光触媒性金属酸化物が光励起で発生させるラジカルが臭気分子(有機物)を酸化攻撃することで分解排出し、経時的に立体格子群内部を再度、臭気物質を捕捉(吸蔵)可能な空間にリセットする。またさらに立体格子群に光触媒性金属酸化物を担持していることにより光触媒性金属酸化物が発生させるラジカルが細菌や黴の細胞壁・膜、及びウイルスを構成する核酸(RNA、DNA)、糖タンパク質を攻撃し、細菌や黴の細胞壁・膜、及び核酸、糖タンパク質などの分子の結合を分断するタンパク質変性で、細菌、黴、及びウイルスなどの増殖を抑止し、分子にダメージを受けた細菌、黴、及びウイルスなどは増殖することが出来ずに死滅に至る。特にウイルスのタンパク質、核酸などに変化を生じさせることで、ウイルスに感染したとしても人体細胞表面の受容体に結合する能力を失活させることで感染を抑止させる。そして多孔性配位高分子は有機錯体ユニット部を有することで、多孔性配位高分子塗膜を付帯する物品に帯電防止性の付与も可能とする。架橋性有機化合物は有機錯体ユニット同士が、架橋性有機化合物を介在して多方向に規則的に連結することで形成された立体幾何学形状の空間が立体格子群となる。従って架橋性有機化合物の分子量が大きい程、あるいは分子鎖の分岐が多い程、あるいは有機錯体ユニットの体積が大きい程、あるいは有機錯体ユニットと有機錯体ユニットとの結合角が大きい程、得られる立体格子のサイズ(すなわち多孔性配位高分子の孔)が広大となる。また化学構造中の配座2~4個の選択によって幾何学的形状の結晶構造(立体格子の形状、及びサイズ)が任意設計される。この結晶構造の設計によって、吸着処理(吸蔵)可能な臭気成分(化学物質)をコントロールできる。 That is, the deodorant antibacterial antifungal substance of the present invention is composed of an organic complex unit and a crosslinkable organic compound, and has a porous coordination polymer having a three-dimensional lattice group in which both are alternately connected in multiple directions (a porous coordination polymer (). It is a metal organic structure), and 1) the organic complex unit is composed of a compound having 1 to 6 divalent to tetravalent metal ions and 2 to 4 carboxyl groups, and 2) the crosslinkable organic compound. , An organic ligand having 2 to 4 nitrogen atoms in the structure, or an organic ligand having 1 to 2 carboxyl groups and 1 to 2 nitrogen atoms in the structure, and further said It is preferable that the group carries a photocatalytic metal oxide. A three-dimensional geometric space (a jungle gym shape not limited to a cubic lattice shape) formed by regularly connecting organic complex units in multiple directions with a crosslinkable organic compound interposed therebetween becomes a three-dimensional lattice group. .. By efficiently adsorbing malodorous components and unpleasant odorous components, this three-dimensional lattice group develops a stable and continuous deodorizing effect that reduces the odor concentration in a short time, and further has a stable and continuous antibacterial effect. It exerts an antiviral effect. In particular, since the photocatalytic metal oxide is carried in the three-dimensional lattice group, radicals generated by the photocatalytic metal oxide by photoexcitation decompose and discharge odor molecules (organic substances) by oxidative attack, and the three-dimensional lattice group over time. The inside is reset to a space where odorous substances can be captured (occluded) again. Furthermore, the radicals generated by the photocatalytic metal oxide by supporting the photocatalytic metal oxide in the three-dimensional lattice group are the cell walls / membranes of bacteria and mold, and the nucleic acids (RNA, DNA) and glycoproteins that compose the virus. Bacteria that have been damaged by the growth of bacteria, molds, and viruses by protein denaturation that breaks the bonds between the cell walls and membranes of bacteria and molds, and molecules such as nucleic acids and glycoproteins. Nucleic acid, viruses, etc. cannot propagate and lead to death. In particular, by causing changes in viral proteins, nucleic acids, etc., even if infected with a virus, the ability to bind to receptors on the surface of human cells is inactivated, thereby suppressing the infection. Since the porous coordination polymer has an organic complex unit portion, it is possible to impart antistatic properties to the article accompanying the porous coordination polymer coating film. In the crosslinkable organic compound, a space having a three-dimensional geometric shape formed by regularly connecting organic complex units in multiple directions with the crosslinkable organic compound interposed therebetween is a three-dimensional lattice group. Therefore, the larger the molecular weight of the crosslinkable organic compound, the more branches of the molecular chain, the larger the volume of the organic complex unit, or the larger the bond angle between the organic complex unit and the organic complex unit, the more the obtained three-dimensional lattice. The size of the (ie, the pores of the porous coordination polymer) becomes vast. Further, the crystal structure (shape and size of the three-dimensional lattice) having a geometric shape is arbitrarily designed by selecting 2 to 4 conformations in the chemical structure. By designing this crystal structure, it is possible to control the odorous components (chemical substances) that can be adsorbed (occluded).

本発明の本発明の消臭性抗菌防黴物質は、前記光触媒性金属酸化物が、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上で、かつ、A)200nmから399nmの波長で活性を示す紫外線励起型、B)400nmから780nmの波長で活性を示す可視光励起型、の何れか一方の使用、または併用であることが好ましい。A)の紫外線励起型の光触媒性金属酸化物は屋外使用(太陽光励起)に適し、B)の可視光励起型の光触媒性金属酸化物は屋内使用(蛍光灯、ブラックライト励起)に適している。多孔性配位高分子の有する立体格子構造がこれらの光触媒性金属酸化物を担持することにより、光触媒性金属酸化物の光触媒活性が発現し、多孔性配位高分子の有する立体格子構造内に捕捉した臭気ガスを逐次分解し、さらなる臭気ガスを取り込めるように立体格子の状態を空にリセットする。このリセットにより、吸着/分解リセット/吸着・・・のサイクルを繰り返す永続性を可能とする。またウイルス、菌、黴などのタンパク質や核酸を酸化変性することで、これらの増殖を抑止可能とするので腐敗臭、黴臭の防止にもなる。B)の可視光励起型の光触媒性金属酸化物は、助触媒添加(担持)型光触媒、アニオンドープ型光触媒、カチオンドープ型光触媒、アニオンとカチオンの両方をドープした共ドープ型光触媒、金属ハロゲン化物担持型光触媒、酸素欠損型光触媒、などが例示できる。本発明において光触媒性金属酸化物の担持とは、立体格子構造への担持の他、多孔性配位高分子の表面に露出存在する立体格子群に接しての担持も包含する。 In the deodorant antibacterial antifungal substance of the present invention of the present invention, the photocatalytic metal oxide is titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide. Use or use of one or more of one or more selected from the above, A) ultraviolet excitation type exhibiting activity at a wavelength of 200 nm to 399 nm, and B) visible light excitation type exhibiting activity at a wavelength of 400 nm to 780 nm. Is preferable. The ultraviolet-excited photocatalytic metal oxide of A) is suitable for outdoor use (solar excitation), and the visible light-excited photocatalytic metal oxide of B) is suitable for indoor use (fluorescent lamp, black light excitation). When the three-dimensional lattice structure of the porous coordination polymer carries these photocatalytic metal oxides, the photocatalytic activity of the photocatalytic metal oxide is expressed, and the three-dimensional lattice structure of the porous coordination polymer is contained. The captured odor gas is sequentially decomposed, and the state of the three-dimensional lattice is reset to the sky so that more odor gas can be taken in. This reset enables the permanence of repeating the cycle of adsorption / decomposition reset / adsorption. In addition, by oxidatively denaturing proteins and nucleic acids such as viruses, fungi, and molds, it is possible to suppress their growth, which also prevents putrefactive odors and mold odors. The visible light-excited photocatalytic metal oxide of B) is a co-catalyst addition (supporting) type photocatalyst, an anion-doped photocatalyst, a cation-doped photocatalyst, a co-doped photocatalyst doped with both anions and cations, and a metal halide-supported photocatalyst. Examples thereof include a type photocatalyst and an oxygen-deficient photocatalyst. In the present invention, the support of the photocatalytic metal oxide includes not only the support on the three-dimensional lattice structure but also the support in contact with the three-dimensional lattice group exposed on the surface of the porous coordination polymer.

本発明の本発明の消臭性抗菌防黴物質は、前記多孔性配位高分子が、銀、銅、亜鉛、コバルト、アルミニウム、ニッケル、パラジウム、 モリブデン、及びタングステン、から選ばれた1種以上の金属を担持していることが好ましい。これらの金属は、超微粒子、原子、またはイオンの何れの状態であってもよい。これらの金属の共存により、抗菌性、防黴性、及び抗ウイルス性の効果が光触媒性金属酸化物の酸化攻撃よりも即効性となり、また光触媒性金属酸化物の消臭性、抗菌性、防黴性、及び抗ウイルス性などの効果増強のドープ剤として作用する。これらの金属では特に銀(イオン)、銅(イオン)が好ましい。多孔性配位高分子に金属を担持させることは、紫外線照射の無い屋内、及び夜間においても抗菌性、防黴性、及び抗ウイルス性を発現させるためのもので、紫外線励起型光触媒性金属酸化物の機能を補完する目的である。 In the deodorant antibacterial antifungal substance of the present invention of the present invention, one or more of the porous coordination polymers selected from silver, copper, zinc, cobalt, aluminum, nickel, palladium, molybdenum, and tungsten. It is preferable to carry the metal of. These metals may be in the state of ultrafine particles, atoms, or ions. Due to the coexistence of these metals, the antibacterial, antibacterial, and antiviral effects are more immediate than the oxidative attack of the photocatalytic metal oxide, and the deodorant, antibacterial, and antiviral effects of the photocatalytic metal oxide. It acts as a dope agent for enhancing the effects such as moldiness and antiviral property. Among these metals, silver (ion) and copper (ion) are particularly preferable. Supporting a metal on a porous coordination polymer is for exhibiting antibacterial, antifungal, and antiviral properties indoors and at night without UV irradiation, and is UV-excited photocatalytic metal oxidation. The purpose is to complement the function of things.

本発明の本発明の消臭性抗菌防黴塗料組成物は、多孔性配位高分子を含む消臭性抗菌防黴塗料組成物であって、前記多孔性配位高分子が、有機錯体ユニット及び架橋性有機化合物とで構成され、この両者が多方向に交互に連結して成る立体格子群を有し、1)前記有機錯体ユニットが2~4価の金属イオン1~6個、及びカルボキシル基を2~4個有する化合物からなり、2)また前記架橋性有機化合物が、構造中に2~4個の窒素原子を有する有機配位子、または構造中に1~2個のカルボキシル基及び1~2個の窒素原子を有する有機配位子であり、さらに前記立体格子群に光触媒性金属酸化物を担持することが好ましい。 The deodorant antibacterial anti-mold coating composition of the present invention of the present invention is a deodorant antibacterial anti-mold coating composition containing a porous coordination polymer, and the porous coordination polymer is an organic complex unit. It is composed of a crosslinkable organic compound and a three-dimensional lattice group formed by alternately connecting the two in multiple directions. 1) The organic complex unit contains 1 to 6 metal ions having 2 to 4 valences and carboxyl. It consists of a compound having 2 to 4 groups, 2) and the crosslinkable organic compound is an organic ligand having 2 to 4 nitrogen atoms in the structure, or 1 to 2 carboxyl groups in the structure and It is an organic ligand having 1 to 2 nitrogen atoms, and it is preferable to carry a photocatalytic metal oxide in the three-dimensional lattice group.

本発明の本発明の消臭性抗菌防黴塗料組成物は、前記光触媒性金属酸化物が、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上で、かつ、A)200nmから399nmの波長で活性を示す紫外線励起型、B)400nmから780nmの波長で活性を示す可視光励起型、の何れか一方の使用、または併用であることが好ましい。 In the deodorant antibacterial anti-mold coating composition of the present invention of the present invention, the photocatalytic metal oxide contains titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and oxidation. Use of one or more selected from iron, A) ultraviolet excitation type exhibiting activity at a wavelength of 200 nm to 399 nm, and B) visible light excitation type exhibiting activity at a wavelength of 400 nm to 780 nm. Alternatively, it is preferable to use them in combination.

本発明の本発明の消臭性抗菌防黴塗料組成物は、前記多孔性配位高分子が、銀、銅、亜鉛、コバルト、アルミニウム、ニッケル、パラジウム、 モリブデン、及びタングステン、から選ばれた1種以上の金属を担持していることが好ましい。多孔性配位高分子に金属を担持させることで、光触媒性金属酸化物が機能し難い日陰、及び夜間における抗菌性、防黴性、及び抗ウイルス性の発現させるためのもので、光触媒性金属酸化物の機能を補完するものである。 In the deodorant antibacterial anti-mold coating composition of the present invention of the present invention, the porous coordination polymer is selected from silver, copper, zinc, cobalt, aluminum, nickel, palladium, molybdenum, and tungsten. It is preferable to carry more than a kind of metal. By supporting a metal on a porous coordination polymer, the photocatalytic metal oxide is used to develop antibacterial, antifungal, and antiviral properties in the shade where the photocatalytic metal oxide is difficult to function, and at night. It complements the function of oxides.

本発明の本発明の消臭性抗菌防黴塗料組成物は、シラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物をさらに含むことが好ましい。これら化合物のゾルゲル縮合によって塗料組成物を塗膜化した時に、多孔性配位高分子をゾルゲル縮合の三次元ネットワーク内に固定する作用によって得られる塗膜の屈曲強度及び摩耗強度を増強することができる。 The deodorant antibacterial anti-mold coating composition of the present invention of the present invention preferably further contains a silanol group-containing organic silane compound or a titanol group-containing organic titanium compound. When the coating film is formed into a coating film by sol-gel condensation of these compounds, it is possible to enhance the bending strength and abrasion strength of the coating film obtained by the action of fixing the porous coordination polymer in the three-dimensional network of sol-gel condensation. can.

本発明の本発明の消臭性抗菌防黴塗料組成物は、銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体をさらに含むことが好ましい。これによって抗菌性、防黴性、及び抗ウイルス性の効果が光触媒性金属酸化物の効果よりも即効性となり、また抗菌性、防黴性、及び抗ウイルス性の効果の持続安定性に作用する。消臭性抗菌防黴塗料組成物に銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体をさらに含むことは、光触媒性金属酸化物が機能し難い日陰、及び夜間における抗菌性、防黴性、及び抗ウイルス性の発現させるためのもので、光触媒性金属酸化物の機能を補完するものである。 The deodorant antibacterial antifungal coating composition of the present invention preferably further contains a complex of silver and an organic compound ligand and / or a complex of copper and an organic compound ligand. As a result, the antibacterial, antifungal, and antiviral effects are more immediate than the effects of the photocatalytic metal oxide, and also affect the sustained stability of the antibacterial, antifungal, and antiviral effects. .. Further inclusion of a complex of silver and an organic compound ligand and / or a complex of copper and an organic compound ligand in a deodorant antibacterial antifungal coating composition is a shade in which the photocatalytic metal oxide is difficult to function. , And for the development of antibacterial, antifungal, and antiviral properties at night, complementing the function of photocatalytic metal oxides.

本発明の本発明の消臭性抗菌防黴塗膜は、多孔性配位高分子を含む消臭性抗菌防黴塗膜であって、前記多孔性配位高分子が、有機錯体ユニット及び架橋性有機化合物とで構成され、この両者が多方向に交互に連結して成る立体格子群を有し、1)前記有機錯体ユニットが2~4価の金属イオン1~6個、及びカルボキシル基を2~4個有する化合物からなり、2)また前記架橋性有機化合物が、構造中に2~4個の窒素原子を有する有機配位子、または構造中に1~2個のカルボキシル基及び1~2個の窒素原子を有する有機配位子であり、さらに前記立体格子群に光触媒性金属酸化物を担持することが好ましい。 The deodorant antibacterial anti-mold coating film of the present invention of the present invention is a deodorant antibacterial anti-mold coating film containing a porous coordination polymer, and the porous coordination polymer is an organic complex unit and cross-linking. It is composed of a sex organic compound and has a three-dimensional lattice group formed by alternately connecting the two in multiple directions. 1) The organic complex unit contains 1 to 6 metal ions having 2 to 4 valences and a carboxyl group. It consists of 2 to 4 compounds, 2) and the crosslinkable organic compound is an organic ligand having 2 to 4 nitrogen atoms in the structure, or 1 to 2 carboxyl groups and 1 to 1 in the structure. It is an organic ligand having two nitrogen atoms, and it is preferable to further support a photocatalytic metal oxide in the three-dimensional lattice group.

本発明の本発明の消臭性抗菌防黴塗膜は、前記光触媒性金属酸化物が、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上で、かつ、A)200nmから399nmの波長で活性を示す紫外線励起型、B)400nmから780nmの波長で活性を示す可視光励起型、の何れか一方の使用、または併用であることが好ましい。 In the deodorant antibacterial anti-mold coating film of the present invention, the photocatalytic metal oxide is titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide. , A) UV-excited type that exhibits activity at a wavelength of 200 nm to 399 nm, and B) visible light-excited type that exhibits activity at a wavelength of 400 nm to 780 nm. It is preferable to use it in combination.

本発明の本発明の消臭性抗菌防黴塗膜は、前記多孔性配位高分子が、銀、銅、亜鉛、コバルト、アルミニウム、ニッケル、パラジウム、 モリブデン、及びタングステン、から選ばれた1種以上の金属を担持していることが好ましい。多孔性配位高分子に金属を担持させることは、光触媒性金属酸化物が機能し難い日陰、及び夜間における抗菌性、防黴性、及び抗ウイルス性の発現させるためのもので、光触媒性金属酸化物の機能を補完するものである。 The deodorant antibacterial anti-mold coating film of the present invention of the present invention is one in which the porous coordination polymer is selected from silver, copper, zinc, cobalt, aluminum, nickel, palladium, molybdenum, and tungsten. It is preferable to support the above metal. Supporting a metal on a porous coordination polymer is for exhibiting antibacterial, antifungal, and antiviral properties in the shade where photocatalytic metal oxides are difficult to function, and at nighttime, and is a photocatalytic metal. It complements the function of oxides.

本発明の本発明の消臭性抗菌防黴塗膜は、シラノール基含有有機シラン化合物のゾルゲル縮合体、またはチタノール基含有有機チタン化合物のゾルゲル縮合体をバインダー成分とすることが好ましい。これらのゾルゲル縮合体をバインダー成分とすることによって、多孔性配位高分子をゾルゲル縮合の三次元ネットワーク内に固定安定化することを可能とし、得られる塗膜の屈曲強度及び摩耗強度を増強することができる。 The deodorant antibacterial anti-mold coating film of the present invention preferably contains a solgel condensate of a silanol group-containing organic silane compound or a solgel condensate of a titanol group-containing organic titanium compound as a binder component. By using these sol-gel condensates as a binder component, it is possible to fix and stabilize the porous coordination polymer in the three-dimensional network of sol-gel condensation, and enhance the bending strength and wear strength of the obtained coating film. be able to.

本発明の本発明の消臭性抗菌防黴塗膜は、銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体をさらに含むことが好ましい。消臭性抗菌防黴塗料塗膜に銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体をさらに含むことは、紫外線照射の無い屋内、及び夜間においても抗菌性、防黴性、及び抗ウイルス性を発現させるためのもので、紫外線励起型光触媒性金属酸化物の機能を補完するものである。 The deodorant antibacterial antifungal coating of the present invention of the present invention preferably further contains a complex of silver and an organic compound ligand and / or a complex of copper and an organic compound ligand. The inclusion of a complex of silver and an organic compound ligand and / or a complex of copper and an organic compound ligand in the deodorant antibacterial antifungal coating film can be used indoors without ultraviolet irradiation and even at night. It is intended to exhibit antibacterial, antifungal, and antiviral properties, and complements the functions of ultraviolet-excited photocatalytic metal oxides.

以上の発明により、雑菌腐敗、黴の繁殖、生体排泄物、などの悪臭成分、タバコの煙、排気ガス、揮発性化学物質などの不快臭気成分全般に対して臭気濃度を効果的に減少させる消臭効果、及び悪臭の原因となり得る雑菌や黴の増殖を抑止する抗菌防黴性を安定的に持続し、さらにウイルスの増殖に対しても抑止効果を有する消臭性抗菌防黴物質と、この消臭性抗菌防黴物質を含んでなる消臭性抗菌防黴塗料組成物と、この消臭性抗菌防黴物質を含んでなる消臭性抗菌防黴塗膜を得ることができる。多孔性配位高分子のみでも消臭性(減臭性)は発現可能であるが、本願発明のように多孔性配位高分子層の有する立体格子群に光触媒性金属酸化物を担持することで光触媒性金属酸化物の光触媒活性により、多孔性配位高分子の立体格子群に捕捉した臭気ガスを逐次分解排出し、さらなる臭気ガスを取り込めるように立体格子の状態を空にリセットすることができる。このリセットにより、吸着/分解リセット/吸着・・・のサイクルを繰り返す永続性を可能とする。また特に光触媒性金属酸化物の光触媒活性により発生するラジカルが、細菌や黴の細胞壁・膜、及びウイルスを構成する核酸(RNA、DNA)、糖タンパク質を攻撃し、細菌や黴の細胞壁・膜、及び核酸、糖タンパク質などの分子の結合を分断するタンパク質変性によって、細菌、黴、及びウイルスなどの増殖を抑止し、分子にダメージを受けた細菌、黴、及びウイルスなどは、増殖することが出来ずに死滅させる効果を有することで、腐敗臭、黴臭の防止にもなる。特にウイルスのタンパク質、核酸などに変化を生じさせることで、ウイルスに感染したとしても人体細胞表面の受容体に結合する能力を失活させることで感染を抑止させる。さらに光触媒性金属酸化物は可視光励起型光触媒が屋内用途に適し、また本発明の消臭性抗菌防黴塗膜は、多孔性配位高分子がゾルゲル縮合体に内包されることで塗膜の屈曲強度及び摩耗強度を強化する。拠って本発明のこの消臭性抗菌防黴物質、消臭性抗菌防黴塗料組成物、及び消臭性抗菌防黴塗膜によりこれらは、フィルム、シート、テープ、プラスチック成型品、金属板、ターポリン、メッシュシート、合成皮革、帆布、織物、布帛、不織布、紙、などの素材に用いられ、これらの消臭性抗菌防黴物質、または消臭性抗菌防黴塗膜を付帯する素材は、天井膜、空間仕切り、巻上昇降式シートシャッター、カーテン、壁紙、敷物、カバー、ブラインド、エアフィルター、医療用不織布防護衣、不織布マスク、など加工されて、工場、オフィス、学校、商業施設、病院、介護施設、式場、ごみ集積場、公衆トイレ、動物園などに広く使用される。特に本発明の消臭性抗菌防黴物質を配合したターポリン、帆布などの樹脂被覆加工された織物、または消臭性抗菌防黴塗膜を表面に付帯するターポリン、帆布などの樹脂被覆加工された織物は、医療用仮設パーティション、空気注入式仮設膜構造による医療用陰圧テントシェルター、に適して用いることができる。 According to the above invention, the odor concentration is effectively reduced for all the malodorous components such as germ decay, breeding of mold, biological excrement, and unpleasant odorous components such as cigarette smoke, exhaust gas, and volatile chemical substances. A deodorant antibacterial and antifungal substance that stably maintains antibacterial and antifungal properties that suppress the growth of germs and molds that can cause stinks, and also has an inhibitory effect on the growth of viruses. It is possible to obtain a deodorant antibacterial antifungal coating composition containing a deodorant antibacterial antifungal substance and a deodorant antibacterial antifungal coating film containing the deodorant antibacterial antifungal substance. Deodorant property (deodorant property) can be exhibited only by the porous coordination polymer, but the photocatalytic metal oxide is supported on the three-dimensional lattice group of the porous coordination polymer layer as in the present invention. By the photocatalytic activity of the photocatalytic metal oxide, the odorous gas captured in the three-dimensional lattice group of the porous coordination polymer is sequentially decomposed and discharged, and the state of the three-dimensional lattice can be reset to empty so that more odorous gas can be taken in. can. This reset enables the permanence of repeating the cycle of adsorption / decomposition reset / adsorption. In particular, radicals generated by the photocatalytic activity of photocatalytic metal oxides attack the cell walls / membranes of bacteria and molds, and the nucleic acids (RNA, DNA) and glycoproteins that make up viruses, and the cell walls / membranes of bacteria and molds. And by protein denaturation that breaks the binding of molecules such as nucleic acids and glycoproteins, the growth of bacteria, molds, and viruses is suppressed, and the bacteria, molds, and viruses that have been damaged by the molecules can grow. By having the effect of killing without killing, it also prevents the odor of rotting and odor. In particular, by causing changes in viral proteins, nucleic acids, etc., even if infected with a virus, the ability to bind to receptors on the surface of human cells is inactivated, thereby suppressing the infection. Further, as for the photocatalytic metal oxide, the visible light excitation type photocatalyst is suitable for indoor use, and the deodorant antibacterial anti-mold coating film of the present invention has a porous coordination polymer encapsulated in a sol-gel condensate to form a coating film. Strengthen bending strength and wear strength. Therefore, according to the deodorant antibacterial anti-mold material, the deodorant antibacterial anti-mold coating composition, and the deodorant anti-bacterial anti-mold coating film of the present invention, these are film, sheet, tape, plastic molded product, metal plate, etc. Materials used for materials such as tarpaulins, mesh sheets, synthetic leather, sail cloth, textiles, fabrics, non-woven fabrics, paper, etc. Ceiling film, space partition, hoisting lift sheet shutter, curtain, wallpaper, rug, cover, blind, air filter, medical non-woven protective clothing, non-woven mask, etc. are processed into factories, offices, schools, commercial facilities, hospitals, etc. Widely used in nursing facilities, ceremonial halls, garbage collection areas, public toilets, zoos, etc. In particular, a tarpaulin containing the deodorant antibacterial antifungal substance of the present invention, a woven fabric coated with a resin such as canvas, or a tarpaulin having a deodorant antibacterial antifungal coating film on the surface, and a resin coating such as canvas. The woven fabric can be suitable for medical temporary partitions, medical negative pressure tent shelters with an inflatable temporary membrane structure.

a)本発明の消臭性抗菌防黴物質は、有機錯体ユニット及び架橋性有機化合物とで構成され、この両者が多方向に交互に連結して成る立体格子群を有する多孔性配位高分子であって、1)有機錯体ユニットが2~4価の金属イオン1~6個、及びカルボキシル基を2~4個有する化合物からなり、2)また架橋性有機化合物が、構造中に2~4個の窒素原子を有する有機配位子、または構造中に1~2個のカルボキシル基及び1~2個の窒素原子を有する有機配位子であり、さらに立体格子群に光触媒性金属酸化物を担持するもので、光触媒性金属酸化物が、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上で、かつ、A)200nmから399nmの波長で活性を示す紫外線励起型、B)400nmから780nmの波長で活性を示す可視光励起型、の何れか一方の使用、または併用であり、必要に応じて多孔性配位高分子が、銀、銅、亜鉛、コバルト、アルミニウム、ニッケル、パラジウム、 モリブデン、及びタングステン、から選ばれた1種以上の金属を担持していているものである。
b)また本発明の消臭性抗菌防黴塗料組成物は、上記a)の消臭性抗菌防黴物質を含む塗料組成物で、シラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物を含み、さらに銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体を含む塗料組成物である。
c)また本発明の消臭性抗菌防黴塗膜は、上記a)の消臭性抗菌防黴物質を含む塗膜で、シラノール基含有有機シラン化合物のゾルゲル縮合体、またはチタノール基含有有機チタン化合物のゾルゲル縮合体をバインダー成分とし、さらに銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体を含む塗膜である。
a) The deodorant antibacterial antifungal substance of the present invention is composed of an organic complex unit and a crosslinkable organic compound, and is a porous coordination polymer having a three-dimensional lattice group formed by alternately connecting the two in multiple directions. 1) The organic complex unit consists of 1 to 6 divalent to tetravalent metal ions and 2 to 4 carboxyl groups, and 2) the crosslinkable organic compound is 2 to 4 in the structure. An organic ligand having one nitrogen atom, or an organic ligand having one or two carboxyl groups and one or two nitrogen atoms in the structure, and a photocatalytic metal oxide in a three-dimensional lattice group. The photocatalytic metal oxide to be carried is one or more selected from titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide. Either A) an ultraviolet-excited type that exhibits activity at a wavelength of 200 nm to 399 nm, or B) a visible light-excited type that exhibits activity at a wavelength of 400 nm to 780 nm, whichever is used or used in combination, and the porous coordination is required. The polymer carries one or more metals selected from silver, copper, zinc, cobalt, aluminum, nickel, palladium, molybdenum, and tungsten.
b) The deodorant antibacterial anti-mold coating composition of the present invention is a coating composition containing the deodorant antibacterial anti-mold substance of the above a), and contains a silanol group-containing organic silane compound or a titanol group-containing organic titanium compound. A coating composition comprising a complex of silver and an organic compound ligand and / or a complex of copper and an organic compound ligand.
c) The deodorant antibacterial anti-mold coating film of the present invention is a coating film containing the deodorant antibacterial anti-mold coating substance of a) above, and is a solgel condensate of a silanol group-containing organic silane compound or a titanol group-containing organic titanium. It is a coating film containing a solgel condensate of a compound as a binder component, and further containing a complex of silver and an organic compound ligand, and / or a complex of copper and an organic compound ligand.

多孔性配位高分子粒子は、有機錯体ユニット及び架橋性有機化合物とで構成され、両者が多方向に交互に連結してジャングルジム状(立方体格子状に限定されない)の立体格子群を有する金属有機構造体を成すものである。多孔性配位高分子粒子は、有機錯体ユニットを含む溶液と、架橋性有機化合物を含む溶液との混合、攪拌(高温×高圧の水熱法が好ましい)により結晶構造を任意の時間を経て完成析出させる。有機錯体ユニットと、架橋性有機化合物との反応比(モル比)は、用いる有機錯体ユニットの金属価、及び架橋性有機化合物の架橋点の数により、コンピューターシミュレーションにより決定することが好ましい。また反応に用いる溶液は、水、メタノール、エタノール、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、など公知の溶媒が使用できる。有機錯体ユニットは2~4価の金属イオン1~6個、及び2~4個のカルボキシル基を有する化合物からなる立体的な複合構造体で、架橋性有機化合物をピラー部に例えた場合、有機錯体ユニットはジョイント部に相当する。多孔性配位高分子の多孔は結晶構造内の立体格子群に該当し、多孔性配位高分子を形成する多孔性配位高分子粒子の粒子径は001μm~10μmである。有機錯体ユニットには2~4価の金属イオンを有し、1つの錯体部に1つの金属イオン、もしくは同一金属イオンによる2~4つの金属イオン集合体、または同一金属イオンによる5~6つの金属イオン集合体による錯体構造物が挙げられる。2価の金属イオンは、マンガンイオン、コバルトイオン、ニッケルイオン、銅イオン、亜鉛イオン、鉄イオン、マグネシウムイオン、モリブデンイオン、パラジウムイオンなどが挙げられる。また3価イオンは、クロムイオン、鉄イオン、アルミニウムイオンなどが挙げられる。また4価イオンは、チタンイオン、ジルコニウムイオンなどが挙げられる。特に規則的な結晶構造を形成するために2価イオン(特にコバルトイオン、ニッケルイオン、銅イオン、亜鉛イオン)、または3価イオン(特にクロムイオン、鉄イオン)の使用が好ましい。多孔性配位高分子を構成する金属イオンは複数種の併用であってもよいが、立体格子群の規則性を整えるために単独使用が好ましい。3種以上用いた場合、結合の規則性が乱れ、得られる多孔性配位高分子の立体格子の構造解析を困難とすることがある。 The porous coordination polymer particles are composed of an organic complex unit and a crosslinkable organic compound, and the two are alternately connected in multiple directions to form a jungle gym-like (not limited to cubic lattice-like) three-dimensional lattice group. It forms an organic structure. The porous coordination polymer particles have a crystal structure completed after an arbitrary time by mixing and stirring a solution containing an organic complex unit and a solution containing a crosslinkable organic compound (preferably high temperature × high pressure hydrothermal method). Precipitate. The reaction ratio (molar ratio) between the organic complex unit and the crosslinkable organic compound is preferably determined by computer simulation based on the metal value of the organic complex unit used and the number of crosslink points of the crosslinkable organic compound. As the solution used for the reaction, known solvents such as water, methanol, ethanol, N, N-dimethylformamide, N, N-dimethylacetamide and the like can be used. The organic complex unit is a three-dimensional composite structure composed of a compound having 1 to 6 2- to 4-valent metal ions and 2 to 4 carboxyl groups, and when a crosslinkable organic compound is compared to a pillar portion, it is organic. The complex unit corresponds to the joint portion. The porosity of the porous coordination polymer corresponds to a three-dimensional lattice group in the crystal structure, and the particle size of the porous coordination polymer particles forming the porous coordination polymer is 001 μm to 10 μm. The organic complex unit has 2 to 4 valent metal ions, one metal ion in one complex part, 2 to 4 metal ion aggregates due to the same metal ion, or 5 to 6 metals due to the same metal ion. Examples include complex structures made up of ionic aggregates. Examples of the divalent metal ion include manganese ion, cobalt ion, nickel ion, copper ion, zinc ion, iron ion, magnesium ion, molybdenum ion and palladium ion. Examples of trivalent ions include chromium ions, iron ions, and aluminum ions. Examples of tetravalent ions include titanium ions and zirconium ions. In particular, it is preferable to use divalent ions (particularly cobalt ions, nickel ions, copper ions, zinc ions) or trivalent ions (particularly chromium ions, iron ions) in order to form a regular crystal structure. Although a plurality of types of metal ions constituting the porous coordination polymer may be used in combination, it is preferably used alone in order to arrange the regularity of the three-dimensional lattice group. When three or more kinds are used, the regularity of the bond may be disturbed, and it may be difficult to analyze the structure of the three-dimensional lattice of the obtained porous coordination polymer.

有機錯体ユニットを形成する2~4個のカルボキシル基を有する化合物は、上記金属イオンと錯体を形成し、ZnO(CO 、ZnO(CO 、CrO(CO 、FeO(CO 、CuO(CO 、ZnO(CO 、CrO(CO 、CoO(CO 、FeO(CO 、Zr(OH)(CO 12、Zr(CO 、Zn(CO 、Co(CO 、Ni(CO 、などのパーツを構造中に有する複数の金属イオンの集合体となって4個、6個、8個、または12個の錯部を形成し、架橋性有機化合物と連結することによってピラー部を形成する。従って、分子設計的、構造解析的に1種、多くて2種のカルボキシル基を有する化合物を用いることが好ましい。3種以上用いた場合、結合の規則性が乱れ、得られる多孔性配位高分子の立体格子群の構造解析が困難となることがある。 The compound having 2 to 4 carboxyl groups forming an organic complex unit forms a complex with the above metal ions, and is Zn 4 O (CO 2- ) 6 , Zn 3 O (CO 2- ) 6 , Cr 3 O. (CO 2- ) 6 , Fe 3 O (CO 2- ) 6 , Cu 2 O (CO 2- ) 4 , Zn 2 O ( CO 2- ) 4 , Cr 2 O (CO 2-) 4 , Co 2 O (CO 2- ) 4 , Fe 2 O (CO 2- ) 4 , Zr 6 O 4 (OH) 4 (CO 2- ) 12 , Zr 6 O 8 (CO 2- ) 8 , Zn 3 O 3 (CO 2 ) - ) 3 , Co 3 O 3 (CO 2- ) 3 , Ni 3 O 3 (CO 2- ) 3 , etc. As an aggregate of multiple metal ions having parts in the structure, 4, 6, The pillar portions are formed by forming 8 or 12 complex portions and linking them with a crosslinkable organic compound. Therefore, it is preferable to use a compound having one kind and at most two kinds of carboxyl groups in terms of molecular design and structural analysis. When three or more kinds are used, the regularity of the bond may be disturbed, and it may be difficult to analyze the structure of the three-dimensional lattice group of the obtained porous coordination polymer.

有機錯体ユニットを形成する2~4個のカルボキシル基を有する化合物は、構造中に2個のカルボキシル基を有する化合物として、フマル酸、トランス,トランスムコン酸、フタル酸、イソフタル酸、テレフタル酸、ビフェニル4,4’-ジカルボン酸、2-ヒドロキシテレフタル酸、9,10-アントラセンジカルボン酸、2,5-ジアミノテレフタル酸、2,5-ジヒドロキシテレフタル酸、2,6-ナフテレンテレフタル酸、5-シアノ-1,3-ベンゼンジカルボン酸、2-アミノテレフタル酸、3,5-ピリジンジカルボン酸、2,3-ピラジンジカルボン酸、2,2’-ジアミノ-4,4’-スチルベンジカルボン酸、2,2’-ジニトロ-4,4’-スチルベンジカルボン酸、などが挙げられる。また構造中に3個のカルボキシル基を有する化合物としては、1,3,5-ベンゼントリカルボン酸、ビフェニル-3,4’,5-トリカルボン酸、1,3,5-トリス(4-カルボキシフェニル)ベンゼン、1,3,5-トリス(4’-カルボキシ[1,1’-ビフェニル]-4-イル)ベンゼン、1,3,5-トリス(4-カルボキシフェニル)トリアジン、などが挙げられる。また構造中に4個のカルボキシル基を有する化合物としては、ビフェニル-3,3’,5,5’-テトラカルボン酸、3,3’,5,5’-テトラカルボキシジフェニルメタン、[1,1’,4’1”]ターフェニル-3,3”,5,5”-テトラカルボン酸、1,2,4,5-テトラキス(4-カルボキシフェニル)ベンゼン、などが挙げられる。これらはピラー部となる架橋性有機化合物とのジョイント部を形成するので、分子設計的、構造解析的に1種、多くて2種の有機配位子を用いることが好ましい。3種以上用いた場合、結合の規則性が乱れ、得られる多孔性配位高分子の立体格子群の構造解析を困難とすることがある。この有機錯体ユニット同士が、架橋性有機化合物を介在して多方向に規則的に連結することで形成された立体幾何学形状(立方体格子状に限定されないジャングルジム状)の空間が立体格子群を形成する。従って有機錯体ユニットの分子量が大きい程、あるいは分子鎖の分岐が多い程、あるいは有機錯体ユニットの体積が大きい程、あるいは有機錯体ユニットと有機錯体ユニットとの結合角が大きい程、得られる立体格子のサイズが広大となる。立体格子のサイズは3nm~12nmが好ましい。有機錯体ユニットは、SIGMA-ALDRICH社(シグマアルドリッチジャパン合同会社)の市販品を使用することができる。 Compounds having 2 to 4 carboxyl groups forming an organic complex unit are compounds having 2 carboxyl groups in the structure, such as fumaric acid, trans, transmuconic acid, phthalic acid, isophthalic acid, terephthalic acid and biphenyl. 4,4'-Dicarboxylic acid, 2-hydroxyterephthalic acid, 9,10-anthracendicarboxylic acid, 2,5-diaminoterephthalic acid, 2,5-dihydroxyterephthalic acid, 2,6-naphtherene terephthalic acid, 5-cyano -1,3-benzenedicarboxylic acid, 2-aminoterephthalic acid, 3,5-pyridinedicarboxylic acid, 2,3-pyrazinedicarboxylic acid, 2,2'-diamino-4,4'-stilbendicarboxylic acid, 2,2 '-Dinitro-4,4'-stillbenzicarboxylic acid, etc. may be mentioned. Examples of the compound having three carboxyl groups in the structure include 1,3,5-benzenetricarboxylic acid, biphenyl-3,4', 5-tricarboxylic acid, and 1,3,5-tris (4-carboxyphenyl). Benzene, 1,3,5-tris (4'-carboxy [1,1'-biphenyl] -4-yl) benzene, 1,3,5-tris (4-carboxyphenyl) triazine, and the like can be mentioned. Examples of the compound having four carboxyl groups in the structure include biphenyl-3,3', 5,5'-tetracarboxylic acid, 3,3', 5,5'-tetracarboxydiphenylmethane, [1,1'. , 4'1 "] terphenyl-3,3", 5,5 "-tetracarboxylic acid, 1,2,4,5-tetrakis (4-carboxyphenyl) benzene, etc. These include the pillar part. Since a joint portion is formed with the crosslinkable organic compound, it is preferable to use one kind, at most two kinds of organic ligands in terms of molecular design and structural analysis. When three or more kinds are used, the binding rule. The properties may be disturbed, making it difficult to analyze the structure of the three-dimensional lattice group of the obtained porous coordination polymer. These organic complex units are regularly linked in multiple directions via a crosslinkable organic compound. The space of the three-dimensional geometric shape (jungle gym-like not limited to the cubic lattice shape) formed by this forms a three-dimensional lattice group. Therefore, the larger the molecular weight of the organic complex unit, the more branches of the molecular chain, or The larger the volume of the organic complex unit or the larger the bonding angle between the organic complex unit and the organic complex unit, the wider the size of the obtained three-dimensional lattice. The size of the three-dimensional lattice is preferably 3 nm to 12 nm. Can use a commercially available product of SIGMA-ALDRICH (Sigma Aldrich Japan GK).

架橋性有機化合物は、構造中に2~4個の窒素原子を有する有機配位子、または構造中に1~2個のカルボキシル基及び1~2個の窒素原子を有する有機配位子から任意に選択使用することができる。構造中に2個以上の窒素原子を有する架橋性有機化合物としては、例えば、ピリジン及びピリジン誘導体、アゾピリジン及びアゾピリジン誘導体、ピラジン及びピラジン誘導体、ビピリジン及びビピリジン誘導体、ピペリジン及びピペリジン誘導体、ジピリジル及びジピリジル誘導体、トリアジン及びトリアジン誘導体、イミダゾール及びイミダゾール誘導体、1,4-ジアザビシクロ[2,2,2]オクタン、などのヘテロ原子を両末端に有する環状構造化合物が挙げられる。また構造中に1~2個のカルボキシル基、及び1~2個の窒素原子を有する架橋性有機化合物としては、ピリジンジカルボン酸及びピリジンジカルボン酸誘導体、ビピリジンジカルボン酸及びビピリジンジカルボン酸誘導体、ピラジンジカルボン酸及びピラジンジカルボン酸誘導体、ピラゾリンジカルボン酸及びピラゾリンジカルボン酸誘導体、ピラゾールジカルボン酸及びピラゾールジカルボン酸誘導体、キノキサリンジカルボン酸及びキノキサリンジカルボン酸誘導体、イミダゾリンジカルボン酸及びイミダゾリンジカルボン酸誘導体、イミダゾールジカルボン酸及びイミダゾールジカルボン酸誘導体、ジイミドジカルボン酸及びジイミドジカルボン酸誘導体、キノリンジカルボン酸及びキノリンジカルボン酸誘導体、ビキノリンジカルボン酸及びビキノリンジカルボン酸誘導体、ピリジン誘導体トリカルボン酸、ビピリジン誘導体トリカルボン酸、ピラジン誘導体トリカルボン酸、ピラゾリン誘導体トリカルボン酸、ピラゾール誘導体トリカルボン酸、キノキサリン誘導体トリカルボン酸、イミダゾリン誘導体トリカルボン酸、イミダゾール誘導体トリカルボン酸、ジイミド誘導体トリカルボン酸、キノリン誘導体トリカルボン酸、ビキノリン誘導体トリカルボン酸、ピリジン誘導体テトラカルボン酸、ビピリジン誘導体テトラカルボン酸、ピラジン誘導体テトラカルボン酸、ピラゾリン誘導体テトラカルボン酸、ピラゾール誘導体テトラカルボン酸、キノキサリン誘導体テトラカルボン酸、イミダゾリン誘導体テトラカルボン酸、イミダゾール誘導体テトラカルボン酸、ジイミド誘導体テトラカルボン酸、キノリン誘導体テトラカルボン酸、ビキノリン誘導体テトラカルボン酸、などが挙げられる。これらは架橋性有機化合物によるピラー部を形成するので、分子設計的、構造解析的に1種、多くて2種の有機配位子を用いることが好ましい。3種以上用いた場合、結合の規則性が乱れ、得られる多孔性配位高分子の構造解析を困難とすることがある。有機錯体ユニット同士は、これらの架橋性有機化合物を介在して多方向に規則的に連結することで形成された立体幾何学形状(立方体格子状に限定されないジャングルジム状)の空間が立体格子群を形成する。従って架橋性有機化合物の分子量が大きい程、あるいは分子鎖の分岐が多い程、あるいは架橋性有機化合物の体積が大きい程、得られる立体格子のサイズが広大となる。立体格子のサイズは3nm~15nmが好ましい。 The crosslinkable organic compound is arbitrary from an organic ligand having 2 to 4 nitrogen atoms in the structure, or an organic ligand having 1 to 2 carboxyl groups and 1 to 2 nitrogen atoms in the structure. Can be selected and used. Examples of the crosslinkable organic compound having two or more nitrogen atoms in the structure include pyridine and pyridine derivatives, azopyridine and azopyridine derivatives, pyrazine and pyrazine derivatives, bipyridine and bipyridine derivatives, piperidin and piperidin derivatives, dipyridyl and dipyridyl derivatives, and the like. Cyclic structure compounds having heteroatoms such as triazine and triazine derivatives, imidazole and imidazole derivatives, 1,4-diazabicyclo [2,2,2] octane, etc. at both ends can be mentioned. Examples of the crosslinkable organic compound having 1 to 2 carboxyl groups and 1 to 2 nitrogen atoms in the structure include pyridinedicarboxylic acid and pyridinedicarboxylic acid derivatives, bipyridinedicarboxylic acid and bipyridinedicarboxylic acid derivatives, and pyrazinedicarboxylic acid. And pyrazinedicarboxylic acid derivatives, pyrazoline dicarboxylic acid and pyrazoline dicarboxylic acid derivatives, pyrazole dicarboxylic acid and pyrazole dicarboxylic acid derivatives, quinoxalin dicarboxylic acid and quinoxalin dicarboxylic acid derivatives, imidazole dicarboxylic acid and imidazoline dicarboxylic acid derivatives, imidazole dicarboxylic acid and imidazole dicarboxylic acid. Acid derivative, diimide dicarboxylic acid and diimide dicarboxylic acid derivative, quinoline dicarboxylic acid and quinoline dicarboxylic acid derivative, biquinolin dicarboxylic acid and biquinolin dicarboxylic acid derivative, pyridine derivative tricarboxylic acid, bipyridine derivative tricarboxylic acid, pyrazine derivative tricarboxylic acid, pyrazoline derivative tricarboxylic Acid, pyrazole derivative tricarboxylic acid, quinoxalin derivative tricarboxylic acid, imidazoline derivative tricarboxylic acid, imidazole derivative tricarboxylic acid, diimide derivative tricarboxylic acid, quinoline derivative tricarboxylic acid, biquinolin derivative tricarboxylic acid, pyridine derivative tetracarboxylic acid, bipyridine derivative tetracarboxylic acid, pyrazine Derivative tetracarboxylic acid, pyrazoline derivative tetracarboxylic acid, pyrazole derivative tetracarboxylic acid, quinoxalin derivative tetracarboxylic acid, imidazoline derivative tetracarboxylic acid, imidazole derivative tetracarboxylic acid, diimide derivative tetracarboxylic acid, quinoline derivative tetracarboxylic acid, biquinolin derivative tetra Carboxylic acid, etc. may be mentioned. Since these form pillar portions by a crosslinkable organic compound, it is preferable to use one kind, at most two kinds of organic ligands in terms of molecular design and structural analysis. When three or more kinds are used, the regularity of the bond may be disturbed, which may make it difficult to analyze the structure of the obtained porous coordination polymer. The organic complex units are a group of three-dimensional lattices in which a space having a three-dimensional geometric shape (a jungle gym-like shape not limited to a cubic lattice shape) formed by regularly connecting organic complex units in multiple directions via these crosslinkable organic compounds. To form. Therefore, the larger the molecular weight of the crosslinkable organic compound, the more branches of the molecular chain, or the larger the volume of the crosslinkable organic compound, the wider the size of the obtained three-dimensional lattice. The size of the three-dimensional lattice is preferably 3 nm to 15 nm.

多孔性配位高分子粒子は有機錯体ユニット部を有することで、多孔性配位高分子を付帯する物品(含有または塗膜)に帯電防止性を付与する。そして多孔性配位高分子の有する立体格子群は、雑菌腐敗、黴の繁殖、生体排泄物、などの悪臭成分、タバコの煙、排気ガス、揮発性化学物質(トルエン、石油ベンジンなど)などの不快臭気成分全般を短時間で吸着することで、臭気濃度を効果的に減少させ、しかも消臭効果が安定持続的である。そしてこの立体格子群の一部または全部に光触媒性金属酸化物を担持させることにより、光触媒性金属酸化物の光触媒活性によって、立体格子群に捕捉した臭気ガス(代表的なものとして、アンモニア臭、メルカプト臭、硫化水素臭、加齢臭、インドール臭、スカトール臭など)を逐次分解排出し、立体格子を空にリセットすることで新たにさらなる臭気ガスを取り込める状態となる。(ここで立体格子群の一部または全部、とは立体格子の数に対する一部または全部であって、立体格子体積に対する一部または全部の意味ではない)光触媒性金属酸化物は、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上の粒子径3~15nmの粒子が挙げられ、1つの立体格子単位に担持する粒子は1個、または複数、または多数であってもよく特に限定はない。また多孔性配位高分子の表面の立体格子群に接しての担持であってもよい。光触媒性金属酸化物の光触媒活性によって、多孔性配位高分子の有する立体格子群に捕捉した臭気ガスを逐次分解排出し、新たな臭気ガスを捕捉することで格段の消臭効果をもたらすに加え、光触媒性金属酸化物が光励起で発生させたラジカルが細菌や黴の細胞壁・膜、及びウイルスを構成する核酸(RNA、DNA)、糖タンパク質を攻撃し、細菌や黴の細胞壁・膜、及び核酸、糖タンパク質などの分子の結合を分断するタンパク質変性で、細菌、黴、及びウイルスなどの増殖を抑止し、分子にダメージを受けた細菌、黴、及びウイルスなどは、増殖することが出来ずに死滅に至らしめる抗菌防黴、抗ウイルス効果を発現する。特にウイルスのタンパク質、核酸などに変化を生じさせることで、ウイルスに感染したとしても人体細胞表面の受容体に結合する能力を失活させることで感染を抑止させる。 By having the organic complex unit portion, the porous coordination polymer particles impart antistatic property to the article (containing or coating film) incidental with the porous coordination polymer. The three-dimensional lattice group of the porous coordination polymer is composed of malodorous components such as germ rot, mold propagation, and biological excrement, tobacco smoke, exhaust gas, and volatile chemical substances (toluene, petroleum benzine, etc.). By adsorbing all unpleasant odor components in a short time, the odor concentration is effectively reduced, and the deodorizing effect is stable and sustained. Then, by supporting a part or all of the photocatalytic metal oxide in a part or all of the three-dimensional lattice group, the odorous gas captured in the three-dimensional lattice group (typically, ammonia odor, by the photocatalytic activity of the photocatalytic metal oxide, By sequentially decomposing and discharging mercapto odor, hydrogen sulfide odor, aging odor, indole odor, skatole odor, etc. and resetting the three-dimensional lattice to the sky, it becomes possible to take in more odorous gas. (Here, a part or all of the three-dimensional lattice group, is a part or all of the number of three-dimensional lattices, and does not mean a part or all of the volume of the three-dimensional lattice.) The photocatalytic metal oxide is titanium oxide. One or more particles having a particle diameter of 3 to 15 nm selected from titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide can be mentioned and carried in one three-dimensional lattice unit. The number of particles to be formed may be one, a plurality, or a large number, and is not particularly limited. Further, it may be supported in contact with the three-dimensional lattice group on the surface of the porous coordination polymer. In addition to the photocatalytic activity of the photocatalytic metal oxide, the odorous gas captured in the three-dimensional lattice group of the porous coordination polymer is sequentially decomposed and discharged, and the new odorous gas is captured to bring about a remarkable deodorizing effect. The radicals generated by photoexcitation of photocatalytic metal oxides attack the cell walls / membranes of bacteria and molds, and the nucleic acids (RNA, DNA) and glycoproteins that make up viruses, and the cell walls / membranes of bacteria and molds, and nucleic acids. , Suppresses the growth of bacteria, molds, and viruses by protein denaturation that breaks the binding of molecules such as glycoproteins, and the bacteria, molds, and viruses that have been damaged by the molecules cannot grow. It exerts antibacterial and antiviral effects that lead to death. In particular, by causing changes in viral proteins, nucleic acids, etc., even if infected with a virus, the ability to bind to receptors on the surface of human cells is inactivated, thereby suppressing the infection.

光触媒性金属酸化物は、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上で、かつ、A)200nmから399nmの波長で活性を示す紫外線励起型、B)400nmから780nmの波長で活性を示す可視光励起型、の何れか一方の使用、または併用で使用できる。特にB)の可視光励起型は、1)上記の光触媒性金属酸化物に、銀、プラチナ、金、銅、ロジウム、パラジウム、ルテニウム、イリジウムなどの金属およびそれらの金属の化合物を助触媒として添加(担持)した助触媒添加(担持)型光触媒、2)上記の光触媒性金属酸化物に、窒素、炭素、硫黄、リン、ホウ素、フッ素などをドープしたアニオンドープ型光触媒、3)上記の光触媒性金属酸化物に、クロム、ニオブ、マンガン、コバルト、バナジウム、鉄、ニッケルなどの遷移金属イオンをドープしたカチオンドープ型光触媒、4)上記の光触媒性金属酸化物に、アニオンとカチオンの両方をドープした共ドープ型光触媒、5)上記の光触媒性金属酸化物に、白金、パラジウム、ロジウムなど貴金属のハロゲン化物を担持させた金属ハロゲン化物担持型光触媒、6)上記の光触媒性金属酸化物から部分的に酸素を引き抜いた酸素欠損型光触媒、などが例示できる。光触媒性金属酸化物は、上記より1種、または2種以上を併用して用いることができ、特にA)の紫外線励起型光触媒性金属酸化物と、B)の可視光励起型の光触媒性金属酸化物との併用により、屋内外の光源の種類を問わず光触媒活性を発現し、消臭効果、並び抗菌防黴、及び抗ウイルス性などを常時持続的なものとする。 The photocatalytic metal oxide is one or more selected from titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide, and A) 200 nm to 399 nm. It can be used with or in combination with either an ultraviolet-excited type that exhibits activity at the wavelength of (B) or a visible light-excited type that exhibits activity at a wavelength of 400 nm to 780 nm. In particular, in the visible light excitation type of B), 1) metals such as silver, platinum, gold, copper, rhodium, palladium, ruthenium, and iridium and compounds of those metals are added to the above photocatalytic metal oxide as an auxiliary catalyst ( Anion-doped photocatalyst in which nitrogen, carbon, sulfur, phosphorus, boron, fluorine, etc. are doped into the above-mentioned photocatalytic metal oxide, 3) the above-mentioned photocatalytic metal. Cationic-doped photocatalysts in which oxides are doped with transition metal ions such as chromium, niobium, manganese, cobalt, vanadium, iron, and nickel. 4) The above photocatalytic metal oxides are doped with both anions and cations. Dope-type photocatalyst, 5) Metal halide-supporting photocatalyst in which a halide of a noble metal such as platinum, palladium, or rhodium is supported on the above-mentioned photocatalytic metal oxide, 6) Partially oxygen from the above-mentioned photocatalytic metal oxide. An example is an oxygen-deficient photocatalyst extracted from the metal. The photocatalytic metal oxide can be used alone or in combination of two or more from the above, and in particular, A) ultraviolet-excited photocatalytic metal oxide and B) visible light-excited photocatalytic metal oxidation. When used in combination with a substance, it exhibits photocatalytic activity regardless of the type of light source indoors or outdoors, and has a deodorant effect, antibacterial antifungal property, and antiviral property at all times.

多孔性配位高分子に光触媒性金属酸化物を担持させるには、上記の光触媒性金属酸化物を含む溶液中に多孔性配位高分子を投入して攪拌処理した後、単離乾燥することで、多孔性配位高分子表面、及び立体格子群に光触媒性金属酸化物粒子を担持させることができる。光触媒性金属酸化物は、多孔性配位高分子の表面、及び多孔性配位高分子の有する立体格子群の一部または全部に担持された態様となる。ここで、立体格子群の一部または全部、とは立体格子の数に対する一部または全部であって、立体格子体積に対する一部または全部の意味ではない。また多孔性配位高分子表面に対する光触媒性金属酸化物の担持とは、多孔性配位高分子の表面に露出存在する立体格子群に接しての担持を意味する。そして光触媒性金属酸化物を担持する多孔性配位高分子は、立体格子群に臭気物質を取り込む空間余裕が大きいほど、消臭効果の発現が迅速、かつ容量キャパシティを増すため、個々の立体格子内が多量の光触媒性金属酸化物で充填されない状態(立体格子の体積の50%以上が余裕空間となる状態)、多孔性配位高分子の表面に集中して光触媒性金属酸化物を担持させ、多孔性配位高分子内部の立体格子群を温存してもよい。多孔性配位高分子と光触媒性金属酸化物との質量比は、50:1~1:1、特に10:1~3:2が好ましい。 In order to support the photocatalytic metal oxide on the porous coordination polymer, the porous coordination polymer is put into the above solution containing the photocatalytic metal oxide, stirred, and then isolated and dried. Therefore, the photocatalytic metal oxide particles can be supported on the surface of the porous coordination polymer and the three-dimensional lattice group. The photocatalytic metal oxide is supported on the surface of the porous coordination polymer and a part or all of the three-dimensional lattice group of the porous coordination polymer. Here, a part or all of the three-dimensional lattice group is a part or all with respect to the number of three-dimensional lattices, and does not mean a part or all with respect to the volume of the three-dimensional lattice. Further, the support of the photocatalytic metal oxide on the surface of the porous coordination polymer means the support in contact with the three-dimensional lattice group exposed on the surface of the porous coordination polymer. As for the porous coordination polymer carrying the photocatalytic metal oxide, the larger the space for taking in the odorous substance into the three-dimensional lattice group, the faster the deodorizing effect appears and the larger the capacity capacity. When the lattice is not filled with a large amount of photocatalytic metal oxide (50% or more of the volume of the three-dimensional lattice is a marginal space), the photocatalytic metal oxide is concentrated on the surface of the porous coordination polymer. The three-dimensional lattice group inside the porous coordination polymer may be preserved. The mass ratio of the porous coordination polymer to the photocatalytic metal oxide is preferably 50: 1 to 1: 1, particularly preferably 10: 1 to 3: 2.

また、多孔性配位高分子は、上記光触媒性金属酸化物に加えて、銀、銅、亜鉛、コバルト、アルミニウム、ニッケル、パラジウム、 モリブデン、及びタングステン、から選ばれた1種以上の金属を担持していてもよく、これらの金属は、超微粒子、原子、またはイオンの何れの状態であってもよい。これらの金属の共存により、抗菌性、防黴性、及び抗ウイルス性の効果が光触媒性金属酸化物の酸化攻撃よりも即効性となり、特に光触媒性金属酸化物が機能し難い日陰、及び夜間における抗菌性、防黴性、及び抗ウイルス性の発現し、光触媒性金属酸化物の機能を補完する。さらに光触媒性金属酸化物の消臭性、抗菌性、防黴性、及び抗ウイルス性などの効果増強のドープ剤として作用する。特にこれらの金属イオンが菌、黴、ウイルスの表層の細胞透過性に関与するタンパク質のSH基と反応して生命活動に必要な酵素・タンパク代謝を阻害する効果、あるいは細胞内に侵入した金属イオンがDNA、またはRNAの二本鎖を架橋し、DNA、RNAの複製を阻害することによって菌、黴、ウイルスなどの繁殖を抑止する。特にウイルスのタンパク質、核酸などに変化を生じさせることで、ウイルスに感染したとしても人体細胞表面の受容体に結合する能力を失活させることで感染を抑止させる。これらの金属では特に銀、銀イオン、銅、銅イオンが好ましい。多孔性配位高分子にこれら金属、金属イオンを担持させるには、上記の光触媒性金属酸化物、及びこれら金属、金属イオンを含む溶液中に多孔性配位高分子を投入して攪拌処理した後、単離乾燥することで、多孔性配位高分子表面、及び立体格子群に光触媒性金属酸化物粒子、及び金属、金属イオンを担持させることができる。これらの金属イオンは、これら金属の塩化物、臭化物、ヨウ化物、酸化物、水酸化物、硫酸化物、硝酸化物、炭酸化物、有機酸(酢酸、乳酸、蓚酸、燐酸、チオシアン酸など)、などの金属塩を供給源とする。 In addition to the above photocatalytic metal oxide, the porous coordination polymer carries one or more metals selected from silver, copper, zinc, cobalt, aluminum, nickel, palladium, molybdenum, and tungsten. These metals may be in the state of ultrafine particles, atoms, or ions. Due to the coexistence of these metals, the antibacterial, antifungal, and antiviral effects are more immediate than the oxidative attack of the photocatalytic metal oxide, especially in the shade where the photocatalytic metal oxide is difficult to function and at night. It exhibits antibacterial, antifungal, and antiviral properties and complements the function of photocatalytic metal oxides. Further, it acts as a doping agent for enhancing the effects of the photocatalytic metal oxide such as deodorant property, antibacterial property, antifungal property, and antiviral property. In particular, these metal ions have the effect of reacting with the SH group of proteins involved in cell permeability of the surface layer of bacteria, molds, and viruses to inhibit the metabolism of enzymes and proteins necessary for vital activities, or the metal ions that have invaded cells. Crosses the double strand of DNA or RNA and inhibits the replication of DNA or RNA, thereby suppressing the growth of bacteria, molds, viruses and the like. In particular, by causing changes in viral proteins, nucleic acids, etc., even if infected with a virus, the ability to bind to receptors on the surface of human cells is inactivated, thereby suppressing the infection. Among these metals, silver, silver ion, copper and copper ion are particularly preferable. In order to support these metals and metal ions on the porous coordination polymer, the porous coordination polymer was put into a solution containing the above-mentioned photocatalytic metal oxide and these metals and metal ions and stirred. After that, by isolation and drying, the photocatalytic metal oxide particles, the metal, and the metal ion can be supported on the surface of the porous coordination polymer and the three-dimensional lattice group. These metal ions include chlorides, bromides, iodides, oxides, hydroxides, sulfates, glass oxides, carbonic acids, organic acids (acetic acid, lactic acid, oxalic acid, phosphoric acid, thiosian acid, etc.), etc. The source is the metal salt of.

本発明の消臭性抗菌防黴塗料組成物は、段落〔0023〕~〔0030〕に記載の消臭性抗菌防黴物質を含む塗料組成物で、この塗料の汎用的バインダー成分は熱可塑性樹脂、熱硬化性樹脂、紫外線硬化型樹脂など、公知の樹脂が溶剤可溶型、またはエマルジョン型で使用できるが、塗膜形成をした際に樹脂中に消臭性抗菌防黴物質である多孔性配位高分子が埋没し、多孔性配位高分子の立体格子群を閉塞することで、臭気ガスの吸着能を大幅に低下させる懸念がある。従って本発明の消臭性抗菌防黴塗料組成物には、シラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物を含有することが好ましい。そして本発明の消臭性抗菌防黴塗膜は、この塗料組成物の塗布、乾燥(熱処理)によりゾルゲル縮合反応して形成される。これら化合物のゾルゲル縮合によってこの塗料組成物を薄膜塗膜形成した時に、多孔性配位高分子粒子をゾルゲル縮合の三次元ネットワーク内に固定する作用によって、多孔性配位高分子の立体格子群を極度に閉塞させないようコントロールすることができる。消臭性抗菌防黴塗料組成物に含む、シラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物の仕込比は、多孔性配位高分子(光触媒性金属酸化物などを担持)の配合量に対して、1:4~2:1、特に1:2~3:2が好ましい。また消臭性抗菌防黴塗料組成物に含む、シラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物の仕込比は、多孔性配位高分子(光触媒性金属酸化物を担持し、かつ後述のアルコキシシラン化合物の加水分解物が結合したもの)の配合量に対して、1:4~2:1、特に1:2~3:2が好ましい。消臭性抗菌防黴塗料組成物に含む溶媒は、主として水/アルコール溶媒で、シラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物の濃度(またはこれらの加水分解物の濃度)は0.1~30質量%、特に1~10質量%が好ましい。ゾルゲル縮合体を成すためのシラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物の加水分解促進剤には、アルミニウム、チタニウム、ジルコニウムなどの金属類にアルコキシ基が結合した金属アルコキシド、又はこれらの金属アルコキシドにケト・エノール互変異性体を構成しうる金属キレート化合物、無機酸(塩酸、硝酸、リン酸など)、有機酸(ギ酸、酢酸、ベンゼンスルホン酸など)、アンモニア、有機アミン、ジブチル錫ジラウレート、ジブチル錫ジオクチエートなどを加水分解触媒として、シラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物の質量に対して0.01~1質量%程度使用し、常温~60℃の範囲で3~24時間攪拌すればよい。本発明の消臭性抗菌防黴塗膜は、この塗料組成物の塗布、乾燥(熱処理)によってゾルゲル縮合反応して形成される。 The deodorant antibacterial antifungal coating composition of the present invention is a coating composition containing the deodorant antibacterial antifungal substance described in paragraphs [0023] to [0030], and the general-purpose binder component of this coating material is a thermoplastic resin. Known resins such as heat-curable resin and ultraviolet-curable resin can be used in solvent-soluble type or emulsion type, but when a coating film is formed, the resin is porous, which is a deodorant antibacterial and antifungal substance. There is a concern that the coordinating polymer will be buried and block the three-dimensional lattice group of the porous coordinating polymer, which will significantly reduce the ability to adsorb odorous gas. Therefore, it is preferable that the deodorant antibacterial antifungal coating composition of the present invention contains a silanol group-containing organic silane compound or a titanol group-containing organic titanium compound. The deodorant antibacterial antifungal coating film of the present invention is formed by a sol-gel condensation reaction by applying and drying (heat treating) this coating composition. When this coating composition is formed into a thin film coating film by sol-gel condensation of these compounds, the three-dimensional lattice group of the porous coordination polymer is formed by the action of fixing the porous coordination polymer particles in the three-dimensional network of sol-gel condensation. It can be controlled so as not to be extremely blocked. The charging ratio of the silanol group-containing organic silane compound or the titanol group-containing organic titanium compound contained in the deodorant antibacterial anti-mold coating composition is the blending amount of the porous coordination polymer (supporting a photocatalytic metal oxide or the like). On the other hand, 1: 4 to 2: 1, particularly preferably 1: 2 to 3: 2. Further, the charging ratio of the silanol group-containing organic silane compound or the titanol group-containing organic titanium compound contained in the deodorant antibacterial anti-mold coating composition is a porous coordination polymer (supporting a photocatalytic metal oxide and described later). 1: 4 to 2: 1, particularly preferably 1: 2 to 3: 2, with respect to the blending amount of (the hydrolyzate of the alkoxysilane compound of the above). The solvent contained in the deodorant antibacterial anti-mold coating composition is mainly a water / alcohol solvent, and the concentration of the silanol group-containing organic silane compound or the titanol group-containing organic titanium compound (or the concentration of these hydrolysates) is 0. 1 to 30% by mass, particularly preferably 1 to 10% by mass. The hydrolysis accelerator of the silanol group-containing organic silane compound for forming the solgel condensate, or the titanol group-containing organic titanium compound is a metal alkoxide in which an alkoxy group is bonded to metals such as aluminum, titanium, and zirconium, or these. Metal chelate compounds that can form keto-enol mutants in metal alkoxides, inorganic acids (hydrochloride, nitrate, phosphoric acid, etc.), organic acids (girate, acetic acid, benzenesulfonic acid, etc.), ammonia, organic amines, dibutyltin Using dilaurate, dibutyltin dioctite, etc. as a hydrolysis catalyst, use about 0.01 to 1% by mass based on the mass of the silanol group-containing organic silane compound or the titanol group-containing organic titanium compound, and use 3 at room temperature to 60 ° C. Stir for ~ 24 hours. The deodorant antibacterial antifungal coating film of the present invention is formed by a sol-gel condensation reaction by applying and drying (heat treating) this coating composition.

また多孔性配位高分子にアルコキシシラン化合物の加水分解物が結合していることで、多孔性配位高分子とゾルゲル縮合体との密着性を向上させると同時に塗膜の屈曲強度及び摩耗強度を増大させる。アルコキシシラン化合物は一般式:XR-Si(Y)で表される分子中に2個以上の異なった反応基を有する化合物で、例えば、X=アミノ基、ビニル基、エポキシ基、メタクリル基、アクリル基、クロル基、メルカプト基、イソシアヌレート基、イソシアネート基、など(R=アルキル鎖)、Y=メトキシ基、エトキシ基などである。シランカップリング剤は、アミノシラン、ビニルシラン、エポキシシラン、メタクリルシラン、アクリルシラン、クロルシラン、メルカプトシラン、イソシアヌレートシラン、イソシアネートシラン、などが挙げられる。多孔性配位高分子にアルコキシシラン化合物の加水分解物を結合させる処理は、多孔性配位高分子(光触媒性金属酸化物粒子を担持させる前でも、担持させた後、の何れでも可)を1種以上のアルコキシシラン化合物を1~5質量%濃度で含む水溶液中で処理し、アルコキシシラン化合物の加水分解物:XR-Si(OH)(X、Yは上記と同じ)を多孔性配位高分子の未反応のカルボキシ基、金属イオンなどに結合させる処理である。また、アルコキシシラン化合物の加水分解物が結合した多孔性配位高分子は、オルガノシリケート化合物、シラノール基含有有機シラン化合物、チタノール基含有有機チタン化合物、などのゾルゲル縮合体を生成可能な成分と共に使用し、ゾルゲル縮合体中に多孔性配位高分子が密集した態様が好ましい。アルコキシシラン化合物の加水分解物が結合した多孔性配位高分子は、ゾルゲル縮合体中の結合の一部に何らかの形で取り込まれた塗膜となり、基材との密着強さ、表面摩耗強さを向上させる。本発明の消臭性抗菌防黴塗膜は、このアルコキシシラン化合物の加水分解物が結合した多孔性配位高分子を含む塗料組成物の塗布、乾燥(熱処理)によるゾルゲル縮合反応により形成される。 Further, by binding the hydrolyzate of the alkoxysilane compound to the porous coordination polymer, the adhesion between the porous coordination polymer and the sol-gel condensate is improved, and at the same time, the bending strength and the abrasion strength of the coating film are improved. To increase. The alkoxysilane compound is a compound having two or more different reactive groups in the molecule represented by the general formula: XR-Si (Y) 3 , for example, X = amino group, vinyl group, epoxy group, methacrylic group, and the like. Acrylic group, chlor group, mercapto group, isocyanurate group, isocyanate group, etc. (R = alkyl chain), Y = methoxy group, ethoxy group and the like. Examples of the silane coupling agent include aminosilane, vinylsilane, epoxysilane, methacrylicsilane, acrylicsilane, chlorsilane, mercaptosilane, isocyanuratesilane, and isocyanatesilane. The treatment for binding the hydrolyzate of the alkoxysilane compound to the porous coordination polymer may be performed by using the porous coordination polymer (either before or after supporting the photocatalytic metal oxide particles). Treat in an aqueous solution containing one or more alkoxysilane compounds at a concentration of 1-5% by mass, and hydrolyze the alkoxysilane compound: XR-Si (OH) 3 (X, Y are the same as above) in a porous manner. This is a process of binding to an unreacted carboxy group of a coordination polymer, a metal ion, or the like. Further, the porous coordination polymer to which the hydrolyzate of the alkoxysilane compound is bonded is used together with a component capable of forming a solgel condensate such as an organosilicate compound, a silanol group-containing organic silane compound, and a titanol group-containing organic titanium compound. However, it is preferable that the porous coordinating polymer is densely packed in the solgel condensate. The porous coordination polymer to which the hydrolyzate of the alkoxysilane compound is bonded becomes a coating film that is somehow incorporated into a part of the bonds in the sol-gel condensate, and has adhesion strength with the substrate and surface wear strength. To improve. The deodorant antibacterial anti-mold coating film of the present invention is formed by coating a coating composition containing a porous coordination polymer to which a hydrolyzate of this alkoxysilane compound is bonded, and a solgel condensation reaction by drying (heat treatment). ..

シラノール基含有有機シラン化合物は、化学式:SiO(OR)で表される4官能加水分解性シラン化合物であり、式中、Rは炭素原子数1~10のアルキル基(特に炭素数1~3の低級アルキル基)、またはアリール基(特にフェニル基)で具体的に、テトラメトキシシラン(Si(OCH):別名テトラメチルシリケート)、テトラエトキシシラン(Si(OC):別名テトラエチルシリケート)、テトラプロポキシシラン(Si(OC):別名テトラプロピルシリケート)、テトラブトキシシラン(Si(OC):別名テトラブチルシリケート)、テトラフェノキシシラン(Si(OC):別名テトラフェニルシリケート)、ジメトキシジエトキシシラン(Si(OCH)(OC):別名ジメチルジエチルシリケート)などである。シラノール基含有有機シラン化合物の多量体は、化学式:Sin-1(OR)2(n+1)で表される縮合体であり、式中、Rは炭素原子数1~10のアルキル基(特に炭素数1~3の低級アルキル基)、またはアリール基(特にフェニル基)、nは4官能加水分解性シラン化合物の縮合分子数を表す多量化度(所謂n量体)で、nが2以上のシラノール基含有有機シラン化合物多量体は、4官能加水分解性シラン化合物が加水分解して生成するシラノール基同士の反応で2分子以上が縮合して生成する多量体であり、nの表す多量化度は多量体1分子中に含有するSi原子数を意味する。本発明においては多量化度2~10、好ましくは4~6のシラノール基含有有機シラン化合物多量体(Sin-1(OR)2(n+1))によるゾルゲル縮合体層であることが好ましい。このゾルゲル縮合体層の原子配列はヨコ軸とタテ軸からなる四角格子網目をモデルとすれば、ヨコ軸とタテ軸の交点にSi原子が配置され、上下左右に隣接するSi-Si原子間にO原子が配置されたイメージである。 The silanol group-containing organic silane compound is a tetrafunctional hydrolyzable silane compound represented by the chemical formula: SiO (OR) 4 , in which R is an alkyl group having 1 to 10 carbon atoms (particularly 1 to 3 carbon atoms). (Lower alkyl group), or aryl group (particularly phenyl group), specifically tetramethoxysilane (Si (OCH 3 ) 4 : also known as tetramethylsilicate), tetraethoxysilane (Si (OC 2 H 5 ) 4 : alias. Tetraethyl silicate), tetrapropoxysilane (Si (OC 3 H 7 ) 4 : also known as tetrapropyl silicate), tetrabutoxysilane (Si (OC 4 H 9 ) 4 : also known as tetrabutyl silicate), tetraphenoxysilane (Si (OC 6 )). H 6 ) 4 : Also known as tetraphenyl silicate), dimethoxydiethoxysilane (Si (OCH 3 ) 2 (OC 2 H 5 ) 2 : also known as dimethyl diethyl silicate), and the like. The multimer of the silanol group-containing organic silane compound is a condensate represented by the chemical formula: Syn On -1 (OR) 2 ( n + 1) , in which R is an alkyl group having 1 to 10 carbon atoms (1 to 10 carbon atoms). In particular, a lower alkyl group having 1 to 3 carbon atoms), an aryl group (particularly a phenyl group), or n is a degree of mulnation (so-called n-mer) representing the number of condensed molecules of a tetrafunctional hydrolyzable silane compound, and n is 2. The above silanol group-containing organic silane compound multimer is a multimer formed by condensing two or more molecules by the reaction between silanol groups produced by hydrolysis of a tetrafunctional hydrolyzable silane compound, and is represented by n. The degree of quantification means the number of Si atoms contained in one molecule of the multimer. In the present invention, it is preferable that the sol-gel condensate layer is made of a silanol group-containing organic silane compound multimer (Si nOn -1 (OR) 2 (n + 1) ) having a degree of mass increase of 2 to 10, preferably 4 to 6. .. If the atomic arrangement of this solgel condensate layer is modeled on a square lattice network consisting of horizontal and vertical axes, Si atoms are arranged at the intersections of the horizontal and vertical axes, and between Si-Si atoms adjacent to each other on the top, bottom, left, and right. It is an image in which O atoms are arranged.

チタノール基含有有機チタン化合物は、化学式:TiO(OR)で表される4官能加水分解性チタン化合物であり、式中、Rは炭素原子数1~10のアルキル基(特に炭素数1~3の低級アルキル基)、またはアリール基(特にフェニル基)で具体的に、テトラメトキシチタン(Ti(OCH):別名テトラメチルチタネート)、テトラエトキシチタン(Ti(OC):別名テトラエチルチタネート)、テトラプロポキシチタン(Ti(OC):別名テトラプロピルチタネート)、テトラブトキシチタン(Ti(OC):別名テトラブチルチタネート)、テトラフェノキシチタン(Ti(OC):別名テトラフェニルチタネート)、ジメトキシジエトキシチタン(Ti(OCH)(OC):別名ジメチルジエチルチタネート)などのチタニウムアルコキシド化合物、さらにはトリブトキシチタンステアレート、イソプロポキシチタントリステアレートなどのチタニウムアシレート化合物:Ti(OOCR)、またさらにジイソプロポキシチタンビスアセチルアセトナト、ジイソプロポキシチタンビスエチルアセトアセテートなどのチタニウムキレート化合物:(ROO)Ti(OR)錯体、その他、イソプロポキシチタントリイソステアレート、イソプロポキシチタンジメタクリレートイソステアレート、イソプロポキシチタントリスジオクチルホスフェート、ビスジオクチルホスフェートエチレングリコラートチタン、ジブトキシビストリエタノールアミナトチタンなどが例示できる。チタノール基含有有機チタン化合物の多量体は、化学式:Tin-1(OR)2(n+1)で表される縮合体であり、式中Rは炭素原子数1~10のアルキル基(特に炭素数1~3の低級アルキル基)、またはアリール基(特にフェニル基)、nは4官能加水分解性チタン化合物の縮合分子数を表す多量化度(所謂n量体)で、nが2以上のチタノール基含有有機チタン化合物多量体は、4官能加水分解性チタン化合物が加水分解して生成するチタノール基同士の反応で2分子以上が縮合して生成する多量体であり、nの表す多量化度は多量体1分子中に含有するTi原子数を意味する。本発明においては多量化度2~10、好ましくは4~6のチタノール基含有有機チタン化合物多量体(Tin-1(OR)2(n+1))によるゾルゲル縮合体層が好ましい。このゾルゲル縮合体層の原子配列はヨコ軸とタテ軸からなる四角格子網目をモデルとすれば、ヨコ軸とタテ軸の交点にTi原子が配置され、上下左右に隣接するTi-Ti原子間にO原子が配置されたイメージである。 The titanium group-containing organic titanium compound is a tetrafunctional hydrolyzable titanium compound represented by the chemical formula: TiO (OR) 4 , in which R is an alkyl group having 1 to 10 carbon atoms (particularly 1 to 3 carbon atoms). (Lower alkyl group), or aryl group (particularly phenyl group), specifically tetramethoxytitanium (Ti (OCH 3 ) 4 : also known as tetramethyltitanate), tetraethoxytitanium (Ti (OC 2 H 5 ) 4 : alias. Tetraethyl Titanium), Tetrapropoxytitanium (Ti (OC 3 H 7 ) 4 : Also known as Tetrapropyl Titanate), Tetrabutoxy Titanium (Ti (OC 4 H 9 ) 4 : Also known as Tetrabutyl Titanium), Tetraphenoxy Titanium (Ti (OC 6 ) H 6 ) 4 : Titanium alkoxide compounds such as (also known as tetraphenyl titanate), dimethoxydiethoxytitanium (Ti (OCH 3 ) 2 (OC 2 H 5 ) 2 : also known as dimethyldiethyl titanate), as well as tributoxytitanium stearate, iso. Titanium acylate compounds such as propoxytitanium tristearate: Ti (OOCR) n , and further titanium chelate compounds such as diisopropoxytitanium bisacetylacetonato and diisopropoxytitanium bisethylacetoacetate: (ROO) 2 Ti (OR) 2 . Examples of the complex and others include isopropoxytitanium triisostearate, isopropoxytitanium dimethacrylate isostearate, isopropoxytitanium trisdioctyl phosphate, bisdioctyl phosphate ethylene glycolate titanium, and dibutoxybistriethanol aminatotitanium. The multimer of the titanol group-containing organic titanium compound is a condensed product represented by the chemical formula: Tin On -1 (OR) 2 ( n + 1) , in which R is an alkyl group having 1 to 10 carbon atoms (particularly). A lower alkyl group having 1 to 3 carbon atoms), an aryl group (particularly a phenyl group), or n is a degree of mulchification (so-called n-mer) representing the number of condensed molecules of a tetrafunctional hydrolyzable titanium compound, and n is 2 or more. The titanol group-containing organic titanium compound multimer is a multimer produced by condensing two or more molecules by the reaction between titanol groups produced by hydrolysis of a tetrafunctional hydrolyzable titanium compound, and is represented by n. Degree means the number of Ti atoms contained in one molecule of the multimer. In the present invention, a sol-gel condensate layer made of a titanol group-containing organic titanium compound multimer (Tin On -1 (OR) 2 (n + 1) ) having a degree of mass increase of 2 to 10, preferably 4 to 6, is preferable. If the atomic arrangement of this solgel condensate layer is modeled on a square lattice network consisting of horizontal and vertical axes, Ti atoms are arranged at the intersections of the horizontal and vertical axes, and between Ti-Ti atoms adjacent to each other on the top, bottom, left, and right. It is an image in which O atoms are arranged.

本発明の消臭性抗菌防黴塗料組成物は、銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体をさらに含むことができる。これによって抗菌性、防黴性、及び抗ウイルス性の効果が光触媒性金属酸化物の効果よりも即効性となり、また光触媒性金属酸化物が機能し難い日陰、及び夜間における抗菌性、防黴性、及び抗ウイルス性を発現し、光触媒性金属酸化物の機能を補完する。特にこれらの金属錯体が、菌、黴、ウイルスの表層の細胞透過性に関与するタンパク質のSH基と反応して生命活動に必要な酵素・タンパク代謝を阻害する効果、あるいは細胞内に侵入した金属イオンがDNA、またはRNAの二本鎖を架橋し、DNA、RNAの複製を阻害することによって菌、黴、ウイルスなどの繁殖を抑止する。特にウイルスのタンパク質、核酸などに変化を生じさせることで、ウイルスに感染したとしても人体細胞表面の受容体に結合する能力を失活させることで感染を抑止させる。有機化合物配位子の好ましい例として、アミノ酸、エチレンジアミン、トリエチレンテトラミン、ビピリジン、エチレンアミン酢酸、ピリチオン、フェナントロリン、ポルフィリン、及びクラウンエーテルなどが例示でき、また銀イオンは、臭化銀、塩化銀、クエン酸銀、ヨウ化銀、乳酸銀、硝酸銀、酸化銀、ピクリン酸銀などの銀塩を供給源とし、銅はクエン酸二ナトリウム銅、トリエタノールアミン銅、炭酸銅、炭酸アンモニウム第一銅、水酸化第二銅、塩化銅、塩化第二銅、エチレンジアミン銅錯体、オキシ塩化銅、硫酸オキシ塩化銅、酸化第一銅、チオシアン酸銅などの銅塩を供給源として得られる。本発明の消臭性抗菌防黴塗膜は、この銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体を含む塗料組成物の塗布、乾燥(熱処理)によって形成される。 The deodorant antibacterial antifungal coating composition of the present invention may further contain a complex of silver and an organic compound ligand, and / or a complex of copper and an organic compound ligand. As a result, the antibacterial, antibacterial, and antiviral effects are more immediate than the effects of the photocatalytic metal oxide, and the antibacterial and antibacterial properties at night and in the shade where the photocatalytic metal oxide is difficult to function. , And exhibits antiviral properties and complements the function of photocatalytic metal oxides. In particular, these metal complexes have the effect of inhibiting the metabolism of enzymes and proteins necessary for vital activities by reacting with the SH groups of proteins involved in cell permeability of the surface layers of bacteria, molds, and viruses, or the metals that have invaded cells. Ions cross the double strand of DNA or RNA and inhibit the replication of DNA or RNA, thereby suppressing the growth of bacteria, molds, viruses and the like. In particular, by causing changes in viral proteins, nucleic acids, etc., even if infected with a virus, the ability to bind to receptors on the surface of human cells is inactivated, thereby suppressing the infection. Preferred examples of the organic compound ligand include amino acids, ethylenediamine, triethylenetetramine, bipyridine, ethyleneamineacetic acid, pyrithione, phenanthroline, porphyrin, crown ether and the like, and silver ions include silver bromide, silver chloride, and the like. Sources are silver salts such as silver citrate, silver iodide, silver lactate, silver nitrate, silver oxide, silver picrinate, and copper is disodium copper citrate, triethanolamine copper, copper carbonate, cupric ammonium carbonate, It is obtained from copper salts such as cupric hydroxide, copper chloride, cupric chloride, ethylenediamine copper complex, copper oxychloride, copper sulfate oxychloride, cuprous oxide and copper thiosianate as a source. The deodorant antibacterial anti-mold coating film of the present invention is coated and dried (heat-treated) of a coating composition containing the complex of silver and an organic compound ligand and / or the complex of copper and an organic compound ligand. Formed by.

有機化合物配位子は具体的に、グリシン、ヒスチジン、メチオニンなどのアミノ酸、エチレンジアミン、トリエチレンテトラミン、ビピリジン、エチレンジアミン四酢酸、ヒドロキシエチルエチレンジアミン三酢酸、ジヒドロキシエチルエチレンジアミン二酢酸、1,3-プロパンジアミン四酢酸、ジエチルトリアミン五酢酸、トリエチレンテトラミン六酢酸などのエチレンアミン酢酸、ピリチオン、フェナントロリン、ポルフィリン、及び環状ポリエーテル化合物である。環状ポリエーテル化合物は、9-クラウン-3、12-クラウン-4,15-クラウン-5,18-クラウン-6,21-クラウン-7、24-クラウン-8,27-クラウン-9,30-クラウン-10,33-クラウン-11、36-クラウン-12、ジベンゾ12-クラウン-4、ジベンゾ18-クラウン-6,トリベンゾ18-クラウン-6,ジベンゾ24-クラウン-8,トリベンゾ27-クラウン-9、ジベンゾ30-クラウン-10、ジベンゾ36-クラウン-12、トリベンゾ36-クラウン-12、テトラベンゾ36-クラウン-12(これらはクラウンエーテルのエーテル環を簡略表記したもので頭の数字は全原子数、末尾の数字は酸素原子数を表す)で、環構造内に金属イオンを取り込んで配位したものである。また、これら複数のクラウンエーテルの立体構造体であるクリプタンド[2.2]、クリプタンド[2.2.2]、及びこれらのクラウンエーテルの酸素原子の一部または全部を窒素原子(NH)に置換したアザクラウンエーテル、及びこれらのクラウンエーテルの酸素原子の一部または全部を硫黄原子(SH)に置換したチアザクラウンエーテル、及びこれらの誘導体などのクラウンエーテルが挙げられ、一個の金属イオンに対して複数の配位子が配位したもの、一個の金属イオンに対して複数のクラウンエーテルの環構造でサンドイッチ共有したものを包含する。具体的にはヒスチジン/銀、グリシン/銅、ピリチオン/銅、トリエチレンテトラミン/銅、ジベンゾ24-クラウン-8/銅、ジベンゾ24-クラウン-8/銀などが例示できる。これらの銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体は、多孔性配位高分子粒子(光触媒性金属酸化物などを担持)の配合量に対して、20:1~2:1、特に10:1~3:1が好ましい。 Specific examples of the organic compound ligand include amino acids such as glycine, histidine, and methionine, ethylenediamine, triethylenetetramine, bipyridine, ethylenediaminetetraacetic acid, hydroxyethylethylenediaminetriacetic acid, dihydroxyethylethylenediaminediacetic acid, and 1,3-propanediaminetetraacetic acid. Ethylenediamineacetic acid such as acetic acid, diethyltriaminepentaacetic acid, triethylenetetraminehexacetic acid, pyrithione, phenanthroline, porphyrin, and cyclic polyether compounds. Cyclic polyether compounds are 9-crown-3,12-crown-4,15-crown-5,18-crown-6,21-crown-7,24-crown-8,27-crown-9,30- Crown-10,33-Crown-11, 36-Crown-12, Dibenzo12-Crown-4, Dibenzo18-Crown-6, Tribenzo18-Crown-6, Dibenzo24-Crown-8, Tribenzo27-Crown-9 , Dibenzo 30-crown-10, dibenzo 36-crown-12, tribenzo 36-crown-12, tetrabenzo 36-crown-12 (these are abbreviated representations of the ether ring of crown ether, and the first number is the total number of atoms. The number at the end represents the number of oxygen atoms), which is a coordination by incorporating metal ions into the ring structure. Further, the three-dimensional structures of these plurality of crown ethers, cryptand [2.2] and cryptand [2.2.2], and some or all of the oxygen atoms of these crown ethers are replaced with nitrogen atoms (NH). Aza crown ethers, and thiaza crown ethers in which some or all of the oxygen atoms of these crown ethers are replaced with sulfur atoms (SH), and crown ethers such as derivatives thereof can be mentioned for one metal ion. This includes those in which a plurality of ligands are coordinated, and those in which a single metal ion is sandwiched and shared by a ring structure of a plurality of crown ethers. Specific examples thereof include histidine / silver, glycine / copper, pyrithione / copper, triethylenetetramine / copper, dibenzo24-crown-8 / copper, and dibenzo24-crown-8 / silver. The complex of silver and the organic compound ligand and / or the complex of copper and the organic compound ligand is based on the blending amount of the porous coordination polymer particles (supporting a photocatalytic metal oxide or the like). 20: 1 to 2: 1, particularly preferably 10: 1 to 3: 1.

本発明の消臭性抗菌防黴塗料組成物は、フィルム、シート、テープ、プラスチック成型品、金属板、ターポリン、メッシュシート、合成皮革、帆布、織物、布帛、不織布、紙、などの素材に用いられ、消臭性抗菌防黴塗膜を付帯するこれらの素材は、天井膜、空間仕切り、巻上昇降式シートシャッター、カーテン、壁紙、敷物、カバー、ブラインド、エアフィルター、医療用不織布防護衣、不織布マスク、など加工されて、工場、オフィス、学校、商業施設、病院、介護施設、式場、ごみ集積場、公衆トイレ、動物園などに広く使用される。特に本発明の消臭性抗菌防黴物質を配合したターポリン、帆布などの樹脂被覆加工された織物、または消臭性抗菌防黴塗膜を表面に付帯するターポリン、帆布などの樹脂被覆加工された織物は、医療用仮設パーティション、空気注入式仮設膜構造による医療用陰圧テントシェルター、に適して用いることができる。ターポリンは表側及び裏側の2枚以上の樹脂フィルム(0.1mm~0.5mm厚)で織物を挟込んで熱融着した積層体(0.3mm~1.5mm厚)で、帆布は織物の両面に樹脂コーティング(デッピィング)、含浸被覆し、これを乾燥固化させた樹脂と織物との複合体(0.35mm~1mm厚)、さらにこの複合体上に表側となる樹脂フィルムを熱融着した積層体(0.5mm~1.5mm厚)である。織物は、経糸及び緯糸からなる織物、経糸及び左上バイアス糸/右上バイアス糸からなる三軸織物、経糸、緯糸、及び左上バイアス糸/右上バイアス糸からなる四軸織物、である。経糸及び緯糸からなる織物は、平織物、斜子織物、綾織物、朱子織物、もじり織物(紗織物、絽織物)などの織物が使用でき、織物の目付量は100~500g/m、空隙率は0~25%、が適している。これらの織物には精練、漂白、染色、柔軟化、撥水、防黴、防炎、カレンダー、などの公知の染色整理加工を施したものを使用することもできる。織物を構成する糸条は、合成繊維、天然繊維(綿、ケナフなど)、半合成繊維(レーヨン)、無機繊維(ガラス、シリカ、アルミナ、炭素繊維など)及びこれらの2種以上から成る混合繊維など、何れの繊維も使用できるが、汎用的には、ポリプロピレン繊維、ポリエチレン繊維、ポリビニルアルコール繊維、ポリエステル(ポリエチレンテレフタレート:PET、ポリブチレンテレフタレート:PBT、ポリナフタレンテレフタレート:PNTなど)繊維、ナイロン繊維、アラミド繊維及び、これらの混用繊維(混撚・合撚)などの合成繊維による、1)マルチフィラメント糸条、2)短繊維紡績糸条、3)及びカバリング糸条、から選ばれた1種以上の糸条が使用できる。これらのマルチフィラメント糸条には、タスラン糸条、ウーリー糸条などの嵩高加工糸条を包含する。 The deodorant antibacterial anti-mold coating composition of the present invention is used for materials such as films, sheets, tapes, plastic molded products, metal plates, tarpaulins, mesh sheets, synthetic leathers, sail cloths, woven fabrics, fabrics, non-woven fabrics, and papers. These materials, which are accompanied by deodorant antibacterial antifungal coatings, are ceiling films, space dividers, hoisting lift sheet shutters, curtains, wallpaper, rugs, covers, blinds, air filters, medical non-woven protective clothing, etc. It is processed into non-woven fabric masks, etc., and is widely used in factories, offices, schools, commercial facilities, hospitals, nursing homes, ceremonial halls, garbage collection areas, public toilets, zoos, etc. In particular, a tarpaulin containing the deodorant antibacterial antifungal substance of the present invention, a woven fabric coated with a resin such as canvas, or a tarpaulin having a deodorant antibacterial antifungal coating film on the surface, and a resin coating such as canvas. The woven fabric can be suitable for medical temporary partitions, medical negative pressure tent shelters with an inflatable temporary membrane structure. The tarpaulin is a laminate (0.3 mm to 1.5 mm thick) in which a woven fabric is sandwiched between two or more resin films (0.1 mm to 0.5 mm thick) on the front side and the back side, and the canvas is a woven fabric. Both sides were coated with resin (deping), impregnated and coated, and then dried and solidified to form a composite of resin and woven fabric (thickness of 0.35 mm to 1 mm), and a resin film on the front side was heat-fused onto this composite. It is a laminated body (thickness of 0.5 mm to 1.5 mm). The woven fabric is a woven fabric consisting of a warp and a weft, a triaxial woven fabric consisting of a warp and an upper left bias yarn / upper right bias yarn, a warp, a weft, and a quadruaxial woven fabric consisting of an upper left bias yarn / upper right bias yarn. As the woven fabric consisting of warp and weft, woven fabrics such as plain woven fabric, diagonal woven fabric, twill woven fabric, red woven fabric, and mojiri woven fabric ( gauze woven fabric, woven fabric) can be used. A suitable rate is 0 to 25%. As these woven fabrics, those that have undergone known dyeing arrangement processing such as scouring, bleaching, dyeing, softening, water repellency, mold proofing, flame proofing, and calendar can also be used. The threads that make up the fabric are synthetic fibers, natural fibers (cotton, kenaf, etc.), semi-synthetic fibers (rayon), inorganic fibers (glass, silica, alumina, carbon fibers, etc.) and mixed fibers consisting of two or more of these. Any fiber can be used, but for general purposes, polypropylene fiber, polyethylene fiber, polyvinyl alcohol fiber, polyester (polyethylene terephthalate: PET, polybutylene terephthalate: PBT, polynaphthalene terephthalate: PNT, etc.) fiber, nylon fiber, etc. One or more kinds selected from 1) multifilament yarn, 2) short fiber spun yarn, 3) and covering yarn made of aramid fiber and synthetic fiber such as blended fiber (blended / combined twist). Threads can be used. These multifilament yarns include bulky processed yarns such as Taslan yarns and Woolly yarns.

ターポリン、帆布などの樹脂被覆加工に用いる熱可塑性樹脂組成物の熱可塑性樹脂は、軟質塩化ビニル樹脂(可塑剤配合)、塩化ビニル系共重合体樹脂、塩素化塩化ビニル樹脂、オレフィン樹脂(PE,PP)、オレフィン系共重合体樹脂、エチレン-酢酸ビニル共重合体樹脂(EVA)、エチレン-(メタ)アクリル酸(エステル)共重合体樹脂、ウレタン樹脂、酢酸ビニル系共重合体樹脂、スチレン系共重合体樹脂、ポリエステル系共重合体樹脂、フッ素含有共重合体樹脂など、ショアA硬度35~85程度の熱可塑性樹脂、またはエラストマーであり、これらにはウレタンゴム、アクリルゴム、ブタジエンゴム、クロルスルホン化ポリエチレン、SBR、EPDM、EPMなどを含み、ゴム弾性を強化させたものでもよい。エラストマーとは2種以上のモノマーからなるブロック共重合体樹脂で、個々のブロック成分がハードセグメント、及びソフトセグメントを構成する樹脂である。これらの熱可塑性樹脂、エラストマーのうち、特に高周波溶着性を有する軟質塩化ビニル樹脂、塩化ビニル系共重合体樹脂、塩素化塩化ビニル樹脂、エチレン-酢酸ビニル共重合体樹脂(EVA)、エチレン-(メタ)アクリル酸(エステル)共重合体樹脂、ウレタン樹脂、及びフッ素含有共重合体樹脂などが好ましい。熱可塑性樹脂組成物は、上記熱可塑性樹脂を主体に、安定剤、フィラー、着色剤、顔料、メタリック顔料、蓄光顔料、難燃剤、防炎剤、紫外線吸収剤、光安定剤、有機系防黴剤、消臭剤、帯電防止剤、架橋剤などの公知の添加剤を任意に組み合わせ配合することができる。 The thermoplastic resin of the thermoplastic resin composition used for resin coating processing such as tarpaulin and sail cloth is a soft vinyl chloride resin (containing a plasticizer), a vinyl chloride-based copolymer resin, a chlorinated vinyl chloride resin, and an olefin resin (PE, PP), olefin-based copolymer resin, ethylene-vinyl acetate copolymer resin (EVA), ethylene- (meth) acrylic acid (ester) copolymer resin, urethane resin, vinyl acetate-based copolymer resin, styrene-based It is a thermoplastic resin or elastomer having a shore A hardness of about 35 to 85, such as a copolymer resin, a polyester-based copolymer resin, and a fluorine-containing copolymer resin, and these include urethane rubber, acrylic rubber, butadiene rubber, and chlor. It may contain sulfonated polyethylene, SBR, EPDM, EPM and the like to enhance rubber elasticity. Elastomer is a block copolymer resin composed of two or more kinds of monomers, and each block component constitutes a hard segment and a soft segment. Among these thermoplastic resins and elastomers, soft vinyl chloride resin having high frequency welding property, vinyl chloride-based copolymer resin, chlorinated vinyl chloride resin, ethylene-vinyl acetate copolymer resin (EVA), ethylene- ( Meta) Acrylic acid (ester) copolymer resin, urethane resin, fluorine-containing copolymer resin and the like are preferable. The thermoplastic resin composition is mainly composed of the above-mentioned thermoplastic resin, and is mainly a stabilizer, a filler, a colorant, a pigment, a metallic pigment, a phosphorescent pigment, a flame retardant, a flame retardant, an ultraviolet absorber, a light stabilizer, and an organic fungicide. Known additives such as agents, deodorants, antistatic agents, and cross-linking agents can be arbitrarily combined and blended.

本発明を下記の実施例及び比較例を挙げて更に説明するが、本発明の態様はこれらの例の範囲に限定されるものではない。実施例及び比較例において、試験シートの消臭性、抗菌性、防黴性、抗ウイルス性は下記の試験方法により測定し、評価した。
<消臭性>
容積5LのTedlar(登録商標)ガスバリヤーバッグを4個用意し、各々のバッグに濃度10ppmに調整した4種の化学物質ガス、1)アンモニア(塩基性)、2)イソ吉草酸(酸性)、3)硫化水素(酸性)、4)トルエン(VOC)を各々3L封入した4バッグを3セット準備した。
10cm×10cmサイズの試験シート状物(片面に多孔性配位高分子含有塗膜形成)を、1)→2)→3)→4)の順にバッグ内に入れ、各々ブラックライト(ピーク365nm)照射、または蛍光灯照射(多孔性配位高分子含有塗膜形成面に照射:照射距離2.5cm:テドラーバッグ内に密封静置)の環境下、各々25℃×30分、25℃×60分、25℃×120分、の3水準を室内静置した後の各々のガス濃度をガス検知管(ガステック)で測定した。
※ブラックライト 機種SL-B01A5(オーム電機株式会社)実施例1~5,7~10
W55mm×H160mm×D25mm
※直管蛍光灯 4W(FL4D)×2本(パナソニック株式会社)実施例6,10
また実施例のシート状物試験片にブラックライトの照射、または蛍光灯の照射を行わず、ブラックライトもしくは蛍光灯の有無による消臭効果の対比試験を行った結果を参考例の扱いとした。
<抗菌性>
抗菌性(JIS Z2801:2010年準拠)
シート状物試験片(実施例,比較例)の表面に菌液を滴下して植菌し(植菌数10)、試験片が菌液に接するように、菌液と試験片シート状物を密着させ、35℃、相対湿度90%以上の環境下、ブラックライト(ピーク365nm)照射(多孔性配位高分子含有塗膜形成面に照射:照射距離2.5cm)条件下で24時間培養した。培養後、試験片シートを洗い流し1cmあたりの生菌数を測定し、抗菌活性値(対象区における菌数対数値から実施例または比較例の試験片シート状物における菌数対数値を差し引いた値)を算出した。
また実施例のシート状物試験片にブラックライトの照射、または蛍光灯の照射を行わず、ブラックライトもしくは蛍光灯の有無による抗菌効果の対比試験を行った結果を参考例の扱いとした。
表中の数値は試験片1cm当たりの生菌数であり、「ND」は生菌の不検出(Not Detected)とする。菌液調整溶液は1/200NB培地を用いた。使用した菌種を以下に示す。
黄色ぶどう球菌「Staphylococcus aureus subsp. aureus 12732」
大腸菌「Escherichia coli NBRC 3972」
※ブラックライト 機種SL-B01A5(オーム電機株式会社)実施例1~5,7~10
W55mm×H160mm×D25mm
※直管蛍光灯 4W(FL4D)×2本(パナソニック株式会社)実施例6,10
<防黴性:JIS Z2911培養試験>
幅3cm×長さ3cmのシート状物(実施例,比較例)に、下記試験用黴の胞子を接種し、ポテト・デキストロース寒天培地上に置き、ブラックライト(ピーク365nm)照射、または蛍光灯照射(多孔性配位高分子含有塗膜形成面に照射:照射距離2.5cm)条件下、28℃×7日間、及び14日間、黴の発生状況を観察し、以下の判定基準で評価した。
また実施例のシート状物試験片にブラックライトの照射、または蛍光灯の照射を行わず、ブラックライトもしくは蛍光灯の有無による防黴効果の対比試験を行った結果を参考例の扱いとした。
1:接種部分に菌糸の発育が認められない
2:接種部分に認められる菌糸の発育部分の面積が全面積の1/3を超えない
3:接種部分に認められる菌糸の発育部分の面積が全面積の1/3を超える
〈試験用黴〉(A)+(B)+(C)の混合黴
(A)Aspergillus niger NBRC 105649(黒黴)
(B)Penicillium citrinum NBRC 6352(青黴)
(C)Cladosporium cladosporioides NBRC 6348(クロカワ黴)
※ブラックライト 機種SL-B01A5(オーム電機株式会社)実施例1~5,7~10
W55mm×H160mm×D25mm
※直管蛍光灯 4W(FL4D)×2本(パナソニック株式会社)実施例6,10
<抗ウイルス性(ISO 21720)>
※プラスチック製品向け抗菌試験方法:ISO 22196(JIS Z2801)準拠
試験方法:一般財団法人カケンテストセンター法
5cm×5cmの試験片(多孔性配位高分子含有塗膜形成、多孔性配位高分子含有塗膜未形成)に0.4mlのネコカリシウイルス(感染症法に定める病原体の中で危険度の低い病原体)液を滴下し、4cm×4cmのフィルムで被覆し、25℃×24Hr静置(ブラックライト:ピーク365nm照射、または蛍光灯照射(多孔性配位高分子含有塗膜形成面に照射:照射距離2.5cm条件下)した後、抗ウイルス活性値を測定。
抗ウイルス活性値は、多孔性配位高分子含有塗膜未形成試験片の24時間静置後のウイルス感染価(PFU/cm)の常用対数の平均値から、抗ウイルス加工品の24時間静置後のウイルス感染価(PFU/cm)の常用対数の平均値を差し引いた値で、抗ウイルス活性値2.0以上(ウイルスの減少率1/100以上、抗ウイルス活性値3.0以上はウイルスの減少率1/1000)を効果ありと判断する。
また実施例のシート状物試験片にブラックライトの照射、または蛍光灯の照射を行わず、ブラックライトもしくは蛍光灯の有無による抗ウイルス性の効果の対比試験を行った結果を参考例の扱いとした。
The present invention will be further described with reference to the following examples and comparative examples, but the embodiments of the present invention are not limited to the scope of these examples. In Examples and Comparative Examples, the deodorant property, antibacterial property, antifungal property, and antiviral property of the test sheet were measured and evaluated by the following test methods.
<Deodorant>
Four Tedlar® gas barrier bags with a volume of 5 L were prepared, and each bag was adjusted to a concentration of 10 ppm. Four types of chemical gas, 1) ammonia (basic), 2) isovaleric acid (acidic), 3 sets of 4 bags each containing 3 L of hydrogen sulfide (acidic) and 4) toluene (VOC) were prepared.
Put a 10 cm × 10 cm size test sheet (formation of a coating film containing a porous coordination polymer on one side) in the bag in the order of 1) → 2) → 3) → 4), and black light (peak 365 nm). Under the environment of irradiation or fluorescent light irradiation (irradiation to the surface on which the coating film containing the porous coordination polymer is formed: irradiation distance 2.5 cm: sealed in a tedler bag), 25 ° C x 30 minutes and 25 ° C x 60 minutes, respectively. , 25 ° C. × 120 minutes, each gas concentration after being allowed to stand indoors was measured with a gas detector tube (Gastech).
* Black light model SL-B01A5 (Ohm Electric Co., Ltd.) Examples 1-5, 7-10
W55mm x H160mm x D25mm
* Straight tube fluorescent lamp 4W (FL4D) x 2 (Panasonic Corporation) Examples 6 and 10
In addition, the result of a comparison test of the deodorizing effect with and without black light or fluorescent lamp without irradiating the sheet-shaped test piece of the example with black light or fluorescent lamp was treated as a reference example.
<Antibacterial>
Antibacterial (JIS Z2801: 2010 compliant)
Sheet-shaped test piece (Example, comparative example) is inoculated by dropping the bacterial solution on the surface (inoculation number 104 ), and the bacterial solution and the test piece sheet-like material so that the test piece is in contact with the bacterial solution. Incubate for 24 hours under the conditions of black light (peak 365 nm) irradiation (irradiation to the surface of the coating film containing porous coordination polymer: irradiation distance 2.5 cm) in an environment of 35 ° C. and a relative humidity of 90% or more. did. After culturing, the test piece sheet was washed away, the viable cell count per 1 cm 2 was measured, and the antibacterial activity value (the bacterial count log value in the test piece sheet form of the Example or Comparative Example was subtracted from the bacterial count logarithmic value in the target group). Value) was calculated.
In addition, the result of a comparison test of the antibacterial effect with and without black light or fluorescent lamp without irradiating the sheet-shaped test piece of the example with black light or fluorescent lamp was treated as a reference example.
The numerical value in the table is the number of viable bacteria per 1 cm 2 of the test piece, and "ND" is defined as "Not Detected". A 1/200 NB medium was used as the bacterial solution adjusting solution. The bacterial species used are shown below.
Staphylococcus aureus subsp. Aures 12732 "Staphylococcus aureus subsp.
Escherichia coli NBRC 3972
* Black light model SL-B01A5 (Ohm Electric Co., Ltd.) Examples 1-5, 7-10
W55mm x H160mm x D25mm
* Straight tube fluorescent lamp 4W (FL4D) x 2 (Panasonic Corporation) Examples 6 and 10
<Moldproof: JIS Z 2911 culture test>
A sheet-like material (example, comparative example) having a width of 3 cm and a length of 3 cm is inoculated with the following test mold spores, placed on a potato / dextrose agar medium, and irradiated with black light (peak 365 nm) or fluorescent light. Under the condition (irradiation of the surface on which the coating film containing the porous coordination polymer was formed: irradiation distance 2.5 cm), the state of mold generation was observed at 28 ° C. for 7 days and 14 days, and evaluated according to the following criteria.
In addition, the result of a comparison test of the antifungal effect with and without black light or fluorescent lamp without irradiating the sheet-shaped test piece of the example with black light or fluorescent lamp was treated as a reference example.
1: No hyphal growth is observed in the inoculated area 2: The area of the hyphal growth area observed in the inoculated area does not exceed 1/3 of the total area 3: The area of the hyphal growth area observed in the inoculated area is the entire area <Test mold> (A) + (B) + (C) mixed mold that exceeds 1/3 of the area (A) Aspergillus niger NBRC 105649 (black mold)
(B) Penicillium citrinum NBRC 6352 (Penicillium)
(C) Cladosporium cladosporioides NBRC 6348 (Kurokawa mold)
* Black light model SL-B01A5 (Ohm Electric Co., Ltd.) Examples 1-5, 7-10
W55mm x H160mm x D25mm
* Straight tube fluorescent lamp 4W (FL4D) x 2 (Panasonic Corporation) Examples 6 and 10
<Antiviral (ISO 21720)>
* Antibacterial test method for plastic products: ISO 22196 (JIS Z2801) compliant Test method: Kaken Test Center Method 5 cm x 5 cm test piece (formation of coating film containing porous coordination polymer, containing porous coordination polymer) 0.4 ml of cat calicivirus (a low-risk pathogen among the pathogens stipulated in the Infectious Diseases Control Law) solution is dropped onto the (coating not formed), covered with a 4 cm x 4 cm film, and allowed to stand at 25 ° C. x 24 hours (. Black light: After irradiation with a peak of 365 nm or irradiation with a fluorescent lamp (irradiation to the surface of the coating film containing the porous coordination polymer: irradiation distance of 2.5 cm), the antiviral activity value is measured.
The anti-virus activity value is 24 hours for the anti-virus processed product from the average value of the common logarithm of the virus infection titer (PFU / cm 2 ) after leaving the test piece without a coating film containing a porous coordination polymer for 24 hours. Antivirus activity value 2.0 or more (virus reduction rate 1/100 or more, antivirus activity value 3.0), which is the value obtained by subtracting the average value of the common logarithm of the virus infection titer (PFU / cm 2 ) after standing. The above is judged to be effective with the virus reduction rate 1/1000).
In addition, the results of a comparison test of the antiviral effect depending on the presence or absence of black light or fluorescent lamp without irradiating the sheet-shaped test piece of the example with black light or fluorescent lamp are treated as reference examples. did.

[実施例1]
<織物>
1000デニール(1111dtex)のポリエチレンテレタレート(PET)繊維(フィラメント数192本)からなり、S撚50T/mを施したPETマルチフィラメント糸条を経糸群及び緯糸群に用い、経糸群は1インチ間16本の織組織とし、また緯糸群は1インチ間16本の織組織とする平織物を用いた。この織物の質量は150g/m、空隙率(目抜け部総和)は14%であった。
<シート基材>
この織物を基材として、その両面に下記〔配合1〕の軟質塩化ビニル樹脂組成物からなる厚さ0.2mmのカレンダー成型フィルムを表裏の被覆層として、ラミネーターでの熱圧着による溶融ラミネートを施して、厚さ0.7mm、質量830g/mのシート基材を得た。
〔配合1〕:軟質塩化ビニル樹脂組成物(コンパウンド)
塩化ビニル樹脂(K値71.5) 100質量部
4-シクロヘキセン-1,2-ジカルボン酸ビス(2-エチルヘキシル)(可塑剤)
55質量部
リン酸トリクレジル(防炎可塑剤) 10質量部
エポキシ化大豆油(安定剤兼可塑剤) 5質量部
バリウム/亜鉛複合安定剤 2質量部
三酸化アンチモン(難燃剤) 10質量部
ルチル型酸化チタン(白顔料) 5質量部
ベンゾトリアゾール骨格化合物(紫外線吸収剤) 0.3質量部
<多孔性配位高分子(1)>
下記有機錯体ユニット及び架橋性有機化合物との多軸交互連結体による粒子径0.5~1μmの金属有機構造体粒子(水熱法による合成品)を用いた。
有機錯体ユニット:テレフタル酸銅「Cu(CCO)
架橋性有機化合物:1,4-ジアザビシクロ[2,2,2]オクタン「C12
<光触媒性金属酸化物、及び金属イオンの担持>
多孔性配位高分子(1)、光触媒性酸化チタンゾル(1次粒子径5nm:200nmから399nmの波長で活性を示す紫外線励起型)、硝酸銀、水(50質量%)/エタノール(50質量%)をこの順番に質量比率、20(固形分):10(固形分):0.5(固形分):100で配合した溶液を密閉容器内、80℃で2時間攪拌した後、ろ過物を乾燥し、光触媒性金属酸化物、及び銀イオンを表面及び内部に担持する多孔性配位高分子(1a)を得た。
<アルコキシシラン化合物による処理>
多孔性配位高分子(1a)、アルコキシシラン化合物(エポキシシラン:3-グリシドキシプロピルトリメトキシシラン)、水をこの順番に質量比率、10(固形分):1(固形分):100で配合した溶液を密閉容器内、30℃で2時間攪拌した後、ろ過物を乾燥し、エポシシラン化合物の加水分解物が結合した多孔性配位高分子(1b)を得た。
<多孔性配位高分子含有塗膜形成用組成物>
下記〔配合2〕の多孔性配位高分子含有塗膜形成用組成物(1)を配合した。
次にシート基材の片表面上に、この多孔性配位高分子含有塗膜形成用組成物(1)を100メッシユのグラビアロールによりグラビア塗工し、120℃の熱風炉で2分間加熱乾燥し、多孔性配位高分子含有塗膜形成用組成物(1)のゾルゲル硬化を完結させて多孔性配位高分子含有塗膜(1)に転化し、消臭性抗菌防黴塗膜を付帯する、厚さ0.7mm、質量833g/mのシート状物(1)を得た。
〔配合2〕多孔性配位高分子含有塗膜形成用組成物(1))
エチルシリケート(Si(OC):SiO換算40質量%)5質量%、及び
[Si(OC)12]のテトラエトキシシラン5量体が95質量%の混合体
25質量部
加水分解触媒:2%塩酸 1質量部
多孔性配位高分子(1b) 10質量部
18-モノアザチアクラウンエーテル-5/銀(環状ポリエーテル金属錯体)1質量部
※-(CHCHS)CHCHNH-を環状にした環状内に銀イオンを担持する。
水(50質量%)/エタノール(50質量%) 100質量部
[Example 1]
< Woven fabric >
PET multifilament threads made of 1000 denier (1111 dtex) polyethylene teletalate (PET) fibers (192 filaments) and subjected to S twist 50 T / m are used for the warp and weft groups, and the warp groups are 1 inch apart. A plain woven fabric having a woven structure of 16 threads and a group of wefts having a woven structure of 16 threads per inch was used. The mass of this woven fabric was 150 g / m 2 , and the porosity (total gap) was 14%.
< Sheet base material >
Using this woven fabric as a base material, a 0.2 mm thick calendar molded film made of the following [Formulation 1] soft vinyl chloride resin composition is used as a coating layer on the front and back surfaces, and melt laminating is performed by thermocompression bonding with a laminator. A sheet substrate having a thickness of 0.7 mm and a mass of 830 g / m 2 was obtained.
[Formulation 1]: Soft vinyl chloride resin composition (compound)
Vinyl chloride resin (K value 71.5) 100 parts by mass 4-cyclohexene-1,2-dicarboxylic acid bis (2-ethylhexyl) (plasticizer)
55 parts by mass Tricredil phosphate (flame retardant plasticizer) 10 parts by mass Evaporated soybean oil (stabilizer and plasticizer) 5 parts by mass Barium / zinc composite stabilizer 2 parts by mass Antimon trioxide (flame retardant) 10 parts by mass Rutyl type Titanium oxide (white pigment) 5 parts by mass Bentriazole skeleton compound (ultraviolet absorber) 0.3 parts by mass
< Porosity Coordination Polymer (1) >
Metal-organic framework particles (synthetic product by hydrothermal method) having a particle diameter of 0.5 to 1 μm formed by a multiaxial alternating linkage with the following organic complex unit and a crosslinkable organic compound were used.
Organic complex unit: Copper terephthalate "Cu 2 (C 6 H 4 CO 2 ) 4 "
Crosslinkable organic compound: 1,4-diazabicyclo [2,2,2] octane "C 6 H 12 N 2 "
<Support of photocatalytic metal oxides and metal ions>
Porous coordination polymer (1), photocatalytic titanium oxide sol (primary particle diameter 5 nm: ultraviolet excitation type showing activity at wavelengths from 200 nm to 399 nm), silver nitrate, water (50% by mass) / ethanol (50% by mass) In this order, the solution containing 20 (solid content): 10 (solid content): 0.5 (solid content): 100 was stirred in a closed container at 80 ° C. for 2 hours, and then the filtrate was dried. Then, a porous coordination polymer (1a) carrying a photocatalytic metal oxide and silver ions on the surface and inside was obtained.
< Treatment with alkoxysilane compound >
Porous coordination polymer (1a), alkoxysilane compound (epoxysilane: 3-glycidoxypropyltrimethoxysilane), and water in this order at a mass ratio of 10 (solid content): 1 (solid content): 100. The blended solution was stirred in a closed container at 30 ° C. for 2 hours, and then the filtrate was dried to obtain a porous coordination polymer (1b) to which a hydrolyzate of an eposisilane compound was bound.
< Composition for forming a coating film containing a porous coordination polymer >
The composition (1) for forming a coating film containing a porous coordination polymer according to the following [Formulation 2] was blended.
Next, the composition (1) for forming a coating film containing a porous coordination polymer was gravically coated on one surface of the sheet substrate with a gravure roll of 100 meshille, and heated and dried in a hot air furnace at 120 ° C. for 2 minutes. Then, the solgel curing of the composition for forming the porous coordination polymer-containing coating film (1) is completed and converted into the porous coordination polymer-containing coating film (1) to obtain a deodorant antibacterial anti-mold coating film. An accompanying sheet-like material (1) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained.
[Formulation 2] Composition for forming a coating film containing a porous coordination polymer (1))
Ethyl silicate (Si (OC 2 H 5 ) 4 : SiO 2 equivalent 40% by mass) 5% by mass, and
A mixture of 95% by mass of the tetraethoxysilane pentamer of [Si 5 O 4 (OC 2 H 5 ) 12 ].
25 parts by mass Hydrolysis catalyst: 2% hydrochloric acid 1 part by mass Porous coordination polymer (1b) 10 parts by mass 18-monoazathia crown ether-5 / silver (cyclic polyether metal complex) 1 part by mass *-(CH) 2 CH 2 S) 5 CH 2 CH 2 NH- is made into a ring, and silver ions are carried in the ring.
Water (50% by mass) / Ethanol (50% by mass) 100 parts by mass

[実施例2]
実施例1の多孔性配位高分子(1)を多孔性配位高分子(2)に変更した組成物を用いた以外は実施例1と同様として、消臭性抗菌防黴塗膜を付帯する、厚さ0.7mm、質量833g/mのシート状物(2)を得た。
<多孔性配位高分子(2)>
下記有機錯体ユニット及び架橋性有機化合物との多軸交互連結体による粒子径0.5~1μmの金属有機構造体粒子(水熱法による合成品)を用いた。
有機錯体ユニット:テレフタル酸亜鉛「ZnO(CCO)
架橋性有機化合物:1,4-ジアザビシクロ[2,2,2]オクタン「C12
<光触媒性金属酸化物、及び金属イオンの担持>
多孔性配位高分子(2)を用い、実施例1の多孔性配位高分子(1a)の製造プロセスと同様に行い、光触媒性金属酸化物、及び銀イオンを表面及び内部に担持する多孔性配位高分子(2a)を得た。
<アルコキシシラン化合物による処理>
多孔性配位高分子(2a)を用い、実施例1の多孔性配位高分子(1b)の製造プロセスと同様に行い、エポキシシラン化合物の加水分解物が結合した多孔性配位高分子(2b)を得た。
[Example 2]
The same as in Example 1 except that the composition in which the porous coordination polymer (1) of Example 1 was changed to the porous coordination polymer (2) was used, and a deodorant antibacterial anti-mold coating film was attached. A sheet-like product (2) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained.
< Porosity Coordination Polymer (2) >
Metal-organic framework particles (synthetic product by hydrothermal method) having a particle diameter of 0.5 to 1 μm formed by a multiaxial alternating linkage with the following organic complex unit and a crosslinkable organic compound were used.
Organic complex unit: Zinc terephthalate "Zn 4 O (C 6 H 4 CO 2 ) 6 "
Crosslinkable organic compound: 1,4-diazabicyclo [2,2,2] octane "C 6 H 12 N 2 "
<Support of photocatalytic metal oxides and metal ions>
Using the porous coordination polymer (2), the same procedure as in the production process of the porous coordination polymer (1a) of Example 1 is carried out, and the photocatalytic metal oxide and the silver ion are carried on the surface and inside. A sex coordination polymer (2a) was obtained.
< Treatment with alkoxysilane compound >
Using the porous coordination polymer (2a), the same procedure as the production process of the porous coordination polymer (1b) of Example 1 was carried out, and the porous coordination polymer to which the hydrolyzate of the epoxysilane compound was bonded (the porous coordination polymer (1b). 2b) was obtained.

[実施例3]
実施例1の多孔性配位高分子(1)を多孔性配位高分子(3)に変更した組成物を用いた以外は実施例1と同様として、消臭性抗菌防黴塗膜を付帯する、厚さ0.7mm、質量833g/mのシート状物(3)を得た。
<多孔性配位高分子(3)>
下記有機錯体ユニット及び架橋性有機化合物との多軸交互連結体による粒子径0.5~1μmの金属有機構造体粒子(水熱法による合成品)を用いた。
有機錯体ユニット:2,6-ナフタレンジカルボン酸銅「Cu(C10CO)
架橋性有機化合物:1,4-ジアザビシクロ[2,2,2]オクタン「C12
<光触媒性金属酸化物、及び金属イオンの担持>
多孔性配位高分子(3)を用い、実施例1の多孔性配位高分子(1a)の製造プロセスと同様に行い、光触媒性金属酸化物、及び銀イオンを表面及び内部に担持する多孔性配位高分子(3a)を得た。
アルコキシシラン化合物による処理
多孔性配位高分子(3a)を用い、実施例1の多孔性配位高分子(1b)の製造プロセスと同様に行い、エポキシシラン化合物の加水分解物が結合した多孔性配位高分子(3b)を得た。
[Example 3]
The same as in Example 1 except that the composition in which the porous coordination polymer (1) of Example 1 was changed to the porous coordination polymer (3) was used, and a deodorant antibacterial anti-mold coating film was attached. A sheet-like product (3) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained.
< Porosity Coordination Polymer (3) >
Metal-organic framework particles (synthetic product by hydrothermal method) having a particle diameter of 0.5 to 1 μm formed by a multiaxial alternating linkage with the following organic complex unit and a crosslinkable organic compound were used.
Organic complex unit: Copper 2,6-naphthalenedicarboxylate "Cu 2 (C 10 H 6 CO 2 ) 4 "
Crosslinkable Organic Compounds: 1,4-diazabicyclo [2,2,2] Octane "C 6 H 12 N 2 "
<Support of photocatalytic metal oxides and metal ions>
Using the porous coordination polymer (3), the same procedure as in the production process of the porous coordination polymer (1a) of Example 1 is carried out, and the photocatalytic metal oxide and the silver ion are carried on the surface and inside. A sex coordination polymer (3a) was obtained.
< Treatment with an alkoxysilane compound >
Using the porous coordination polymer (3a), the same procedure as the production process of the porous coordination polymer (1b) of Example 1 was carried out, and the porous coordination polymer to which the hydrolyzate of the epoxysilane compound was bonded (the porous coordination polymer (1b). 3b) was obtained.

[実施例4]
実施例1の多孔性配位高分子(1)を多孔性配位高分子(4)に変更した組成物を用いた以外は実施例1と同様として、消臭性抗菌防黴塗膜を付帯する、厚さ0.7mm、質量833g/mのシート状物(4)を得た。
<多孔性配位高分子(4)>
下記有機錯体ユニット及び架橋性有機化合物との多軸交互連結体による粒子径0.5~1μmの金属有機構造体粒子(水熱法による合成品)を用いた。
有機錯体ユニット:2,3-ピラジンジカルボン酸銅「Cu(CCO)
架橋性有機化合物:ピリジン「CN」
<光触媒性金属酸化物粒子、及び金属イオンの担持>
多孔性配位高分子(4)を用い、実施例1の多孔性配位高分子(1a)の製造プロセスと同様に行い、光触媒性金属酸化物、及び銀イオンを表面及び内部に担持する多孔性配位高分子(4a)を得た。
<アルコキシシラン化合物による処理>
多孔性配位高分子(4a)を用い、実施例1の多孔性配位高分子(1b)の製造プロセスと同様に行い、エポキシシラン化合物の加水分解物が結合した多孔性配位高分子(4b)を得た。
[Example 4]
The same as in Example 1 except that the composition in which the porous coordination polymer (1) of Example 1 was changed to the porous coordination polymer (4) was used, and a deodorant antibacterial anti-mold coating film was attached. A sheet-like product (4) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained.
< Porosity Coordination Polymer (4) >
Metal-organic framework particles (synthetic product by hydrothermal method) having a particle diameter of 0.5 to 1 μm formed by a multiaxial alternating linkage with the following organic complex unit and a crosslinkable organic compound were used.
Organic complex unit: Copper 2,3-pyrazinedicarboxylate "Cu 2 (C 4 H 2 N 2 CO 2 ) 4 "
Crosslinkable organic compound: Pyridine "C 5 H 5 N"
<Support of photocatalytic metal oxide particles and metal ions>
Using the porous coordination polymer (4), the same procedure as in the production process of the porous coordination polymer (1a) of Example 1 is carried out, and the photocatalytic metal oxide and the silver ion are carried on the surface and inside. A sex coordination polymer (4a) was obtained.
< Treatment with alkoxysilane compound >
Using the porous coordination polymer (4a), the same procedure as the production process of the porous coordination polymer (1b) of Example 1 was carried out, and the porous coordination polymer to which the hydrolyzate of the epoxysilane compound was bonded (the porous coordination polymer (1b). 4b) was obtained.

[実施例5]
実施例1の多孔性配位高分子(1)を多孔性配位高分子(5)に変更した組成物を用いた以外は実施例1と同様として、消臭性抗菌防黴塗膜を付帯する、厚さ0.7mm、質量833g/mのシート状物(5)を得た。
<多孔性配位高分子(5)>
下記有機錯体ユニット及び架橋性有機化合物との多軸交互連結体による粒子径0.5~1μmの金属有機構造体粒子(水熱法による合成品)を用いた。
有機錯体ユニット:1,3,5-ベンゼントリカルボン酸銅「Cu(CCO)
架橋性有機化合物:ピリジン「CN」
<光触媒性金属酸化物、及び金属イオンの担持>
多孔性配位高分子(5)を用い、実施例1の多孔性配位高分子(1a)の製造プロセスと同様に行い、光触媒性金属酸化物を表面及び内部に担持する多孔性配位高分子(5a)を得た。
<アルコキシシラン化合物による処理>
多孔性配位高分子(5a)を用い、実施例1の多孔性配位高分子(1b)の製造プロセスと同様に行い、エポキシシラン化合物の加水分解物が結合した多孔性配位高分子(5b)を得た。
[Example 5]
The same as in Example 1 except that the composition in which the porous coordination polymer (1) of Example 1 was changed to the porous coordination polymer (5) was used, and a deodorant antibacterial anti-mold coating film was attached. A sheet-like product (5) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained.
< Porosity Coordination Polymer (5) >
Metal-organic framework particles (synthetic product by hydrothermal method) having a particle diameter of 0.5 to 1 μm formed by a multiaxial alternating linkage with the following organic complex unit and a crosslinkable organic compound were used.
Organic complex unit: Copper 1,3,5-benzenetricarboxylate "Cu 3 (C 6 H 4 CO 2 ) 6 "
Crosslinkable organic compound: Pyridine "C 5 H 5 N"
<Support of photocatalytic metal oxides and metal ions>
Using the porous coordination polymer (5), the same procedure as the production process of the porous coordination polymer (1a) of Example 1 was carried out, and the porous coordination height was carried out to support the photocatalytic metal oxide on the surface and inside. The molecule (5a) was obtained.
< Treatment with alkoxysilane compound >
Using the porous coordination polymer (5a), the same procedure as the production process of the porous coordination polymer (1b) of Example 1 was carried out, and the porous coordination polymer to which the hydrolyzate of the epoxysilane compound was bonded (the porous coordination polymer (1b). 5b) was obtained.

[実施例6]
実施例1の多孔性配位高分子(1)に担持させた光触媒性酸化チタンゾル(1次粒子径5nm:200nmから399nmの波長で活性を示す紫外線励起型)を、光触媒性酸化タングステンゾル/Cu/Ptイオン共担持(1次粒子径5nm:400nmから780nmの波長で活性を示す可視光励起型)に置き換え多孔性配位高分子(1)に担持させた以外は、実施例1と同様として多孔性配位高分子(6a)を得た。この(6a)をエポシシラン化合物の加水分解物が結合した多孔性配位高分子(6b)とし、(6b)を含有する塗膜を付帯する、厚さ0.7mm、質量833g/mのシート状物(6)を得た。
[Example 6]
A photocatalytic titanium oxide sol (primary particle diameter 5 nm: an ultraviolet-excited type exhibiting activity at a wavelength of 200 nm to 399 nm) supported on the porous coordination polymer (1) of Example 1 is subjected to a photocatalytic tungsten oxide sol / Cu. / Pt ion co-supporting (primary particle diameter 5 nm: visible light excited type showing activity at a wavelength of 400 nm to 780 nm) is replaced with a porous coordination polymer (1), which is porous in the same manner as in Example 1. A sex coordination polymer (6a) was obtained. This (6a) is a porous coordination polymer (6b) to which a hydrolyzate of an eposisilane compound is bonded, and a sheet having a thickness of 0.7 mm and a mass of 833 g / m 2 is attached with a coating film containing (6b). A compound (6) was obtained.

[実施例7]
実施例1の多孔性配位高分子(1)に担持させた銀イオンを銅イオン(銅イオン源は硫酸銅)に置き換えた以外は、実施例1と同様として多孔性配位高分子(7a)を得た。この(7a)をエポシシラン化合物の加水分解物が結合した多孔性配位高分子(7b)とし、(7b)を含有する塗膜を付帯する、厚さ0.7mm、質量833g/mのシート状物(7)を得た。
[Example 7]
The porous coordination polymer (7a) is the same as in Example 1 except that the silver ion carried on the porous coordination polymer (1) of Example 1 is replaced with copper ion (copper ion source is copper sulfate). ) Was obtained. This (7a) is a porous coordination polymer (7b) to which a hydrolyzate of an eposisilane compound is bonded, and a sheet having a thickness of 0.7 mm and a mass of 833 g / m 2 is attached with a coating film containing (7b). A compound (7) was obtained.

[実施例8]
実施例1の〔配合2〕多孔性配位高分子含有塗膜形成用組成物(1)に用いた18-モノアザチアクラウンエーテル-5/銀(環状ポリエーテル金属錯体)1質量部を、18-ジアザクラウンエーテル-4/銅(環状ポリエーテル金属錯体)1質量部に変更した以外は、実施例1と同様として、多孔性配位高分子(1b)を含有する塗膜を付帯する、厚さ0.7mm、質量833g/mのシート状物(8)を得た。
※18-ジアザクラウンエーテル-4/銅は、-〔(CHCHNH(CHCHO)-を環状にした環状内に銅イオンを担持する。
[Example 8]
[Formulation 2] 1 part by mass of 18-monoazathia crown ether-5 / silver (cyclic polyether metal complex) used in the composition (1) for forming a coating film containing a porous coordination polymer of Example 1 was added. A coating film containing a porous coordination polymer (1b) is attached in the same manner as in Example 1 except that the 18-diaza crown ether-4 / copper (cyclic polyether metal complex) is changed to 1 part by mass. A sheet-like product (8) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained.
* 18-Diaza crown ether-4 / copper carries copper ions in a ring of-[(CH 2 CH 2 NH (CH 2 CH 2 O) 2 ] 2- .

[実施例9]
実施例1の〔配合2〕多孔性配位高分子含有塗膜形成用組成物(1)に用いたエチルシリケート(Si(OC):SiO換算40質量%)5質量%、及び[Si(OC)12]のテトラエトキシシラン5量体が95質量%の混合体25質量部を、エチルチタネート(Ti(OC):TiO換算40質量%)5質量%、及び[Ti(OC)12]のテトラエトキシチタン5量体が95質量%の混合体25質量部に置き換えた以外は、実施例1と同様として、多孔性配位高分子(1b)を含有する塗膜を付帯する、厚さ0.7mm、質量833g/mのシート状物(9)を得た。
[Example 9]
Ethyl silicate (Si (OC 2 H 5 ) 4 : SiO 2 equivalent 40% by mass) used in [Formulation 2] composition for forming a coating film containing a porous coordination polymer (1) of Example 1, 5% by mass, And 25 parts by mass of the mixture of 95% by mass of the tetraethoxysilane pentamer of [Si 5 O 4 (OC 2 H 5 ) 12 ], ethyl titanate (Ti (OC 2 H 5 ) 4 : 40 mass in terms of TIO 2 ). %) 5% by mass, and [Ti 5 O 4 (OC 2 H 5 ) 12 ] tetraethoxytitanium pentamer was replaced with 25 parts by mass of the mixture of 95% by mass, as in Example 1. A sheet-like material (9) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained, which was accompanied by a coating film containing the porous coordination polymer (1b).

[実施例10]
実施例1の多孔性配位高分子(1)に担持させた光触媒性酸化チタンゾル(1次粒子径5nm:200nmから399nmの波長で活性を示す紫外線励起型)の50質量%を、400nmから780nmの波長で活性を示す可視光応答型酸化チタンゾル(Si/N共ドープ:Feイオン助触媒)50質量%に置き換えた以外は、実施例1と同様として、多孔性配位高分子(8b)を含有する塗膜を付帯する、厚さ0.7mm、質量833g/mのシート状物(10)を得た。実施例10のみブラックライトと直管蛍光灯を併用照射した。
[Example 10]
50% by mass of the photocatalytic titanium oxide sol (primary particle diameter 5 nm: ultraviolet excitation type exhibiting activity at a wavelength of 200 nm to 399 nm) carried on the porous coordination polymer (1) of Example 1 is 400 nm to 780 nm. The porous coordination polymer (8b) was used in the same manner as in Example 1 except that it was replaced with 50% by mass of a visible light responsive titanium oxide sol (Si / N co-doped: Fe ion co-catalyst) showing activity at the wavelength of. A sheet-like product (10) having a thickness of 0.7 mm and a mass of 833 g / m 2 was obtained, which was accompanied by the contained coating film. Only in Example 10, a black light and a straight fluorescent lamp were irradiated in combination.

Figure 2022013196000001
Figure 2022013196000001

実施例1~5のシート状物(1)~(5)は、シート基材の表面に消臭性抗菌防黴塗膜を設けたシート状物で、塗膜に含まれる多孔性配位高分子が光触媒性金属酸化物を担持する態様で、光触媒性金属酸化物を多孔性配位高分子に担持させるプロセスと、光触媒性金属酸化物を担持した多孔性配位高分子を含んでゾルゲル縮合塗膜を形成するプロセスを含んでいる。アンモニア、イソ吉草酸、硫化水素、トルエンの各々のガスの種類に対する臭気減少傾向は異なるものの、ブラックライト照射条件、試験時間30分、60分、120分と時間経過を増す毎に、ガス濃度が顕著に減少し、120分後にはほぼ全てが1ppm未満となった。またブラックライト照射条件での抗菌性、防黴性、及び抗ウイルス性の効果にも優れていた。参考例1~5として実施例1~5のシート状物(1)~(5)にブラックライトの照射を行わなかった場合、消臭・減臭効果、抗菌性、防黴性、及び抗ウイルス性の効果はやや劣る結果となった。しかし、光触媒性金属酸化物の活性、不活性に係わらず、多孔性配位高分子層の存在のみでも十分な消臭・減臭効果、抗菌性、防黴性、及び抗ウイルス性の効果を発現した。この理由はそもそも多孔性配位高分子自体が消臭・減臭能を有していること、多孔性配位高分子に銀イオンを担持させたこと、及び金属と有機化合物配位子の錯体として、18-モノアザチアクラウンエーテル-5/銀を併用したことによって本質的に高度の抗菌、防黴、及び抗ウイルス性を具備する構成による。従ってこの構成に光触媒性金属酸化物を担持する多孔性配位高分子を塗膜に用い、紫外線を照射することで、本願発明の消臭性抗菌防黴物質を含む組成物から形成された塗膜を有するシート状物では、さらに消臭・減臭効果、抗菌性、防黴性、及び抗ウイルス性が優れたものとなった。また多孔性配位高分子に銀イオンを担持させたこと、及び金属と有機化合物配位子の錯体として、18-モノアザチアクラウンエーテル-5/銀を併用することは、光触媒性金属酸化物が機能し難い日陰、及び夜間における抗菌性、防黴性、及び抗ウイルス性を発現し、光触媒性金属酸化物の機能を補完するものである。 The sheet-like materials (1) to (5) of Examples 1 to 5 are sheet-like materials in which a deodorant antibacterial anti-mold coating film is provided on the surface of the sheet base material, and the porous coordination height contained in the coating film is high. A sol-gel condensation including a process of supporting a photocatalytic metal oxide on a porous coordination polymer and a porous coordination polymer carrying a photocatalytic metal oxide in an embodiment in which the molecule carries a photocatalytic metal oxide. It involves the process of forming a coating. Although the tendency of odor reduction for each type of gas of ammonia, isovaleric acid, hydrogen sulfide, and toluene is different, the gas concentration increases as the time elapses, such as black light irradiation conditions, test time of 30 minutes, 60 minutes, and 120 minutes. It decreased significantly, and after 120 minutes, almost all of them were less than 1 ppm. It was also excellent in antibacterial, antifungal, and antiviral effects under black light irradiation conditions. As reference examples 1 to 5, when the sheet-like objects (1) to (5) of Examples 1 to 5 were not irradiated with black light, deodorant / deodorant effect, antibacterial property, antifungal property, and antiviral property. The sexual effect was slightly inferior. However, regardless of the activity or inactivity of the photocatalytic metal oxide, the presence of the porous coordination polymer layer alone has sufficient deodorizing / deodorizing effects, antibacterial properties, antibacterial properties, and antiviral effects. It was expressed. The reason for this is that the porous coordination polymer itself has deodorizing and deodorizing ability, that the porous coordination polymer carries silver ions, and that the complex of the metal and the organic compound ligand is used. By the combined use of 18-monoazathia crown ether-5 / silver, the composition is essentially provided with a high degree of antibacterial, anti-mold, and anti-viral properties. Therefore, a coating film formed from a composition containing the deodorant antibacterial antibacterial substance of the present invention by using a porous coordination polymer carrying a photocatalytic metal oxide in this structure and irradiating it with ultraviolet rays. The sheet-like substance having a film was further excellent in deodorizing / deodorizing effect, antibacterial property, anti-ultraviolet property, and anti-virus property. In addition, carrying silver ions on a porous coordination polymer and using 18-monoazathia crown ether-5 / silver as a complex between a metal and an organic compound ligand is a photocatalytic metal oxide. It exhibits antibacterial, antifungal, and antiviral properties in the shade, which is difficult to function, and at night, and complements the functions of photocatalytic metal oxides.

Figure 2022013196000002
Figure 2022013196000002

また実施例6~10のシート状物(6)~(10)は、実施例1の態様のアレンジで、多孔性配位高分子(1)は共通であるため、これらの各種評価項目における数値は実施例1と類似的で実施例1と遜色のない結果となった。実施例6は多孔性配位高分子(1)に担持させる光触媒性金属酸化物を紫外線励起型(酸化チタン)から可視光励起型(酸化タングステン:Cu/Ptイオン共担持)に変更した態様、実施例7は多孔性配位高分子(1)に担持させる金属イオンを銀イオンから銅イオンに変更した態様、実施例8は多孔性配位高分子(1)に併用する18-モノアザチアクラウンエーテル-5/銀を、18-ジアザクラウンエーテル-4/銅に変更した態様、実施例9は多孔性配位高分子(1)を含む塗膜をシラノール基含有有機シラン化合物のゾルゲル縮合体からチタノール基含有有機チタン化合物のゾルゲル縮合体に変更した態様、実施例10は多孔性配位高分子(1)に担持させる光触媒性金属酸化物を紫外線励起型(酸化チタン)と可視光励起型(酸化タングステン:Cu/Ptイオン共担持)の併用とした態様である。 Further, since the sheet-like substances (6) to (10) of Examples 6 to 10 are the arrangements of the embodiment of Example 1 and the porous coordination polymer (1) is common, the numerical values in these various evaluation items are used. The results were similar to those of Example 1 and comparable to those of Example 1. Example 6 is an embodiment in which the photocatalytic metal oxide to be carried on the porous coordination polymer (1) is changed from an ultraviolet-excited type (titanium oxide) to a visible light-excited type (tungsten oxide: co-supported with Cu / Pt ions). Example 7 is an embodiment in which the metal ion carried on the porous coordination polymer (1) is changed from silver ion to copper ion, and Example 8 is an 18-monoazathia crown used in combination with the porous coordination polymer (1). In the embodiment in which ether-5 / silver is changed to 18-diazacrown ether-4 / copper, in Example 9, the coating film containing the porous coordination polymer (1) is a solgel condensate of a silanol group-containing organic silane compound. In Example 10, the photocatalytic metal oxide to be carried on the porous coordination polymer (1) is an ultraviolet-excited type (titanium oxide) and a visible light-excited type (titanium oxide). Tungsten oxide: Cu / Pt ion co-supporting) is used in combination.

[比較例1~5]
実施例1~5の多孔性配位高分子(1~5)から、酸化チタンゾルによる光触媒性金属酸化物の担持を省略し、光触媒性金属酸化物を担持しない多孔性配位高分子(1´~5´)の使用とした以外は実施例1~5と同様の製造プロセスとしてシート状物(11~15)を得た。得られたシート状物(11~15)は、光触媒性金属酸化物の担持を省略したことで、実施例1~5のシート状物(1~5)と比較して、消臭効果、抗菌性、防黴性、及び抗ウイルス性に劣るものであったが、多孔性配位高分子(1~5)の立体格子群による吸着効果は発揮され、また多孔性配位高分子(1~5)に担持させた銀イオンの効果、及び多孔性配位高分子(1~5)と併用した18-モノアザチアクラウンエーテル-5/銀の効果によって、適度な抗菌性、適度な防黴性、及び合格ライン際レベルの抗ウイルス性を発現した。
[Comparative Examples 1 to 5]
From the porous coordination polymers (1 to 5) of Examples 1 to 5, the support of the photocatalytic metal oxide by the titanium oxide sol is omitted, and the porous coordination polymer (1') that does not support the photocatalytic metal oxide is omitted. Sheet-shaped products (11 to 15) were obtained as the same manufacturing process as in Examples 1 to 5 except that they were used in (5'). The obtained sheet-like material (11 to 15) has a deodorizing effect and antibacterial effect as compared with the sheet-like material (1 to 5) of Examples 1 to 5 by omitting the support of the photocatalytic metal oxide. Although it was inferior in properties, antifungal properties, and antiviral properties, the adsorption effect of the three-dimensional lattice group of the porous coordination polymer (1 to 5) was exhibited, and the porous coordination polymer (1 to 5) was exhibited. Due to the effect of silver ions carried on 5) and the effect of 18-monoazathia crown ether-5 / silver used in combination with the porous coordination polymer (1-5), appropriate antibacterial properties and appropriate antifungal properties It developed sex and antiviral properties at the level near the passing line.

Figure 2022013196000003
Figure 2022013196000003

[比較例6~10]
比較例1~5の多孔性配位高分子(1~5)への銀イオンの担持を省略し、さらに18-モノアザチアクラウンエーテル-5/銀の併用を省略した以外は実施例1~5と同様の製造プロセスとしてシート状物(16~20)を得た。得られたシート状物(16~20)は、実施例1~5のシート状物(1~5)と比較して、多孔性配位高分子(1~5)の立体格子群による吸着効果は発揮されていたが、また多孔性配位高分子(1~5)に銀イオンを担持せず、18-モノアザチアクラウンエーテル-5/銀の併用も無いために、十分な抗菌性、防黴性、及び抗ウイルス性は発現されなかった。
[Comparative Examples 6 to 10]
Examples 1 to 5 except that the support of silver ions on the porous coordination polymers (1 to 5) of Comparative Examples 1 to 5 was omitted, and the combined use of 18-monoazathia crown ether-5 / silver was omitted. A sheet-like product (16 to 20) was obtained as the same manufacturing process as in 5. The obtained sheet-like substances (16 to 20) have an adsorption effect by the three-dimensional lattice group of the porous coordination polymer (1 to 5) as compared with the sheet-like substances (1 to 5) of Examples 1 to 5. However, since it does not support silver ions on the porous coordination polymer (1-5) and there is no combined use of 18-monoazathia crown ether-5 / silver, it has sufficient antibacterial properties. No anti-polymer and anti-viral properties were expressed.

Figure 2022013196000004
Figure 2022013196000004

[参考例1~5]
参考例1~5は、実施例1~5そのものであるが、ブラックライトの照射を省略したため、多孔性配位高分子(1~5)が光触媒性金属酸化物を担持していながら、光触媒性金属酸化物を不活性の状態のままとして試験を行った。ブラックライト照射を省略したことで、消臭効果、抗菌性、防黴性、及び抗ウイルス性の何れにも劣っていたが、多孔性配位高分子(1~5)の立体格子群による吸着効果による消臭性は発揮されていた。また多孔性配位高分子(1~5)に担持させた銀イオンの効果、及び多孔性配位高分子(1~5)と併用した18-モノアザチアクラウンエーテル-5/銀の効果によって、適度な抗菌性、適度な防黴性、及び合格ライン際レベルの抗ウイルス性を発現した。従って多孔性配位高分子(1~5)に光触媒性金属酸化物を担持させ、さらにブラックライトを照射することで、消臭効果、抗菌性、防黴性の効果、及び抗ウイルス性の効果を一層向上させることは明らかである。
[Reference Examples 1 to 5]
Reference Examples 1 to 5 are the same as Examples 1 to 5, but since the irradiation with black light is omitted, the porous coordination polymer (1 to 5) carries the photocatalytic metal oxide, but is photocatalytic. The test was performed with the metal oxide remaining inactive. By omitting the black light irradiation, it was inferior in deodorant effect, antibacterial property, antibacterial property, and antiviral property, but it was adsorbed by the three-dimensional lattice group of the porous coordination polymer (1 to 5). The deodorant property due to the effect was exhibited. In addition, due to the effect of silver ions carried on the porous coordination polymer (1-5) and the effect of 18-monoazathia crown ether-5 / silver used in combination with the porous coordination polymer (1-5). , Appropriate antibacterial property, moderate anti-polymer property, and anti-viral property at the level near the passing line. Therefore, by supporting the photocatalytic metal oxide on the porous coordination polymer (1 to 5) and further irradiating it with black light, the deodorant effect, the antibacterial property, the antibacterial effect, and the antiviral effect. It is clear that it will further improve.

Figure 2022013196000005
Figure 2022013196000005

本発明により、雑菌腐敗、黴の繁殖、生体排泄物、などの悪臭成分、タバコの煙、排気ガス、揮発性化学物質などの不快臭気成分全般に対して臭気濃度を効果的に減少させる消臭効果、及び悪臭の原因となり得る雑菌や黴の増殖を抑止する抗菌防黴性を安定的に持続し、さらにウイルスの増殖に対しても抑止効果を有する消臭性抗菌防黴物質と、この消臭性抗菌防黴物質を含んでなる消臭性抗菌防黴塗料組成物と、この消臭性抗菌防黴物質を含んでなる消臭性抗菌防黴塗膜を得ることができる。多孔性配位高分子のみでも消臭性(減臭性)は発現可能であるが、本願発明のように多孔性配位高分子層の有する立体格子群に光触媒性金属酸化物を担持することで光触媒性金属酸化物の光触媒活性により、多孔性配位高分子の立体格子群に捕捉した臭気ガスを逐次分解排出し、さらなる臭気ガスを取り込めるように立体格子の状態を空にリセットすることができる。このリセットにより、吸着/分解リセット/吸着・・・のサイクルを繰り返す永続性を可能とする。また特に光触媒性金属酸化物の光触媒活性により発生するラジカルが、細菌や黴の細胞壁・膜、及びウイルスを構成する核酸(RNA、DNA)、糖タンパク質を攻撃し、細菌や黴の細胞壁・膜、及び核酸、糖タンパク質などの分子の結合を分断するタンパク質変性によって、細菌、黴、及びウイルスなどの増殖を抑止し、分子にダメージを受けた細菌、黴、及びウイルスなどは、増殖することが出来ずに死滅させる効果を有することで、腐敗臭、黴臭の防止にもなる。特にウイルスのタンパク質、核酸などに変化を生じさせることで、ウイルスに感染したとしても人体細胞表面の受容体に結合する能力を失活させることで感染を抑止させる。さらに光触媒性金属酸化物は可視光励起型光触媒が屋内用途に適し、また本発明の消臭性抗菌防黴塗膜は、多孔性配位高分子がゾルゲル縮合体に内包されることで塗膜の屈曲強度及び摩耗強度を強化する。拠って本発明のこの消臭性抗菌防黴物質、消臭性抗菌防黴塗料組成物、及び消臭性抗菌防黴塗膜によりこれらは、フィルム、シート、テープ、プラスチック成型品、金属板、ターポリン、メッシュシート、合成皮革、帆布、織物、布帛、不織布、紙、などの素材に用いられ、これらの消臭性抗菌防黴物質、または消臭性抗菌防黴塗膜を付帯する素材は、天井膜、空間仕切り、巻上昇降式シートシャッター、カーテン、壁紙、敷物、カバー、ブラインド、エアフィルター、医療用不織布防護衣、不織布マスク、など加工されて、工場、オフィス、学校、商業施設、病院、介護施設、式場、ごみ集積場、公衆トイレ、動物園などに広く使用される。特に本発明の消臭性抗菌防黴物質を配合したターポリン、帆布などの樹脂被覆加工された織物、または消臭性抗菌防黴塗膜を表面に付帯するターポリン、帆布などの樹脂被覆加工された織物は、医療用仮設パーティション、空気注入式仮設膜構造による医療用陰圧テントシェルター、に適して用いることができる。 INDUSTRIAL APPLICABILITY According to the present invention, deodorant that effectively reduces the odor concentration against all malodorous components such as germ decay, breeding of mold, biological excrement, and unpleasant odorous components such as cigarette smoke, exhaust gas, and volatile chemical substances. A deodorant antibacterial antifungal substance that stably maintains antibacterial and antifungal properties that suppress the growth of germs and molds that can cause stinks, and also has an inhibitory effect on the growth of viruses. It is possible to obtain a deodorant antibacterial anti-mold coating composition containing a deodorant antibacterial anti-mold substance and a deodorant anti-bacterial anti-mold coating film containing the deodorant anti-bacterial anti-mold substance. Deodorant property (deodorant property) can be exhibited only by the porous coordination polymer, but the photocatalytic metal oxide is supported on the three-dimensional lattice group of the porous coordination polymer layer as in the present invention. By the photocatalytic activity of the photocatalytic metal oxide, the odorous gas captured in the three-dimensional lattice group of the porous coordination polymer is sequentially decomposed and discharged, and the state of the three-dimensional lattice can be reset to empty so that more odorous gas can be taken in. can. This reset enables the permanence of repeating the cycle of adsorption / decomposition reset / adsorption. In particular, radicals generated by the photocatalytic activity of photocatalytic metal oxides attack the cell walls / membranes of bacteria and molds, and the nucleic acids (RNA, DNA) and glycoproteins that make up viruses, and the cell walls / membranes of bacteria and molds. And by protein denaturation that breaks the binding of molecules such as nucleic acids and glycoproteins, the growth of bacteria, molds, and viruses is suppressed, and the bacteria, molds, and viruses that have been damaged by the molecules can grow. By having the effect of killing without killing, it also prevents the odor of rotting and odor. In particular, by causing changes in viral proteins, nucleic acids, etc., even if infected with a virus, the ability to bind to receptors on the surface of human cells is inactivated, thereby suppressing the infection. Further, as for the photocatalytic metal oxide, the visible light excitation type photocatalyst is suitable for indoor use, and the deodorant antibacterial anti-mold coating film of the present invention has a porous coordination polymer encapsulated in a sol-gel condensate to form a coating film. Strengthen bending strength and wear strength. Therefore, according to the deodorant antibacterial anti-mold material, the deodorant antibacterial anti-mold coating composition, and the deodorant anti-bacterial anti-mold coating film of the present invention, these are film, sheet, tape, plastic molded product, metal plate, etc. It is used for materials such as tarpaulin, mesh sheet, synthetic leather, sail cloth, textile, cloth, non-woven fabric, paper, etc. Ceiling film, space partition, hoisting lift sheet shutter, curtain, wallpaper, rug, cover, blind, air filter, medical non-woven protective clothing, non-woven mask, etc. are processed into factories, offices, schools, commercial facilities, hospitals, etc. Widely used in nursing facilities, ceremonial halls, garbage collection areas, public toilets, zoos, etc. In particular, a tarpaulin containing the deodorant antibacterial antifungal substance of the present invention, a woven fabric coated with a resin such as canvas, or a tarpaulin having a deodorant antibacterial antifungal coating film on the surface, and a resin coating such as canvas. The woven fabric can be suitable for medical temporary partitions, medical negative pressure tent shelters with an inflatable temporary membrane structure.

Claims (13)

有機錯体ユニット及び架橋性有機化合物とで構成され、この両者が多方向に交互に連結して成る立体格子群を有する多孔性配位高分子であって、1)前記有機錯体ユニットが2~4価の金属イオン1~6個、及びカルボキシル基を2~4個有する化合物からなり、2)また前記架橋性有機化合物が、構造中に2~4個の窒素原子を有する有機配位子、または構造中に1~2個のカルボキシル基及び1~2個の窒素原子を有する有機配位子であり、さらに前記立体格子群に光触媒性金属酸化物を担持していることを特徴とする消臭性抗菌防黴物質。 It is a porous coordination polymer composed of an organic complex unit and a crosslinkable organic compound and having a three-dimensional lattice group in which both are alternately connected in multiple directions. 1) The organic complex unit is 2 to 4 It consists of a compound having 1 to 6 valent metal ions and 2 to 4 carboxyl groups, and 2) the crosslinkable organic compound is an organic ligand having 2 to 4 nitrogen atoms in its structure, or It is an organic ligand having 1 to 2 carboxyl groups and 1 to 2 nitrogen atoms in its structure, and is characterized by carrying a photocatalytic metal oxide in the three-dimensional lattice group. Sexual antibacterial and antifungal substance. 前記光触媒性金属酸化物が、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上で、かつ、A)200nmから399nmの波長で活性を示す紫外線励起型、B)400nmから780nmの波長で活性を示す可視光励起型、の何れか一方の使用、または併用である請求項1に記載の消臭性抗菌防黴物質。 The photocatalytic metal oxide is one or more selected from titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide, and A) from 200 nm. The deodorant antibacterial anti-mold substance according to claim 1, wherein either an ultraviolet-excited type exhibiting activity at a wavelength of 399 nm or a visible light-excited type exhibiting activity at a wavelength of 400 nm to 780 nm is used or used in combination. .. 前記多孔性配位高分子が、銀、銅、亜鉛、コバルト、アルミニウム、ニッケル、パラジウム、 モリブデン、及びタングステン、から選ばれた1種以上の金属を担持している請求項1または2に記載の消臭性抗菌防黴物質。 The invention according to claim 1 or 2, wherein the porous coordination polymer carries one or more metals selected from silver, copper, zinc, cobalt, aluminum, nickel, palladium, molybdenum, and tungsten. Deodorant antibacterial anti-cobalt substance. 多孔性配位高分子を含む消臭性抗菌防黴塗料組成物であって、前記多孔性配位高分子が、有機錯体ユニット及び架橋性有機化合物とで構成され、この両者が多方向に交互に連結して成る立体格子群を有し、1)前記有機錯体ユニットが2~4価の金属イオン1~6個、及びカルボキシル基を2~4個有する化合物からなり、2)また前記架橋性有機化合物が、構造中に2~4個の窒素原子を有する有機配位子、または構造中に1~2個のカルボキシル基及び1~2個の窒素原子を有する有機配位子であり、さらに前記立体格子群に光触媒性金属酸化物を担持することを特徴とする消臭性抗菌防黴塗料組成物。 A deodorant antibacterial anti-mold coating composition containing a porous coordination polymer, wherein the porous coordination polymer is composed of an organic complex unit and a crosslinkable organic compound, both of which alternate in multiple directions. The organic complex unit is composed of 1 to 6 2- to 4-valent metal ions and 2 to 4 carboxyl groups, and 2) the cross-linking property. The organic compound is an organic ligand having 2 to 4 nitrogen atoms in the structure, or an organic ligand having 1 to 2 carboxyl groups and 1 to 2 nitrogen atoms in the structure, and further. A deodorant antibacterial anti-mold coating composition characterized by supporting a photocatalytic metal oxide in the three-dimensional lattice group. 前記光触媒性金属酸化物が、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上で、かつ、A)200nmから399nmの波長で活性を示す紫外線励起型、B)400nmから780nmの波長で活性を示す可視光励起型、の何れか一方の使用、または併用である請求項4に記載の消臭性抗菌防黴塗料組成物。 The photocatalytic metal oxide is one or more selected from titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide, and A) from 200 nm. The deodorant antibacterial anti-mold coating material according to claim 4, wherein either an ultraviolet-excited type exhibiting activity at a wavelength of 399 nm or a visible light-excited type exhibiting activity at a wavelength of 400 nm to 780 nm is used or used in combination. Composition. 前記多孔性配位高分子が、銀、銅、亜鉛、コバルト、アルミニウム、ニッケル、パラジウム、 モリブデン、及びタングステン、から選ばれた1種以上の金属を担持している請求項4または5に記載の消臭性抗菌防黴塗料組成物。 The fourth or fifth aspect of claim 4 or 5, wherein the porous coordination polymer carries one or more metals selected from silver, copper, zinc, cobalt, aluminum, nickel, palladium, molybdenum, and tungsten. Deodorant antibacterial anti-cobalt coating composition. シラノール基含有有機シラン化合物、またはチタノール基含有有機チタン化合物をさらに含む請求項4~6の何れか1項に記載の消臭性抗菌防黴塗料組成物。 The deodorant antibacterial anti-mold coating composition according to any one of claims 4 to 6, further comprising a silanol group-containing organic silane compound or a titanol group-containing organic titanium compound. 銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体をさらに含む請求項4~7の何れか1項に記載の消臭性抗菌防黴塗料組成物。 The deodorant antibacterial anti-mold coating composition according to any one of claims 4 to 7, further comprising a complex of silver and an organic compound ligand and / or a complex of copper and an organic compound ligand. 多孔性配位高分子を含む消臭性抗菌防黴塗膜であって、前記多孔性配位高分子が、有機錯体ユニット及び架橋性有機化合物とで構成され、この両者が多方向に交互に連結して成る立体格子群を有し、1)前記有機錯体ユニットが2~4価の金属イオン1~6個、及びカルボキシル基を2~4個有する化合物からなり、2)また前記架橋性有機化合物が、構造中に2~4個の窒素原子を有する有機配位子、または構造中に1~2個のカルボキシル基及び1~2個の窒素原子を有する有機配位子であり、さらに前記立体格子群に光触媒性金属酸化物を担持することを特徴とする消臭性抗菌防黴塗膜。 A deodorant antibacterial anti-mold coating film containing a porous coordination polymer, wherein the porous coordination polymer is composed of an organic complex unit and a crosslinkable organic compound, both of which alternate in multiple directions. It has a group of three-dimensional lattices that are linked, and 1) the organic complex unit is composed of 1 to 6 divalent to tetravalent metal ions and 2 to 4 carboxyl groups, and 2) the crosslinkable organic. The compound is an organic ligand having 2 to 4 nitrogen atoms in the structure, or an organic ligand having 1 to 2 carboxyl groups and 1 to 2 nitrogen atoms in the structure, and further described above. A deodorant antibacterial anti-mold coating material characterized by supporting a photocatalytic metal oxide in a three-dimensional lattice group. 前記光触媒性金属酸化物が、酸化チタン、過酸化チタン、酸化亜鉛、酸化錫、チタン酸ストロンチウム、酸化タングステン、酸化ビスマス、及び酸化鉄、から選ばれた1種以上で、かつ、A)200nmから399nmの波長で活性を示す紫外線励起型、B)400nmから780nmの波長で活性を示す可視光励起型、の何れか一方の使用、または併用である請求項9に記載の消臭性抗菌防黴塗膜。 The photocatalytic metal oxide is one or more selected from titanium oxide, titanium peroxide, zinc oxide, tin oxide, strontium titanate, tungsten oxide, bismuth oxide, and iron oxide, and A) from 200 nm. The deodorant antibacterial anti-mold coating according to claim 9, wherein either the ultraviolet-excited type exhibiting activity at a wavelength of 399 nm or the visible light-excited type exhibiting activity at a wavelength of 400 nm to 780 nm is used or used in combination. film. 前記多孔性配位高分子が、銀、銅、亜鉛、コバルト、アルミニウム、ニッケル、パラジウム、 モリブデン、及びタングステン、から選ばれた1種以上の金属を担持している請求項9または10に記載の消臭性抗菌防黴塗膜。 The 9 or 10 according to claim 9 or 10, wherein the porous coordination polymer carries one or more metals selected from silver, copper, zinc, cobalt, aluminum, nickel, palladium, molybdenum, and tungsten. Deodorant antibacterial anti-cobalt coating. シラノール基含有有機シラン化合物のゾルゲル縮合体、またはチタノール基含有有機チタン化合物のゾルゲル縮合体をバインダー成分とする請求項9~11のいずれか1項に記載の消臭性抗菌防黴塗膜。 The deodorant antibacterial antifungal coating film according to any one of claims 9 to 11, wherein the sol-gel condensate of a silanol group-containing organic silane compound or the sol-gel condensate of a titanol group-containing organic titanium compound is used as a binder component. 銀と有機化合物配位子との錯体、及び/または銅と有機化合物配位子との錯体をさらに含む請求項9~12の何れか1項に記載の消臭性抗菌防黴塗膜。 The deodorant antibacterial antifungal coating film according to any one of claims 9 to 12, further comprising a complex of silver and an organic compound ligand and / or a complex of copper and an organic compound ligand.
JP2020115597A 2020-07-03 2020-07-03 Deodorant antibacterial anti-fungal substance, deodorant antibacterial anti-fungal coating composition, and deodorant antibacterial anti-fungal coat Pending JP2022013196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020115597A JP2022013196A (en) 2020-07-03 2020-07-03 Deodorant antibacterial anti-fungal substance, deodorant antibacterial anti-fungal coating composition, and deodorant antibacterial anti-fungal coat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020115597A JP2022013196A (en) 2020-07-03 2020-07-03 Deodorant antibacterial anti-fungal substance, deodorant antibacterial anti-fungal coating composition, and deodorant antibacterial anti-fungal coat

Publications (1)

Publication Number Publication Date
JP2022013196A true JP2022013196A (en) 2022-01-18

Family

ID=80169507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020115597A Pending JP2022013196A (en) 2020-07-03 2020-07-03 Deodorant antibacterial anti-fungal substance, deodorant antibacterial anti-fungal coating composition, and deodorant antibacterial anti-fungal coat

Country Status (1)

Country Link
JP (1) JP2022013196A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102540169B1 (en) * 2022-09-20 2023-06-05 주식회사 고차원 Toothbrush cap having MOF antibacterial ball receiving structure and manufacturing method thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3128583U (en) * 2006-10-30 2007-01-18 株式会社エブノ Infection prevention mask
WO2013021944A1 (en) * 2011-08-05 2013-02-14 国立大学法人京都大学 Metal nanoparticle-pcp complex and manufacturing method therefor
JP2014162779A (en) * 2013-02-27 2014-09-08 Kuraray Co Ltd Method for producing metal complex
WO2015147273A1 (en) * 2014-03-27 2015-10-01 東洋紡株式会社 Metal complex, and adsorbent, storage material, and separation material comprising same
CN107376847A (en) * 2017-06-23 2017-11-24 孝感市元达新材料科技有限公司 A kind of air purifier multifunctional composite filter net materials and preparation method
JP2019064078A (en) * 2017-09-29 2019-04-25 平岡織染株式会社 Antistatic antibacterial film material
CN110801837A (en) * 2019-11-13 2020-02-18 武汉纺织大学 Silver/zinc oxide/carbon hollow composite photocatalyst and preparation method and application thereof
CN110841621A (en) * 2019-11-28 2020-02-28 怀化学院 Preparation method of MOF-5-based photocatalyst

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3128583U (en) * 2006-10-30 2007-01-18 株式会社エブノ Infection prevention mask
WO2013021944A1 (en) * 2011-08-05 2013-02-14 国立大学法人京都大学 Metal nanoparticle-pcp complex and manufacturing method therefor
JP2014162779A (en) * 2013-02-27 2014-09-08 Kuraray Co Ltd Method for producing metal complex
WO2015147273A1 (en) * 2014-03-27 2015-10-01 東洋紡株式会社 Metal complex, and adsorbent, storage material, and separation material comprising same
CN107376847A (en) * 2017-06-23 2017-11-24 孝感市元达新材料科技有限公司 A kind of air purifier multifunctional composite filter net materials and preparation method
JP2019064078A (en) * 2017-09-29 2019-04-25 平岡織染株式会社 Antistatic antibacterial film material
CN110801837A (en) * 2019-11-13 2020-02-18 武汉纺织大学 Silver/zinc oxide/carbon hollow composite photocatalyst and preparation method and application thereof
CN110841621A (en) * 2019-11-28 2020-02-28 怀化学院 Preparation method of MOF-5-based photocatalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102540169B1 (en) * 2022-09-20 2023-06-05 주식회사 고차원 Toothbrush cap having MOF antibacterial ball receiving structure and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP7333076B2 (en) Antistatic antibacterial antifungal film material
JP6678037B2 (en) Membrane materials for tent structures
JP6590687B2 (en) Resin composition for tent structure film material
CN110436419A (en) Purified hydrogen peroxide gas method for generation and device
CN101294476A (en) Multifunctional thermal insulation aeration clearing window or door
JP2006082071A (en) Photocatalytic composition, building material for interior finish, coating material, synthetic resin molded body, method for utilizing photocatalyst and method for decomposing harmful substance
JP2019064078A (en) Antistatic antibacterial film material
JP2013212238A (en) Odor-reducing mesh sheet
JP2007262621A (en) Fiber having photocatalytic ability, cloth using the fiber, and cloth product using the cloth
JP6119009B2 (en) Industrial material sheet
JP6929543B2 (en) Antistatic antibacterial membrane material
KR101765135B1 (en) High functional anti-biotic deodorization filter comprising silver nano-silica complex
JP2022013196A (en) Deodorant antibacterial anti-fungal substance, deodorant antibacterial anti-fungal coating composition, and deodorant antibacterial anti-fungal coat
JP6675200B2 (en) Membrane materials for tent structures
JP7290330B2 (en) Deodorant antibacterial sheet-like material and method for producing the same
JP3914982B2 (en) Antibacterial material and antibacterial product using the same
KR100564445B1 (en) A ventilation system
JP5022561B2 (en) Environmental purification materials
JP7339666B2 (en) Deodorant antibacterial sheet-like material and method for producing the same
JP2014121693A (en) Air filter
CN2876300Y (en) Environmental protection antibacterial window gauze
JP7348654B2 (en) Antistatic deodorizing sheet material and manufacturing method thereof
JP2017122051A (en) Film material for tent structure
JP2003213565A (en) Flame-retardant antimicrobial textile product and method for producing the same
JP2015063494A (en) Mesh sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230824

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20231020